0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028 #include <linux/errno.h>
0029 #include <linux/module.h>
0030 #include <linux/init.h>
0031 #include <linux/slab.h>
0032 #include <linux/debugfs.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/wait.h>
0035 #include <linux/platform_device.h>
0036 #include <linux/io.h>
0037 #include <linux/of.h>
0038 #include <linux/of_device.h>
0039 #include <linux/of_address.h>
0040 #include <linux/of_irq.h>
0041 #include <linux/mailbox_controller.h>
0042 #include <linux/mailbox/brcm-message.h>
0043 #include <linux/scatterlist.h>
0044 #include <linux/dma-direction.h>
0045 #include <linux/dma-mapping.h>
0046 #include <linux/dmapool.h>
0047
0048 #define PDC_SUCCESS 0
0049
0050 #define RING_ENTRY_SIZE sizeof(struct dma64dd)
0051
0052
0053 #define PDC_RING_ENTRIES 512
0054
0055
0056
0057
0058 #define PDC_RING_SPACE_MIN 15
0059
0060 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
0061
0062 #define RING_ALIGN_ORDER 13
0063 #define RING_ALIGN BIT(RING_ALIGN_ORDER)
0064
0065 #define RX_BUF_ALIGN_ORDER 5
0066 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
0067
0068
0069 #define XXD(x, max_mask) ((x) & (max_mask))
0070 #define TXD(x, max_mask) XXD((x), (max_mask))
0071 #define RXD(x, max_mask) XXD((x), (max_mask))
0072 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
0073 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
0074 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
0075 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
0076 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
0077 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
0078
0079
0080 #define BCM_HDR_LEN 8
0081
0082
0083
0084
0085
0086 #define PDC_RINGSET 0
0087
0088
0089
0090
0091
0092 #define PDC_RCVINT_0 (16 + PDC_RINGSET)
0093 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
0094 #define PDC_INTMASK (PDC_RCVINTEN_0)
0095 #define PDC_LAZY_FRAMECOUNT 1
0096 #define PDC_LAZY_TIMEOUT 10000
0097 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
0098 #define PDC_INTMASK_OFFSET 0x24
0099 #define PDC_INTSTATUS_OFFSET 0x20
0100 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
0101 #define FA_RCVLAZY0_OFFSET 0x100
0102
0103
0104
0105
0106
0107 #define PDC_SPU2_RESP_HDR_LEN 17
0108 #define PDC_CKSUM_CTRL BIT(27)
0109 #define PDC_CKSUM_CTRL_OFFSET 0x400
0110
0111 #define PDC_SPUM_RESP_HDR_LEN 32
0112
0113
0114
0115
0116
0117
0118 #define PDC_TX_CTL 0x000C0800
0119
0120
0121 #define PDC_TX_ENABLE 0x1
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134 #define PDC_RX_CTL 0x000C0E00
0135
0136
0137 #define PDC_RX_ENABLE 0x1
0138
0139 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
0140
0141
0142 #define D64_CTRL1_EOT BIT(28)
0143 #define D64_CTRL1_IOC BIT(29)
0144 #define D64_CTRL1_EOF BIT(30)
0145 #define D64_CTRL1_SOF BIT(31)
0146
0147 #define RX_STATUS_OVERFLOW 0x00800000
0148 #define RX_STATUS_LEN 0x0000FFFF
0149
0150 #define PDC_TXREGS_OFFSET 0x200
0151 #define PDC_RXREGS_OFFSET 0x220
0152
0153
0154 #define PDC_DMA_BUF_MAX 16384
0155
0156 enum pdc_hw {
0157 FA_HW,
0158 PDC_HW
0159 };
0160
0161 struct pdc_dma_map {
0162 void *ctx;
0163 };
0164
0165
0166 struct dma64dd {
0167 u32 ctrl1;
0168 u32 ctrl2;
0169 u32 addrlow;
0170 u32 addrhigh;
0171 };
0172
0173
0174 struct dma64_regs {
0175 u32 control;
0176 u32 ptr;
0177 u32 addrlow;
0178 u32 addrhigh;
0179 u32 status0;
0180 u32 status1;
0181 };
0182
0183
0184 #ifndef PAD
0185 #define _PADLINE(line) pad ## line
0186 #define _XSTR(line) _PADLINE(line)
0187 #define PAD _XSTR(__LINE__)
0188 #endif
0189
0190
0191 struct dma64 {
0192 struct dma64_regs dmaxmt;
0193 u32 PAD[2];
0194 struct dma64_regs dmarcv;
0195 u32 PAD[2];
0196 };
0197
0198
0199 struct pdc_regs {
0200 u32 devcontrol;
0201 u32 devstatus;
0202 u32 PAD;
0203 u32 biststatus;
0204 u32 PAD[4];
0205 u32 intstatus;
0206 u32 intmask;
0207 u32 gptimer;
0208
0209 u32 PAD;
0210 u32 intrcvlazy_0;
0211 u32 intrcvlazy_1;
0212 u32 intrcvlazy_2;
0213 u32 intrcvlazy_3;
0214
0215 u32 PAD[48];
0216 u32 fa_intrecvlazy;
0217 u32 flowctlthresh;
0218 u32 wrrthresh;
0219 u32 gmac_idle_cnt_thresh;
0220
