Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (c) 2006, Intel Corporation.
0004  *
0005  * Copyright (C) 2006-2008 Intel Corporation
0006  * Author: Ashok Raj <ashok.raj@intel.com>
0007  * Author: Shaohua Li <shaohua.li@intel.com>
0008  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
0009  *
0010  * This file implements early detection/parsing of Remapping Devices
0011  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
0012  * tables.
0013  *
0014  * These routines are used by both DMA-remapping and Interrupt-remapping
0015  */
0016 
0017 #define pr_fmt(fmt)     "DMAR: " fmt
0018 
0019 #include <linux/pci.h>
0020 #include <linux/dmar.h>
0021 #include <linux/iova.h>
0022 #include <linux/timer.h>
0023 #include <linux/irq.h>
0024 #include <linux/interrupt.h>
0025 #include <linux/tboot.h>
0026 #include <linux/dmi.h>
0027 #include <linux/slab.h>
0028 #include <linux/iommu.h>
0029 #include <linux/numa.h>
0030 #include <linux/limits.h>
0031 #include <asm/irq_remapping.h>
0032 
0033 #include "iommu.h"
0034 #include "../irq_remapping.h"
0035 #include "perf.h"
0036 #include "trace.h"
0037 
0038 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
0039 struct dmar_res_callback {
0040     dmar_res_handler_t  cb[ACPI_DMAR_TYPE_RESERVED];
0041     void            *arg[ACPI_DMAR_TYPE_RESERVED];
0042     bool            ignore_unhandled;
0043     bool            print_entry;
0044 };
0045 
0046 /*
0047  * Assumptions:
0048  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
0049  *    before IO devices managed by that unit.
0050  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
0051  *    after IO devices managed by that unit.
0052  * 3) Hotplug events are rare.
0053  *
0054  * Locking rules for DMA and interrupt remapping related global data structures:
0055  * 1) Use dmar_global_lock in process context
0056  * 2) Use RCU in interrupt context
0057  */
0058 DECLARE_RWSEM(dmar_global_lock);
0059 LIST_HEAD(dmar_drhd_units);
0060 
0061 struct acpi_table_header * __initdata dmar_tbl;
0062 static int dmar_dev_scope_status = 1;
0063 static DEFINE_IDA(dmar_seq_ids);
0064 
0065 static int alloc_iommu(struct dmar_drhd_unit *drhd);
0066 static void free_iommu(struct intel_iommu *iommu);
0067 
0068 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
0069 {
0070     /*
0071      * add INCLUDE_ALL at the tail, so scan the list will find it at
0072      * the very end.
0073      */
0074     if (drhd->include_all)
0075         list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
0076     else
0077         list_add_rcu(&drhd->list, &dmar_drhd_units);
0078 }
0079 
0080 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
0081 {
0082     struct acpi_dmar_device_scope *scope;
0083 
0084     *cnt = 0;
0085     while (start < end) {
0086         scope = start;
0087         if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
0088             scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
0089             scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
0090             (*cnt)++;
0091         else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
0092             scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
0093             pr_warn("Unsupported device scope\n");
0094         }
0095         start += scope->length;
0096     }
0097     if (*cnt == 0)
0098         return NULL;
0099 
0100     return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
0101 }
0102 
0103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
0104 {
0105     int i;
0106     struct device *tmp_dev;
0107 
0108     if (*devices && *cnt) {
0109         for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
0110             put_device(tmp_dev);
0111         kfree(*devices);
0112     }
0113 
0114     *devices = NULL;
0115     *cnt = 0;
0116 }
0117 
0118 /* Optimize out kzalloc()/kfree() for normal cases */
0119 static char dmar_pci_notify_info_buf[64];
0120 
0121 static struct dmar_pci_notify_info *
0122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
0123 {
0124     int level = 0;
0125     size_t size;
0126     struct pci_dev *tmp;
0127     struct dmar_pci_notify_info *info;
0128 
0129     BUG_ON(dev->is_virtfn);
0130 
0131     /*
0132      * Ignore devices that have a domain number higher than what can
0133      * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
0134      */
0135     if (pci_domain_nr(dev->bus) > U16_MAX)
0136         return NULL;
0137 
0138     /* Only generate path[] for device addition event */
0139     if (event == BUS_NOTIFY_ADD_DEVICE)
0140         for (tmp = dev; tmp; tmp = tmp->bus->self)
0141             level++;
0142 
0143     size = struct_size(info, path, level);
0144     if (size <= sizeof(dmar_pci_notify_info_buf)) {
0145         info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
0146     } else {
0147         info = kzalloc(size, GFP_KERNEL);
0148         if (!info) {
0149             if (dmar_dev_scope_status == 0)
0150                 dmar_dev_scope_status = -ENOMEM;
0151             return NULL;
0152         }
0153     }
0154 
0155     info->event = event;
0156     info->dev = dev;
0157     info->seg = pci_domain_nr(dev->bus);
0158     info->level = level;
0159     if (event == BUS_NOTIFY_ADD_DEVICE) {
0160         for (tmp = dev; tmp; tmp = tmp->bus->self) {
0161             level--;
0162             info->path[level].bus = tmp->bus->number;
0163             info->path[level].device = PCI_SLOT(tmp->devfn);
0164             info->path[level].function = PCI_FUNC(tmp->devfn);
0165             if (pci_is_root_bus(tmp->bus))
0166                 info->bus = tmp->bus->number;
0167         }
0168     }
0169 
0170     return info;
0171 }
0172 
0173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
0174 {
0175     if ((void *)info != dmar_pci_notify_info_buf)
0176         kfree(info);
0177 }
0178 
0179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
0180                 struct acpi_dmar_pci_path *path, int count)
0181 {
0182     int i;
0183 
0184     if (info->bus != bus)
0185         goto fallback;
0186     if (info->level != count)
0187         goto fallback;
0188 
0189     for (i = 0; i < count; i++) {
0190         if (path[i].device != info->path[i].device ||
0191             path[i].function != info->path[i].function)
0192             goto fallback;
0193     }
0194 
0195     return true;
0196 
0197 fallback:
0198 
0199     if (count != 1)
0200         return false;
0201 
0202     i = info->level - 1;
0203     if (bus              == info->path[i].bus &&
0204         path[0].device   == info->path[i].device &&
0205         path[0].function == info->path[i].function) {
0206         pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
0207             bus, path[0].device, path[0].function);
0208         return true;
0209     }
0210 
0211     return false;
0212 }
0213 
0214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
0215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
0216               void *start, void*end, u16 segment,
0217               struct dmar_dev_scope *devices,
0218               int devices_cnt)
0219 {
0220     int i, level;
0221     struct device *tmp, *dev = &info->dev->dev;
0222     struct acpi_dmar_device_scope *scope;
0223     struct acpi_dmar_pci_path *path;
0224 
0225     if (segment != info->seg)
0226         return 0;
0227 
0228     for (; start < end; start += scope->length) {
0229         scope = start;
0230         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
0231             scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
0232             continue;
0233 
0234         path = (struct acpi_dmar_pci_path *)(scope + 1);
0235         level = (scope->length - sizeof(*scope)) / sizeof(*path);
0236         if (!dmar_match_pci_path(info, scope->bus, path, level))
0237             continue;
0238 
0239         /*
0240          * We expect devices with endpoint scope to have normal PCI
0241          * headers, and devices with bridge scope to have bridge PCI
0242          * headers.  However PCI NTB devices may be listed in the
0243          * DMAR table with bridge scope, even though they have a
0244          * normal PCI header.  NTB devices are identified by class
0245          * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
0246          * for this special case.
0247          */
0248         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
0249              info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
0250             (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
0251              (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
0252               info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
0253             pr_warn("Device scope type does not match for %s\n",
0254                 pci_name(info->dev));
0255             return -EINVAL;
0256         }
0257 
0258         for_each_dev_scope(devices, devices_cnt, i, tmp)
0259             if (tmp == NULL) {
0260                 devices[i].bus = info->dev->bus->number;
0261                 devices[i].devfn = info->dev->devfn;
0262                 rcu_assign_pointer(devices[i].dev,
0263                            get_device(dev));
0264                 return 1;
0265             }
0266         BUG_ON(i >= devices_cnt);
0267     }
0268 
0269     return 0;
0270 }
0271 
0272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
0273               struct dmar_dev_scope *devices, int count)
0274 {
0275     int index;
0276     struct device *tmp;
0277 
0278     if (info->seg != segment)
0279         return 0;
0280 
0281     for_each_active_dev_scope(devices, count, index, tmp)
0282         if (tmp == &info->dev->dev) {
0283             RCU_INIT_POINTER(devices[index].dev, NULL);
0284             synchronize_rcu();
0285             put_device(tmp);
0286             return 1;
0287         }
0288 
0289     return 0;
0290 }
0291 
0292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
0293 {
0294     int ret = 0;
0295     struct dmar_drhd_unit *dmaru;
0296     struct acpi_dmar_hardware_unit *drhd;
0297 
0298     for_each_drhd_unit(dmaru) {
0299         if (dmaru->include_all)
0300             continue;
0301 
0302         drhd = container_of(dmaru->hdr,
0303                     struct acpi_dmar_hardware_unit, header);
0304         ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
0305                 ((void *)drhd) + drhd->header.length,
0306                 dmaru->segment,
0307                 dmaru->devices, dmaru->devices_cnt);
0308         if (ret)
0309             break;
0310     }
0311     if (ret >= 0)
0312         ret = dmar_iommu_notify_scope_dev(info);
0313     if (ret < 0 && dmar_dev_scope_status == 0)
0314         dmar_dev_scope_status = ret;
0315 
0316     if (ret >= 0)
0317         intel_irq_remap_add_device(info);
0318 
0319     return ret;
0320 }
0321 
0322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
0323 {
0324     struct dmar_drhd_unit *dmaru;
0325 
0326     for_each_drhd_unit(dmaru)
0327         if (dmar_remove_dev_scope(info, dmaru->segment,
0328             dmaru->devices, dmaru->devices_cnt))
0329             break;
0330     dmar_iommu_notify_scope_dev(info);
0331 }
0332 
0333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
0334 {
0335     struct pci_dev *physfn = pci_physfn(pdev);
0336 
0337     dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
0338 }
0339 
0340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
0341                  unsigned long action, void *data)
0342 {
0343     struct pci_dev *pdev = to_pci_dev(data);
0344     struct dmar_pci_notify_info *info;
0345 
0346     /* Only care about add/remove events for physical functions.
