Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _BCACHE_H
0003 #define _BCACHE_H
0004 
0005 /*
0006  * SOME HIGH LEVEL CODE DOCUMENTATION:
0007  *
0008  * Bcache mostly works with cache sets, cache devices, and backing devices.
0009  *
0010  * Support for multiple cache devices hasn't quite been finished off yet, but
0011  * it's about 95% plumbed through. A cache set and its cache devices is sort of
0012  * like a md raid array and its component devices. Most of the code doesn't care
0013  * about individual cache devices, the main abstraction is the cache set.
0014  *
0015  * Multiple cache devices is intended to give us the ability to mirror dirty
0016  * cached data and metadata, without mirroring clean cached data.
0017  *
0018  * Backing devices are different, in that they have a lifetime independent of a
0019  * cache set. When you register a newly formatted backing device it'll come up
0020  * in passthrough mode, and then you can attach and detach a backing device from
0021  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
0022  * invalidates any cached data for that backing device.
0023  *
0024  * A cache set can have multiple (many) backing devices attached to it.
0025  *
0026  * There's also flash only volumes - this is the reason for the distinction
0027  * between struct cached_dev and struct bcache_device. A flash only volume
0028  * works much like a bcache device that has a backing device, except the
0029  * "cached" data is always dirty. The end result is that we get thin
0030  * provisioning with very little additional code.
0031  *
0032  * Flash only volumes work but they're not production ready because the moving
0033  * garbage collector needs more work. More on that later.
0034  *
0035  * BUCKETS/ALLOCATION:
0036  *
0037  * Bcache is primarily designed for caching, which means that in normal
0038  * operation all of our available space will be allocated. Thus, we need an
0039  * efficient way of deleting things from the cache so we can write new things to
0040  * it.
0041  *
0042  * To do this, we first divide the cache device up into buckets. A bucket is the
0043  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
0044  * works efficiently.
0045  *
0046  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
0047  * it. The gens and priorities for all the buckets are stored contiguously and
0048  * packed on disk (in a linked list of buckets - aside from the superblock, all
0049  * of bcache's metadata is stored in buckets).
0050  *
0051  * The priority is used to implement an LRU. We reset a bucket's priority when
0052  * we allocate it or on cache it, and every so often we decrement the priority
0053  * of each bucket. It could be used to implement something more sophisticated,
0054  * if anyone ever gets around to it.
0055  *
0056  * The generation is used for invalidating buckets. Each pointer also has an 8
0057  * bit generation embedded in it; for a pointer to be considered valid, its gen
0058  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
0059  * we have to do is increment its gen (and write its new gen to disk; we batch
0060  * this up).
0061  *
0062  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
0063  * contain metadata (including btree nodes).
0064  *
0065  * THE BTREE:
0066  *
0067  * Bcache is in large part design around the btree.
0068  *
0069  * At a high level, the btree is just an index of key -> ptr tuples.
0070  *
0071  * Keys represent extents, and thus have a size field. Keys also have a variable
0072  * number of pointers attached to them (potentially zero, which is handy for
0073  * invalidating the cache).
0074  *
0075  * The key itself is an inode:offset pair. The inode number corresponds to a
0076  * backing device or a flash only volume. The offset is the ending offset of the
0077  * extent within the inode - not the starting offset; this makes lookups
0078  * slightly more convenient.
0079  *
0080  * Pointers contain the cache device id, the offset on that device, and an 8 bit
0081  * generation number. More on the gen later.
0082  *
0083  * Index lookups are not fully abstracted - cache lookups in particular are
0084  * still somewhat mixed in with the btree code, but things are headed in that
0085  * direction.
0086  *
0087  * Updates are fairly well abstracted, though. There are two different ways of
0088  * updating the btree; insert and replace.
0089  *
0090  * BTREE_INSERT will just take a list of keys and insert them into the btree -
0091  * overwriting (possibly only partially) any extents they overlap with. This is
0092  * used to update the index after a write.
0093  *
0094  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
0095  * overwriting a key that matches another given key. This is used for inserting
0096  * data into the cache after a cache miss, and for background writeback, and for
0097  * the moving garbage collector.
0098  *
0099  * There is no "delete" operation; deleting things from the index is
0100  * accomplished by either by invalidating pointers (by incrementing a bucket's
0101  * gen) or by inserting a key with 0 pointers - which will overwrite anything
0102  * previously present at that location in the index.
0103  *
0104  * This means that there are always stale/invalid keys in the btree. They're
0105  * filtered out by the code that iterates through a btree node, and removed when
0106  * a btree node is rewritten.
0107  *
0108  * BTREE NODES:
0109  *
0110  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
0111  * free smaller than a bucket - so, that's how big our btree nodes are.
0112  *
0113  * (If buckets are really big we'll only use part of the bucket for a btree node
0114  * - no less than 1/4th - but a bucket still contains no more than a single
0115  * btree node. I'd actually like to change this, but for now we rely on the
0116  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
0117  *
0118  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
0119  * btree implementation.