0221 u32 PAD[4];
0222 u32 ifioaccessaddr;
0223 u32 ifioaccessbyte;
0224 u32 ifioaccessdata;
0225
0226 u32 PAD[21];
0227 u32 phyaccess;
0228 u32 PAD;
0229 u32 phycontrol;
0230 u32 txqctl;
0231 u32 rxqctl;
0232 u32 gpioselect;
0233 u32 gpio_output_en;
0234 u32 PAD;
0235 u32 txq_rxq_mem_ctl;
0236 u32 memory_ecc_status;
0237 u32 serdes_ctl;
0238 u32 serdes_status0;
0239 u32 serdes_status1;
0240 u32 PAD[11];
0241 u32 clk_ctl_st;
0242 u32 hw_war;
0243 u32 pwrctl;
0244 u32 PAD[5];
0245
0246 #define PDC_NUM_DMA_RINGS 4
0247 struct dma64 dmaregs[PDC_NUM_DMA_RINGS];
0248
0249
0250 };
0251
0252
0253 struct pdc_ring_alloc {
0254 dma_addr_t dmabase;
0255 void *vbase;
0256 u32 size;
0257 };
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272 struct pdc_rx_ctx {
0273 void *rxp_ctx;
0274 struct scatterlist *dst_sg;
0275 u32 rxin_numd;
0276 void *resp_hdr;
0277 dma_addr_t resp_hdr_daddr;
0278 };
0279
0280
0281 struct pdc_state {
0282
0283 u8 pdc_idx;
0284
0285
0286 struct platform_device *pdev;
0287
0288
0289
0290
0291
0292
0293 struct mbox_controller mbc;
0294
0295 unsigned int pdc_irq;
0296
0297
0298 struct tasklet_struct rx_tasklet;
0299
0300
0301 u32 rx_status_len;
0302
0303 bool use_bcm_hdr;
0304
0305 u32 pdc_resp_hdr_len;
0306
0307
0308 void __iomem *pdc_reg_vbase;
0309
0310
0311 struct dma_pool *ring_pool;
0312
0313
0314 struct dma_pool *rx_buf_pool;
0315
0316
0317
0318
0319
0320 struct pdc_ring_alloc tx_ring_alloc;
0321 struct pdc_ring_alloc rx_ring_alloc;
0322
0323 struct pdc_regs *regs;
0324
0325 struct dma64_regs *txregs_64;
0326 struct dma64_regs *rxregs_64;
0327
0328
0329
0330
0331
0332 struct dma64dd *txd_64;
0333 struct dma64dd *rxd_64;
0334
0335
0336 u32 ntxd;
0337 u32 nrxd;
0338 u32 nrxpost;
0339 u32 ntxpost;
0340
0341
0342
0343
0344
0345
0346 u32 txin;
0347
0348
0349
0350
0351
0352
0353
0354 u32 tx_msg_start;
0355
0356
0357 u32 txout;
0358
0359
0360
0361
0362
0363 u32 txin_numd[PDC_RING_ENTRIES];
0364
0365
0366
0367
0368
0369 u32 rxin;
0370
0371
0372
0373
0374
0375
0376
0377 u32 rx_msg_start;
0378
0379
0380
0381
0382
0383
0384 u32 last_rx_curr;
0385
0386
0387 u32 rxout;
0388
0389 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
0390
0391
0392
0393
0394
0395
0396 struct scatterlist *src_sg[PDC_RING_ENTRIES];
0397
0398
0399 u32 pdc_requests;
0400 u32 pdc_replies;
0401 u32 last_tx_not_done;
0402 u32 tx_ring_full;
0403 u32 rx_ring_full;
0404 u32 txnobuf;
0405 u32 rxnobuf;
0406 u32 rx_oflow;
0407
0408
0409 enum pdc_hw hw_type;
0410 };
0411
0412
0413
0414 struct pdc_globals {
0415
0416 u32 num_spu;
0417 };
0418
0419 static struct pdc_globals pdcg;
0420
0421
0422 static struct dentry *debugfs_dir;
0423
0424 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
0425 size_t count, loff_t *offp)
0426 {
0427 struct pdc_state *pdcs;
0428 char *buf;
0429 ssize_t ret, out_offset, out_count;
0430
0431 out_count = 512;
0432
0433 buf = kmalloc(out_count, GFP_KERNEL);
0434 if (!buf)
0435 return -ENOMEM;
0436
0437 pdcs = filp->private_data;
0438 out_offset = 0;
0439 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0440 "SPU %u stats:\n", pdcs->pdc_idx);
0441 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0442 "PDC requests....................%u\n",
0443 pdcs->pdc_requests);
0444 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0445 "PDC responses...................%u\n",
0446 pdcs->pdc_replies);
0447 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0448 "Tx not done.....................%u\n",
0449 pdcs->last_tx_not_done);
0450 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0451 "Tx ring full....................%u\n",
0452 pdcs->tx_ring_full);
0453 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0454 "Rx ring full....................%u\n",
0455 pdcs->rx_ring_full);
0456 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0457 "Tx desc write fail. Ring full...%u\n",
0458 pdcs->txnobuf);
0459 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0460 "Rx desc write fail. Ring full...%u\n",
0461 pdcs->rxnobuf);
0462 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0463 "Receive overflow................%u\n",
