0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/acpi_iort.h>
0012 #include <linux/atomic.h>
0013 #include <linux/crash_dump.h>
0014 #include <linux/device.h>
0015 #include <linux/dma-direct.h>
0016 #include <linux/dma-iommu.h>
0017 #include <linux/dma-map-ops.h>
0018 #include <linux/gfp.h>
0019 #include <linux/huge_mm.h>
0020 #include <linux/iommu.h>
0021 #include <linux/iova.h>
0022 #include <linux/irq.h>
0023 #include <linux/list_sort.h>
0024 #include <linux/memremap.h>
0025 #include <linux/mm.h>
0026 #include <linux/mutex.h>
0027 #include <linux/pci.h>
0028 #include <linux/scatterlist.h>
0029 #include <linux/spinlock.h>
0030 #include <linux/swiotlb.h>
0031 #include <linux/vmalloc.h>
0032
0033 struct iommu_dma_msi_page {
0034 struct list_head list;
0035 dma_addr_t iova;
0036 phys_addr_t phys;
0037 };
0038
0039 enum iommu_dma_cookie_type {
0040 IOMMU_DMA_IOVA_COOKIE,
0041 IOMMU_DMA_MSI_COOKIE,
0042 };
0043
0044 struct iommu_dma_cookie {
0045 enum iommu_dma_cookie_type type;
0046 union {
0047
0048 struct {
0049 struct iova_domain iovad;
0050
0051 struct iova_fq __percpu *fq;
0052
0053 atomic64_t fq_flush_start_cnt;
0054
0055 atomic64_t fq_flush_finish_cnt;
0056
0057 struct timer_list fq_timer;
0058
0059 atomic_t fq_timer_on;
0060 };
0061
0062 dma_addr_t msi_iova;
0063 };
0064 struct list_head msi_page_list;
0065
0066
0067 struct iommu_domain *fq_domain;
0068 struct mutex mutex;
0069 };
0070
0071 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
0072 bool iommu_dma_forcedac __read_mostly;
0073
0074 static int __init iommu_dma_forcedac_setup(char *str)
0075 {
0076 int ret = kstrtobool(str, &iommu_dma_forcedac);
0077
0078 if (!ret && iommu_dma_forcedac)
0079 pr_info("Forcing DAC for PCI devices\n");
0080 return ret;
0081 }
0082 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
0083
0084
0085 #define IOVA_FQ_SIZE 256
0086
0087
0088 #define IOVA_FQ_TIMEOUT 10
0089
0090
0091 struct iova_fq_entry {
0092 unsigned long iova_pfn;
0093 unsigned long pages;
0094 struct list_head freelist;
0095 u64 counter;
0096 };
0097
0098
0099 struct iova_fq {
0100 struct iova_fq_entry entries[IOVA_FQ_SIZE];
0101 unsigned int head, tail;
0102 spinlock_t lock;
0103 };
0104
0105 #define fq_ring_for_each(i, fq) \
0106 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
0107
0108 static inline bool fq_full(struct iova_fq *fq)
0109 {
0110 assert_spin_locked(&fq->lock);
0111 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
0112 }
0113
0114 static inline unsigned int fq_ring_add(struct iova_fq *fq)
0115 {
0116 unsigned int idx = fq->tail;
0117
0118 assert_spin_locked(&fq->lock);
0119
0120 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
0121
0122 return idx;
0123 }
0124
0125 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
0126 {
0127 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
0128 unsigned int idx;
0129
0130 assert_spin_locked(&fq->lock);
0131
0132 fq_ring_for_each(idx, fq) {
0133
0134 if (fq->entries[idx].counter >= counter)
0135 break;
0136
0137 put_pages_list(&fq->entries[idx].freelist);
0138 free_iova_fast(&cookie->iovad,
0139 fq->entries[idx].iova_pfn,
0140 fq->entries[idx].pages);
0141
0142 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
0143 }
0144 }
0145
0146 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
0147 {
0148 atomic64_inc(&cookie->fq_flush_start_cnt);
0149 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
0150 atomic64_inc(&cookie->fq_flush_finish_cnt);
0151 }
0152
0153 static void fq_flush_timeout(struct timer_list *t)
0154 {
0155 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
0156 int cpu;
0157
0158 atomic_set(&cookie->fq_timer_on, 0);
0159 fq_flush_iotlb(cookie);
0160
0161 for_each_possible_cpu(cpu) {
0162 unsigned long flags;
0163 struct iova_fq *fq;
0164
0165 fq = per_cpu_ptr(cookie->fq, cpu);
0166 spin_lock_irqsave(&fq->lock, flags);
0167 fq_ring_free(cookie, fq);
0168 spin_unlock_irqrestore(&fq->lock, flags);
0169 }
0170 }
0171
0172 static void queue_iova(struct iommu_dma_cookie *cookie,
0173 unsigned long pfn, unsigned long pages,
0174 struct list_head *freelist)
0175 {
0176 struct iova_fq *fq;
0177 unsigned long flags;
0178 unsigned int idx;
0179
0180
0181
0182
0183
0184
0185
0186
0187 smp_mb();
0188
0189 fq = raw_cpu_ptr(cookie->fq);
0190 spin_lock_irqsave(&fq->lock, flags);
0191
0192
0193
0194
0195
0196
0197 fq_ring_free(cookie, fq);
0198
0199 if (fq_full(fq)) {
0200 fq_flush_iotlb(cookie);
0201 fq_ring_free(cookie, fq);
0202 }
0203
0204 idx = fq_ring_add(fq);
0205
0206 fq->entries[idx].iova_pfn = pfn;
0207 fq->entries[idx].pages = pages;
0208 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
0209 list_splice(freelist, &fq->entries[idx].freelist);
0210
0211 spin_unlock_irqrestore(&fq->lock, flags);
0212
0213
0214 if (!atomic_read(&cookie->fq_timer_on) &&
0215 !atomic_xchg(&cookie->fq_timer_on, 1))
0216 mod_timer(&cookie->fq_timer,
0217 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
0218 }
0219
0220 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
0221 {
0222 int cpu, idx;
0223
0224 if (!cookie->fq)
0225 return;
0226
0227 del_timer_sync(&cookie->fq_timer);
0228
0229 for_each_possible_cpu(cpu) {
0230 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
0231
0232 fq_ring_for_each(idx, fq)
0233 put_pages_list(&fq->entries[idx].freelist);
