0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/types.h>
0009 #include <linux/errno.h>
0010 #include <linux/kernel.h>
0011 #include <linux/device.h>
0012 #include <linux/platform_device.h>
0013 #include <linux/reboot.h>
0014
0015 #include <asm/smu.h>
0016
0017 #include "windfarm.h"
0018 #include "windfarm_pid.h"
0019 #include "windfarm_mpu.h"
0020
0021 #define VERSION "1.0"
0022
0023 #undef DEBUG
0024 #undef LOTSA_DEBUG
0025
0026 #ifdef DEBUG
0027 #define DBG(args...) printk(args)
0028 #else
0029 #define DBG(args...) do { } while(0)
0030 #endif
0031
0032 #ifdef LOTSA_DEBUG
0033 #define DBG_LOTS(args...) printk(args)
0034 #else
0035 #define DBG_LOTS(args...) do { } while(0)
0036 #endif
0037
0038
0039
0040
0041 #undef HACKED_OVERTEMP
0042
0043
0044 #define NR_CHIPS 2
0045 #define NR_CPU_FANS 3 * NR_CHIPS
0046
0047
0048 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
0049 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
0050 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
0051 static struct wf_sensor *backside_temp;
0052 static struct wf_sensor *slots_temp;
0053 static struct wf_sensor *dimms_temp;
0054
0055 static struct wf_control *cpu_fans[NR_CHIPS][3];
0056 static struct wf_control *backside_fan;
0057 static struct wf_control *slots_fan;
0058 static struct wf_control *cpufreq_clamp;
0059
0060
0061 #define CPU_TEMP_HIST_SIZE 180
0062
0063
0064 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
0065 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
0066 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
0067 static int cpu_thist_pt;
0068 static s64 cpu_thist_total;
0069 static s32 cpu_all_tmax = 100 << 16;
0070 static struct wf_pid_state backside_pid;
0071 static int backside_tick;
0072 static struct wf_pid_state slots_pid;
0073 static int slots_tick;
0074 static int slots_speed;
0075 static struct wf_pid_state dimms_pid;
0076 static int dimms_output_clamp;
0077
0078 static int nr_chips;
0079 static bool have_all_controls;
0080 static bool have_all_sensors;
0081 static bool started;
0082
0083 static int failure_state;
0084 #define FAILURE_SENSOR 1
0085 #define FAILURE_FAN 2
0086 #define FAILURE_PERM 4
0087 #define FAILURE_LOW_OVERTEMP 8
0088 #define FAILURE_HIGH_OVERTEMP 16
0089
0090
0091 #define LOW_OVER_AVERAGE 0
0092 #define LOW_OVER_IMMEDIATE (10 << 16)
0093 #define LOW_OVER_CLEAR ((-10) << 16)
0094 #define HIGH_OVER_IMMEDIATE (14 << 16)
0095 #define HIGH_OVER_AVERAGE (10 << 16)
0096 #define HIGH_OVER_IMMEDIATE (14 << 16)
0097
0098
0099 static void cpu_max_all_fans(void)
0100 {
0101 int i;
0102
0103
0104
0105
0106
0107 if (cpufreq_clamp)
0108 wf_control_set_max(cpufreq_clamp);
0109 for (i = 0; i < nr_chips; i++) {
0110 if (cpu_fans[i][0])
0111 wf_control_set_max(cpu_fans[i][0]);
0112 if (cpu_fans[i][1])
0113 wf_control_set_max(cpu_fans[i][1]);
0114 if (cpu_fans[i][2])
0115 wf_control_set_max(cpu_fans[i][2]);
0116 }
0117 }
0118
0119 static int cpu_check_overtemp(s32 temp)
0120 {
0121 int new_state = 0;
0122 s32 t_avg, t_old;
0123 static bool first = true;
0124
0125
0126 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
0127 new_state |= FAILURE_LOW_OVERTEMP;
0128 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
0129 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
0130 " temperature !\n");
0131 }
0132 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
0133 new_state |= FAILURE_HIGH_OVERTEMP;
0134 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
0135 printk(KERN_ERR "windfarm: Critical overtemp due to"
0136 " immediate CPU temperature !\n");
0137 }
0138
0139
0140
0141
0142
0143 if (first) {
0144 int i;
0145