0464 pdcs->rx_oflow);
0465 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
0466 "Num frags in rx ring............%u\n",
0467 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
0468 pdcs->nrxpost));
0469
0470 if (out_offset > out_count)
0471 out_offset = out_count;
0472
0473 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
0474 kfree(buf);
0475 return ret;
0476 }
0477
0478 static const struct file_operations pdc_debugfs_stats = {
0479 .owner = THIS_MODULE,
0480 .open = simple_open,
0481 .read = pdc_debugfs_read,
0482 };
0483
0484
0485
0486
0487
0488
0489
0490 static void pdc_setup_debugfs(struct pdc_state *pdcs)
0491 {
0492 char spu_stats_name[16];
0493
0494 if (!debugfs_initialized())
0495 return;
0496
0497 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
0498 if (!debugfs_dir)
0499 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
0500
0501
0502 debugfs_create_file(spu_stats_name, 0400, debugfs_dir, pdcs,
0503 &pdc_debugfs_stats);
0504 }
0505
0506 static void pdc_free_debugfs(void)
0507 {
0508 debugfs_remove_recursive(debugfs_dir);
0509 debugfs_dir = NULL;
0510 }
0511
0512
0513
0514
0515
0516
0517
0518
0519 static inline void
0520 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
0521 u32 buf_len, u32 flags)
0522 {
0523 struct device *dev = &pdcs->pdev->dev;
0524 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
0525
0526 dev_dbg(dev,
0527 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
0528 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
0529
0530 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
0531 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
0532 rxd->ctrl1 = cpu_to_le32(flags);
0533 rxd->ctrl2 = cpu_to_le32(buf_len);
0534
0535
0536 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
0537 }
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547 static inline void
0548 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
0549 u32 flags)
0550 {
0551 struct device *dev = &pdcs->pdev->dev;
0552 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
0553
0554 dev_dbg(dev,
0555 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
0556 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
0557
0558 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
0559 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
0560 txd->ctrl1 = cpu_to_le32(flags);
0561 txd->ctrl2 = cpu_to_le32(buf_len);
0562
0563
0564 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
0565 }
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578 static int
0579 pdc_receive_one(struct pdc_state *pdcs)
0580 {
0581 struct device *dev = &pdcs->pdev->dev;
0582 struct mbox_controller *mbc;
0583 struct mbox_chan *chan;
0584 struct brcm_message mssg;
0585 u32 len, rx_status;
0586 u32 num_frags;
0587 u8 *resp_hdr;
0588 u32 frags_rdy;
0589 u32 rx_idx;
0590 dma_addr_t resp_hdr_daddr;
0591 struct pdc_rx_ctx *rx_ctx;
0592
0593 mbc = &pdcs->mbc;
0594 chan = &mbc->chans[0];
0595 mssg.type = BRCM_MESSAGE_SPU;
0596
0597
0598
0599
0600
0601
0602 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
0603 if ((frags_rdy == 0) ||
0604 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
0605
0606 return -EAGAIN;
0607
0608 num_frags = pdcs->txin_numd[pdcs->txin];
0609 WARN_ON(num_frags == 0);
0610
0611 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
0612 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
0613
0614 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
0615
0616 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
0617 pdcs->pdc_idx, num_frags);
0618
0619 rx_idx = pdcs->rxin;
0620 rx_ctx = &pdcs->rx_ctx[rx_idx];
0621 num_frags = rx_ctx->rxin_numd;
0622
0623 mssg.ctx = rx_ctx->rxp_ctx;
0624 rx_ctx->rxp_ctx = NULL;
0625 resp_hdr = rx_ctx->resp_hdr;
0626 resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
0627 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
0628 DMA_FROM_DEVICE);
0629
0630 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
0631
0632 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
0633 pdcs->pdc_idx, num_frags);
0634
0635 dev_dbg(dev,
0636 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