0347      * For VFs we actually do the lookup based on the corresponding
0348      * PF in device_to_iommu() anyway. */
0349     if (pdev->is_virtfn) {
0350         /*
0351          * Ensure that the VF device inherits the irq domain of the
0352          * PF device. Ideally the device would inherit the domain
0353          * from the bus, but DMAR can have multiple units per bus
0354          * which makes this impossible. The VF 'bus' could inherit
0355          * from the PF device, but that's yet another x86'sism to
0356          * inflict on everybody else.
0357          */
0358         if (action == BUS_NOTIFY_ADD_DEVICE)
0359             vf_inherit_msi_domain(pdev);
0360         return NOTIFY_DONE;
0361     }
0362 
0363     if (action != BUS_NOTIFY_ADD_DEVICE &&
0364         action != BUS_NOTIFY_REMOVED_DEVICE)
0365         return NOTIFY_DONE;
0366 
0367     info = dmar_alloc_pci_notify_info(pdev, action);
0368     if (!info)
0369         return NOTIFY_DONE;
0370 
0371     down_write(&dmar_global_lock);
0372     if (action == BUS_NOTIFY_ADD_DEVICE)
0373         dmar_pci_bus_add_dev(info);
0374     else if (action == BUS_NOTIFY_REMOVED_DEVICE)
0375         dmar_pci_bus_del_dev(info);
0376     up_write(&dmar_global_lock);
0377 
0378     dmar_free_pci_notify_info(info);
0379 
0380     return NOTIFY_OK;
0381 }
0382 
0383 static struct notifier_block dmar_pci_bus_nb = {
0384     .notifier_call = dmar_pci_bus_notifier,
0385     .priority = 1,
0386 };
0387 
0388 static struct dmar_drhd_unit *
0389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
0390 {
0391     struct dmar_drhd_unit *dmaru;
0392 
0393     list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
0394                 dmar_rcu_check())
0395         if (dmaru->segment == drhd->segment &&
0396             dmaru->reg_base_addr == drhd->address)
0397             return dmaru;
0398 
0399     return NULL;
0400 }
0401 
0402 /*
0403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
0404  * structure which uniquely represent one DMA remapping hardware unit
0405  * present in the platform
0406  */
0407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
0408 {
0409     struct acpi_dmar_hardware_unit *drhd;
0410     struct dmar_drhd_unit *dmaru;
0411     int ret;
0412 
0413     drhd = (struct acpi_dmar_hardware_unit *)header;
0414     dmaru = dmar_find_dmaru(drhd);
0415     if (dmaru)
0416         goto out;
0417 
0418     dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
0419     if (!dmaru)
0420         return -ENOMEM;
0421 
0422     /*
0423      * If header is allocated from slab by ACPI _DSM method, we need to
0424      * copy the content because the memory buffer will be freed on return.
0425      */
0426     dmaru->hdr = (void *)(dmaru + 1);
0427     memcpy(dmaru->hdr, header, header->length);
0428     dmaru->reg_base_addr = drhd->address;
0429     dmaru->segment = drhd->segment;
0430     dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
0431     dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
0432                           ((void *)drhd) + drhd->header.length,
0433                           &dmaru->devices_cnt);
0434     if (dmaru->devices_cnt && dmaru->devices == NULL) {
0435         kfree(dmaru);
0436         return -ENOMEM;
0437     }
0438 
0439     ret = alloc_iommu(dmaru);
0440     if (ret) {
0441         dmar_free_dev_scope(&dmaru->devices,
0442                     &dmaru->devices_cnt);
0443         kfree(dmaru);
0444         return ret;
0445     }
0446     dmar_register_drhd_unit(dmaru);
0447 
0448 out:
0449     if (arg)
0450         (*(int *)arg)++;
0451 
0452     return 0;
0453 }
0454 
0455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
0456 {
0457     if (dmaru->devices && dmaru->devices_cnt)
0458         dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
0459     if (dmaru->iommu)
0460         free_iommu(dmaru->iommu);
0461     kfree(dmaru);
0462 }
0463 
0464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
0465                       void *arg)
0466 {
0467     struct acpi_dmar_andd *andd = (void *)header;
0468 
0469     /* Check for NUL termination within the designated length */
0470     if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
0471         pr_warn(FW_BUG
0472                "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
0473                "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
0474                dmi_get_system_info(DMI_BIOS_VENDOR),
0475                dmi_get_system_info(DMI_BIOS_VERSION),
0476                dmi_get_system_info(DMI_PRODUCT_VERSION));
0477         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
0478         return -EINVAL;
0479     }
0480     pr_info("ANDD device: %x name: %s\n", andd->device_number,
0481         andd->device_name);
0482 
0483     return 0;
0484 }
0485 
0486 #ifdef CONFIG_ACPI_NUMA
0487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
0488 {
0489     struct acpi_dmar_rhsa *rhsa;
0490     struct dmar_drhd_unit *drhd;
0491 
0492     rhsa = (struct acpi_dmar_rhsa *)header;
0493     for_each_drhd_unit(drhd) {
0494         if (drhd->reg_base_addr == rhsa->base_address) {
0495             int node = pxm_to_node(rhsa->proximity_domain);
0496 
0497             if (node != NUMA_NO_NODE && !node_online(node))
0498                 node = NUMA_NO_NODE;
0499             drhd->iommu->node = node;
0500             return 0;
0501         }
0502     }
0503     pr_warn(FW_BUG
0504         "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
0505         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
0506         rhsa->base_address,
0507         dmi_get_system_info(DMI_BIOS_VENDOR),
0508         dmi_get_system_info(DMI_BIOS_VERSION),
0509         dmi_get_system_info(DMI_PRODUCT_VERSION));
0510     add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
0511 
0512     return 0;
0513 }
0514 #else
0515 #define dmar_parse_one_rhsa     dmar_res_noop
0516 #endif
0517 
0518 static void
0519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
0520 {
0521     struct acpi_dmar_hardware_unit *drhd;
0522     struct acpi_dmar_reserved_memory *rmrr;
0523     struct acpi_dmar_atsr *atsr;
0524     struct acpi_dmar_rhsa *rhsa;
0525     struct acpi_dmar_satc *satc;
0526 
0527     switch (header->type) {
0528     case ACPI_DMAR_TYPE_HARDWARE_UNIT:
0529         drhd = container_of(header, struct acpi_dmar_hardware_unit,
0530                     header);
0531         pr_info("DRHD base: %#016Lx flags: %#x\n",
0532             (unsigned long long)drhd->address, drhd->flags);
0533         break;
0534     case ACPI_DMAR_TYPE_RESERVED_MEMORY:
0535         rmrr = container_of(header, struct acpi_dmar_reserved_memory,
0536                     header);
0537         pr_info("RMRR base: %#016Lx end: %#016Lx\n",
0538             (unsigned long long)rmrr->base_address,
0539             (unsigned long long)rmrr->end_address);
0540         break;
0541     case ACPI_DMAR_TYPE_ROOT_ATS:
0542         atsr = container_of(header, struct acpi_dmar_atsr, header);
0543         pr_info("ATSR flags: %#x\n", atsr->flags);
0544         break;
0545     case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
0546         rhsa = container_of(header, struct acpi_dmar_rhsa, header);
0547         pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
0548                (unsigned long long)rhsa->base_address,
0549                rhsa->proximity_domain);
0550         break;
0551     case ACPI_DMAR_TYPE_NAMESPACE:
0552         /* We don't print this here because we need to sanity-check
0553            it first. So print it in dmar_parse_one_andd() instead. */
0554         break;
0555     case ACPI_DMAR_TYPE_SATC:
0556         satc = container_of(header, struct acpi_dmar_satc, header);
0557         pr_info("SATC flags: 0x%x\n", satc->flags);
0558         break;
0559     }
0560 }
0561 
0562 /**
0563  * dmar_table_detect - checks to see if the platform supports DMAR devices
0564  */
0565 static int __init dmar_table_detect(void)
0566 {
0567     acpi_status status = AE_OK;
0568 
0569     /* if we could find DMAR table, then there are DMAR devices */
0570     status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
0571 
0572     if (ACPI_SUCCESS(status) && !dmar_tbl) {
0573         pr_warn("Unable to map DMAR\n");
0574         status = AE_NOT_FOUND;
0575     }
0576 
0577     return ACPI_SUCCESS(status) ? 0 : -ENOENT;
0578 }
0579 
0580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
0581                        size_t len, struct dmar_res_callback *cb)
0582 {
0583     struct acpi_dmar_header *iter, *next;
0584     struct acpi_dmar_header *end = ((void *)start) + len;
0585 
0586     for (iter = start; iter < end; iter = next) {
0587         next = (void *)iter + iter->length;
0588         if (iter->length == 0) {
0589             /* Avoid looping forever on bad ACPI tables */
0590             pr_debug(FW_BUG "Invalid 0-length structure\n");
0591             break;
0592         } else if (next > end) {
0593             /* Avoid passing table end */
0594             pr_warn(FW_BUG "Record passes table end\n");
0595             return -EINVAL;
0596         }
0597 
0598         if (cb->print_entry)
0599             dmar_table_print_dmar_entry(iter);
0600 
0601         if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
0602             /* continue for forward compatibility */
0603             pr_debug("Unknown DMAR structure type %d\n",
0604                  iter->type);
0605         } else if (cb->cb[iter->type]) {
0606             int ret;
0607 
0608             ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
0609             if (ret)
0610                 return ret;
0611         } else if (!cb->ignore_unhandled) {
0612             pr_warn("No handler for DMAR structure type %d\n",
0613                 iter->type);
0614             return -EINVAL;
0615         }
0616     }
0617 
0618     return 0;
0619 }
0620 
0621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
0622                        struct dmar_res_callback *cb)
0623 {
0624     return dmar_walk_remapping_entries((void *)(dmar + 1),
0625             dmar->header.length - sizeof(*dmar), cb);
0626 }
0627 
0628 /**
0629  * parse_dmar_table - parses the DMA reporting table
0630  */
0631 static int __init
0632 parse_dmar_table(void)
0633 {
0634     struct acpi_table_dmar *dmar;
0635     int drhd_count = 0;
0636     int ret;
0637     struct dmar_res_callback cb = {
0638         .print_entry = true,
0639         .ignore_unhandled = true,
0640         .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
0641         .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
0642         .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
0643         .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
0644         .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
0645         .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
0646         .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
0647     };
0648 
0649     /*
0650      * Do it again, earlier dmar_tbl mapping could be mapped with
0651      * fixed map.