0146 cpu_thist_total = 0;
0147 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
0148 cpu_thist[i] = temp;
0149 cpu_thist_total += temp;
0150 }
0151 first = false;
0152 }
0153
0154
0155
0156
0157
0158 t_old = cpu_thist[cpu_thist_pt];
0159 cpu_thist[cpu_thist_pt] = temp;
0160 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
0161 cpu_thist_total -= t_old;
0162 cpu_thist_total += temp;
0163 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
0164
0165 DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
0166 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
0167
0168
0169 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
0170 new_state |= FAILURE_LOW_OVERTEMP;
0171 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
0172 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
0173 " temperature !\n");
0174 }
0175 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
0176 new_state |= FAILURE_HIGH_OVERTEMP;
0177 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
0178 printk(KERN_ERR "windfarm: Critical overtemp due to"
0179 " average CPU temperature !\n");
0180 }
0181
0182
0183
0184
0185
0186 if (new_state) {
0187
0188 if (new_state & FAILURE_HIGH_OVERTEMP)
0189 machine_power_off();
0190 if ((failure_state & new_state) != new_state)
0191 cpu_max_all_fans();
0192 failure_state |= new_state;
0193 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
0194 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
0195 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
0196 failure_state &= ~FAILURE_LOW_OVERTEMP;
0197 }
0198
0199 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
0200 }
0201
0202 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
0203 {
0204 s32 dtemp, volts, amps;
0205 int rc;
0206
0207
0208 rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
0209 if (rc) {
0210 DBG(" CPU%d: temp reading error !\n", cpu);
0211 return -EIO;
0212 }
0213 DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
0214 *temp = dtemp;
0215
0216
0217 rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
0218 if (rc) {
0219 DBG(" CPU%d, volts reading error !\n", cpu);
0220 return -EIO;
0221 }
0222 DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
0223
0224
0225 rc = wf_sensor_get(sens_cpu_amps[cpu], &s);
0226 if (rc) {
0227 DBG(" CPU%d, current reading error !\n", cpu);
0228 return -EIO;
0229 }
0230 DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
0231
0232
0233
0234
0235
0236
0237 *power = (((u64)volts) * ((u64)amps)) >> 16;
0238
0239 DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
0240
0241 return 0;
0242
0243 }
0244
0245 static void cpu_fans_tick(void)
0246 {
0247 int err, cpu, i;
0248 s32 speed, temp, power, t_max = 0;
0249
0250 DBG_LOTS("* cpu fans_tick_split()\n");
0251
0252 for (cpu = 0; cpu < nr_chips; ++cpu) {
0253 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
0254
0255
0256 wf_control_get(cpu_fans[cpu][0], &sp->target);
0257
0258 err = read_one_cpu_vals(cpu, &temp, &power);
0259 if (err) {
0260 failure_state |= FAILURE_SENSOR;
0261 cpu_max_all_fans();
0262 return;
0263 }
0264
0265
0266 t_max = max(t_max, temp);
0267
0268
0269 if (cpu_check_overtemp(t_max))
0270 return;
0271
0272
0273 wf_cpu_pid_run(sp, power, temp);
0274
0275 DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
0276
0277
0278 speed = max(sp->target, dimms_output_clamp);
0279
0280
0281 for (i = 0; i < 3; i++) {
0282 err = wf_control_set(cpu_fans[cpu][i], speed);
0283 if (err) {
0284 pr_warn("wf_rm31: Fan %s reports error %d\n",
0285 cpu_fans[cpu][i]->name, err);
0286 failure_state |= FAILURE_FAN;
0287 }
0288 }
0289 }
0290 }
0291
0292
0293 static int cpu_setup_pid(int cpu)