0637 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
0638 pdcs->rxout, pdcs->last_rx_curr);
0639
0640 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
0641
0642
0643
0644 rx_status = *((u32 *)resp_hdr);
0645 len = rx_status & RX_STATUS_LEN;
0646 dev_dbg(dev,
0647 "SPU response length %u bytes", len);
0648 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
0649 if (rx_status & RX_STATUS_OVERFLOW) {
0650 dev_err_ratelimited(dev,
0651 "crypto receive overflow");
0652 pdcs->rx_oflow++;
0653 } else {
0654 dev_info_ratelimited(dev, "crypto rx len = 0");
0655 }
0656 return -EIO;
0657 }
0658 }
0659
0660 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
0661
0662 mbox_chan_received_data(chan, &mssg);
0663
0664 pdcs->pdc_replies++;
0665 return PDC_SUCCESS;
0666 }
0667
0668
0669
0670
0671
0672
0673
0674
0675 static int
0676 pdc_receive(struct pdc_state *pdcs)
0677 {
0678 int rx_status;
0679
0680
0681 pdcs->last_rx_curr =
0682 (ioread32((const void __iomem *)&pdcs->rxregs_64->status0) &
0683 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
0684
0685 do {
0686
0687 rx_status = pdc_receive_one(pdcs);
0688 } while (rx_status == PDC_SUCCESS);
0689
0690 return 0;
0691 }
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
0707 {
0708 u32 flags = 0;
0709 u32 eot;
0710 u32 tx_avail;
0711
0712
0713
0714
0715
0716 u32 num_desc;
0717 u32 desc_w = 0;
0718 u32 bufcnt;
0719 dma_addr_t databufptr;
0720
0721 num_desc = (u32)sg_nents(sg);
0722
0723
0724 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
0725 pdcs->ntxpost);
0726 if (unlikely(num_desc > tx_avail)) {
0727 pdcs->txnobuf++;
0728 return -ENOSPC;
0729 }
0730
0731
0732 if (pdcs->tx_msg_start == pdcs->txout) {
0733
0734 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
0735 pdcs->src_sg[pdcs->txout] = sg;
0736 flags = D64_CTRL1_SOF;
0737 }
0738
0739 while (sg) {
0740 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
0741 eot = D64_CTRL1_EOT;
0742 else
0743 eot = 0;
0744
0745
0746
0747
0748
0749 bufcnt = sg_dma_len(sg);
0750 databufptr = sg_dma_address(sg);
0751 while (bufcnt > PDC_DMA_BUF_MAX) {
0752 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
0753 flags | eot);
0754 desc_w++;
0755 bufcnt -= PDC_DMA_BUF_MAX;
0756 databufptr += PDC_DMA_BUF_MAX;
0757 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
0758 eot = D64_CTRL1_EOT;
0759 else
0760 eot = 0;
0761 }
0762 sg = sg_next(sg);
0763 if (!sg)
0764
0765 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
0766 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
0767 desc_w++;
0768
0769 flags &= ~D64_CTRL1_SOF;
0770 }
0771 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
0772
0773 return PDC_SUCCESS;
0774 }
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785 static int pdc_tx_list_final(struct pdc_state *pdcs)
0786 {
0787
0788
0789
0790
0791 wmb();
0792 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
0793 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
0794 pdcs->pdc_requests++;
0795
0796 return PDC_SUCCESS;
0797 }
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
0815 void *ctx)
0816 {
0817 u32 flags = 0;
0818 u32 rx_avail;
0819 u32 rx_pkt_cnt = 1;
0820 dma_addr_t daddr;
0821 void *vaddr;
0822 struct pdc_rx_ctx *rx_ctx;
0823
0824 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
0825 pdcs->nrxpost);
0826 if (unlikely(rx_pkt_cnt > rx_avail)) {
0827 pdcs->rxnobuf++;
0828 return -ENOSPC;
0829 }
0830
0831
0832 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
0833 if (unlikely(!vaddr))
0834 return -ENOMEM;
0835
0836
0837
0838
0839
0840
0841 pdcs->rx_msg_start = pdcs->rxout;
0842 pdcs->tx_msg_start = pdcs->txout;
0843
0844
0845 flags = D64_CTRL1_SOF;
0846 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
0847
0848 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
0849 flags |= D64_CTRL1_EOT;
0850
0851 rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
0852 rx_ctx->rxp_ctx = ctx;
0853 rx_ctx->dst_sg = dst_sg;
0854 rx_ctx->resp_hdr = vaddr;
0855 rx_ctx->resp_hdr_daddr = daddr;
0856 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
0857 return PDC_SUCCESS;