0652      */
0653     dmar_table_detect();
0654 
0655     /*
0656      * ACPI tables may not be DMA protected by tboot, so use DMAR copy
0657      * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
0658      */
0659     dmar_tbl = tboot_get_dmar_table(dmar_tbl);
0660 
0661     dmar = (struct acpi_table_dmar *)dmar_tbl;
0662     if (!dmar)
0663         return -ENODEV;
0664 
0665     if (dmar->width < PAGE_SHIFT - 1) {
0666         pr_warn("Invalid DMAR haw\n");
0667         return -EINVAL;
0668     }
0669 
0670     pr_info("Host address width %d\n", dmar->width + 1);
0671     ret = dmar_walk_dmar_table(dmar, &cb);
0672     if (ret == 0 && drhd_count == 0)
0673         pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
0674 
0675     return ret;
0676 }
0677 
0678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
0679                  int cnt, struct pci_dev *dev)
0680 {
0681     int index;
0682     struct device *tmp;
0683 
0684     while (dev) {
0685         for_each_active_dev_scope(devices, cnt, index, tmp)
0686             if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
0687                 return 1;
0688 
0689         /* Check our parent */
0690         dev = dev->bus->self;
0691     }
0692 
0693     return 0;
0694 }
0695 
0696 struct dmar_drhd_unit *
0697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
0698 {
0699     struct dmar_drhd_unit *dmaru;
0700     struct acpi_dmar_hardware_unit *drhd;
0701 
0702     dev = pci_physfn(dev);
0703 
0704     rcu_read_lock();
0705     for_each_drhd_unit(dmaru) {
0706         drhd = container_of(dmaru->hdr,
0707                     struct acpi_dmar_hardware_unit,
0708                     header);
0709 
0710         if (dmaru->include_all &&
0711             drhd->segment == pci_domain_nr(dev->bus))
0712             goto out;
0713 
0714         if (dmar_pci_device_match(dmaru->devices,
0715                       dmaru->devices_cnt, dev))
0716             goto out;
0717     }
0718     dmaru = NULL;
0719 out:
0720     rcu_read_unlock();
0721 
0722     return dmaru;
0723 }
0724 
0725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
0726                           struct acpi_device *adev)
0727 {
0728     struct dmar_drhd_unit *dmaru;
0729     struct acpi_dmar_hardware_unit *drhd;
0730     struct acpi_dmar_device_scope *scope;
0731     struct device *tmp;
0732     int i;
0733     struct acpi_dmar_pci_path *path;
0734 
0735     for_each_drhd_unit(dmaru) {
0736         drhd = container_of(dmaru->hdr,
0737                     struct acpi_dmar_hardware_unit,
0738                     header);
0739 
0740         for (scope = (void *)(drhd + 1);
0741              (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
0742              scope = ((void *)scope) + scope->length) {
0743             if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
0744                 continue;
0745             if (scope->enumeration_id != device_number)
0746                 continue;
0747 
0748             path = (void *)(scope + 1);
0749             pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
0750                 dev_name(&adev->dev), dmaru->reg_base_addr,
0751                 scope->bus, path->device, path->function);
0752             for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
0753                 if (tmp == NULL) {
0754                     dmaru->devices[i].bus = scope->bus;
0755                     dmaru->devices[i].devfn = PCI_DEVFN(path->device,
0756                                         path->function);
0757                     rcu_assign_pointer(dmaru->devices[i].dev,
0758                                get_device(&adev->dev));
0759                     return;
0760                 }
0761             BUG_ON(i >= dmaru->devices_cnt);
0762         }
0763     }
0764     pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
0765         device_number, dev_name(&adev->dev));
0766 }
0767 
0768 static int __init dmar_acpi_dev_scope_init(void)
0769 {
0770     struct acpi_dmar_andd *andd;
0771 
0772     if (dmar_tbl == NULL)
0773         return -ENODEV;
0774 
0775     for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
0776          ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
0777          andd = ((void *)andd) + andd->header.length) {
0778         if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
0779             acpi_handle h;
0780             struct acpi_device *adev;
0781 
0782             if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
0783                               andd->device_name,
0784                               &h))) {
0785                 pr_err("Failed to find handle for ACPI object %s\n",
0786                        andd->device_name);
0787                 continue;
0788             }
0789             adev = acpi_fetch_acpi_dev(h);
0790             if (!adev) {
0791                 pr_err("Failed to get device for ACPI object %s\n",
0792                        andd->device_name);
0793                 continue;
0794             }
0795             dmar_acpi_insert_dev_scope(andd->device_number, adev);
0796         }
0797     }
0798     return 0;
0799 }
0800 
0801 int __init dmar_dev_scope_init(void)
0802 {
0803     struct pci_dev *dev = NULL;
0804     struct dmar_pci_notify_info *info;
0805 
0806     if (dmar_dev_scope_status != 1)
0807         return dmar_dev_scope_status;
0808 
0809     if (list_empty(&dmar_drhd_units)) {
0810         dmar_dev_scope_status = -ENODEV;
0811     } else {
0812         dmar_dev_scope_status = 0;
0813 
0814         dmar_acpi_dev_scope_init();
0815 
0816         for_each_pci_dev(dev) {
0817             if (dev->is_virtfn)
0818                 continue;
0819 
0820             info = dmar_alloc_pci_notify_info(dev,
0821                     BUS_NOTIFY_ADD_DEVICE);
0822             if (!info) {
0823                 return dmar_dev_scope_status;
0824             } else {
0825                 dmar_pci_bus_add_dev(info);
0826                 dmar_free_pci_notify_info(info);
0827             }
0828         }
0829     }
0830 
0831     return dmar_dev_scope_status;
0832 }
0833 
0834 void __init dmar_register_bus_notifier(void)
0835 {
0836     bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
0837 }
0838 
0839 
0840 int __init dmar_table_init(void)
0841 {
0842     static int dmar_table_initialized;
0843     int ret;
0844 
0845     if (dmar_table_initialized == 0) {
0846         ret = parse_dmar_table();
0847         if (ret < 0) {
0848             if (ret != -ENODEV)
0849                 pr_info("Parse DMAR table failure.\n");
0850         } else  if (list_empty(&dmar_drhd_units)) {
0851             pr_info("No DMAR devices found\n");
0852             ret = -ENODEV;
0853         }
0854 
0855         if (ret < 0)
0856             dmar_table_initialized = ret;
0857         else
0858             dmar_table_initialized = 1;
0859     }
0860 
0861     return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
0862 }
0863 
0864 static void warn_invalid_dmar(u64 addr, const char *message)
0865 {
0866     pr_warn_once(FW_BUG
0867         "Your BIOS is broken; DMAR reported at address %llx%s!\n"
0868         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
0869         addr, message,
0870         dmi_get_system_info(DMI_BIOS_VENDOR),
0871         dmi_get_system_info(DMI_BIOS_VERSION),
0872         dmi_get_system_info(DMI_PRODUCT_VERSION));
0873     add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
0874 }
0875 
0876 static int __ref
0877 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
0878 {
0879     struct acpi_dmar_hardware_unit *drhd;
0880     void __iomem *addr;
0881     u64 cap, ecap;
0882 
0883     drhd = (void *)entry;
0884     if (!drhd->address) {
0885         warn_invalid_dmar(0, "");
0886         return -EINVAL;
0887     }
0888 
0889     if (arg)
0890         addr = ioremap(drhd->address, VTD_PAGE_SIZE);
0891     else
0892         addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
0893     if (!addr) {
0894         pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
0895         return -EINVAL;
0896     }
0897 
0898     cap = dmar_readq(addr + DMAR_CAP_REG);
0899     ecap = dmar_readq(addr + DMAR_ECAP_REG);
0900 
0901     if (arg)
0902         iounmap(addr);
0903     else
0904         early_iounmap(addr, VTD_PAGE_SIZE);
0905 
0906     if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
0907         warn_invalid_dmar(drhd->address, " returns all ones");
0908         return -EINVAL;
0909     }
0910 
0911     return 0;
0912 }
0913 
0914 void __init detect_intel_iommu(void)
0915 {
0916     int ret;
0917     struct dmar_res_callback validate_drhd_cb = {
0918         .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
0919         .ignore_unhandled = true,
0920     };
0921 
0922     down_write(&dmar_global_lock);
0923     ret = dmar_table_detect();
0924     if (!ret)
0925         ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
0926                        &validate_drhd_cb);
0927     if (!ret && !no_iommu && !iommu_detected &&
0928         (!dmar_disabled || dmar_platform_optin())) {
0929         iommu_detected = 1;
0930         /* Make sure ACS will be enabled */
0931         pci_request_acs();
0932     }
0933 
0934 #ifdef CONFIG_X86
0935     if (!ret) {
0936         x86_init.iommu.iommu_init = intel_iommu_init;
0937         x86_platform.iommu_shutdown = intel_iommu_shutdown;
0938     }
0939 
0940 #endif
0941 
0942     if (dmar_tbl) {
0943         acpi_put_table(dmar_tbl);
0944         dmar_tbl = NULL;
0945     }
0946     up_write(&dmar_global_lock);
0947 }
0948 
0949 static void unmap_iommu(struct intel_iommu *iommu)
0950 {
0951     iounmap(iommu->reg);
0952     release_mem_region(iommu->reg_phys, iommu->reg_size);
0953 }
0954 
0955 /**
0956  * map_iommu: map the iommu's registers
0957  * @iommu: the iommu to map
0958  * @phys_addr: the physical address of the base resgister
0959  *
0960  * Memory map the iommu's registers.  Start w/ a single page, and
0961  * possibly expand if that turns out to be insufficent.
