0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012 #include <linux/acpi.h>
0013 #include <linux/acpi_iort.h>
0014 #include <linux/bitops.h>
0015 #include <linux/crash_dump.h>
0016 #include <linux/delay.h>
0017 #include <linux/dma-iommu.h>
0018 #include <linux/err.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/io-pgtable.h>
0021 #include <linux/iopoll.h>
0022 #include <linux/module.h>
0023 #include <linux/msi.h>
0024 #include <linux/of.h>
0025 #include <linux/of_address.h>
0026 #include <linux/of_platform.h>
0027 #include <linux/pci.h>
0028 #include <linux/pci-ats.h>
0029 #include <linux/platform_device.h>
0030
0031 #include <linux/amba/bus.h>
0032
0033 #include "arm-smmu-v3.h"
0034 #include "../../iommu-sva-lib.h"
0035
0036 static bool disable_bypass = true;
0037 module_param(disable_bypass, bool, 0444);
0038 MODULE_PARM_DESC(disable_bypass,
0039 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
0040
0041 static bool disable_msipolling;
0042 module_param(disable_msipolling, bool, 0444);
0043 MODULE_PARM_DESC(disable_msipolling,
0044 "Disable MSI-based polling for CMD_SYNC completion.");
0045
0046 enum arm_smmu_msi_index {
0047 EVTQ_MSI_INDEX,
0048 GERROR_MSI_INDEX,
0049 PRIQ_MSI_INDEX,
0050 ARM_SMMU_MAX_MSIS,
0051 };
0052
0053 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
0054 [EVTQ_MSI_INDEX] = {
0055 ARM_SMMU_EVTQ_IRQ_CFG0,
0056 ARM_SMMU_EVTQ_IRQ_CFG1,
0057 ARM_SMMU_EVTQ_IRQ_CFG2,
0058 },
0059 [GERROR_MSI_INDEX] = {
0060 ARM_SMMU_GERROR_IRQ_CFG0,
0061 ARM_SMMU_GERROR_IRQ_CFG1,
0062 ARM_SMMU_GERROR_IRQ_CFG2,
0063 },
0064 [PRIQ_MSI_INDEX] = {
0065 ARM_SMMU_PRIQ_IRQ_CFG0,
0066 ARM_SMMU_PRIQ_IRQ_CFG1,
0067 ARM_SMMU_PRIQ_IRQ_CFG2,
0068 },
0069 };
0070
0071 struct arm_smmu_option_prop {
0072 u32 opt;
0073 const char *prop;
0074 };
0075
0076 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
0077 DEFINE_MUTEX(arm_smmu_asid_lock);
0078
0079
0080
0081
0082
0083 struct arm_smmu_ctx_desc quiet_cd = { 0 };
0084
0085 static struct arm_smmu_option_prop arm_smmu_options[] = {
0086 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
0087 { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
0088 { 0, NULL},
0089 };
0090
0091 static void parse_driver_options(struct arm_smmu_device *smmu)
0092 {
0093 int i = 0;
0094
0095 do {
0096 if (of_property_read_bool(smmu->dev->of_node,
0097 arm_smmu_options[i].prop)) {
0098 smmu->options |= arm_smmu_options[i].opt;
0099 dev_notice(smmu->dev, "option %s\n",
0100 arm_smmu_options[i].prop);
0101 }
0102 } while (arm_smmu_options[++i].opt);
0103 }
0104
0105
0106 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
0107 {
0108 u32 space, prod, cons;
0109
0110 prod = Q_IDX(q, q->prod);
0111 cons = Q_IDX(q, q->cons);
0112
0113 if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
0114 space = (1 << q->max_n_shift) - (prod - cons);
0115 else
0116 space = cons - prod;
0117
0118 return space >= n;
0119 }
0120
0121 static bool queue_full(struct arm_smmu_ll_queue *q)
0122 {
0123 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
0124 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
0125 }
0126
0127 static bool queue_empty(struct arm_smmu_ll_queue *q)
0128 {
0129 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
0130 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
0131 }
0132
0133 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
0134 {
0135 return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
0136 (Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
0137 ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
0138 (Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
0139 }
0140
0141 static void queue_sync_cons_out(struct arm_smmu_queue *q)
0142 {
0143
0144
0145
0146
0147 __iomb();
0148 writel_relaxed(q->llq.cons, q->cons_reg);
0149 }
0150
0151 static void queue_inc_cons(struct arm_smmu_ll_queue *q)
0152 {
0153 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
0154 q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
0155 }
0156
0157 static int queue_sync_prod_in(struct arm_smmu_queue *q)
0158 {