0234 }
0235
0236 free_percpu(cookie->fq);
0237 }
0238
0239
0240 int iommu_dma_init_fq(struct iommu_domain *domain)
0241 {
0242 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0243 struct iova_fq __percpu *queue;
0244 int i, cpu;
0245
0246 if (cookie->fq_domain)
0247 return 0;
0248
0249 atomic64_set(&cookie->fq_flush_start_cnt, 0);
0250 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
0251
0252 queue = alloc_percpu(struct iova_fq);
0253 if (!queue) {
0254 pr_warn("iova flush queue initialization failed\n");
0255 return -ENOMEM;
0256 }
0257
0258 for_each_possible_cpu(cpu) {
0259 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
0260
0261 fq->head = 0;
0262 fq->tail = 0;
0263
0264 spin_lock_init(&fq->lock);
0265
0266 for (i = 0; i < IOVA_FQ_SIZE; i++)
0267 INIT_LIST_HEAD(&fq->entries[i].freelist);
0268 }
0269
0270 cookie->fq = queue;
0271
0272 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
0273 atomic_set(&cookie->fq_timer_on, 0);
0274
0275
0276
0277
0278 smp_wmb();
0279 WRITE_ONCE(cookie->fq_domain, domain);
0280 return 0;
0281 }
0282
0283 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
0284 {
0285 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
0286 return cookie->iovad.granule;
0287 return PAGE_SIZE;
0288 }
0289
0290 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
0291 {
0292 struct iommu_dma_cookie *cookie;
0293
0294 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
0295 if (cookie) {
0296 INIT_LIST_HEAD(&cookie->msi_page_list);
0297 cookie->type = type;
0298 }
0299 return cookie;
0300 }
0301
0302
0303
0304
0305
0306 int iommu_get_dma_cookie(struct iommu_domain *domain)
0307 {
0308 if (domain->iova_cookie)
0309 return -EEXIST;
0310
0311 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
0312 if (!domain->iova_cookie)
0313 return -ENOMEM;
0314
0315 mutex_init(&domain->iova_cookie->mutex);
0316 return 0;
0317 }
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0332 {
0333 struct iommu_dma_cookie *cookie;
0334
0335 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
0336 return -EINVAL;
0337
0338 if (domain->iova_cookie)
0339 return -EEXIST;
0340
0341 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
0342 if (!cookie)
0343 return -ENOMEM;
0344
0345 cookie->msi_iova = base;
0346 domain->iova_cookie = cookie;
0347 return 0;
0348 }
0349 EXPORT_SYMBOL(iommu_get_msi_cookie);
0350
0351
0352
0353
0354
0355
0356 void iommu_put_dma_cookie(struct iommu_domain *domain)
0357 {
0358 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0359 struct iommu_dma_msi_page *msi, *tmp;
0360
0361 if (!cookie)
0362 return;
0363
0364 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
0365 iommu_dma_free_fq(cookie);
0366 put_iova_domain(&cookie->iovad);
0367 }
0368
0369 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
0370 list_del(&msi->list);
0371 kfree(msi);
0372 }
0373 kfree(cookie);
0374 domain->iova_cookie = NULL;
0375 }
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
0388 {
0389
0390 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
0391 iort_iommu_get_resv_regions(dev, list);
0392
0393 }
0394 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
0395
0396 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
0397 phys_addr_t start, phys_addr_t end)
0398 {
0399 struct iova_domain *iovad = &cookie->iovad;
0400 struct iommu_dma_msi_page *msi_page;
0401 int i, num_pages;
0402
0403 start -= iova_offset(iovad, start);
0404 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
0405
0406 for (i = 0; i < num_pages; i++) {
0407 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
0408 if (!msi_page)
0409 return -ENOMEM;
0410
0411 msi_page->phys = start;
0412 msi_page->iova = start;
0413 INIT_LIST_HEAD(&msi_page->list);
0414 list_add(&msi_page->list, &cookie->msi_page_list);
0415 start += iovad->granule;
0416 }
0417
0418 return 0;
0419 }
0420
0421 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
0422 const struct list_head *b)
0423 {
0424 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
0425 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
0426
0427 return res_a->res->start > res_b->res->start;
0428 }
0429
0430 static int iova_reserve_pci_windows(struct pci_dev *dev,
0431 struct iova_domain *iovad)
0432 {
0433 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
0434 struct resource_entry *window;
0435 unsigned long lo, hi;
0436 phys_addr_t start = 0, end;
0437
0438 resource_list_for_each_entry(window, &bridge->windows) {
0439 if (resource_type(window->res) != IORESOURCE_MEM)
0440 continue;
0441
0442 lo = iova_pfn(iovad, window->res->start - window->offset);
0443 hi = iova_pfn(iovad, window->res->end - window->offset);
0444 reserve_iova(iovad, lo, hi);
0445 }
0446
0447
0448 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
0449 resource_list_for_each_entry(window, &bridge->dma_ranges) {
0450 end = window->res->start - window->offset;
0451 resv_iova:
0452 if (end > start) {
0453 lo = iova_pfn(iovad, start);
0454 hi = iova_pfn(iovad, end);
0455 reserve_iova(iovad, lo, hi);
0456 } else if (end < start) {
0457
0458 dev_err(&dev->dev,
0459 "Failed to reserve IOVA [%pa-%pa]\n",
0460 &start, &end);
0461 return -EINVAL;
0462 }
0463
0464 start = window->res->end - window->offset + 1;
0465
0466 if (window->node.next == &bridge->dma_ranges &&