0962  */
0963 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
0964 {
0965     int map_size, err=0;
0966 
0967     iommu->reg_phys = phys_addr;
0968     iommu->reg_size = VTD_PAGE_SIZE;
0969 
0970     if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
0971         pr_err("Can't reserve memory\n");
0972         err = -EBUSY;
0973         goto out;
0974     }
0975 
0976     iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
0977     if (!iommu->reg) {
0978         pr_err("Can't map the region\n");
0979         err = -ENOMEM;
0980         goto release;
0981     }
0982 
0983     iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
0984     iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
0985 
0986     if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
0987         err = -EINVAL;
0988         warn_invalid_dmar(phys_addr, " returns all ones");
0989         goto unmap;
0990     }
0991     if (ecap_vcs(iommu->ecap))
0992         iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
0993 
0994     /* the registers might be more than one page */
0995     map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
0996              cap_max_fault_reg_offset(iommu->cap));
0997     map_size = VTD_PAGE_ALIGN(map_size);
0998     if (map_size > iommu->reg_size) {
0999         iounmap(iommu->reg);
1000         release_mem_region(iommu->reg_phys, iommu->reg_size);
1001         iommu->reg_size = map_size;
1002         if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1003                     iommu->name)) {
1004             pr_err("Can't reserve memory\n");
1005             err = -EBUSY;
1006             goto out;
1007         }
1008         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1009         if (!iommu->reg) {
1010             pr_err("Can't map the region\n");
1011             err = -ENOMEM;
1012             goto release;
1013         }
1014     }
1015     err = 0;
1016     goto out;
1017 
1018 unmap:
1019     iounmap(iommu->reg);
1020 release:
1021     release_mem_region(iommu->reg_phys, iommu->reg_size);
1022 out:
1023     return err;
1024 }
1025 
1026 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1027 {
1028     struct intel_iommu *iommu;
1029     u32 ver, sts;
1030     int agaw = -1;
1031     int msagaw = -1;
1032     int err;
1033 
1034     if (!drhd->reg_base_addr) {
1035         warn_invalid_dmar(0, "");
1036         return -EINVAL;
1037     }
1038 
1039     iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1040     if (!iommu)
1041         return -ENOMEM;
1042 
1043     iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1044                     DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1045     if (iommu->seq_id < 0) {
1046         pr_err("Failed to allocate seq_id\n");
1047         err = iommu->seq_id;
1048         goto error;
1049     }
1050     sprintf(iommu->name, "dmar%d", iommu->seq_id);
1051 
1052     err = map_iommu(iommu, drhd->reg_base_addr);
1053     if (err) {
1054         pr_err("Failed to map %s\n", iommu->name);
1055         goto error_free_seq_id;
1056     }
1057 
1058     err = -EINVAL;
1059     if (cap_sagaw(iommu->cap) == 0) {
1060         pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1061             iommu->name);
1062         drhd->ignored = 1;
1063     }
1064 
1065     if (!drhd->ignored) {
1066         agaw = iommu_calculate_agaw(iommu);
1067         if (agaw < 0) {
1068             pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1069                    iommu->seq_id);
1070             drhd->ignored = 1;
1071         }
1072     }
1073     if (!drhd->ignored) {
1074         msagaw = iommu_calculate_max_sagaw(iommu);
1075         if (msagaw < 0) {
1076             pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1077                    iommu->seq_id);
1078             drhd->ignored = 1;
1079             agaw = -1;
1080         }
1081     }
1082     iommu->agaw = agaw;
1083     iommu->msagaw = msagaw;
1084     iommu->segment = drhd->segment;
1085 
1086     iommu->node = NUMA_NO_NODE;
1087 
1088     ver = readl(iommu->reg + DMAR_VER_REG);
1089     pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1090         iommu->name,
1091         (unsigned long long)drhd->reg_base_addr,
1092         DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1093         (unsigned long long)iommu->cap,
1094         (unsigned long long)iommu->ecap);
1095 
1096     /* Reflect status in gcmd */
1097     sts = readl(iommu->reg + DMAR_GSTS_REG);
1098     if (sts & DMA_GSTS_IRES)
1099         iommu->gcmd |= DMA_GCMD_IRE;
1100     if (sts & DMA_GSTS_TES)
1101         iommu->gcmd |= DMA_GCMD_TE;
1102     if (sts & DMA_GSTS_QIES)
1103         iommu->gcmd |= DMA_GCMD_QIE;
1104 
1105     raw_spin_lock_init(&iommu->register_lock);
1106 
1107     /*
1108      * This is only for hotplug; at boot time intel_iommu_enabled won't
1109      * be set yet. When intel_iommu_init() runs, it registers the units
1110      * present at boot time, then sets intel_iommu_enabled.
1111      */
1112     if (intel_iommu_enabled && !drhd->ignored) {
1113         err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1114                          intel_iommu_groups,
1115                          "%s", iommu->name);
1116         if (err)
1117             goto err_unmap;
1118 
1119         err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1120         if (err)
1121             goto err_sysfs;
1122     }
1123 
1124     drhd->iommu = iommu;
1125     iommu->drhd = drhd;
1126 
1127     return 0;
1128 
1129 err_sysfs:
1130     iommu_device_sysfs_remove(&iommu->iommu);
1131 err_unmap:
1132     unmap_iommu(iommu);
1133 error_free_seq_id:
1134     ida_free(&dmar_seq_ids, iommu->seq_id);
1135 error:
1136     kfree(iommu);
1137     return err;
1138 }
1139 
1140 static void free_iommu(struct intel_iommu *iommu)
1141 {
1142     if (intel_iommu_enabled && !iommu->drhd->ignored) {
1143         iommu_device_unregister(&iommu->iommu);
1144         iommu_device_sysfs_remove(&iommu->iommu);
1145     }
1146 
1147     if (iommu->irq) {
1148         if (iommu->pr_irq) {
1149             free_irq(iommu->pr_irq, iommu);
1150             dmar_free_hwirq(iommu->pr_irq);
1151             iommu->pr_irq = 0;
1152         }
1153         free_irq(iommu->irq, iommu);
1154         dmar_free_hwirq(iommu->irq);
1155         iommu->irq = 0;
1156     }
1157 
1158     if (iommu->qi) {
1159         free_page((unsigned long)iommu->qi->desc);
1160         kfree(iommu->qi->desc_status);
1161         kfree(iommu->qi);
1162     }
1163 
1164     if (iommu->reg)
1165         unmap_iommu(iommu);
1166 
1167     ida_free(&dmar_seq_ids, iommu->seq_id);
1168     kfree(iommu);
1169 }
1170 
1171 /*
1172  * Reclaim all the submitted descriptors which have completed its work.