0858 }
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
0875 {
0876 u32 flags = 0;
0877 u32 rx_avail;
0878
0879
0880
0881
0882
0883 u32 num_desc;
0884 u32 desc_w = 0;
0885 u32 bufcnt;
0886 dma_addr_t databufptr;
0887
0888 num_desc = (u32)sg_nents(sg);
0889
0890 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
0891 pdcs->nrxpost);
0892 if (unlikely(num_desc > rx_avail)) {
0893 pdcs->rxnobuf++;
0894 return -ENOSPC;
0895 }
0896
0897 while (sg) {
0898 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
0899 flags = D64_CTRL1_EOT;
0900 else
0901 flags = 0;
0902
0903
0904
0905
0906
0907 bufcnt = sg_dma_len(sg);
0908 databufptr = sg_dma_address(sg);
0909 while (bufcnt > PDC_DMA_BUF_MAX) {
0910 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
0911 desc_w++;
0912 bufcnt -= PDC_DMA_BUF_MAX;
0913 databufptr += PDC_DMA_BUF_MAX;
0914 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
0915 flags = D64_CTRL1_EOT;
0916 else
0917 flags = 0;
0918 }
0919 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
0920 desc_w++;
0921 sg = sg_next(sg);
0922 }
0923 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
0924
0925 return PDC_SUCCESS;
0926 }
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940 static irqreturn_t pdc_irq_handler(int irq, void *data)
0941 {
0942 struct device *dev = (struct device *)data;
0943 struct pdc_state *pdcs = dev_get_drvdata(dev);
0944 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
0945
0946 if (unlikely(intstatus == 0))
0947 return IRQ_NONE;
0948
0949
0950 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
0951
0952
0953 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
0954
0955
0956 tasklet_schedule(&pdcs->rx_tasklet);
0957 return IRQ_HANDLED;
0958 }
0959
0960
0961
0962
0963
0964
0965 static void pdc_tasklet_cb(struct tasklet_struct *t)
0966 {
0967 struct pdc_state *pdcs = from_tasklet(pdcs, t, rx_tasklet);
0968
0969 pdc_receive(pdcs);
0970
0971
0972 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
0973 }
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
0985 {
0986 int i;
0987 int err = PDC_SUCCESS;
0988 struct dma64 *dma_reg;
0989 struct device *dev = &pdcs->pdev->dev;
0990 struct pdc_ring_alloc tx;
0991 struct pdc_ring_alloc rx;
0992
0993
0994 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
0995 if (unlikely(!tx.vbase)) {
0996 err = -ENOMEM;
0997 goto done;
0998 }
0999
1000
1001 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1002 if (unlikely(!rx.vbase)) {
1003 err = -ENOMEM;
1004 goto fail_dealloc;
1005 }
1006
1007 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase);
1008 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
1009 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase);
1010 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
1011
1012 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1013 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1014
1015 pdcs->rxin = 0;
1016 pdcs->rx_msg_start = 0;
1017 pdcs->last_rx_curr = 0;
1018 pdcs->rxout = 0;
1019 pdcs->txin = 0;
1020 pdcs->tx_msg_start = 0;
1021 pdcs->txout = 0;
1022
1023
1024 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1025 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1026
1027
1028 dma_reg = &pdcs->regs->dmaregs[ringset];
1029
1030
1031 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1032 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1033 &dma_reg->dmarcv.control);
1034 iowrite32(0, &dma_reg->dmaxmt.ptr);
1035 iowrite32(0, &dma_reg->dmarcv.ptr);
1036
1037
1038 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1039 &dma_reg->dmaxmt.addrlow);
1040 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1041 &dma_reg->dmaxmt.addrhigh);
1042
1043 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1044 &dma_reg->dmarcv.addrlow);
1045 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1046 &dma_reg->dmarcv.addrhigh);
1047
1048
1049 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1050 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1051 &dma_reg->dmarcv.control);
1052
1053
1054 for (i = 0; i < PDC_RING_ENTRIES; i++) {
1055
1056 if (i != pdcs->ntxpost) {