0120  *
0121  * The way this is solved is that btree nodes are internally log structured; we
0122  * can append new keys to an existing btree node without rewriting it. This
0123  * means each set of keys we write is sorted, but the node is not.
0124  *
0125  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
0126  * be expensive, and we have to distinguish between the keys we have written and
0127  * the keys we haven't. So to do a lookup in a btree node, we have to search
0128  * each sorted set. But we do merge written sets together lazily, so the cost of
0129  * these extra searches is quite low (normally most of the keys in a btree node
0130  * will be in one big set, and then there'll be one or two sets that are much
0131  * smaller).
0132  *
0133  * This log structure makes bcache's btree more of a hybrid between a
0134  * conventional btree and a compacting data structure, with some of the
0135  * advantages of both.
0136  *
0137  * GARBAGE COLLECTION:
0138  *
0139  * We can't just invalidate any bucket - it might contain dirty data or
0140  * metadata. If it once contained dirty data, other writes might overwrite it
0141  * later, leaving no valid pointers into that bucket in the index.
0142  *
0143  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
0144  * It also counts how much valid data it each bucket currently contains, so that
0145  * allocation can reuse buckets sooner when they've been mostly overwritten.
0146  *
0147  * It also does some things that are really internal to the btree
0148  * implementation. If a btree node contains pointers that are stale by more than
0149  * some threshold, it rewrites the btree node to avoid the bucket's generation
0150  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
0151  *
0152  * THE JOURNAL:
0153  *
0154  * Bcache's journal is not necessary for consistency; we always strictly
0155  * order metadata writes so that the btree and everything else is consistent on
0156  * disk in the event of an unclean shutdown, and in fact bcache had writeback
0157  * caching (with recovery from unclean shutdown) before journalling was
0158  * implemented.
0159  *
0160  * Rather, the journal is purely a performance optimization; we can't complete a
0161  * write until we've updated the index on disk, otherwise the cache would be
0162  * inconsistent in the event of an unclean shutdown. This means that without the
0163  * journal, on random write workloads we constantly have to update all the leaf
0164  * nodes in the btree, and those writes will be mostly empty (appending at most
0165  * a few keys each) - highly inefficient in terms of amount of metadata writes,
0166  * and it puts more strain on the various btree resorting/compacting code.
0167  *
0168  * The journal is just a log of keys we've inserted; on startup we just reinsert
0169  * all the keys in the open journal entries. That means that when we're updating
0170  * a node in the btree, we can wait until a 4k block of keys fills up before
0171  * writing them out.
0172  *
0173  * For simplicity, we only journal updates to leaf nodes; updates to parent
0174  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
0175  * the complexity to deal with journalling them (in particular, journal replay)
0176  * - updates to non leaf nodes just happen synchronously (see btree_split()).
0177  */
0178 
0179 #define pr_fmt(fmt) "bcache: %s() " fmt, __func__
0180 
0181 #include <linux/bio.h>
0182 #include <linux/kobject.h>
0183 #include <linux/list.h>
0184 #include <linux/mutex.h>
0185 #include <linux/rbtree.h>
0186 #include <linux/rwsem.h>
0187 #include <linux/refcount.h>
0188 #include <linux/types.h>
0189 #include <linux/workqueue.h>
0190 #include <linux/kthread.h>
0191 
0192 #include "bcache_ondisk.h"
0193 #include "bset.h"
0194 #include "util.h"
0195 #include "closure.h"
0196 
0197 struct bucket {
0198     atomic_t    pin;
0199     uint16_t    prio;
0200     uint8_t     gen;
0201     uint8_t     last_gc; /* Most out of date gen in the btree */
0202     uint16_t    gc_mark; /* Bitfield used by GC. See below for field */
0203 };
0204 
0205 /*
0206  * I'd use bitfields for these, but I don't trust the compiler not to screw me
0207  * as multiple threads touch struct bucket without locking
0208  */
0209 
0210 BITMASK(GC_MARK,     struct bucket, gc_mark, 0, 2);
0211 #define GC_MARK_RECLAIMABLE 1
0212 #define GC_MARK_DIRTY       2
0213 #define GC_MARK_METADATA    3
0214 #define GC_SECTORS_USED_SIZE    13
0215 #define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
0216 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
0217 BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
0218 
0219 #include "journal.h"
0220 #include "stats.h"
0221 struct search;
0222 struct btree;
0223 struct keybuf;
0224 
0225 struct keybuf_key {
0226     struct rb_node      node;
0227     BKEY_PADDED(key);
0228     void            *private;
0229 };
0230 
0231 struct keybuf {
0232     struct bkey     last_scanned;
0233     spinlock_t      lock;
0234 
0235     /*
0236      * Beginning and end of range in rb tree - so that we can skip taking
0237      * lock and checking the rb tree when we need to check for overlapping
0238      * keys.