1173  */
1174 static inline void reclaim_free_desc(struct q_inval *qi)
1175 {
1176     while (qi->desc_status[qi->free_tail] == QI_DONE ||
1177            qi->desc_status[qi->free_tail] == QI_ABORT) {
1178         qi->desc_status[qi->free_tail] = QI_FREE;
1179         qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1180         qi->free_cnt++;
1181     }
1182 }
1183 
1184 static const char *qi_type_string(u8 type)
1185 {
1186     switch (type) {
1187     case QI_CC_TYPE:
1188         return "Context-cache Invalidation";
1189     case QI_IOTLB_TYPE:
1190         return "IOTLB Invalidation";
1191     case QI_DIOTLB_TYPE:
1192         return "Device-TLB Invalidation";
1193     case QI_IEC_TYPE:
1194         return "Interrupt Entry Cache Invalidation";
1195     case QI_IWD_TYPE:
1196         return "Invalidation Wait";
1197     case QI_EIOTLB_TYPE:
1198         return "PASID-based IOTLB Invalidation";
1199     case QI_PC_TYPE:
1200         return "PASID-cache Invalidation";
1201     case QI_DEIOTLB_TYPE:
1202         return "PASID-based Device-TLB Invalidation";
1203     case QI_PGRP_RESP_TYPE:
1204         return "Page Group Response";
1205     default:
1206         return "UNKNOWN";
1207     }
1208 }
1209 
1210 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1211 {
1212     unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1213     u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1214     struct qi_desc *desc = iommu->qi->desc + head;
1215 
1216     if (fault & DMA_FSTS_IQE)
1217         pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1218                DMAR_IQER_REG_IQEI(iqe_err));
1219     if (fault & DMA_FSTS_ITE)
1220         pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1221                DMAR_IQER_REG_ITESID(iqe_err));
1222     if (fault & DMA_FSTS_ICE)
1223         pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1224                DMAR_IQER_REG_ICESID(iqe_err));
1225 
1226     pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1227            qi_type_string(desc->qw0 & 0xf),
1228            (unsigned long long)desc->qw0,
1229            (unsigned long long)desc->qw1);
1230 
1231     head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1232     head <<= qi_shift(iommu);
1233     desc = iommu->qi->desc + head;
1234 
1235     pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1236            qi_type_string(desc->qw0 & 0xf),
1237            (unsigned long long)desc->qw0,
1238            (unsigned long long)desc->qw1);
1239 }
1240 
1241 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1242 {
1243     u32 fault;
1244     int head, tail;
1245     struct q_inval *qi = iommu->qi;
1246     int shift = qi_shift(iommu);
1247 
1248     if (qi->desc_status[wait_index] == QI_ABORT)
1249         return -EAGAIN;
1250 
1251     fault = readl(iommu->reg + DMAR_FSTS_REG);
1252     if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1253         qi_dump_fault(iommu, fault);
1254 
1255     /*
1256      * If IQE happens, the head points to the descriptor associated
1257      * with the error. No new descriptors are fetched until the IQE
1258      * is cleared.
1259      */
1260     if (fault & DMA_FSTS_IQE) {
1261         head = readl(iommu->reg + DMAR_IQH_REG);
1262         if ((head >> shift) == index) {
1263             struct qi_desc *desc = qi->desc + head;
1264 
1265             /*
1266              * desc->qw2 and desc->qw3 are either reserved or
1267              * used by software as private data. We won't print
1268              * out these two qw's for security consideration.
1269              */
1270             memcpy(desc, qi->desc + (wait_index << shift),
1271                    1 << shift);
1272             writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1273             pr_info("Invalidation Queue Error (IQE) cleared\n");
1274             return -EINVAL;
1275         }
1276     }
1277 
1278     /*
1279      * If ITE happens, all pending wait_desc commands are aborted.
1280      * No new descriptors are fetched until the ITE is cleared.
1281      */
1282     if (fault & DMA_FSTS_ITE) {
1283         head = readl(iommu->reg + DMAR_IQH_REG);
1284         head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1285         head |= 1;
1286         tail = readl(iommu->reg + DMAR_IQT_REG);
1287         tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1288 
1289         writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1290         pr_info("Invalidation Time-out Error (ITE) cleared\n");
1291 
1292         do {
1293             if (qi->desc_status[head] == QI_IN_USE)
1294                 qi->desc_status[head] = QI_ABORT;
1295             head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1296         } while (head != tail);
1297 
1298         if (qi->desc_status[wait_index] == QI_ABORT)
1299             return -EAGAIN;
1300     }
1301 
1302     if (fault & DMA_FSTS_ICE) {
1303         writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1304         pr_info("Invalidation Completion Error (ICE) cleared\n");
1305     }
1306 
1307     return 0;
1308 }
1309 
1310 /*
1311  * Function to submit invalidation descriptors of all types to the queued
1312  * invalidation interface(QI). Multiple descriptors can be submitted at a
1313  * time, a wait descriptor will be appended to each submission to ensure
1314  * hardware has completed the invalidation before return. Wait descriptors
1315  * can be part of the submission but it will not be polled for completion.
1316  */
1317 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1318            unsigned int count, unsigned long options)
1319 {
1320     struct q_inval *qi = iommu->qi;
1321     s64 devtlb_start_ktime = 0;
1322     s64 iotlb_start_ktime = 0;
1323     s64 iec_start_ktime = 0;
1324     struct qi_desc wait_desc;
1325     int wait_index, index;
1326     unsigned long flags;
1327     int offset, shift;
1328     int rc, i;
1329     u64 type;
1330 
1331     if (!qi)
1332         return 0;
1333 
1334     type = desc->qw0 & GENMASK_ULL(3, 0);
1335 
1336     if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1337         dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1338         iotlb_start_ktime = ktime_to_ns(ktime_get());
1339 
1340     if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1341         dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1342         devtlb_start_ktime = ktime_to_ns(ktime_get());
1343 
1344     if (type == QI_IEC_TYPE &&
1345         dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1346         iec_start_ktime = ktime_to_ns(ktime_get());
1347 
1348 restart:
1349     rc = 0;
1350 
1351     raw_spin_lock_irqsave(&qi->q_lock, flags);
1352     /*
1353      * Check if we have enough empty slots in the queue to submit,
1354      * the calculation is based on:
1355      * # of desc + 1 wait desc + 1 space between head and tail
1356      */
1357     while (qi->free_cnt < count + 2) {
1358         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1359         cpu_relax();
1360         raw_spin_lock_irqsave(&qi->q_lock, flags);
1361     }
1362 
1363     index = qi->free_head;
1364     wait_index = (index + count) % QI_LENGTH;
1365     shift = qi_shift(iommu);
1366 
1367     for (i = 0; i < count; i++) {
1368         offset = ((index + i) % QI_LENGTH) << shift;
1369         memcpy(qi->desc + offset, &desc[i], 1 << shift);
1370         qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1371         trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1372                 desc[i].qw2, desc[i].qw3);
1373     }
1374     qi->desc_status[wait_index] = QI_IN_USE;
1375 
1376     wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1377             QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1378     if (options & QI_OPT_WAIT_DRAIN)
1379         wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1380     wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1381     wait_desc.qw2 = 0;
1382     wait_desc.qw3 = 0;
1383 
1384     offset = wait_index << shift;
1385     memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1386 
1387     qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1388     qi->free_cnt -= count + 1;
1389 
1390     /*
1391      * update the HW tail register indicating the presence of
1392      * new descriptors.
1393      */
1394     writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1395 
1396     while (qi->desc_status[wait_index] != QI_DONE) {
1397         /*
1398          * We will leave the interrupts disabled, to prevent interrupt
1399          * context to queue another cmd while a cmd is already submitted
1400          * and waiting for completion on this cpu. This is to avoid
1401          * a deadlock where the interrupt context can wait indefinitely
1402          * for free slots in the queue.
1403          */
1404         rc = qi_check_fault(iommu, index, wait_index);
1405         if (rc)
1406             break;
1407 
1408         raw_spin_unlock(&qi->q_lock);
1409         cpu_relax();
1410         raw_spin_lock(&qi->q_lock);
1411     }
1412 
1413     for (i = 0; i < count; i++)
1414         qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1415 
1416     reclaim_free_desc(qi);
1417     raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1418 
1419     if (rc == -EAGAIN)
1420         goto restart;
1421 
1422     if (iotlb_start_ktime)
1423         dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1424                 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1425 
1426     if (devtlb_start_ktime)
1427         dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1428                 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1429 
1430     if (iec_start_ktime)
1431         dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1432                 ktime_to_ns(ktime_get()) - iec_start_ktime);
1433 
1434     return rc;
1435 }
1436 
1437 /*
1438  * Flush the global interrupt entry cache.
1439  */
1440 void qi_global_iec(struct intel_iommu *iommu)
1441 {
1442     struct qi_desc desc;
1443 
1444     desc.qw0 = QI_IEC_TYPE;
1445     desc.qw1 = 0;
1446     desc.qw2 = 0;
1447     desc.qw3 = 0;
1448 
1449     /* should never fail */
1450     qi_submit_sync(iommu, &desc, 1, 0);
1451 }
1452 
1453 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1454               u64 type)
1455 {
1456     struct qi_desc desc;
1457 
1458     desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1459             | QI_CC_GRAN(type) | QI_CC_TYPE;
1460     desc.qw1 = 0;
1461     desc.qw2 = 0;
1462     desc.qw3 = 0;
1463 
1464     qi_submit_sync(iommu, &desc, 1, 0);
1465 }
1466 
1467 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1468             unsigned int size_order, u64 type)
1469 {
1470     u8 dw = 0, dr = 0;
1471 
1472     struct qi_desc desc;
1473     int ih = 0;
1474 
1475     if (cap_write_drain(iommu->cap))
1476         dw = 1;
1477 
1478     if (cap_read_drain(iommu->cap))
1479         dr = 1;
1480 
1481     desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1482         | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1483     desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1484         | QI_IOTLB_AM(size_order);
1485     desc.qw2 = 0;
1486     desc.qw3 = 0;
1487 
1488     qi_submit_sync(iommu, &desc, 1, 0);
1489 }
1490 
1491 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1492             u16 qdep, u64 addr, unsigned mask)
1493 {
1494     struct qi_desc desc;
1495 
1496     if (mask) {
1497         addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1498         desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1499     } else
1500         desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1501 
1502     if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1503         qdep = 0;
1504 
1505     desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1506            QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1507     desc.qw2 = 0;
1508     desc.qw3 = 0;
1509 
1510     qi_submit_sync(iommu, &desc, 1, 0);
1511 }
1512 
1513 /* PASID-based IOTLB invalidation */
1514 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1515              unsigned long npages, bool ih)
1516 {
1517     struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1518 
1519     /*
1520      * npages == -1 means a PASID-selective invalidation, otherwise,
1521      * a positive value for Page-selective-within-PASID invalidation.