0294 {
0295 struct wf_cpu_pid_param pid;
0296 const struct mpu_data *mpu = cpu_mpu_data[cpu];
0297 s32 tmax, ttarget, ptarget;
0298 int fmin, fmax, hsize;
0299
0300
0301 tmax = mpu->tmax << 16;
0302 ttarget = mpu->ttarget << 16;
0303 ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
0304
0305 DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
0306 cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
0307
0308
0309 if (tmax < cpu_all_tmax)
0310 cpu_all_tmax = tmax;
0311
0312
0313 fmin = wf_control_get_min(cpu_fans[cpu][0]);
0314 fmax = wf_control_get_max(cpu_fans[cpu][0]);
0315 DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
0316
0317
0318 hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
0319 DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
0320
0321
0322 pid.interval = 1;
0323 pid.history_len = hsize;
0324 pid.gd = mpu->pid_gd;
0325 pid.gp = mpu->pid_gp;
0326 pid.gr = mpu->pid_gr;
0327 pid.tmax = tmax;
0328 pid.ttarget = ttarget;
0329 pid.pmaxadj = ptarget;
0330 pid.min = fmin;
0331 pid.max = fmax;
0332
0333 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
0334 cpu_pid[cpu].target = 4000;
0335
0336 return 0;
0337 }
0338
0339
0340 static const struct wf_pid_param backside_param = {
0341 .interval = 1,
0342 .history_len = 2,
0343 .gd = 0x00500000,
0344 .gp = 0x0004cccc,
0345 .gr = 0,
0346 .itarget = 70 << 16,
0347 .additive = 0,
0348 .min = 20,
0349 .max = 100,
0350 };
0351
0352
0353 static const struct wf_pid_param dimms_param = {
0354 .interval = 1,
0355 .history_len = 20,
0356 .gd = 0,
0357 .gp = 0,
0358 .gr = 0x06553600,
0359 .itarget = 50 << 16,
0360 .additive = 0,
0361 .min = 4000,
0362 .max = 14000,
0363 };
0364
0365 static void backside_fan_tick(void)
0366 {
0367 s32 temp, dtemp;
0368 int speed, dspeed, fan_min;
0369 int err;
0370
0371 if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
0372 return;
0373 if (--backside_tick > 0)
0374 return;
0375 backside_tick = backside_pid.param.interval;
0376
0377 DBG_LOTS("* backside fans tick\n");
0378
0379
0380 err = wf_control_get(backside_fan, &speed);
0381 if (!err)
0382 backside_pid.target = speed;
0383
0384 err = wf_sensor_get(backside_temp, &temp);
0385 if (err) {
0386 printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
0387 err);
0388 failure_state |= FAILURE_SENSOR;
0389 wf_control_set_max(backside_fan);
0390 return;
0391 }
0392 speed = wf_pid_run(&backside_pid, temp);
0393
0394 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
0395 FIX32TOPRINT(temp), speed);
0396
0397 err = wf_sensor_get(dimms_temp, &dtemp);
0398 if (err) {
0399 printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
0400 err);
0401 failure_state |= FAILURE_SENSOR;
0402 wf_control_set_max(backside_fan);
0403 return;
0404 }
0405 dspeed = wf_pid_run(&dimms_pid, dtemp);
0406 dimms_output_clamp = dspeed;
0407
0408 fan_min = (dspeed * 100) / 14000;
0409 fan_min = max(fan_min, backside_param.min);
0410 speed = max(speed, fan_min);
0411
0412 err = wf_control_set(backside_fan, speed);
0413 if (err) {
0414 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
0415 failure_state |= FAILURE_FAN;
0416 }
0417 }
0418
0419 static void backside_setup_pid(void)
0420 {
0421
0422 s32 fmin = wf_control_get_min(backside_fan);
0423 s32 fmax = wf_control_get_max(backside_fan);
0424 struct wf_pid_param param;
0425
0426 param = backside_param;
0427 param.min = max(param.min, fmin);
0428 param.max = min(param.max, fmax);
0429 wf_pid_init(&backside_pid, ¶m);
0430
0431 param = dimms_param;
0432 wf_pid_init(&dimms_pid, ¶m);
0433
0434 backside_tick = 1;
0435
0436 pr_info("wf_rm31: Backside control loop started.\n");
0437 }
0438
0439