0467 end != ~(phys_addr_t)0) {
0468 end = ~(phys_addr_t)0;
0469 goto resv_iova;
0470 }
0471 }
0472
0473 return 0;
0474 }
0475
0476 static int iova_reserve_iommu_regions(struct device *dev,
0477 struct iommu_domain *domain)
0478 {
0479 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0480 struct iova_domain *iovad = &cookie->iovad;
0481 struct iommu_resv_region *region;
0482 LIST_HEAD(resv_regions);
0483 int ret = 0;
0484
0485 if (dev_is_pci(dev)) {
0486 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
0487 if (ret)
0488 return ret;
0489 }
0490
0491 iommu_get_resv_regions(dev, &resv_regions);
0492 list_for_each_entry(region, &resv_regions, list) {
0493 unsigned long lo, hi;
0494
0495
0496 if (region->type == IOMMU_RESV_SW_MSI)
0497 continue;
0498
0499 lo = iova_pfn(iovad, region->start);
0500 hi = iova_pfn(iovad, region->start + region->length - 1);
0501 reserve_iova(iovad, lo, hi);
0502
0503 if (region->type == IOMMU_RESV_MSI)
0504 ret = cookie_init_hw_msi_region(cookie, region->start,
0505 region->start + region->length);
0506 if (ret)
0507 break;
0508 }
0509 iommu_put_resv_regions(dev, &resv_regions);
0510
0511 return ret;
0512 }
0513
0514 static bool dev_is_untrusted(struct device *dev)
0515 {
0516 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
0517 }
0518
0519 static bool dev_use_swiotlb(struct device *dev)
0520 {
0521 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
0522 }
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
0537 dma_addr_t limit, struct device *dev)
0538 {
0539 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0540 unsigned long order, base_pfn;
0541 struct iova_domain *iovad;
0542 int ret;
0543
0544 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
0545 return -EINVAL;
0546
0547 iovad = &cookie->iovad;
0548
0549
0550 order = __ffs(domain->pgsize_bitmap);
0551 base_pfn = max_t(unsigned long, 1, base >> order);
0552
0553
0554 if (domain->geometry.force_aperture) {
0555 if (base > domain->geometry.aperture_end ||
0556 limit < domain->geometry.aperture_start) {
0557 pr_warn("specified DMA range outside IOMMU capability\n");
0558 return -EFAULT;
0559 }
0560
0561 base_pfn = max_t(unsigned long, base_pfn,
0562 domain->geometry.aperture_start >> order);
0563 }
0564
0565
0566 mutex_lock(&cookie->mutex);
0567 if (iovad->start_pfn) {
0568 if (1UL << order != iovad->granule ||
0569 base_pfn != iovad->start_pfn) {
0570 pr_warn("Incompatible range for DMA domain\n");
0571 ret = -EFAULT;
0572 goto done_unlock;
0573 }
0574
0575 ret = 0;
0576 goto done_unlock;
0577 }
0578
0579 init_iova_domain(iovad, 1UL << order, base_pfn);
0580 ret = iova_domain_init_rcaches(iovad);
0581 if (ret)
0582 goto done_unlock;
0583
0584
0585 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
0586 domain->type = IOMMU_DOMAIN_DMA;
0587
0588 ret = iova_reserve_iommu_regions(dev, domain);
0589
0590 done_unlock:
0591 mutex_unlock(&cookie->mutex);
0592 return ret;
0593 }
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
0605 unsigned long attrs)
0606 {
0607 int prot = coherent ? IOMMU_CACHE : 0;
0608
0609 if (attrs & DMA_ATTR_PRIVILEGED)
0610 prot |= IOMMU_PRIV;
0611
0612 switch (dir) {
0613 case DMA_BIDIRECTIONAL:
0614 return prot | IOMMU_READ | IOMMU_WRITE;
0615 case DMA_TO_DEVICE:
0616 return prot | IOMMU_READ;
0617 case DMA_FROM_DEVICE:
0618 return prot | IOMMU_WRITE;
0619 default:
0620 return 0;
0621 }
0622 }
0623
0624 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
0625 size_t size, u64 dma_limit, struct device *dev)
0626 {
0627 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0628 struct iova_domain *iovad = &cookie->iovad;
0629 unsigned long shift, iova_len, iova = 0;
0630
0631 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
0632 cookie->msi_iova += size;
0633 return cookie->msi_iova - size;
0634 }
0635
0636 shift = iova_shift(iovad);
0637 iova_len = size >> shift;
0638
0639 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
0640
0641 if (domain->geometry.force_aperture)
0642 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
0643
0644
0645 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
0646 iova = alloc_iova_fast(iovad, iova_len,
0647 DMA_BIT_MASK(32) >> shift, false);
0648
0649 if (!iova)
0650 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
0651 true);
0652
0653 return (dma_addr_t)iova << shift;
0654 }
0655
0656 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
0657 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
0658 {
0659 struct iova_domain *iovad = &cookie->iovad;
0660
0661
0662 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
0663 cookie->msi_iova -= size;
0664 else if (gather && gather->queued)
0665 queue_iova(cookie, iova_pfn(iovad, iova),
0666 size >> iova_shift(iovad),
0667 &gather->freelist);
0668 else
0669 free_iova_fast(iovad, iova_pfn(iovad, iova),
0670 size >> iova_shift(iovad));
0671 }
0672
0673 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
0674 size_t size)
0675 {
0676 struct iommu_domain *domain = iommu_get_dma_domain(dev);
0677 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0678 struct iova_domain *iovad = &cookie->iovad;
0679 size_t iova_off = iova_offset(iovad, dma_addr);
0680 struct iommu_iotlb_gather iotlb_gather;
0681 size_t unmapped;
0682
0683 dma_addr -= iova_off;