1057 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1058 &pdcs->txd_64[i].ctrl1);
1059 } else {
1060
1061 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1062 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1063 }
1064
1065
1066 if (i != pdcs->nrxpost) {
1067 iowrite32(D64_CTRL1_SOF,
1068 &pdcs->rxd_64[i].ctrl1);
1069 } else {
1070
1071 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1072 &pdcs->rxd_64[i].ctrl1);
1073 }
1074 }
1075 return PDC_SUCCESS;
1076
1077 fail_dealloc:
1078 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1079 done:
1080 return err;
1081 }
1082
1083 static void pdc_ring_free(struct pdc_state *pdcs)
1084 {
1085 if (pdcs->tx_ring_alloc.vbase) {
1086 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1087 pdcs->tx_ring_alloc.dmabase);
1088 pdcs->tx_ring_alloc.vbase = NULL;
1089 }
1090
1091 if (pdcs->rx_ring_alloc.vbase) {
1092 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1093 pdcs->rx_ring_alloc.dmabase);
1094 pdcs->rx_ring_alloc.vbase = NULL;
1095 }
1096 }
1097
1098
1099
1100
1101
1102
1103
1104 static u32 pdc_desc_count(struct scatterlist *sg)
1105 {
1106 u32 cnt = 0;
1107
1108 while (sg) {
1109 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1110 sg = sg_next(sg);
1111 }
1112 return cnt;
1113 }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1126 {
1127 u32 rx_avail;
1128 u32 tx_avail;
1129 bool full = false;
1130
1131
1132 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1133 pdcs->nrxpost);
1134 if (unlikely(rx_cnt > rx_avail)) {
1135 pdcs->rx_ring_full++;
1136 full = true;
1137 }
1138
1139 if (likely(!full)) {
1140 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1141 pdcs->ntxpost);
1142 if (unlikely(tx_cnt > tx_avail)) {
1143 pdcs->tx_ring_full++;
1144 full = true;
1145 }
1146 }
1147 return full;
1148 }
1149
1150
1151
1152
1153
1154
1155
1156
1157 static bool pdc_last_tx_done(struct mbox_chan *chan)
1158 {
1159 struct pdc_state *pdcs = chan->con_priv;
1160 bool ret;
1161
1162 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1163 PDC_RING_SPACE_MIN))) {
1164 pdcs->last_tx_not_done++;
1165 ret = false;
1166 } else {
1167 ret = true;
1168 }
1169 return ret;
1170 }
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194 static int pdc_send_data(struct mbox_chan *chan, void *data)
1195 {
1196 struct pdc_state *pdcs = chan->con_priv;
1197 struct device *dev = &pdcs->pdev->dev;
1198 struct brcm_message *mssg = data;
1199 int err = PDC_SUCCESS;
1200 int src_nent;
1201 int dst_nent;
1202 int nent;
1203 u32 tx_desc_req;
1204 u32 rx_desc_req;
1205
1206 if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1207 return -ENOTSUPP;
1208
1209 src_nent = sg_nents(mssg->spu.src);
1210 if (likely(src_nent)) {
1211 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1212 if (unlikely(nent == 0))
1213 return -EIO;
1214 }
1215
1216 dst_nent = sg_nents(mssg->spu.dst);
1217 if (likely(dst_nent)) {
1218 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1219 DMA_FROM_DEVICE);
1220 if (unlikely(nent == 0)) {
1221 dma_unmap_sg(dev, mssg->spu.src, src_nent,
1222 DMA_TO_DEVICE);
1223 return -EIO;
1224 }
1225 }
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236 tx_desc_req = pdc_desc_count(mssg->spu.src);
1237 rx_desc_req = pdc_desc_count(mssg->spu.dst);
1238 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1239 return -ENOSPC;
1240
1241
1242 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1243 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1244
1245
1246 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1247 err |= pdc_tx_list_final(pdcs);
1248
1249 if (unlikely(err))
1250 dev_err(&pdcs->pdev->dev,
1251 "%s failed with error %d", __func__, err);
1252
1253 return err;
1254 }
1255
1256 static int pdc_startup(struct mbox_chan *chan)
1257 {
1258 return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1259 }
1260
1261 static void pdc_shutdown(struct mbox_chan *chan)
1262 {
1263 struct pdc_state *pdcs = chan->con_priv;
1264
1265 if (!pdcs)
1266 return;
1267
1268 dev_dbg(&pdcs->pdev->dev,
1269 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1270 pdc_ring_free(pdcs);