1522      * 0 is not a valid input.
1523      */
1524     if (WARN_ON(!npages)) {
1525         pr_err("Invalid input npages = %ld\n", npages);
1526         return;
1527     }
1528 
1529     if (npages == -1) {
1530         desc.qw0 = QI_EIOTLB_PASID(pasid) |
1531                 QI_EIOTLB_DID(did) |
1532                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1533                 QI_EIOTLB_TYPE;
1534         desc.qw1 = 0;
1535     } else {
1536         int mask = ilog2(__roundup_pow_of_two(npages));
1537         unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1538 
1539         if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1540             addr = ALIGN_DOWN(addr, align);
1541 
1542         desc.qw0 = QI_EIOTLB_PASID(pasid) |
1543                 QI_EIOTLB_DID(did) |
1544                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1545                 QI_EIOTLB_TYPE;
1546         desc.qw1 = QI_EIOTLB_ADDR(addr) |
1547                 QI_EIOTLB_IH(ih) |
1548                 QI_EIOTLB_AM(mask);
1549     }
1550 
1551     qi_submit_sync(iommu, &desc, 1, 0);
1552 }
1553 
1554 /* PASID-based device IOTLB Invalidate */
1555 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1556                   u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1557 {
1558     unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1559     struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1560 
1561     desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1562         QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1563         QI_DEV_IOTLB_PFSID(pfsid);
1564 
1565     /*
1566      * If S bit is 0, we only flush a single page. If S bit is set,
1567      * The least significant zero bit indicates the invalidation address
1568      * range. VT-d spec 6.5.2.6.
1569      * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1570      * size order = 0 is PAGE_SIZE 4KB
1571      * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1572      * ECAP.
1573      */
1574     if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1575         pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1576                     addr, size_order);
1577 
1578     /* Take page address */
1579     desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1580 
1581     if (size_order) {
1582         /*
1583          * Existing 0s in address below size_order may be the least
1584          * significant bit, we must set them to 1s to avoid having
1585          * smaller size than desired.
1586          */
1587         desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1588                     VTD_PAGE_SHIFT);
1589         /* Clear size_order bit to indicate size */
1590         desc.qw1 &= ~mask;
1591         /* Set the S bit to indicate flushing more than 1 page */
1592         desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1593     }
1594 
1595     qi_submit_sync(iommu, &desc, 1, 0);
1596 }
1597 
1598 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1599               u64 granu, u32 pasid)
1600 {
1601     struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1602 
1603     desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1604             QI_PC_GRAN(granu) | QI_PC_TYPE;
1605     qi_submit_sync(iommu, &desc, 1, 0);
1606 }
1607 
1608 /*
1609  * Disable Queued Invalidation interface.
1610  */
1611 void dmar_disable_qi(struct intel_iommu *iommu)
1612 {
1613     unsigned long flags;
1614     u32 sts;
1615     cycles_t start_time = get_cycles();
1616 
1617     if (!ecap_qis(iommu->ecap))
1618         return;
1619 
1620     raw_spin_lock_irqsave(&iommu->register_lock, flags);
1621 
1622     sts =  readl(iommu->reg + DMAR_GSTS_REG);
1623     if (!(sts & DMA_GSTS_QIES))
1624         goto end;
1625 
1626     /*
1627      * Give a chance to HW to complete the pending invalidation requests.
1628      */
1629     while ((readl(iommu->reg + DMAR_IQT_REG) !=
1630         readl(iommu->reg + DMAR_IQH_REG)) &&
1631         (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1632         cpu_relax();
1633 
1634     iommu->gcmd &= ~DMA_GCMD_QIE;
1635     writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1636 
1637     IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1638               !(sts & DMA_GSTS_QIES), sts);
1639 end:
1640     raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1641 }
1642 
1643 /*
1644  * Enable queued invalidation.
1645  */
1646 static void __dmar_enable_qi(struct intel_iommu *iommu)
1647 {
1648     u32 sts;
1649     unsigned long flags;
1650     struct q_inval *qi = iommu->qi;
1651     u64 val = virt_to_phys(qi->desc);
1652 
1653     qi->free_head = qi->free_tail = 0;
1654     qi->free_cnt = QI_LENGTH;
1655 
1656     /*
1657      * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1658      * is present.
1659      */
1660     if (ecap_smts(iommu->ecap))
1661         val |= (1 << 11) | 1;
1662 
1663     raw_spin_lock_irqsave(&iommu->register_lock, flags);
1664 
1665     /* write zero to the tail reg */
1666     writel(0, iommu->reg + DMAR_IQT_REG);
1667 
1668     dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1669 
1670     iommu->gcmd |= DMA_GCMD_QIE;
1671     writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1672 
1673     /* Make sure hardware complete it */
1674     IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1675 
1676     raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1677 }
1678 
1679 /*
1680  * Enable Queued Invalidation interface. This is a must to support
1681  * interrupt-remapping. Also used by DMA-remapping, which replaces
1682  * register based IOTLB invalidation.
1683  */
1684 int dmar_enable_qi(struct intel_iommu *iommu)
1685 {
1686     struct q_inval *qi;
1687     struct page *desc_page;
1688 
1689     if (!ecap_qis(iommu->ecap))
1690         return -ENOENT;
1691 
1692     /*
1693      * queued invalidation is already setup and enabled.
1694      */
1695     if (iommu->qi)
1696         return 0;
1697 
1698     iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1699     if (!iommu->qi)
1700         return -ENOMEM;
1701 
1702     qi = iommu->qi;
1703 
1704     /*
1705      * Need two pages to accommodate 256 descriptors of 256 bits each
1706      * if the remapping hardware supports scalable mode translation.
1707      */
1708     desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1709                      !!ecap_smts(iommu->ecap));
1710     if (!desc_page) {
1711         kfree(qi);
1712         iommu->qi = NULL;
1713         return -ENOMEM;
1714     }
1715 
1716     qi->desc = page_address(desc_page);
1717 
1718     qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1719     if (!qi->desc_status) {
1720         free_page((unsigned long) qi->desc);
1721         kfree(qi);
1722         iommu->qi = NULL;
1723         return -ENOMEM;
1724     }
1725 
1726     raw_spin_lock_init(&qi->q_lock);
1727 
1728     __dmar_enable_qi(iommu);
1729 
1730     return 0;
1731 }
1732 
1733 /* iommu interrupt handling. Most stuff are MSI-like. */
1734 
1735 enum faulttype {
1736     DMA_REMAP,
1737     INTR_REMAP,
1738     UNKNOWN,
1739 };
1740 
1741 static const char *dma_remap_fault_reasons[] =
1742 {
1743     "Software",
1744     "Present bit in root entry is clear",
1745     "Present bit in context entry is clear",
1746     "Invalid context entry",
1747     "Access beyond MGAW",
1748     "PTE Write access is not set",
1749     "PTE Read access is not set",
1750     "Next page table ptr is invalid",
1751     "Root table address invalid",
1752     "Context table ptr is invalid",
1753     "non-zero reserved fields in RTP",
1754     "non-zero reserved fields in CTP",
1755     "non-zero reserved fields in PTE",
1756     "PCE for translation request specifies blocking",
1757 };
1758 
1759 static const char * const dma_remap_sm_fault_reasons[] = {
1760     "SM: Invalid Root Table Address",
1761     "SM: TTM 0 for request with PASID",
1762     "SM: TTM 0 for page group request",
1763     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1764     "SM: Error attempting to access Root Entry",
1765     "SM: Present bit in Root Entry is clear",
1766     "SM: Non-zero reserved field set in Root Entry",
1767     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1768     "SM: Error attempting to access Context Entry",
1769     "SM: Present bit in Context Entry is clear",
1770     "SM: Non-zero reserved field set in the Context Entry",
1771     "SM: Invalid Context Entry",
1772     "SM: DTE field in Context Entry is clear",
1773     "SM: PASID Enable field in Context Entry is clear",
1774     "SM: PASID is larger than the max in Context Entry",
1775     "SM: PRE field in Context-Entry is clear",
1776     "SM: RID_PASID field error in Context-Entry",
1777     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1778     "SM: Error attempting to access the PASID Directory Entry",
1779     "SM: Present bit in Directory Entry is clear",
1780     "SM: Non-zero reserved field set in PASID Directory Entry",
1781     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1782     "SM: Error attempting to access PASID Table Entry",
1783     "SM: Present bit in PASID Table Entry is clear",
1784     "SM: Non-zero reserved field set in PASID Table Entry",
1785     "SM: Invalid Scalable-Mode PASID Table Entry",
1786     "SM: ERE field is clear in PASID Table Entry",
1787     "SM: SRE field is clear in PASID Table Entry",
1788     "Unknown", "Unknown",/* 0x5E-0x5F */
1789     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1790     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1791     "SM: Error attempting to access first-level paging entry",
1792     "SM: Present bit in first-level paging entry is clear",
1793     "SM: Non-zero reserved field set in first-level paging entry",
1794     "SM: Error attempting to access FL-PML4 entry",
1795     "SM: First-level entry address beyond MGAW in Nested translation",
1796     "SM: Read permission error in FL-PML4 entry in Nested translation",