0684 size = iova_align(iovad, size + iova_off);
0685 iommu_iotlb_gather_init(&iotlb_gather);
0686 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
0687
0688 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
0689 WARN_ON(unmapped != size);
0690
0691 if (!iotlb_gather.queued)
0692 iommu_iotlb_sync(domain, &iotlb_gather);
0693 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
0694 }
0695
0696 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
0697 size_t size, int prot, u64 dma_mask)
0698 {
0699 struct iommu_domain *domain = iommu_get_dma_domain(dev);
0700 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0701 struct iova_domain *iovad = &cookie->iovad;
0702 size_t iova_off = iova_offset(iovad, phys);
0703 dma_addr_t iova;
0704
0705 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
0706 iommu_deferred_attach(dev, domain))
0707 return DMA_MAPPING_ERROR;
0708
0709 size = iova_align(iovad, size + iova_off);
0710
0711 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
0712 if (!iova)
0713 return DMA_MAPPING_ERROR;
0714
0715 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
0716 iommu_dma_free_iova(cookie, iova, size, NULL);
0717 return DMA_MAPPING_ERROR;
0718 }
0719 return iova + iova_off;
0720 }
0721
0722 static void __iommu_dma_free_pages(struct page **pages, int count)
0723 {
0724 while (count--)
0725 __free_page(pages[count]);
0726 kvfree(pages);
0727 }
0728
0729 static struct page **__iommu_dma_alloc_pages(struct device *dev,
0730 unsigned int count, unsigned long order_mask, gfp_t gfp)
0731 {
0732 struct page **pages;
0733 unsigned int i = 0, nid = dev_to_node(dev);
0734
0735 order_mask &= (2U << MAX_ORDER) - 1;
0736 if (!order_mask)
0737 return NULL;
0738
0739 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
0740 if (!pages)
0741 return NULL;
0742
0743
0744 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
0745
0746
0747 gfp &= ~__GFP_COMP;
0748
0749 while (count) {
0750 struct page *page = NULL;
0751 unsigned int order_size;
0752
0753
0754
0755
0756
0757
0758 for (order_mask &= (2U << __fls(count)) - 1;
0759 order_mask; order_mask &= ~order_size) {
0760 unsigned int order = __fls(order_mask);
0761 gfp_t alloc_flags = gfp;
0762
0763 order_size = 1U << order;
0764 if (order_mask > order_size)
0765 alloc_flags |= __GFP_NORETRY;
0766 page = alloc_pages_node(nid, alloc_flags, order);
0767 if (!page)
0768 continue;
0769 if (order)
0770 split_page(page, order);
0771 break;
0772 }
0773 if (!page) {
0774 __iommu_dma_free_pages(pages, i);
0775 return NULL;
0776 }
0777 count -= order_size;
0778 while (order_size--)
0779 pages[i++] = page++;
0780 }
0781 return pages;
0782 }
0783
0784
0785
0786
0787
0788 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
0789 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
0790 unsigned long attrs)
0791 {
0792 struct iommu_domain *domain = iommu_get_dma_domain(dev);
0793 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0794 struct iova_domain *iovad = &cookie->iovad;
0795 bool coherent = dev_is_dma_coherent(dev);
0796 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
0797 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0798 struct page **pages;
0799 dma_addr_t iova;
0800 ssize_t ret;
0801
0802 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
0803 iommu_deferred_attach(dev, domain))
0804 return NULL;
0805
0806 min_size = alloc_sizes & -alloc_sizes;
0807 if (min_size < PAGE_SIZE) {
0808 min_size = PAGE_SIZE;
0809 alloc_sizes |= PAGE_SIZE;
0810 } else {
0811 size = ALIGN(size, min_size);
0812 }
0813 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
0814 alloc_sizes = min_size;
0815
0816 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
0817 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
0818 gfp);
0819 if (!pages)
0820 return NULL;
0821
0822 size = iova_align(iovad, size);
0823 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0824 if (!iova)
0825 goto out_free_pages;
0826
0827 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
0828 goto out_free_iova;
0829
0830 if (!(ioprot & IOMMU_CACHE)) {
0831 struct scatterlist *sg;
0832 int i;
0833
0834 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
0835 arch_dma_prep_coherent(sg_page(sg), sg->length);
0836 }
0837
0838 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
0839 if (ret < 0 || ret < size)
0840 goto out_free_sg;
0841
0842 sgt->sgl->dma_address = iova;
0843 sgt->sgl->dma_length = size;
0844 return pages;
0845
0846 out_free_sg:
0847 sg_free_table(sgt);
0848 out_free_iova:
0849 iommu_dma_free_iova(cookie, iova, size, NULL);
0850 out_free_pages:
0851 __iommu_dma_free_pages(pages, count);
0852 return NULL;
0853 }
0854
0855 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
0856 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
0857 unsigned long attrs)
0858 {
0859 struct page **pages;
0860 struct sg_table sgt;
0861 void *vaddr;
0862
0863 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
0864 attrs);
0865 if (!pages)
0866 return NULL;
0867 *dma_handle = sgt.sgl->dma_address;
0868 sg_free_table(&sgt);
0869 vaddr = dma_common_pages_remap(pages, size, prot,
0870 __builtin_return_address(0));
0871 if (!vaddr)
0872 goto out_unmap;
0873 return vaddr;
0874
0875 out_unmap:
0876 __iommu_dma_unmap(dev, *dma_handle, size);