0239      */
0240     struct bkey     start;
0241     struct bkey     end;
0242 
0243     struct rb_root      keys;
0244 
0245 #define KEYBUF_NR       500
0246     DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
0247 };
0248 
0249 struct bcache_device {
0250     struct closure      cl;
0251 
0252     struct kobject      kobj;
0253 
0254     struct cache_set    *c;
0255     unsigned int        id;
0256 #define BCACHEDEVNAME_SIZE  12
0257     char            name[BCACHEDEVNAME_SIZE];
0258 
0259     struct gendisk      *disk;
0260 
0261     unsigned long       flags;
0262 #define BCACHE_DEV_CLOSING      0
0263 #define BCACHE_DEV_DETACHING        1
0264 #define BCACHE_DEV_UNLINK_DONE      2
0265 #define BCACHE_DEV_WB_RUNNING       3
0266 #define BCACHE_DEV_RATE_DW_RUNNING  4
0267     int         nr_stripes;
0268     unsigned int        stripe_size;
0269     atomic_t        *stripe_sectors_dirty;
0270     unsigned long       *full_dirty_stripes;
0271 
0272     struct bio_set      bio_split;
0273 
0274     unsigned int        data_csum:1;
0275 
0276     int (*cache_miss)(struct btree *b, struct search *s,
0277               struct bio *bio, unsigned int sectors);
0278     int (*ioctl)(struct bcache_device *d, fmode_t mode,
0279              unsigned int cmd, unsigned long arg);
0280 };
0281 
0282 struct io {
0283     /* Used to track sequential IO so it can be skipped */
0284     struct hlist_node   hash;
0285     struct list_head    lru;
0286 
0287     unsigned long       jiffies;
0288     unsigned int        sequential;
0289     sector_t        last;
0290 };
0291 
0292 enum stop_on_failure {
0293     BCH_CACHED_DEV_STOP_AUTO = 0,
0294     BCH_CACHED_DEV_STOP_ALWAYS,
0295     BCH_CACHED_DEV_STOP_MODE_MAX,
0296 };
0297 
0298 struct cached_dev {
0299     struct list_head    list;
0300     struct bcache_device    disk;
0301     struct block_device *bdev;
0302 
0303     struct cache_sb     sb;
0304     struct cache_sb_disk    *sb_disk;
0305     struct bio      sb_bio;
0306     struct bio_vec      sb_bv[1];
0307     struct closure      sb_write;
0308     struct semaphore    sb_write_mutex;
0309 
0310     /* Refcount on the cache set. Always nonzero when we're caching. */
0311     refcount_t      count;
0312     struct work_struct  detach;
0313 
0314     /*
0315      * Device might not be running if it's dirty and the cache set hasn't
0316      * showed up yet.
0317      */
0318     atomic_t        running;
0319 
0320     /*
0321      * Writes take a shared lock from start to finish; scanning for dirty
0322      * data to refill the rb tree requires an exclusive lock.
0323      */
0324     struct rw_semaphore writeback_lock;
0325 
0326     /*
0327      * Nonzero, and writeback has a refcount (d->count), iff there is dirty
0328      * data in the cache. Protected by writeback_lock; must have an
0329      * shared lock to set and exclusive lock to clear.
0330      */
0331     atomic_t        has_dirty;
0332 
0333 #define BCH_CACHE_READA_ALL     0
0334 #define BCH_CACHE_READA_META_ONLY   1
0335     unsigned int        cache_readahead_policy;
0336     struct bch_ratelimit    writeback_rate;
0337     struct delayed_work writeback_rate_update;
0338 
0339     /* Limit number of writeback bios in flight */
0340     struct semaphore    in_flight;
0341     struct task_struct  *writeback_thread;
0342     struct workqueue_struct *writeback_write_wq;
0343 
0344     struct keybuf       writeback_keys;
0345 
0346     struct task_struct  *status_update_thread;
0347     /*
0348      * Order the write-half of writeback operations strongly in dispatch
0349      * order.  (Maintain LBA order; don't allow reads completing out of
0350      * order to re-order the writes...)