1797     "SM: Read permission error in first-level paging entry in Nested translation",
1798     "SM: Write permission error in first-level paging entry in Nested translation",
1799     "SM: Error attempting to access second-level paging entry",
1800     "SM: Read/Write permission error in second-level paging entry",
1801     "SM: Non-zero reserved field set in second-level paging entry",
1802     "SM: Invalid second-level page table pointer",
1803     "SM: A/D bit update needed in second-level entry when set up in no snoop",
1804     "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1805     "SM: Address in first-level translation is not canonical",
1806     "SM: U/S set 0 for first-level translation with user privilege",
1807     "SM: No execute permission for request with PASID and ER=1",
1808     "SM: Address beyond the DMA hardware max",
1809     "SM: Second-level entry address beyond the max",
1810     "SM: No write permission for Write/AtomicOp request",
1811     "SM: No read permission for Read/AtomicOp request",
1812     "SM: Invalid address-interrupt address",
1813     "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1814     "SM: A/D bit update needed in first-level entry when set up in no snoop",
1815 };
1816 
1817 static const char *irq_remap_fault_reasons[] =
1818 {
1819     "Detected reserved fields in the decoded interrupt-remapped request",
1820     "Interrupt index exceeded the interrupt-remapping table size",
1821     "Present field in the IRTE entry is clear",
1822     "Error accessing interrupt-remapping table pointed by IRTA_REG",
1823     "Detected reserved fields in the IRTE entry",
1824     "Blocked a compatibility format interrupt request",
1825     "Blocked an interrupt request due to source-id verification failure",
1826 };
1827 
1828 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1829 {
1830     if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1831                     ARRAY_SIZE(irq_remap_fault_reasons))) {
1832         *fault_type = INTR_REMAP;
1833         return irq_remap_fault_reasons[fault_reason - 0x20];
1834     } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1835             ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1836         *fault_type = DMA_REMAP;
1837         return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1838     } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1839         *fault_type = DMA_REMAP;
1840         return dma_remap_fault_reasons[fault_reason];
1841     } else {
1842         *fault_type = UNKNOWN;
1843         return "Unknown";
1844     }
1845 }
1846 
1847 
1848 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1849 {
1850     if (iommu->irq == irq)
1851         return DMAR_FECTL_REG;
1852     else if (iommu->pr_irq == irq)
1853         return DMAR_PECTL_REG;
1854     else
1855         BUG();
1856 }
1857 
1858 void dmar_msi_unmask(struct irq_data *data)
1859 {
1860     struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1861     int reg = dmar_msi_reg(iommu, data->irq);
1862     unsigned long flag;
1863 
1864     /* unmask it */
1865     raw_spin_lock_irqsave(&iommu->register_lock, flag);
1866     writel(0, iommu->reg + reg);
1867     /* Read a reg to force flush the post write */
1868     readl(iommu->reg + reg);
1869     raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1870 }
1871 
1872 void dmar_msi_mask(struct irq_data *data)
1873 {
1874     struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1875     int reg = dmar_msi_reg(iommu, data->irq);
1876     unsigned long flag;
1877 
1878     /* mask it */
1879     raw_spin_lock_irqsave(&iommu->register_lock, flag);
1880     writel(DMA_FECTL_IM, iommu->reg + reg);
1881     /* Read a reg to force flush the post write */
1882     readl(iommu->reg + reg);
1883     raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1884 }
1885 
1886 void dmar_msi_write(int irq, struct msi_msg *msg)
1887 {
1888     struct intel_iommu *iommu = irq_get_handler_data(irq);
1889     int reg = dmar_msi_reg(iommu, irq);
1890     unsigned long flag;
1891 
1892     raw_spin_lock_irqsave(&iommu->register_lock, flag);
1893     writel(msg->data, iommu->reg + reg + 4);
1894     writel(msg->address_lo, iommu->reg + reg + 8);
1895     writel(msg->address_hi, iommu->reg + reg + 12);
1896     raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 }
1898 
1899 void dmar_msi_read(int irq, struct msi_msg *msg)
1900 {
1901     struct intel_iommu *iommu = irq_get_handler_data(irq);
1902     int reg = dmar_msi_reg(iommu, irq);
1903     unsigned long flag;
1904 
1905     raw_spin_lock_irqsave(&iommu->register_lock, flag);
1906     msg->data = readl(iommu->reg + reg + 4);
1907     msg->address_lo = readl(iommu->reg + reg + 8);
1908     msg->address_hi = readl(iommu->reg + reg + 12);
1909     raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1910 }
1911 
1912 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1913         u8 fault_reason, u32 pasid, u16 source_id,
1914         unsigned long long addr)
1915 {
1916     const char *reason;
1917     int fault_type;
1918 
1919     reason = dmar_get_fault_reason(fault_reason, &fault_type);
1920 
1921     if (fault_type == INTR_REMAP) {
1922         pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1923                source_id >> 8, PCI_SLOT(source_id & 0xFF),
1924                PCI_FUNC(source_id & 0xFF), addr >> 48,
1925                fault_reason, reason);
1926 
1927         return 0;
1928     }
1929 
1930     if (pasid == INVALID_IOASID)
1931         pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1932                type ? "DMA Read" : "DMA Write",
1933                source_id >> 8, PCI_SLOT(source_id & 0xFF),
1934                PCI_FUNC(source_id & 0xFF), addr,
1935                fault_reason, reason);
1936     else
1937         pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1938                type ? "DMA Read" : "DMA Write", pasid,
1939                source_id >> 8, PCI_SLOT(source_id & 0xFF),
1940                PCI_FUNC(source_id & 0xFF), addr,
1941                fault_reason, reason);
1942 
1943     dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1944 
1945     return 0;
1946 }
1947 
1948 #define PRIMARY_FAULT_REG_LEN (16)
1949 irqreturn_t dmar_fault(int irq, void *dev_id)
1950 {
1951     struct intel_iommu *iommu = dev_id;
1952     int reg, fault_index;
1953     u32 fault_status;
1954     unsigned long flag;
1955     static DEFINE_RATELIMIT_STATE(rs,
1956                       DEFAULT_RATELIMIT_INTERVAL,
1957                       DEFAULT_RATELIMIT_BURST);
1958 
1959     raw_spin_lock_irqsave(&iommu->register_lock, flag);
1960     fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1961     if (fault_status && __ratelimit(&rs))
1962         pr_err("DRHD: handling fault status reg %x\n", fault_status);
1963 
1964     /* TBD: ignore advanced fault log currently */
1965     if (!(fault_status & DMA_FSTS_PPF))
1966         goto unlock_exit;
1967 
1968     fault_index = dma_fsts_fault_record_index(fault_status);
1969     reg = cap_fault_reg_offset(iommu->cap);
1970     while (1) {
1971         /* Disable printing, simply clear the fault when ratelimited */
1972         bool ratelimited = !__ratelimit(&rs);
1973         u8 fault_reason;
1974         u16 source_id;
1975         u64 guest_addr;
1976         u32 pasid;
1977         int type;
1978         u32 data;
1979         bool pasid_present;
1980 
1981         /* highest 32 bits */
1982         data = readl(iommu->reg + reg +
1983                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1984         if (!(data & DMA_FRCD_F))
1985             break;
1986 
1987         if (!ratelimited) {
1988             fault_reason = dma_frcd_fault_reason(data);
1989             type = dma_frcd_type(data);
1990 
1991             pasid = dma_frcd_pasid_value(data);
1992             data = readl(iommu->reg + reg +
1993                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1994             source_id = dma_frcd_source_id(data);
1995 
1996             pasid_present = dma_frcd_pasid_present(data);
1997             guest_addr = dmar_readq(iommu->reg + reg +
1998                     fault_index * PRIMARY_FAULT_REG_LEN);
1999             guest_addr = dma_frcd_page_addr(guest_addr);
2000         }
2001 
2002         /* clear the fault */
2003         writel(DMA_FRCD_F, iommu->reg + reg +
2004             fault_index * PRIMARY_FAULT_REG_LEN + 12);
2005 
2006         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2007 
2008         if (!ratelimited)
2009             /* Using pasid -1 if pasid is not present */
2010             dmar_fault_do_one(iommu, type, fault_reason,
2011                       pasid_present ? pasid : INVALID_IOASID,
2012                       source_id, guest_addr);
2013 
2014         fault_index++;
2015         if (fault_index >= cap_num_fault_regs(iommu->cap))
2016             fault_index = 0;
2017         raw_spin_lock_irqsave(&iommu->register_lock, flag);
2018     }
2019 
2020     writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2021            iommu->reg + DMAR_FSTS_REG);
2022 
2023 unlock_exit:
2024     raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2025     return IRQ_HANDLED;
2026 }
2027 
2028 int dmar_set_interrupt(struct intel_iommu *iommu)
2029 {
2030     int irq, ret;
2031 
2032     /*
2033      * Check if the fault interrupt is already initialized.
2034      */
2035     if (iommu->irq)
2036         return 0;
2037 
2038     irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2039     if (irq > 0) {
2040         iommu->irq = irq;
2041     } else {
2042         pr_err("No free IRQ vectors\n");
2043         return -EINVAL;
2044     }
2045 
2046     ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2047     if (ret)
2048         pr_err("Can't request irq\n");
2049     return ret;
2050 }
2051 
2052 int __init enable_drhd_fault_handling(void)
2053 {
2054     struct dmar_drhd_unit *drhd;
2055     struct intel_iommu *iommu;
2056 
2057     /*
2058      * Enable fault control interrupt.