0877 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0878 return NULL;
0879 }
0880
0881 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
0882 size_t size, enum dma_data_direction dir, gfp_t gfp,
0883 unsigned long attrs)
0884 {
0885 struct dma_sgt_handle *sh;
0886
0887 sh = kmalloc(sizeof(*sh), gfp);
0888 if (!sh)
0889 return NULL;
0890
0891 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
0892 PAGE_KERNEL, attrs);
0893 if (!sh->pages) {
0894 kfree(sh);
0895 return NULL;
0896 }
0897 return &sh->sgt;
0898 }
0899
0900 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
0901 struct sg_table *sgt, enum dma_data_direction dir)
0902 {
0903 struct dma_sgt_handle *sh = sgt_handle(sgt);
0904
0905 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
0906 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0907 sg_free_table(&sh->sgt);
0908 kfree(sh);
0909 }
0910
0911 static void iommu_dma_sync_single_for_cpu(struct device *dev,
0912 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0913 {
0914 phys_addr_t phys;
0915
0916 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
0917 return;
0918
0919 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
0920 if (!dev_is_dma_coherent(dev))
0921 arch_sync_dma_for_cpu(phys, size, dir);
0922
0923 if (is_swiotlb_buffer(dev, phys))
0924 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
0925 }
0926
0927 static void iommu_dma_sync_single_for_device(struct device *dev,
0928 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0929 {
0930 phys_addr_t phys;
0931
0932 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
0933 return;
0934
0935 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
0936 if (is_swiotlb_buffer(dev, phys))
0937 swiotlb_sync_single_for_device(dev, phys, size, dir);
0938
0939 if (!dev_is_dma_coherent(dev))
0940 arch_sync_dma_for_device(phys, size, dir);
0941 }
0942
0943 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
0944 struct scatterlist *sgl, int nelems,
0945 enum dma_data_direction dir)
0946 {
0947 struct scatterlist *sg;
0948 int i;
0949
0950 if (dev_use_swiotlb(dev))
0951 for_each_sg(sgl, sg, nelems, i)
0952 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
0953 sg->length, dir);
0954 else if (!dev_is_dma_coherent(dev))
0955 for_each_sg(sgl, sg, nelems, i)
0956 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
0957 }
0958
0959 static void iommu_dma_sync_sg_for_device(struct device *dev,
0960 struct scatterlist *sgl, int nelems,
0961 enum dma_data_direction dir)
0962 {
0963 struct scatterlist *sg;
0964 int i;
0965
0966 if (dev_use_swiotlb(dev))
0967 for_each_sg(sgl, sg, nelems, i)
0968 iommu_dma_sync_single_for_device(dev,
0969 sg_dma_address(sg),
0970 sg->length, dir);
0971 else if (!dev_is_dma_coherent(dev))
0972 for_each_sg(sgl, sg, nelems, i)
0973 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
0974 }
0975
0976 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
0977 unsigned long offset, size_t size, enum dma_data_direction dir,
0978 unsigned long attrs)
0979 {
0980 phys_addr_t phys = page_to_phys(page) + offset;
0981 bool coherent = dev_is_dma_coherent(dev);
0982 int prot = dma_info_to_prot(dir, coherent, attrs);
0983 struct iommu_domain *domain = iommu_get_dma_domain(dev);
0984 struct iommu_dma_cookie *cookie = domain->iova_cookie;
0985 struct iova_domain *iovad = &cookie->iovad;
0986 dma_addr_t iova, dma_mask = dma_get_mask(dev);
0987
0988
0989
0990
0991
0992 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
0993 void *padding_start;
0994 size_t padding_size, aligned_size;
0995
0996 if (!is_swiotlb_active(dev)) {
0997 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
0998 return DMA_MAPPING_ERROR;
0999 }
1000
1001 aligned_size = iova_align(iovad, size);
1002 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1003 iova_mask(iovad), dir, attrs);
1004
1005 if (phys == DMA_MAPPING_ERROR)
1006 return DMA_MAPPING_ERROR;
1007
1008
1009 padding_start = phys_to_virt(phys);
1010 padding_size = aligned_size;
1011
1012 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1013 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1014 padding_start += size;
1015 padding_size -= size;
1016 }
1017
1018 memset(padding_start, 0, padding_size);
1019 }
1020
1021 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1022 arch_sync_dma_for_device(phys, size, dir);
1023
1024 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1025 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1026 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1027 return iova;
1028 }
1029
1030 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1031 size_t size, enum dma_data_direction dir, unsigned long attrs)
1032 {
1033 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1034 phys_addr_t phys;
1035
1036 phys = iommu_iova_to_phys(domain, dma_handle);
1037 if (WARN_ON(!phys))
1038 return;
1039
1040 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1041 arch_sync_dma_for_cpu(phys, size, dir);
1042
1043 __iommu_dma_unmap(dev, dma_handle, size);
1044
1045 if (unlikely(is_swiotlb_buffer(dev, phys)))
1046 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1047 }
1048
1049
1050
1051
1052
1053
1054
1055
1056 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1057 dma_addr_t dma_addr)
1058 {
1059 struct scatterlist *s, *cur = sg;