0351      */
0352     struct closure_waitlist writeback_ordering_wait;
0353     atomic_t        writeback_sequence_next;
0354 
0355     /* For tracking sequential IO */
0356 #define RECENT_IO_BITS  7
0357 #define RECENT_IO   (1 << RECENT_IO_BITS)
0358     struct io       io[RECENT_IO];
0359     struct hlist_head   io_hash[RECENT_IO + 1];
0360     struct list_head    io_lru;
0361     spinlock_t      io_lock;
0362 
0363     struct cache_accounting accounting;
0364 
0365     /* The rest of this all shows up in sysfs */
0366     unsigned int        sequential_cutoff;
0367 
0368     unsigned int        io_disable:1;
0369     unsigned int        verify:1;
0370     unsigned int        bypass_torture_test:1;
0371 
0372     unsigned int        partial_stripes_expensive:1;
0373     unsigned int        writeback_metadata:1;
0374     unsigned int        writeback_running:1;
0375     unsigned int        writeback_consider_fragment:1;
0376     unsigned char       writeback_percent;
0377     unsigned int        writeback_delay;
0378 
0379     uint64_t        writeback_rate_target;
0380     int64_t         writeback_rate_proportional;
0381     int64_t         writeback_rate_integral;
0382     int64_t         writeback_rate_integral_scaled;
0383     int32_t         writeback_rate_change;
0384 
0385     unsigned int        writeback_rate_update_seconds;
0386     unsigned int        writeback_rate_i_term_inverse;
0387     unsigned int        writeback_rate_p_term_inverse;
0388     unsigned int        writeback_rate_fp_term_low;
0389     unsigned int        writeback_rate_fp_term_mid;
0390     unsigned int        writeback_rate_fp_term_high;
0391     unsigned int        writeback_rate_minimum;
0392 
0393     enum stop_on_failure    stop_when_cache_set_failed;
0394 #define DEFAULT_CACHED_DEV_ERROR_LIMIT  64
0395     atomic_t        io_errors;
0396     unsigned int        error_limit;
0397     unsigned int        offline_seconds;
0398 
0399     /*
0400      * Retry to update writeback_rate if contention happens for
0401      * down_read(dc->writeback_lock) in update_writeback_rate()
0402      */
0403 #define BCH_WBRATE_UPDATE_MAX_SKIPS 15
0404     unsigned int        rate_update_retry;
0405 };
0406 
0407 enum alloc_reserve {
0408     RESERVE_BTREE,
0409     RESERVE_PRIO,
0410     RESERVE_MOVINGGC,
0411     RESERVE_NONE,
0412     RESERVE_NR,
0413 };
0414 
0415 struct cache {
0416     struct cache_set    *set;
0417     struct cache_sb     sb;
0418     struct cache_sb_disk    *sb_disk;
0419     struct bio      sb_bio;
0420     struct bio_vec      sb_bv[1];
0421 
0422     struct kobject      kobj;
0423     struct block_device *bdev;
0424 
0425     struct task_struct  *alloc_thread;
0426 
0427     struct closure      prio;
0428     struct prio_set     *disk_buckets;
0429 
0430     /*
0431      * When allocating new buckets, prio_write() gets first dibs - since we
0432      * may not be allocate at all without writing priorities and gens.
0433      * prio_last_buckets[] contains the last buckets we wrote priorities to
0434      * (so gc can mark them as metadata), prio_buckets[] contains the
0435      * buckets allocated for the next prio write.
0436      */
0437     uint64_t        *prio_buckets;
0438     uint64_t        *prio_last_buckets;
0439 
0440     /*
0441      * free: Buckets that are ready to be used
0442      *
0443      * free_inc: Incoming buckets - these are buckets that currently have
0444      * cached data in them, and we can't reuse them until after we write
0445      * their new gen to disk. After prio_write() finishes writing the new
0446      * gens/prios, they'll be moved to the free list (and possibly discarded
0447      * in the process)
0448      */
0449     DECLARE_FIFO(long, free)[RESERVE_NR];
0450     DECLARE_FIFO(long, free_inc);
0451 
0452     size_t          fifo_last_bucket;
0453 
0454     /* Allocation stuff: */
0455     struct bucket       *buckets;
0456 
0457     DECLARE_HEAP(struct bucket *, heap);
0458 
0459     /*
0460      * If nonzero, we know we aren't going to find any buckets to invalidate
0461      * until a gc finishes - otherwise we could pointlessly burn a ton of
0462      * cpu
0463      */
0464     unsigned int        invalidate_needs_gc;
0465 
0466     bool            discard; /* Get rid of? */
0467 
0468     struct journal_device   journal;
0469 
0470     /* The rest of this all shows up in sysfs */
0471 #define IO_ERROR_SHIFT      20
0472     atomic_t        io_errors;
0473     atomic_t        io_count;
0474 
0475     atomic_long_t       meta_sectors_written;
0476     atomic_long_t       btree_sectors_written;
0477     atomic_long_t       sectors_written;
0478 };
0479 
0480 struct gc_stat {
0481     size_t          nodes;
0482     size_t          nodes_pre;
0483     size_t          key_bytes;
0484 
0485     size_t          nkeys;
0486     uint64_t        data;   /* sectors */
0487     unsigned int        in_use; /* percent */
0488 };
0489 
0490 /*
0491  * Flag bits, for how the cache set is shutting down, and what phase it's at:
0492  *
0493  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
0494  * all the backing devices first (their cached data gets invalidated, and they
0495  * won't automatically reattach).
0496  *
0497  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
0498  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
0499  * flushing dirty data).
0500  *
0501  * CACHE_SET_RUNNING means all cache devices have been registered and journal
0502  * replay is complete.
0503  *
0504  * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
0505  * external and internal I/O should be denied when this flag is set.