1271 }
1272
1273
1274
1275
1276
1277
1278 static
1279 void pdc_hw_init(struct pdc_state *pdcs)
1280 {
1281 struct platform_device *pdev;
1282 struct device *dev;
1283 struct dma64 *dma_reg;
1284 int ringset = PDC_RINGSET;
1285
1286 pdev = pdcs->pdev;
1287 dev = &pdev->dev;
1288
1289 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1290 dev_dbg(dev, "state structure: %p",
1291 pdcs);
1292 dev_dbg(dev, " - base virtual addr of hw regs %p",
1293 pdcs->pdc_reg_vbase);
1294
1295
1296 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1297 pdcs->txregs_64 = (struct dma64_regs *)
1298 (((u8 *)pdcs->pdc_reg_vbase) +
1299 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1300 pdcs->rxregs_64 = (struct dma64_regs *)
1301 (((u8 *)pdcs->pdc_reg_vbase) +
1302 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1303
1304 pdcs->ntxd = PDC_RING_ENTRIES;
1305 pdcs->nrxd = PDC_RING_ENTRIES;
1306 pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1307 pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1308 iowrite32(0, &pdcs->regs->intmask);
1309
1310 dma_reg = &pdcs->regs->dmaregs[ringset];
1311
1312
1313 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1314
1315 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1316 &dma_reg->dmarcv.control);
1317
1318
1319 iowrite32(0, &dma_reg->dmaxmt.ptr);
1320 iowrite32(0, &dma_reg->dmarcv.ptr);
1321
1322 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1323 iowrite32(PDC_CKSUM_CTRL,
1324 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1325 }
1326
1327
1328
1329
1330
1331
1332 static void pdc_hw_disable(struct pdc_state *pdcs)
1333 {
1334 struct dma64 *dma_reg;
1335
1336 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1337 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1338 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1339 &dma_reg->dmarcv.control);
1340 }
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1354 {
1355 struct platform_device *pdev;
1356 struct device *dev;
1357
1358 pdev = pdcs->pdev;
1359 dev = &pdev->dev;
1360
1361 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1362 if (pdcs->use_bcm_hdr)
1363 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1364
1365 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1366 pdcs->pdc_resp_hdr_len,
1367 RX_BUF_ALIGN, 0);
1368 if (!pdcs->rx_buf_pool)
1369 return -ENOMEM;
1370
1371 return PDC_SUCCESS;
1372 }
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386 static int pdc_interrupts_init(struct pdc_state *pdcs)
1387 {
1388 struct platform_device *pdev = pdcs->pdev;
1389 struct device *dev = &pdev->dev;
1390 struct device_node *dn = pdev->dev.of_node;
1391 int err;
1392
1393
1394 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1395
1396 if (pdcs->hw_type == FA_HW)
1397 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1398 FA_RCVLAZY0_OFFSET);
1399 else
1400 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1401 PDC_RCVLAZY0_OFFSET);
1402
1403
1404 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1405 dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1406 dev_name(dev), pdcs->pdc_irq, pdcs);
1407
1408 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1409 dev_name(dev), dev);
1410 if (err) {
1411 dev_err(dev, "IRQ %u request failed with err %d\n",
1412 pdcs->pdc_irq, err);
1413 return err;
1414 }
1415 return PDC_SUCCESS;
1416 }
1417
1418 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1419 .send_data = pdc_send_data,
1420 .last_tx_done = pdc_last_tx_done,
1421 .startup = pdc_startup,
1422 .shutdown = pdc_shutdown
1423 };
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437 static int pdc_mb_init(struct pdc_state *pdcs)
1438 {
1439 struct device *dev = &pdcs->pdev->dev;
1440 struct mbox_controller *mbc;
1441 int chan_index;
1442 int err;
1443
1444 mbc = &pdcs->mbc;
1445 mbc->dev = dev;
1446 mbc->ops = &pdc_mbox_chan_ops;
1447 mbc->num_chans = 1;
1448 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1449 GFP_KERNEL);
1450 if (!mbc->chans)
1451 return -ENOMEM;
1452
1453 mbc->txdone_irq = false;
1454 mbc->txdone_poll = true;
1455 mbc->txpoll_period = 1;
