0001
0002
0003
0004
0005
0006 #include <linux/irq.h>
0007 #include <linux/irqdomain.h>
0008 #include <linux/io.h>
0009 #include <linux/irqchip.h>
0010 #include <linux/irqchip/chained_irq.h>
0011 #include <linux/of_address.h>
0012 #include <linux/of_irq.h>
0013
0014 #define SP_INTC_HWIRQ_MIN 0
0015 #define SP_INTC_HWIRQ_MAX 223
0016
0017 #define SP_INTC_NR_IRQS (SP_INTC_HWIRQ_MAX - SP_INTC_HWIRQ_MIN + 1)
0018 #define SP_INTC_NR_GROUPS DIV_ROUND_UP(SP_INTC_NR_IRQS, 32)
0019 #define SP_INTC_REG_SIZE (SP_INTC_NR_GROUPS * 4)
0020
0021
0022 #define REG_INTR_TYPE (sp_intc.g0)
0023 #define REG_INTR_POLARITY (REG_INTR_TYPE + SP_INTC_REG_SIZE)
0024 #define REG_INTR_PRIORITY (REG_INTR_POLARITY + SP_INTC_REG_SIZE)
0025 #define REG_INTR_MASK (REG_INTR_PRIORITY + SP_INTC_REG_SIZE)
0026
0027
0028 #define REG_INTR_CLEAR (sp_intc.g1)
0029 #define REG_MASKED_EXT1 (REG_INTR_CLEAR + SP_INTC_REG_SIZE)
0030 #define REG_MASKED_EXT0 (REG_MASKED_EXT1 + SP_INTC_REG_SIZE)
0031 #define REG_INTR_GROUP (REG_INTR_CLEAR + 31 * 4)
0032
0033 #define GROUP_MASK (BIT(SP_INTC_NR_GROUPS) - 1)
0034 #define GROUP_SHIFT_EXT1 (0)
0035 #define GROUP_SHIFT_EXT0 (8)
0036
0037
0038
0039
0040
0041
0042 #define GPIO_INT0_HWIRQ 120
0043 #define GPIO_INT7_HWIRQ 127
0044 #define IS_GPIO_INT(irq) \
0045 ({ \
0046 u32 i = irq; \
0047 (i >= GPIO_INT0_HWIRQ) && (i <= GPIO_INT7_HWIRQ); \
0048 })
0049
0050
0051 enum {
0052 _IS_EDGE = 0,
0053 _IS_LOW,
0054 _IS_ACTIVE
0055 };
0056
0057 #define STATE_BIT(irq, idx) (((irq) - GPIO_INT0_HWIRQ) * 3 + (idx))
0058 #define ASSIGN_STATE(irq, idx, v) assign_bit(STATE_BIT(irq, idx), sp_intc.states, v)
0059 #define TEST_STATE(irq, idx) test_bit(STATE_BIT(irq, idx), sp_intc.states)
0060
0061 static struct sp_intctl {
0062
0063
0064
0065
0066 void __iomem *g0;
0067 void __iomem *g1;
0068
0069 struct irq_domain *domain;
0070 raw_spinlock_t lock;
0071
0072
0073
0074
0075
0076 DECLARE_BITMAP(states, (GPIO_INT7_HWIRQ - GPIO_INT0_HWIRQ + 1) * 3);
0077 } sp_intc;
0078
0079 static struct irq_chip sp_intc_chip;
0080
0081 static void sp_intc_assign_bit(u32 hwirq, void __iomem *base, bool value)
0082 {
0083 u32 offset, mask;
0084 unsigned long flags;
0085 void __iomem *reg;
0086
0087 offset = (hwirq / 32) * 4;
0088 reg = base + offset;
0089
0090 raw_spin_lock_irqsave(&sp_intc.lock, flags);
0091 mask = readl_relaxed(reg);
0092 if (value)
0093 mask |= BIT(hwirq % 32);
0094 else
0095 mask &= ~BIT(hwirq % 32);
0096 writel_relaxed(mask, reg);
0097 raw_spin_unlock_irqrestore(&sp_intc.lock, flags);
0098 }
0099
0100 static void sp_intc_ack_irq(struct irq_data *d)
0101 {
0102 u32 hwirq = d->hwirq;
0103
0104 if (unlikely(IS_GPIO_INT(hwirq) && TEST_STATE(hwirq, _IS_EDGE))) {
0105 sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, !TEST_STATE(hwirq, _IS_LOW));
0106 ASSIGN_STATE(hwirq, _IS_ACTIVE, true);
0107 }
0108
0109 sp_intc_assign_bit(hwirq, REG_INTR_CLEAR, 1);
0110 }
0111
0112 static void sp_intc_mask_irq(struct irq_data *d)
0113 {
0114 sp_intc_assign_bit(d->hwirq, REG_INTR_MASK, 0);
0115 }
0116
0117 static void sp_intc_unmask_irq(struct irq_data *d)
0118 {
0119 sp_intc_assign_bit(d->hwirq, REG_INTR_MASK, 1);
0120 }
0121
0122 static int sp_intc_set_type(struct irq_data *d, unsigned int type)
0123 {
0124 u32 hwirq = d->hwirq;
0125 bool is_edge = !(type & IRQ_TYPE_LEVEL_MASK);
0126 bool is_low = (type == IRQ_TYPE_LEVEL_LOW || type == IRQ_TYPE_EDGE_FALLING);
0127
0128 irq_set_handler_locked(d, is_edge ? handle_edge_irq : handle_level_irq);
0129
0130 if (unlikely(IS_GPIO_INT(hwirq) && is_edge)) {
0131
0132 ASSIGN_STATE(hwirq, _IS_EDGE, is_edge);
0133 ASSIGN_STATE(hwirq, _IS_LOW, is_low);
0134 ASSIGN_STATE(hwirq, _IS_ACTIVE, false);
0135