0506  *
0507  */
0508 #define CACHE_SET_UNREGISTERING     0
0509 #define CACHE_SET_STOPPING      1
0510 #define CACHE_SET_RUNNING       2
0511 #define CACHE_SET_IO_DISABLE        3
0512 
0513 struct cache_set {
0514     struct closure      cl;
0515 
0516     struct list_head    list;
0517     struct kobject      kobj;
0518     struct kobject      internal;
0519     struct dentry       *debug;
0520     struct cache_accounting accounting;
0521 
0522     unsigned long       flags;
0523     atomic_t        idle_counter;
0524     atomic_t        at_max_writeback_rate;
0525 
0526     struct cache        *cache;
0527 
0528     struct bcache_device    **devices;
0529     unsigned int        devices_max_used;
0530     atomic_t        attached_dev_nr;
0531     struct list_head    cached_devs;
0532     uint64_t        cached_dev_sectors;
0533     atomic_long_t       flash_dev_dirty_sectors;
0534     struct closure      caching;
0535 
0536     struct closure      sb_write;
0537     struct semaphore    sb_write_mutex;
0538 
0539     mempool_t       search;
0540     mempool_t       bio_meta;
0541     struct bio_set      bio_split;
0542 
0543     /* For the btree cache */
0544     struct shrinker     shrink;
0545 
0546     /* For the btree cache and anything allocation related */
0547     struct mutex        bucket_lock;
0548 
0549     /* log2(bucket_size), in sectors */
0550     unsigned short      bucket_bits;
0551 
0552     /* log2(block_size), in sectors */
0553     unsigned short      block_bits;
0554 
0555     /*
0556      * Default number of pages for a new btree node - may be less than a
0557      * full bucket
0558      */
0559     unsigned int        btree_pages;
0560 
0561     /*
0562      * Lists of struct btrees; lru is the list for structs that have memory
0563      * allocated for actual btree node, freed is for structs that do not.
0564      *
0565      * We never free a struct btree, except on shutdown - we just put it on
0566      * the btree_cache_freed list and reuse it later. This simplifies the
0567      * code, and it doesn't cost us much memory as the memory usage is
0568      * dominated by buffers that hold the actual btree node data and those
0569      * can be freed - and the number of struct btrees allocated is
0570      * effectively bounded.
0571      *
0572      * btree_cache_freeable effectively is a small cache - we use it because
0573      * high order page allocations can be rather expensive, and it's quite
0574      * common to delete and allocate btree nodes in quick succession. It
0575      * should never grow past ~2-3 nodes in practice.
0576      */
0577     struct list_head    btree_cache;
0578     struct list_head    btree_cache_freeable;
0579     struct list_head    btree_cache_freed;
0580 
0581     /* Number of elements in btree_cache + btree_cache_freeable lists */
0582     unsigned int        btree_cache_used;
0583 
0584     /*
0585      * If we need to allocate memory for a new btree node and that
0586      * allocation fails, we can cannibalize another node in the btree cache
0587      * to satisfy the allocation - lock to guarantee only one thread does
0588      * this at a time:
0589      */
0590     wait_queue_head_t   btree_cache_wait;
0591     struct task_struct  *btree_cache_alloc_lock;
0592     spinlock_t      btree_cannibalize_lock;
0593 
0594     /*
0595      * When we free a btree node, we increment the gen of the bucket the
0596      * node is in - but we can't rewrite the prios and gens until we
0597      * finished whatever it is we were doing, otherwise after a crash the
0598      * btree node would be freed but for say a split, we might not have the
0599      * pointers to the new nodes inserted into the btree yet.
0600      *
0601      * This is a refcount that blocks prio_write() until the new keys are
0602      * written.
0603      */
0604     atomic_t        prio_blocked;
0605     wait_queue_head_t   bucket_wait;
0606 
0607     /*
0608      * For any bio we don't skip we subtract the number of sectors from
0609      * rescale; when it hits 0 we rescale all the bucket priorities.
0610      */
0611     atomic_t        rescale;
0612     /*
0613      * used for GC, identify if any front side I/Os is inflight
0614      */
0615     atomic_t        search_inflight;
0616     /*
0617      * When we invalidate buckets, we use both the priority and the amount
0618      * of good data to determine which buckets to reuse first - to weight
0619      * those together consistently we keep track of the smallest nonzero
0620      * priority of any bucket.
0621      */
0622     uint16_t        min_prio;
0623 
0624     /*
0625      * max(gen - last_gc) for all buckets. When it gets too big we have to
0626      * gc to keep gens from wrapping around.
0627      */
0628     uint8_t         need_gc;
0629     struct gc_stat      gc_stats;
0630     size_t          nbuckets;
0631     size_t          avail_nbuckets;
0632 
0633     struct task_struct  *gc_thread;
0634     /* Where in the btree gc currently is */
0635     struct bkey     gc_done;
0636 
0637     /*
0638      * For automatical garbage collection after writeback completed, this
0639      * varialbe is used as bit fields,
0640      * - 0000 0001b (BCH_ENABLE_AUTO_GC): enable gc after writeback
0641      * - 0000 0010b (BCH_DO_AUTO_GC):     do gc after writeback
0642      * This is an optimization for following write request after writeback
0643      * finished, but read hit rate dropped due to clean data on cache is
0644      * discarded. Unless user explicitly sets it via sysfs, it won't be
0645      * enabled.