1060 unsigned long seg_mask = dma_get_seg_boundary(dev);
1061 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1062 int i, count = 0;
1063
1064 for_each_sg(sg, s, nents, i) {
1065
1066 dma_addr_t s_dma_addr = sg_dma_address(s);
1067 unsigned int s_iova_off = sg_dma_address(s);
1068 unsigned int s_length = sg_dma_len(s);
1069 unsigned int s_iova_len = s->length;
1070
1071 sg_dma_address(s) = DMA_MAPPING_ERROR;
1072 sg_dma_len(s) = 0;
1073
1074 if (sg_is_dma_bus_address(s)) {
1075 if (i > 0)
1076 cur = sg_next(cur);
1077
1078 sg_dma_unmark_bus_address(s);
1079 sg_dma_address(cur) = s_dma_addr;
1080 sg_dma_len(cur) = s_length;
1081 sg_dma_mark_bus_address(cur);
1082 count++;
1083 cur_len = 0;
1084 continue;
1085 }
1086
1087 s->offset += s_iova_off;
1088 s->length = s_length;
1089
1090
1091
1092
1093
1094
1095
1096
1097 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1098 (max_len - cur_len >= s_length)) {
1099
1100 cur_len += s_length;
1101 } else {
1102
1103 if (i > 0)
1104 cur = sg_next(cur);
1105 cur_len = s_length;
1106 count++;
1107
1108 sg_dma_address(cur) = dma_addr + s_iova_off;
1109 }
1110
1111 sg_dma_len(cur) = cur_len;
1112 dma_addr += s_iova_len;
1113
1114 if (s_length + s_iova_off < s_iova_len)
1115 cur_len = 0;
1116 }
1117 return count;
1118 }
1119
1120
1121
1122
1123
1124 static void __invalidate_sg(struct scatterlist *sg, int nents)
1125 {
1126 struct scatterlist *s;
1127 int i;
1128
1129 for_each_sg(sg, s, nents, i) {
1130 if (sg_is_dma_bus_address(s)) {
1131 sg_dma_unmark_bus_address(s);
1132 } else {
1133 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1134 s->offset += sg_dma_address(s);
1135 if (sg_dma_len(s))
1136 s->length = sg_dma_len(s);
1137 }
1138 sg_dma_address(s) = DMA_MAPPING_ERROR;
1139 sg_dma_len(s) = 0;
1140 }
1141 }
1142
1143 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1144 int nents, enum dma_data_direction dir, unsigned long attrs)
1145 {
1146 struct scatterlist *s;
1147 int i;
1148
1149 for_each_sg(sg, s, nents, i)
1150 iommu_dma_unmap_page(dev, sg_dma_address(s),
1151 sg_dma_len(s), dir, attrs);
1152 }
1153
1154 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1155 int nents, enum dma_data_direction dir, unsigned long attrs)
1156 {
1157 struct scatterlist *s;
1158 int i;
1159
1160 for_each_sg(sg, s, nents, i) {
1161 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1162 s->offset, s->length, dir, attrs);
1163 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1164 goto out_unmap;
1165 sg_dma_len(s) = s->length;
1166 }
1167
1168 return nents;
1169
1170 out_unmap:
1171 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1172 return -EIO;
1173 }
1174
1175
1176
1177
1178
1179
1180
1181
1182 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1183 int nents, enum dma_data_direction dir, unsigned long attrs)
1184 {
1185 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1186 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1187 struct iova_domain *iovad = &cookie->iovad;
1188 struct scatterlist *s, *prev = NULL;
1189 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1190 struct pci_p2pdma_map_state p2pdma_state = {};
1191 enum pci_p2pdma_map_type map;
1192 dma_addr_t iova;
1193 size_t iova_len = 0;
1194 unsigned long mask = dma_get_seg_boundary(dev);
1195 ssize_t ret;
1196 int i;
1197
1198 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1199 ret = iommu_deferred_attach(dev, domain);
1200 if (ret)
1201 goto out;
1202 }
1203
1204 if (dev_use_swiotlb(dev))
1205 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1206
1207 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1209
1210
1211
1212
1213
1214
1215
1216 for_each_sg(sg, s, nents, i) {
1217 size_t s_iova_off = iova_offset(iovad, s->offset);
1218 size_t s_length = s->length;
1219 size_t pad_len = (mask - iova_len + 1) & mask;
1220
1221 if (is_pci_p2pdma_page(sg_page(s))) {
1222 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1223 switch (map) {
1224 case PCI_P2PDMA_MAP_BUS_ADDR:
1225
1226
1227
1228
1229
1230
1231 continue;
1232 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1233
1234
1235
1236
1237
1238 break;
1239 default:
1240 ret = -EREMOTEIO;
1241 goto out_restore_sg;
1242 }
1243 }
1244
1245 sg_dma_address(s) = s_iova_off;
1246 sg_dma_len(s) = s_length;
1247 s->offset -= s_iova_off;
1248 s_length = iova_align(iovad, s_length + s_iova_off);
1249 s->length = s_length;
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264 if (pad_len && pad_len < s_length - 1) {
1265 prev->length += pad_len;
1266 iova_len += pad_len;
1267 }
1268
1269 iova_len += s_length;
1270 prev = s;
1271 }
1272
1273 if (!iova_len)
1274 return __finalise_sg(dev, sg, nents, 0);
1275
1276 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1277 if (!iova) {
1278 ret = -ENOMEM;
1279 goto out_restore_sg;
1280 }
1281
1282
1283
1284
1285
1286 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1287 if (ret < 0 || ret < iova_len)
1288 goto out_free_iova;
1289
1290 return __finalise_sg(dev, sg, nents, iova);
1291
1292 out_free_iova:
1293 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1294 out_restore_sg:
1295 __invalidate_sg(sg, nents);
1296 out:
1297 if (ret != -ENOMEM && ret != -EREMOTEIO)
1298 return -EINVAL;
1299 return ret;
1300 }
1301
1302 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1303 int nents, enum dma_data_direction dir, unsigned long attrs)