2059      */
2060     for_each_iommu(iommu, drhd) {
2061         u32 fault_status;
2062         int ret = dmar_set_interrupt(iommu);
2063 
2064         if (ret) {
2065             pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2066                    (unsigned long long)drhd->reg_base_addr, ret);
2067             return -1;
2068         }
2069 
2070         /*
2071          * Clear any previous faults.
2072          */
2073         dmar_fault(iommu->irq, iommu);
2074         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2075         writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2076     }
2077 
2078     return 0;
2079 }
2080 
2081 /*
2082  * Re-enable Queued Invalidation interface.
2083  */
2084 int dmar_reenable_qi(struct intel_iommu *iommu)
2085 {
2086     if (!ecap_qis(iommu->ecap))
2087         return -ENOENT;
2088 
2089     if (!iommu->qi)
2090         return -ENOENT;
2091 
2092     /*
2093      * First disable queued invalidation.
2094      */
2095     dmar_disable_qi(iommu);
2096     /*
2097      * Then enable queued invalidation again. Since there is no pending
2098      * invalidation requests now, it's safe to re-enable queued
2099      * invalidation.
2100      */
2101     __dmar_enable_qi(iommu);
2102 
2103     return 0;
2104 }
2105 
2106 /*
2107  * Check interrupt remapping support in DMAR table description.
2108  */
2109 int __init dmar_ir_support(void)
2110 {
2111     struct acpi_table_dmar *dmar;
2112     dmar = (struct acpi_table_dmar *)dmar_tbl;
2113     if (!dmar)
2114         return 0;
2115     return dmar->flags & 0x1;
2116 }
2117 
2118 /* Check whether DMAR units are in use */
2119 static inline bool dmar_in_use(void)
2120 {
2121     return irq_remapping_enabled || intel_iommu_enabled;
2122 }
2123 
2124 static int __init dmar_free_unused_resources(void)
2125 {
2126     struct dmar_drhd_unit *dmaru, *dmaru_n;
2127 
2128     if (dmar_in_use())
2129         return 0;
2130 
2131     if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2132         bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2133 
2134     down_write(&dmar_global_lock);
2135     list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2136         list_del(&dmaru->list);
2137         dmar_free_drhd(dmaru);
2138     }
2139     up_write(&dmar_global_lock);
2140 
2141     return 0;
2142 }
2143 
2144 late_initcall(dmar_free_unused_resources);
2145 
2146 /*
2147  * DMAR Hotplug Support
2148  * For more details, please refer to Intel(R) Virtualization Technology
2149  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2150  * "Remapping Hardware Unit Hot Plug".
2151  */
2152 static guid_t dmar_hp_guid =
2153     GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2154           0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2155 
2156 /*
2157  * Currently there's only one revision and BIOS will not check the revision id,
2158  * so use 0 for safety.
2159  */
2160 #define DMAR_DSM_REV_ID         0
2161 #define DMAR_DSM_FUNC_DRHD      1
2162 #define DMAR_DSM_FUNC_ATSR      2
2163 #define DMAR_DSM_FUNC_RHSA      3
2164 #define DMAR_DSM_FUNC_SATC      4
2165 
2166 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2167 {
2168     return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2169 }
2170 
2171 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2172                   dmar_res_handler_t handler, void *arg)
2173 {
2174     int ret = -ENODEV;
2175     union acpi_object *obj;
2176     struct acpi_dmar_header *start;
2177     struct dmar_res_callback callback;
2178     static int res_type[] = {
2179         [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2180         [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2181         [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2182         [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2183     };
2184 
2185     if (!dmar_detect_dsm(handle, func))
2186         return 0;
2187 
2188     obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2189                       func, NULL, ACPI_TYPE_BUFFER);
2190     if (!obj)
2191         return -ENODEV;
2192 
2193     memset(&callback, 0, sizeof(callback));
2194     callback.cb[res_type[func]] = handler;
2195     callback.arg[res_type[func]] = arg;
2196     start = (struct acpi_dmar_header *)obj->buffer.pointer;
2197     ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2198 
2199     ACPI_FREE(obj);
2200 
2201     return ret;
2202 }
2203 
2204 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2205 {
2206     int ret;
2207     struct dmar_drhd_unit *dmaru;
2208 
2209     dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2210     if (!dmaru)
2211         return -ENODEV;
2212 
2213     ret = dmar_ir_hotplug(dmaru, true);
2214     if (ret == 0)
2215         ret = dmar_iommu_hotplug(dmaru, true);
2216 
2217     return ret;
2218 }
2219 
2220 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2221 {
2222     int i, ret;
2223     struct device *dev;
2224     struct dmar_drhd_unit *dmaru;
2225 
2226     dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2227     if (!dmaru)
2228         return 0;
2229 
2230     /*
2231      * All PCI devices managed by this unit should have been destroyed.
2232      */
2233     if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2234         for_each_active_dev_scope(dmaru->devices,
2235                       dmaru->devices_cnt, i, dev)
2236             return -EBUSY;
2237     }
2238 
2239     ret = dmar_ir_hotplug(dmaru, false);
2240     if (ret == 0)
2241         ret = dmar_iommu_hotplug(dmaru, false);
2242 
2243     return ret;
2244 }
2245 
2246 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2247 {
2248     struct dmar_drhd_unit *dmaru;
2249 
2250     dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2251     if (dmaru) {
2252         list_del_rcu(&dmaru->list);
2253         synchronize_rcu();
2254         dmar_free_drhd(dmaru);
2255     }
2256 
2257     return 0;
2258 }
2259 
2260 static int dmar_hotplug_insert(acpi_handle handle)
2261 {
2262     int ret;
2263     int drhd_count = 0;
2264 
2265     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2266                      &dmar_validate_one_drhd, (void *)1);
2267     if (ret)
2268         goto out;
2269 
2270     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2271                      &dmar_parse_one_drhd, (void *)&drhd_count);
2272     if (ret == 0 && drhd_count == 0) {
2273         pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2274         goto out;
2275     } else if (ret) {
2276         goto release_drhd;
2277     }
2278 
2279     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2280                      &dmar_parse_one_rhsa, NULL);
2281     if (ret)
2282         goto release_drhd;
2283 
2284     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2285                      &dmar_parse_one_atsr, NULL);
2286     if (ret)
2287         goto release_atsr;
2288 
2289     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2290                      &dmar_hp_add_drhd, NULL);
2291     if (!ret)
2292         return 0;
2293 
2294     dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2295                    &dmar_hp_remove_drhd, NULL);
2296 release_atsr:
2297     dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2298                    &dmar_release_one_atsr, NULL);
2299 release_drhd:
2300     dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2301                    &dmar_hp_release_drhd, NULL);
2302 out:
2303     return ret;
2304 }
2305 
2306 static int dmar_hotplug_remove(acpi_handle handle)
2307 {
2308     int ret;
2309 
2310     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2311                      &dmar_check_one_atsr, NULL);
2312     if (ret)
2313         return ret;
2314 
2315     ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2316                      &dmar_hp_remove_drhd, NULL);
2317     if (ret == 0) {
2318         WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2319                            &dmar_release_one_atsr, NULL));
2320         WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321                            &dmar_hp_release_drhd, NULL));
2322     } else {
2323         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2324                        &dmar_hp_add_drhd, NULL);
2325     }
2326 
2327     return ret;
2328 }
2329 
2330 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2331                        void *context, void **retval)
2332 {
2333     acpi_handle *phdl = retval;
2334 
2335     if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2336         *phdl = handle;
2337         return AE_CTRL_TERMINATE;
2338     }
2339 
2340     return AE_OK;
2341 }
2342 
2343 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2344 {
2345     int ret;
2346     acpi_handle tmp = NULL;
2347     acpi_status status;
2348 
2349     if (!dmar_in_use())
2350         return 0;
2351 
2352     if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2353         tmp = handle;
2354     } else {
2355         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2356                          ACPI_UINT32_MAX,
2357                          dmar_get_dsm_handle,
2358                          NULL, NULL, &tmp);
2359         if (ACPI_FAILURE(status)) {
2360             pr_warn("Failed to locate _DSM method.\n");
2361             return -ENXIO;
2362         }
2363     }
2364     if (tmp == NULL)
2365         return 0;
2366 
2367     down_write(&dmar_global_lock);
2368     if (insert)
2369         ret = dmar_hotplug_insert(tmp);
2370     else
2371         ret = dmar_hotplug_remove(tmp);
2372     up_write(&dmar_global_lock);
2373 
2374     return ret;
2375 }
2376 
2377 int dmar_device_add(acpi_handle handle)
2378 {
2379     return dmar_device_hotplug(handle, true);
2380 }
2381 
2382 int dmar_device_remove(acpi_handle handle)
2383 {
2384     return dmar_device_hotplug(handle, false);
2385 }
2386 
2387 /*
2388  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2389  *
2390  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2391  * the ACPI DMAR table. This means that the platform boot firmware has made
2392  * sure no device can issue DMA outside of RMRR regions.
2393  */
2394 bool dmar_platform_optin(void)
2395 {
2396     struct acpi_table_dmar *dmar;
2397     acpi_status status;
2398     bool ret;
2399 
2400     status = acpi_get_table(ACPI_SIG_DMAR, 0,
2401                 (struct acpi_table_header **)&dmar);
2402     if (ACPI_FAILURE(status))
2403         return false;
2404 
2405     ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2406     acpi_put_table((struct acpi_table_header *)dmar);
2407 
2408     return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(dmar_platform_optin);