1456 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1457 mbc->chans[chan_index].con_priv = pdcs;
1458
1459
1460 err = devm_mbox_controller_register(dev, mbc);
1461 if (err) {
1462 dev_crit(dev,
1463 "Failed to register PDC mailbox controller. Error %d.",
1464 err);
1465 return err;
1466 }
1467 return 0;
1468 }
1469
1470
1471 static const int pdc_hw = PDC_HW;
1472 static const int fa_hw = FA_HW;
1473
1474 static const struct of_device_id pdc_mbox_of_match[] = {
1475 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1476 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1477 { }
1478 };
1479 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1494 {
1495 struct device *dev = &pdev->dev;
1496 struct device_node *dn = pdev->dev.of_node;
1497 const struct of_device_id *match;
1498 const int *hw_type;
1499 int err;
1500
1501 err = of_property_read_u32(dn, "brcm,rx-status-len",
1502 &pdcs->rx_status_len);
1503 if (err < 0)
1504 dev_err(dev,
1505 "%s failed to get DMA receive status length from device tree",
1506 __func__);
1507
1508 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1509
1510 pdcs->hw_type = PDC_HW;
1511
1512 match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev);
1513 if (match != NULL) {
1514 hw_type = match->data;
1515 pdcs->hw_type = *hw_type;
1516 }
1517
1518 return 0;
1519 }
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532 static int pdc_probe(struct platform_device *pdev)
1533 {
1534 int err = 0;
1535 struct device *dev = &pdev->dev;
1536 struct resource *pdc_regs;
1537 struct pdc_state *pdcs;
1538
1539
1540 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1541 if (!pdcs) {
1542 err = -ENOMEM;
1543 goto cleanup;
1544 }
1545
1546 pdcs->pdev = pdev;
1547 platform_set_drvdata(pdev, pdcs);
1548 pdcs->pdc_idx = pdcg.num_spu;
1549 pdcg.num_spu++;
1550
1551 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1552 if (err) {
1553 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1554 goto cleanup;
1555 }
1556
1557
1558 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1559 RING_ALIGN, 0);
1560 if (!pdcs->ring_pool) {
1561 err = -ENOMEM;
1562 goto cleanup;
1563 }
1564
1565 err = pdc_dt_read(pdev, pdcs);
1566 if (err)
1567 goto cleanup_ring_pool;
1568
1569 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1570 if (!pdc_regs) {
1571 err = -ENODEV;
1572 goto cleanup_ring_pool;
1573 }
1574 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1575 &pdc_regs->start, &pdc_regs->end);
1576
1577 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1578 if (IS_ERR(pdcs->pdc_reg_vbase)) {
1579 err = PTR_ERR(pdcs->pdc_reg_vbase);
1580 goto cleanup_ring_pool;
1581 }
1582
1583
1584 err = pdc_rx_buf_pool_create(pdcs);
1585 if (err)
1586 goto cleanup_ring_pool;
1587
1588 pdc_hw_init(pdcs);
1589
1590
1591 tasklet_setup(&pdcs->rx_tasklet, pdc_tasklet_cb);
1592
1593 err = pdc_interrupts_init(pdcs);
1594 if (err)
1595 goto cleanup_buf_pool;
1596
1597
1598 err = pdc_mb_init(pdcs);
1599 if (err)
1600 goto cleanup_buf_pool;
1601
1602 pdc_setup_debugfs(pdcs);
1603
1604 dev_dbg(dev, "pdc_probe() successful");
1605 return PDC_SUCCESS;
1606
1607 cleanup_buf_pool:
1608 tasklet_kill(&pdcs->rx_tasklet);
1609 dma_pool_destroy(pdcs->rx_buf_pool);
1610
1611 cleanup_ring_pool:
1612 dma_pool_destroy(pdcs->ring_pool);
1613
1614 cleanup:
1615 return err;
1616 }
1617
1618 static int pdc_remove(struct platform_device *pdev)
1619 {
1620 struct pdc_state *pdcs = platform_get_drvdata(pdev);
1621
1622 pdc_free_debugfs();
1623
1624 tasklet_kill(&pdcs->rx_tasklet);
1625
1626 pdc_hw_disable(pdcs);
1627
1628 dma_pool_destroy(pdcs->rx_buf_pool);
1629 dma_pool_destroy(pdcs->ring_pool);
1630 return 0;
1631 }
1632
1633 static struct platform_driver pdc_mbox_driver = {
1634 .probe = pdc_probe,
1635 .remove = pdc_remove,
1636 .driver = {
1637 .name = "brcm-iproc-pdc-mbox",
1638 .of_match_table = of_match_ptr(pdc_mbox_of_match),
1639 },
1640 };
1641 module_platform_driver(pdc_mbox_driver);
1642
1643 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1644 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1645 MODULE_LICENSE("GPL v2");