1304 {
1305 dma_addr_t end = 0, start;
1306 struct scatterlist *tmp;
1307 int i;
1308
1309 if (dev_use_swiotlb(dev)) {
1310 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1311 return;
1312 }
1313
1314 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1315 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1316
1317
1318
1319
1320
1321
1322 for_each_sg(sg, tmp, nents, i) {
1323 if (sg_is_dma_bus_address(tmp)) {
1324 sg_dma_unmark_bus_address(tmp);
1325 continue;
1326 }
1327
1328 if (sg_dma_len(tmp) == 0)
1329 break;
1330
1331 start = sg_dma_address(tmp);
1332 break;
1333 }
1334
1335 nents -= i;
1336 for_each_sg(tmp, tmp, nents, i) {
1337 if (sg_is_dma_bus_address(tmp)) {
1338 sg_dma_unmark_bus_address(tmp);
1339 continue;
1340 }
1341
1342 if (sg_dma_len(tmp) == 0)
1343 break;
1344
1345 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1346 }
1347
1348 if (end)
1349 __iommu_dma_unmap(dev, start, end - start);
1350 }
1351
1352 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1353 size_t size, enum dma_data_direction dir, unsigned long attrs)
1354 {
1355 return __iommu_dma_map(dev, phys, size,
1356 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1357 dma_get_mask(dev));
1358 }
1359
1360 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1361 size_t size, enum dma_data_direction dir, unsigned long attrs)
1362 {
1363 __iommu_dma_unmap(dev, handle, size);
1364 }
1365
1366 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1367 {
1368 size_t alloc_size = PAGE_ALIGN(size);
1369 int count = alloc_size >> PAGE_SHIFT;
1370 struct page *page = NULL, **pages = NULL;
1371
1372
1373 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1374 dma_free_from_pool(dev, cpu_addr, alloc_size))
1375 return;
1376
1377 if (is_vmalloc_addr(cpu_addr)) {
1378
1379
1380
1381
1382 pages = dma_common_find_pages(cpu_addr);
1383 if (!pages)
1384 page = vmalloc_to_page(cpu_addr);
1385 dma_common_free_remap(cpu_addr, alloc_size);
1386 } else {
1387
1388 page = virt_to_page(cpu_addr);
1389 }
1390
1391 if (pages)
1392 __iommu_dma_free_pages(pages, count);
1393 if (page)
1394 dma_free_contiguous(dev, page, alloc_size);
1395 }
1396
1397 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1398 dma_addr_t handle, unsigned long attrs)
1399 {
1400 __iommu_dma_unmap(dev, handle, size);
1401 __iommu_dma_free(dev, size, cpu_addr);
1402 }
1403
1404 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1405 struct page **pagep, gfp_t gfp, unsigned long attrs)
1406 {
1407 bool coherent = dev_is_dma_coherent(dev);
1408 size_t alloc_size = PAGE_ALIGN(size);
1409 int node = dev_to_node(dev);
1410 struct page *page = NULL;
1411 void *cpu_addr;
1412
1413 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1414 if (!page)
1415 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1416 if (!page)
1417 return NULL;
1418
1419 if (!coherent || PageHighMem(page)) {
1420 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1421
1422 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1423 prot, __builtin_return_address(0));
1424 if (!cpu_addr)
1425 goto out_free_pages;
1426
1427 if (!coherent)
1428 arch_dma_prep_coherent(page, size);
1429 } else {
1430 cpu_addr = page_address(page);
1431 }
1432
1433 *pagep = page;
1434 memset(cpu_addr, 0, alloc_size);
1435 return cpu_addr;
1436 out_free_pages:
1437 dma_free_contiguous(dev, page, alloc_size);
1438 return NULL;
1439 }
1440
1441 static void *iommu_dma_alloc(struct device *dev, size_t size,
1442 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1443 {
1444 bool coherent = dev_is_dma_coherent(dev);
1445 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1446 struct page *page = NULL;
1447 void *cpu_addr;
1448
1449 gfp |= __GFP_ZERO;
1450
1451 if (gfpflags_allow_blocking(gfp) &&
1452 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1453 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1454 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1455 }
1456
1457 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1458 !gfpflags_allow_blocking(gfp) && !coherent)
1459 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1460 gfp, NULL);
1461 else
1462 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1463 if (!cpu_addr)
1464 return NULL;
1465
1466 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1467 dev->coherent_dma_mask);
1468 if (*handle == DMA_MAPPING_ERROR) {
1469 __iommu_dma_free(dev, size, cpu_addr);
1470 return NULL;
1471 }
1472
1473 return cpu_addr;
1474 }
1475
1476 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1477 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1478 unsigned long attrs)
1479 {
1480 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1481 unsigned long pfn, off = vma->vm_pgoff;
1482 int ret;
1483
1484 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1485
1486 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1487 return ret;
1488
1489 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1490 return -ENXIO;
1491
1492 if (is_vmalloc_addr(cpu_addr)) {
1493 struct page **pages = dma_common_find_pages(cpu_addr);
1494
1495 if (pages)
1496 return vm_map_pages(vma, pages, nr_pages);
1497 pfn = vmalloc_to_pfn(cpu_addr);
1498 } else {
1499 pfn = page_to_pfn(virt_to_page(cpu_addr));