0646      */
0647 #define BCH_ENABLE_AUTO_GC  1
0648 #define BCH_DO_AUTO_GC      2
0649     uint8_t         gc_after_writeback;
0650 
0651     /*
0652      * The allocation code needs gc_mark in struct bucket to be correct, but
0653      * it's not while a gc is in progress. Protected by bucket_lock.
0654      */
0655     int         gc_mark_valid;
0656 
0657     /* Counts how many sectors bio_insert has added to the cache */
0658     atomic_t        sectors_to_gc;
0659     wait_queue_head_t   gc_wait;
0660 
0661     struct keybuf       moving_gc_keys;
0662     /* Number of moving GC bios in flight */
0663     struct semaphore    moving_in_flight;
0664 
0665     struct workqueue_struct *moving_gc_wq;
0666 
0667     struct btree        *root;
0668 
0669 #ifdef CONFIG_BCACHE_DEBUG
0670     struct btree        *verify_data;
0671     struct bset     *verify_ondisk;
0672     struct mutex        verify_lock;
0673 #endif
0674 
0675     uint8_t         set_uuid[16];
0676     unsigned int        nr_uuids;
0677     struct uuid_entry   *uuids;
0678     BKEY_PADDED(uuid_bucket);
0679     struct closure      uuid_write;
0680     struct semaphore    uuid_write_mutex;
0681 
0682     /*
0683      * A btree node on disk could have too many bsets for an iterator to fit
0684      * on the stack - have to dynamically allocate them.
0685      * bch_cache_set_alloc() will make sure the pool can allocate iterators
0686      * equipped with enough room that can host
0687      *     (sb.bucket_size / sb.block_size)
0688      * btree_iter_sets, which is more than static MAX_BSETS.
0689      */
0690     mempool_t       fill_iter;
0691 
0692     struct bset_sort_state  sort;
0693 
0694     /* List of buckets we're currently writing data to */
0695     struct list_head    data_buckets;
0696     spinlock_t      data_bucket_lock;
0697 
0698     struct journal      journal;
0699 
0700 #define CONGESTED_MAX       1024
0701     unsigned int        congested_last_us;
0702     atomic_t        congested;
0703 
0704     /* The rest of this all shows up in sysfs */
0705     unsigned int        congested_read_threshold_us;
0706     unsigned int        congested_write_threshold_us;
0707 
0708     struct time_stats   btree_gc_time;
0709     struct time_stats   btree_split_time;
0710     struct time_stats   btree_read_time;
0711 
0712     atomic_long_t       cache_read_races;
0713     atomic_long_t       writeback_keys_done;
0714     atomic_long_t       writeback_keys_failed;
0715 
0716     atomic_long_t       reclaim;
0717     atomic_long_t       reclaimed_journal_buckets;
0718     atomic_long_t       flush_write;
0719 
0720     enum            {
0721         ON_ERROR_UNREGISTER,
0722         ON_ERROR_PANIC,
0723     }           on_error;
0724 #define DEFAULT_IO_ERROR_LIMIT 8
0725     unsigned int        error_limit;
0726     unsigned int        error_decay;
0727 
0728     unsigned short      journal_delay_ms;
0729     bool            expensive_debug_checks;
0730     unsigned int        verify:1;
0731     unsigned int        key_merging_disabled:1;
0732     unsigned int        gc_always_rewrite:1;
0733     unsigned int        shrinker_disabled:1;
0734     unsigned int        copy_gc_enabled:1;
0735     unsigned int        idle_max_writeback_rate_enabled:1;
0736 
0737 #define BUCKET_HASH_BITS    12
0738     struct hlist_head   bucket_hash[1 << BUCKET_HASH_BITS];
0739 };
0740 
0741 struct bbio {
0742     unsigned int        submit_time_us;
0743     union {
0744         struct bkey key;
0745         uint64_t    _pad[3];
0746         /*
0747          * We only need pad = 3 here because we only ever carry around a
0748          * single pointer - i.e. the pointer we're doing io to/from.