0440 static const struct wf_pid_param slots_param = {
0441 .interval = 1,
0442 .history_len = 20,
0443 .gd = 0,
0444 .gp = 0,
0445 .gr = 0x00100000,
0446 .itarget = 3200000,
0447 .additive = 0,
0448 .min = 20,
0449 .max = 100,
0450 };
0451
0452 static void slots_fan_tick(void)
0453 {
0454 s32 temp;
0455 int speed;
0456 int err;
0457
0458 if (!slots_fan || !slots_temp || !slots_tick)
0459 return;
0460 if (--slots_tick > 0)
0461 return;
0462 slots_tick = slots_pid.param.interval;
0463
0464 DBG_LOTS("* slots fans tick\n");
0465
0466 err = wf_sensor_get(slots_temp, &temp);
0467 if (err) {
0468 pr_warn("wf_rm31: slots temp sensor error %d\n", err);
0469 failure_state |= FAILURE_SENSOR;
0470 wf_control_set_max(slots_fan);
0471 return;
0472 }
0473 speed = wf_pid_run(&slots_pid, temp);
0474
0475 DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
0476 FIX32TOPRINT(temp), speed);
0477
0478 slots_speed = speed;
0479 err = wf_control_set(slots_fan, speed);
0480 if (err) {
0481 printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
0482 failure_state |= FAILURE_FAN;
0483 }
0484 }
0485
0486 static void slots_setup_pid(void)
0487 {
0488
0489 s32 fmin = wf_control_get_min(slots_fan);
0490 s32 fmax = wf_control_get_max(slots_fan);
0491 struct wf_pid_param param = slots_param;
0492
0493 param.min = max(param.min, fmin);
0494 param.max = min(param.max, fmax);
0495 wf_pid_init(&slots_pid, ¶m);
0496 slots_tick = 1;
0497
0498 pr_info("wf_rm31: Slots control loop started.\n");
0499 }
0500
0501 static void set_fail_state(void)
0502 {
0503 cpu_max_all_fans();
0504
0505 if (backside_fan)
0506 wf_control_set_max(backside_fan);
0507 if (slots_fan)
0508 wf_control_set_max(slots_fan);
0509 }
0510
0511 static void rm31_tick(void)
0512 {
0513 int i, last_failure;
0514
0515 if (!started) {
0516 started = true;
0517 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
0518 for (i = 0; i < nr_chips; ++i) {
0519 if (cpu_setup_pid(i) < 0) {
0520 failure_state = FAILURE_PERM;
0521 set_fail_state();
0522 break;
0523 }
0524 }
0525 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
0526
0527 backside_setup_pid();
0528 slots_setup_pid();
0529
0530 #ifdef HACKED_OVERTEMP
0531 cpu_all_tmax = 60 << 16;
0532 #endif
0533 }
0534
0535
0536 if (failure_state & FAILURE_PERM)
0537 return;
0538
0539
0540
0541
0542
0543 last_failure = failure_state;
0544 failure_state &= FAILURE_LOW_OVERTEMP;
0545 backside_fan_tick();
0546 slots_fan_tick();
0547
0548
0549
0550
0551 cpu_fans_tick();
0552
0553 DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
0554 last_failure, failure_state);
0555
0556
0557 if (failure_state && last_failure == 0 && cpufreq_clamp)
0558 wf_control_set_max(cpufreq_clamp);
0559 if (failure_state == 0 && last_failure && cpufreq_clamp)
0560 wf_control_set_min(cpufreq_clamp);
0561
0562
0563
0564
0565 }
0566
0567 static void rm31_new_control(struct wf_control *ct)
0568 {
0569 bool all_controls;
0570
0571 if (!strcmp(ct->name, "cpu-fan-a-0"))
0572 cpu_fans[0][0] = ct;
0573 else if (!strcmp(ct->name, "cpu-fan-b-0"))
0574 cpu_fans[0][1] = ct;
0575 else if (!strcmp(ct->name, "cpu-fan-c-0"))
0576 cpu_fans[0][2] = ct;
0577 else if (!strcmp(ct->name, "cpu-fan-a-1"))
0578 cpu_fans[1][0] = ct;
0579 else if (!strcmp(ct->name, "cpu-fan-b-1"))
0580 cpu_fans[1][1] = ct;
0581 else if (!strcmp(ct->name, "cpu-fan-c-1"))
0582 cpu_fans[1][2] = ct;
0583 else if (!strcmp(ct->name, "backside-fan"))
0584 backside_fan = ct;
0585 else if (!strcmp(ct->name, "slots-fan"))
0586 slots_fan = ct;
0587 else if (!strcmp(ct->name, "cpufreq-clamp"))
0588 cpufreq_clamp = ct;
0589
0590 all_controls =
0591 cpu_fans[0][0] &&
0592 cpu_fans[0][1] &&