1500 }
1501
1502 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1503 vma->vm_end - vma->vm_start,
1504 vma->vm_page_prot);
1505 }
1506
1507 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1508 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1509 unsigned long attrs)
1510 {
1511 struct page *page;
1512 int ret;
1513
1514 if (is_vmalloc_addr(cpu_addr)) {
1515 struct page **pages = dma_common_find_pages(cpu_addr);
1516
1517 if (pages) {
1518 return sg_alloc_table_from_pages(sgt, pages,
1519 PAGE_ALIGN(size) >> PAGE_SHIFT,
1520 0, size, GFP_KERNEL);
1521 }
1522
1523 page = vmalloc_to_page(cpu_addr);
1524 } else {
1525 page = virt_to_page(cpu_addr);
1526 }
1527
1528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1529 if (!ret)
1530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1531 return ret;
1532 }
1533
1534 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1535 {
1536 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1537
1538 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1539 }
1540
1541 static size_t iommu_dma_opt_mapping_size(void)
1542 {
1543 return iova_rcache_range();
1544 }
1545
1546 static const struct dma_map_ops iommu_dma_ops = {
1547 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
1548 .alloc = iommu_dma_alloc,
1549 .free = iommu_dma_free,
1550 .alloc_pages = dma_common_alloc_pages,
1551 .free_pages = dma_common_free_pages,
1552 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1553 .free_noncontiguous = iommu_dma_free_noncontiguous,
1554 .mmap = iommu_dma_mmap,
1555 .get_sgtable = iommu_dma_get_sgtable,
1556 .map_page = iommu_dma_map_page,
1557 .unmap_page = iommu_dma_unmap_page,
1558 .map_sg = iommu_dma_map_sg,
1559 .unmap_sg = iommu_dma_unmap_sg,
1560 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1561 .sync_single_for_device = iommu_dma_sync_single_for_device,
1562 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1563 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1564 .map_resource = iommu_dma_map_resource,
1565 .unmap_resource = iommu_dma_unmap_resource,
1566 .get_merge_boundary = iommu_dma_get_merge_boundary,
1567 .opt_mapping_size = iommu_dma_opt_mapping_size,
1568 };
1569
1570
1571
1572
1573
1574 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1575 {
1576 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1577
1578 if (!domain)
1579 goto out_err;
1580
1581
1582
1583
1584
1585 if (iommu_is_dma_domain(domain)) {
1586 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1587 goto out_err;
1588 dev->dma_ops = &iommu_dma_ops;
1589 }
1590
1591 return;
1592 out_err:
1593 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1594 dev_name(dev));
1595 }
1596 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1597
1598 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1599 phys_addr_t msi_addr, struct iommu_domain *domain)
1600 {
1601 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1602 struct iommu_dma_msi_page *msi_page;
1603 dma_addr_t iova;
1604 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1605 size_t size = cookie_msi_granule(cookie);
1606
1607 msi_addr &= ~(phys_addr_t)(size - 1);
1608 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1609 if (msi_page->phys == msi_addr)
1610 return msi_page;
1611
1612 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1613 if (!msi_page)
1614 return NULL;
1615
1616 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1617 if (!iova)
1618 goto out_free_page;
1619
1620 if (iommu_map(domain, iova, msi_addr, size, prot))
1621 goto out_free_iova;
1622
1623 INIT_LIST_HEAD(&msi_page->list);
1624 msi_page->phys = msi_addr;
1625 msi_page->iova = iova;
1626 list_add(&msi_page->list, &cookie->msi_page_list);
1627 return msi_page;
1628
1629 out_free_iova:
1630 iommu_dma_free_iova(cookie, iova, size, NULL);
1631 out_free_page:
1632 kfree(msi_page);
1633 return NULL;
1634 }
1635
1636 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1637 {
1638 struct device *dev = msi_desc_to_dev(desc);
1639 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1640 struct iommu_dma_msi_page *msi_page;
1641 static DEFINE_MUTEX(msi_prepare_lock);
1642
1643 if (!domain || !domain->iova_cookie) {
1644 desc->iommu_cookie = NULL;
1645 return 0;
1646 }
1647
1648
1649
1650
1651
1652
1653 mutex_lock(&msi_prepare_lock);
1654 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1655 mutex_unlock(&msi_prepare_lock);
1656
1657 msi_desc_set_iommu_cookie(desc, msi_page);
1658
1659 if (!msi_page)
1660 return -ENOMEM;
1661 return 0;
1662 }
1663
1664 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1665 struct msi_msg *msg)
1666 {
1667 struct device *dev = msi_desc_to_dev(desc);
1668 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1669 const struct iommu_dma_msi_page *msi_page;
1670
1671 msi_page = msi_desc_get_iommu_cookie(desc);
1672
1673 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1674 return;
1675
1676 msg->address_hi = upper_32_bits(msi_page->iova);
1677 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1678 msg->address_lo += lower_32_bits(msi_page->iova);
1679 }
1680
1681 static int iommu_dma_init(void)
1682 {
1683 if (is_kdump_kernel())
1684 static_branch_enable(&iommu_deferred_attach_enabled);
1685
1686 return iova_cache_get();
1687 }
1688 arch_initcall(iommu_dma_init);