0749          */
0750     };
0751     struct bio      bio;
0752 };
0753 
0754 #define BTREE_PRIO      USHRT_MAX
0755 #define INITIAL_PRIO        32768U
0756 
0757 #define btree_bytes(c)      ((c)->btree_pages * PAGE_SIZE)
0758 #define btree_blocks(b)                         \
0759     ((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
0760 
0761 #define btree_default_blocks(c)                     \
0762     ((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
0763 
0764 #define bucket_bytes(ca)    ((ca)->sb.bucket_size << 9)
0765 #define block_bytes(ca)     ((ca)->sb.block_size << 9)
0766 
0767 static inline unsigned int meta_bucket_pages(struct cache_sb *sb)
0768 {
0769     unsigned int n, max_pages;
0770 
0771     max_pages = min_t(unsigned int,
0772               __rounddown_pow_of_two(USHRT_MAX) / PAGE_SECTORS,
0773               MAX_ORDER_NR_PAGES);
0774 
0775     n = sb->bucket_size / PAGE_SECTORS;
0776     if (n > max_pages)
0777         n = max_pages;
0778 
0779     return n;
0780 }
0781 
0782 static inline unsigned int meta_bucket_bytes(struct cache_sb *sb)
0783 {
0784     return meta_bucket_pages(sb) << PAGE_SHIFT;
0785 }
0786 
0787 #define prios_per_bucket(ca)                        \
0788     ((meta_bucket_bytes(&(ca)->sb) - sizeof(struct prio_set)) / \
0789      sizeof(struct bucket_disk))
0790 
0791 #define prio_buckets(ca)                        \
0792     DIV_ROUND_UP((size_t) (ca)->sb.nbuckets, prios_per_bucket(ca))
0793 
0794 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
0795 {
0796     return s >> c->bucket_bits;
0797 }
0798 
0799 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
0800 {
0801     return ((sector_t) b) << c->bucket_bits;
0802 }
0803 
0804 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
0805 {
0806     return s & (c->cache->sb.bucket_size - 1);
0807 }
0808 
0809 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
0810                    const struct bkey *k,
0811                    unsigned int ptr)
0812 {
0813     return sector_to_bucket(c, PTR_OFFSET(k, ptr));
0814 }
0815 
0816 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
0817                     const struct bkey *k,
0818                     unsigned int ptr)
0819 {
0820     return c->cache->buckets + PTR_BUCKET_NR(c, k, ptr);
0821 }
0822 
0823 static inline uint8_t gen_after(uint8_t a, uint8_t b)
0824 {
0825     uint8_t r = a - b;
0826 
0827     return r > 128U ? 0 : r;
0828 }
0829 
0830 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
0831                 unsigned int i)
0832 {
0833     return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
0834 }
0835 
0836 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
0837                  unsigned int i)
0838 {
0839     return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && c->cache;
0840 }
0841 
0842 /* Btree key macros */
0843 
0844 /*
0845  * This is used for various on disk data structures - cache_sb, prio_set, bset,
0846  * jset: The checksum is _always_ the first 8 bytes of these structs
0847  */
0848 #define csum_set(i)                         \
0849     bch_crc64(((void *) (i)) + sizeof(uint64_t),            \
0850           ((void *) bset_bkey_last(i)) -            \
0851           (((void *) (i)) + sizeof(uint64_t)))
0852 
0853 /* Error handling macros */
0854 
0855 #define btree_bug(b, ...)                       \
0856 do {                                    \
0857     if (bch_cache_set_error((b)->c, __VA_ARGS__))           \
0858         dump_stack();                       \
0859 } while (0)
0860 
0861 #define cache_bug(c, ...)                       \
0862 do {                                    \
0863     if (bch_cache_set_error(c, __VA_ARGS__))            \
0864         dump_stack();                       \
0865 } while (0)
0866 
0867 #define btree_bug_on(cond, b, ...)                  \
0868 do {                                    \
0869     if (cond)                           \
0870         btree_bug(b, __VA_ARGS__);              \
0871 } while (0)
0872 
0873 #define cache_bug_on(cond, c, ...)                  \
0874 do {                                    \
0875     if (cond)                           \
0876         cache_bug(c, __VA_ARGS__);              \
0877 } while (0)
0878 
0879 #define cache_set_err_on(cond, c, ...)                  \
0880 do {                                    \
0881     if (cond)                           \
0882         bch_cache_set_error(c, __VA_ARGS__);            \
0883 } while (0)
0884 
0885 /* Looping macros */
0886 
0887 #define for_each_bucket(b, ca)                      \
0888     for (b = (ca)->buckets + (ca)->sb.first_bucket;         \
0889          b < (ca)->buckets + (ca)->sb.nbuckets; b++)
0890 
0891 static inline void cached_dev_put(struct cached_dev *dc)
0892 {
0893     if (refcount_dec_and_test(&dc->count))
0894         schedule_work(&dc->detach);
0895 }
0896 
0897 static inline bool cached_dev_get(struct cached_dev *dc)
0898 {
0899     if (!refcount_inc_not_zero(&dc->count))
0900         return false;
0901 
0902     /* Paired with the mb in cached_dev_attach */
0903     smp_mb__after_atomic();
0904     return true;
0905 }
0906 
0907 /*
0908  * bucket_gc_gen() returns the difference between the bucket's current gen and
0909  * the oldest gen of any pointer into that bucket in the btree (last_gc).