0593 cpu_fans[0][2] &&
0594 backside_fan &&
0595 slots_fan;
0596 if (nr_chips > 1)
0597 all_controls &=
0598 cpu_fans[1][0] &&
0599 cpu_fans[1][1] &&
0600 cpu_fans[1][2];
0601 have_all_controls = all_controls;
0602 }
0603
0604
0605 static void rm31_new_sensor(struct wf_sensor *sr)
0606 {
0607 bool all_sensors;
0608
0609 if (!strcmp(sr->name, "cpu-diode-temp-0"))
0610 sens_cpu_temp[0] = sr;
0611 else if (!strcmp(sr->name, "cpu-diode-temp-1"))
0612 sens_cpu_temp[1] = sr;
0613 else if (!strcmp(sr->name, "cpu-voltage-0"))
0614 sens_cpu_volts[0] = sr;
0615 else if (!strcmp(sr->name, "cpu-voltage-1"))
0616 sens_cpu_volts[1] = sr;
0617 else if (!strcmp(sr->name, "cpu-current-0"))
0618 sens_cpu_amps[0] = sr;
0619 else if (!strcmp(sr->name, "cpu-current-1"))
0620 sens_cpu_amps[1] = sr;
0621 else if (!strcmp(sr->name, "backside-temp"))
0622 backside_temp = sr;
0623 else if (!strcmp(sr->name, "slots-temp"))
0624 slots_temp = sr;
0625 else if (!strcmp(sr->name, "dimms-temp"))
0626 dimms_temp = sr;
0627
0628 all_sensors =
0629 sens_cpu_temp[0] &&
0630 sens_cpu_volts[0] &&
0631 sens_cpu_amps[0] &&
0632 backside_temp &&
0633 slots_temp &&
0634 dimms_temp;
0635 if (nr_chips > 1)
0636 all_sensors &=
0637 sens_cpu_temp[1] &&
0638 sens_cpu_volts[1] &&
0639 sens_cpu_amps[1];
0640
0641 have_all_sensors = all_sensors;
0642 }
0643
0644 static int rm31_wf_notify(struct notifier_block *self,
0645 unsigned long event, void *data)
0646 {
0647 switch (event) {
0648 case WF_EVENT_NEW_SENSOR:
0649 rm31_new_sensor(data);
0650 break;
0651 case WF_EVENT_NEW_CONTROL:
0652 rm31_new_control(data);
0653 break;
0654 case WF_EVENT_TICK:
0655 if (have_all_controls && have_all_sensors)
0656 rm31_tick();
0657 }
0658 return 0;
0659 }
0660
0661 static struct notifier_block rm31_events = {
0662 .notifier_call = rm31_wf_notify,
0663 };
0664
0665 static int wf_rm31_probe(struct platform_device *dev)
0666 {
0667 wf_register_client(&rm31_events);
0668 return 0;
0669 }
0670
0671 static int wf_rm31_remove(struct platform_device *dev)
0672 {
0673 wf_unregister_client(&rm31_events);
0674
0675
0676 return 0;
0677 }
0678
0679 static struct platform_driver wf_rm31_driver = {
0680 .probe = wf_rm31_probe,
0681 .remove = wf_rm31_remove,
0682 .driver = {
0683 .name = "windfarm",
0684 },
0685 };
0686
0687 static int __init wf_rm31_init(void)
0688 {
0689 struct device_node *cpu;
0690 int i;
0691
0692 if (!of_machine_is_compatible("RackMac3,1"))
0693 return -ENODEV;
0694
0695
0696 nr_chips = 0;
0697 for_each_node_by_type(cpu, "cpu")
0698 ++nr_chips;
0699 if (nr_chips > NR_CHIPS)
0700 nr_chips = NR_CHIPS;
0701
0702 pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
0703 nr_chips);
0704
0705
0706 for (i = 0; i < nr_chips; i++) {
0707 cpu_mpu_data[i] = wf_get_mpu(i);
0708 if (!cpu_mpu_data[i]) {
0709 pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
0710 return -ENXIO;
0711 }
0712 }
0713
0714 #ifdef MODULE
0715 request_module("windfarm_fcu_controls");
0716 request_module("windfarm_lm75_sensor");
0717 request_module("windfarm_lm87_sensor");
0718 request_module("windfarm_ad7417_sensor");
0719 request_module("windfarm_max6690_sensor");
0720 request_module("windfarm_cpufreq_clamp");
0721 #endif
0722
0723 platform_driver_register(&wf_rm31_driver);
0724 return 0;
0725 }
0726
0727 static void __exit wf_rm31_exit(void)
0728 {
0729 platform_driver_unregister(&wf_rm31_driver);
0730 }
0731
0732 module_init(wf_rm31_init);
0733 module_exit(wf_rm31_exit);
0734
0735 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
0736 MODULE_DESCRIPTION("Thermal control for Xserve G5");
0737 MODULE_LICENSE("GPL");
0738 MODULE_ALIAS("platform:windfarm");