0136 is_edge = false;
0137 }
0138
0139 sp_intc_assign_bit(hwirq, REG_INTR_TYPE, is_edge);
0140 sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, is_low);
0141
0142 return 0;
0143 }
0144
0145 static int sp_intc_get_ext_irq(int ext_num)
0146 {
0147 void __iomem *base = ext_num ? REG_MASKED_EXT1 : REG_MASKED_EXT0;
0148 u32 shift = ext_num ? GROUP_SHIFT_EXT1 : GROUP_SHIFT_EXT0;
0149 u32 groups;
0150 u32 pending_group;
0151 u32 group;
0152 u32 pending_irq;
0153
0154 groups = readl_relaxed(REG_INTR_GROUP);
0155 pending_group = (groups >> shift) & GROUP_MASK;
0156 if (!pending_group)
0157 return -1;
0158
0159 group = fls(pending_group) - 1;
0160 pending_irq = readl_relaxed(base + group * 4);
0161 if (!pending_irq)
0162 return -1;
0163
0164 return (group * 32) + fls(pending_irq) - 1;
0165 }
0166
0167 static void sp_intc_handle_ext_cascaded(struct irq_desc *desc)
0168 {
0169 struct irq_chip *chip = irq_desc_get_chip(desc);
0170 int ext_num = (uintptr_t)irq_desc_get_handler_data(desc);
0171 int hwirq;
0172
0173 chained_irq_enter(chip, desc);
0174
0175 while ((hwirq = sp_intc_get_ext_irq(ext_num)) >= 0) {
0176 if (unlikely(IS_GPIO_INT(hwirq) && TEST_STATE(hwirq, _IS_ACTIVE))) {
0177 ASSIGN_STATE(hwirq, _IS_ACTIVE, false);
0178 sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, TEST_STATE(hwirq, _IS_LOW));
0179 } else {
0180 generic_handle_domain_irq(sp_intc.domain, hwirq);
0181 }
0182 }
0183
0184 chained_irq_exit(chip, desc);
0185 }
0186
0187 static struct irq_chip sp_intc_chip = {
0188 .name = "sp_intc",
0189 .irq_ack = sp_intc_ack_irq,
0190 .irq_mask = sp_intc_mask_irq,
0191 .irq_unmask = sp_intc_unmask_irq,
0192 .irq_set_type = sp_intc_set_type,
0193 };
0194
0195 static int sp_intc_irq_domain_map(struct irq_domain *domain,
0196 unsigned int irq, irq_hw_number_t hwirq)
0197 {
0198 irq_set_chip_and_handler(irq, &sp_intc_chip, handle_level_irq);
0199 irq_set_chip_data(irq, &sp_intc_chip);
0200 irq_set_noprobe(irq);
0201
0202 return 0;
0203 }
0204
0205 static const struct irq_domain_ops sp_intc_dm_ops = {
0206 .xlate = irq_domain_xlate_twocell,
0207 .map = sp_intc_irq_domain_map,
0208 };
0209
0210 static int sp_intc_irq_map(struct device_node *node, int i)
0211 {
0212 unsigned int irq;
0213
0214 irq = irq_of_parse_and_map(node, i);
0215 if (!irq)
0216 return -ENOENT;
0217
0218 irq_set_chained_handler_and_data(irq, sp_intc_handle_ext_cascaded, (void *)(uintptr_t)i);
0219
0220 return 0;
0221 }
0222
0223 static int __init sp_intc_init_dt(struct device_node *node, struct device_node *parent)
0224 {
0225 int i, ret;
0226
0227 sp_intc.g0 = of_iomap(node, 0);
0228 if (!sp_intc.g0)
0229 return -ENXIO;
0230
0231 sp_intc.g1 = of_iomap(node, 1);
0232 if (!sp_intc.g1) {
0233 ret = -ENXIO;
0234 goto out_unmap0;
0235 }
0236
0237 ret = sp_intc_irq_map(node, 0);
0238 if (ret)
0239 goto out_unmap1;
0240
0241 ret = sp_intc_irq_map(node, 1);
0242 if (ret)
0243 goto out_unmap1;
0244
0245
0246 for (i = 0; i < SP_INTC_NR_GROUPS; i++) {
0247
0248 writel_relaxed(0, REG_INTR_MASK + i * 4);
0249
0250 writel_relaxed(~0, REG_INTR_TYPE + i * 4);
0251
0252 writel_relaxed(0, REG_INTR_POLARITY + i * 4);
0253
0254 writel_relaxed(~0, REG_INTR_PRIORITY + i * 4);
0255
0256 writel_relaxed(~0, REG_INTR_CLEAR + i * 4);
0257 }
0258
0259 sp_intc.domain = irq_domain_add_linear(node, SP_INTC_NR_IRQS,
0260 &sp_intc_dm_ops, &sp_intc);
0261 if (!sp_intc.domain) {
0262 ret = -ENOMEM;
0263 goto out_unmap1;
0264 }
0265
0266 raw_spin_lock_init(&sp_intc.lock);
0267
0268 return 0;
0269
0270 out_unmap1:
0271 iounmap(sp_intc.g1);
0272 out_unmap0:
0273 iounmap(sp_intc.g0);
0274
0275 return ret;
0276 }
0277
0278 IRQCHIP_DECLARE(sp_intc, "sunplus,sp7021-intc", sp_intc_init_dt);