0910  */
0911 
0912 static inline uint8_t bucket_gc_gen(struct bucket *b)
0913 {
0914     return b->gen - b->last_gc;
0915 }
0916 
0917 #define BUCKET_GC_GEN_MAX   96U
0918 
0919 #define kobj_attribute_write(n, fn)                 \
0920     static struct kobj_attribute ksysfs_##n = __ATTR(n, 0200, NULL, fn)
0921 
0922 #define kobj_attribute_rw(n, show, store)               \
0923     static struct kobj_attribute ksysfs_##n =           \
0924         __ATTR(n, 0600, show, store)
0925 
0926 static inline void wake_up_allocators(struct cache_set *c)
0927 {
0928     struct cache *ca = c->cache;
0929 
0930     wake_up_process(ca->alloc_thread);
0931 }
0932 
0933 static inline void closure_bio_submit(struct cache_set *c,
0934                       struct bio *bio,
0935                       struct closure *cl)
0936 {
0937     closure_get(cl);
0938     if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
0939         bio->bi_status = BLK_STS_IOERR;
0940         bio_endio(bio);
0941         return;
0942     }
0943     submit_bio_noacct(bio);
0944 }
0945 
0946 /*
0947  * Prevent the kthread exits directly, and make sure when kthread_stop()
0948  * is called to stop a kthread, it is still alive. If a kthread might be
0949  * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
0950  * necessary before the kthread returns.
0951  */
0952 static inline void wait_for_kthread_stop(void)
0953 {
0954     while (!kthread_should_stop()) {
0955         set_current_state(TASK_INTERRUPTIBLE);
0956         schedule();
0957     }
0958 }
0959 
0960 /* Forward declarations */
0961 
0962 void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
0963 void bch_count_io_errors(struct cache *ca, blk_status_t error,
0964              int is_read, const char *m);
0965 void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
0966                   blk_status_t error, const char *m);
0967 void bch_bbio_endio(struct cache_set *c, struct bio *bio,
0968             blk_status_t error, const char *m);
0969 void bch_bbio_free(struct bio *bio, struct cache_set *c);
0970 struct bio *bch_bbio_alloc(struct cache_set *c);
0971 
0972 void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
0973 void bch_submit_bbio(struct bio *bio, struct cache_set *c,
0974              struct bkey *k, unsigned int ptr);
0975 
0976 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
0977 void bch_rescale_priorities(struct cache_set *c, int sectors);
0978 
0979 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
0980 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);
0981 
0982 void __bch_bucket_free(struct cache *ca, struct bucket *b);
0983 void bch_bucket_free(struct cache_set *c, struct bkey *k);
0984 
0985 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
0986 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
0987                struct bkey *k, bool wait);
0988 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
0989              struct bkey *k, bool wait);
0990 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
0991                unsigned int sectors, unsigned int write_point,
0992                unsigned int write_prio, bool wait);
0993 bool bch_cached_dev_error(struct cached_dev *dc);
0994 
0995 __printf(2, 3)
0996 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);
0997 
0998 int bch_prio_write(struct cache *ca, bool wait);
0999 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);
1000 
1001 extern struct workqueue_struct *bcache_wq;
1002 extern struct workqueue_struct *bch_journal_wq;
1003 extern struct workqueue_struct *bch_flush_wq;
1004 extern struct mutex bch_register_lock;
1005 extern struct list_head bch_cache_sets;
1006 
1007 extern struct kobj_type bch_cached_dev_ktype;
1008 extern struct kobj_type bch_flash_dev_ktype;
1009 extern struct kobj_type bch_cache_set_ktype;
1010 extern struct kobj_type bch_cache_set_internal_ktype;
1011 extern struct kobj_type bch_cache_ktype;
1012 
1013 void bch_cached_dev_release(struct kobject *kobj);
1014 void bch_flash_dev_release(struct kobject *kobj);
1015 void bch_cache_set_release(struct kobject *kobj);
1016 void bch_cache_release(struct kobject *kobj);
1017 
1018 int bch_uuid_write(struct cache_set *c);
1019 void bcache_write_super(struct cache_set *c);
1020 
1021 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1022 
1023 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1024               uint8_t *set_uuid);
1025 void bch_cached_dev_detach(struct cached_dev *dc);
1026 int bch_cached_dev_run(struct cached_dev *dc);
1027 void bcache_device_stop(struct bcache_device *d);
1028 
1029 void bch_cache_set_unregister(struct cache_set *c);
1030 void bch_cache_set_stop(struct cache_set *c);
1031 
1032 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
1033 void bch_btree_cache_free(struct cache_set *c);
1034 int bch_btree_cache_alloc(struct cache_set *c);
1035 void bch_moving_init_cache_set(struct cache_set *c);
1036 int bch_open_buckets_alloc(struct cache_set *c);
1037 void bch_open_buckets_free(struct cache_set *c);
1038 
1039 int bch_cache_allocator_start(struct cache *ca);
1040 
1041 void bch_debug_exit(void);
1042 void bch_debug_init(void);
1043 void bch_request_exit(void);
1044 int bch_request_init(void);
1045 void bch_btree_exit(void);
1046 int bch_btree_init(void);
1047 
1048 #endif /* _BCACHE_H */