0159 u32 prod;
0160 int ret = 0;
0161
0162
0163
0164
0165
0166
0167 prod = readl(q->prod_reg);
0168
0169 if (Q_OVF(prod) != Q_OVF(q->llq.prod))
0170 ret = -EOVERFLOW;
0171
0172 q->llq.prod = prod;
0173 return ret;
0174 }
0175
0176 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
0177 {
0178 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
0179 return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
0180 }
0181
0182 static void queue_poll_init(struct arm_smmu_device *smmu,
0183 struct arm_smmu_queue_poll *qp)
0184 {
0185 qp->delay = 1;
0186 qp->spin_cnt = 0;
0187 qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
0188 qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
0189 }
0190
0191 static int queue_poll(struct arm_smmu_queue_poll *qp)
0192 {
0193 if (ktime_compare(ktime_get(), qp->timeout) > 0)
0194 return -ETIMEDOUT;
0195
0196 if (qp->wfe) {
0197 wfe();
0198 } else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
0199 cpu_relax();
0200 } else {
0201 udelay(qp->delay);
0202 qp->delay *= 2;
0203 qp->spin_cnt = 0;
0204 }
0205
0206 return 0;
0207 }
0208
0209 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
0210 {
0211 int i;
0212
0213 for (i = 0; i < n_dwords; ++i)
0214 *dst++ = cpu_to_le64(*src++);
0215 }
0216
0217 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
0218 {
0219 int i;
0220
0221 for (i = 0; i < n_dwords; ++i)
0222 *dst++ = le64_to_cpu(*src++);
0223 }
0224
0225 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
0226 {
0227 if (queue_empty(&q->llq))
0228 return -EAGAIN;
0229
0230 queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
0231 queue_inc_cons(&q->llq);
0232 queue_sync_cons_out(q);
0233 return 0;
0234 }
0235
0236
0237 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
0238 {
0239 memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
0240 cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
0241
0242 switch (ent->opcode) {
0243 case CMDQ_OP_TLBI_EL2_ALL:
0244 case CMDQ_OP_TLBI_NSNH_ALL:
0245 break;
0246 case CMDQ_OP_PREFETCH_CFG:
0247 cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
0248 break;
0249 case CMDQ_OP_CFGI_CD:
0250 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
0251 fallthrough;
0252 case CMDQ_OP_CFGI_STE:
0253 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
0254 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
0255 break;
0256 case CMDQ_OP_CFGI_CD_ALL:
0257 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
0258 break;
0259 case CMDQ_OP_CFGI_ALL:
0260
0261 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
0262 break;
0263 case CMDQ_OP_TLBI_NH_VA:
0264 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
0265 fallthrough;
0266 case CMDQ_OP_TLBI_EL2_VA:
0267 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
0268 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
0269 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
0270 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
0271 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
0272 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
0273 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
0274 break;
0275 case CMDQ_OP_TLBI_S2_IPA:
0276 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
0277 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
0278 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
0279 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
0280 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
0281 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
0282 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
0283 break;
0284 case CMDQ_OP_TLBI_NH_ASID:
0285 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
0286 fallthrough;
0287 case CMDQ_OP_TLBI_S12_VMALL:
0288 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
0289 break;
0290 case CMDQ_OP_TLBI_EL2_ASID:
0291 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
0292 break;
0293 case CMDQ_OP_ATC_INV:
0294 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
0295 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
0296 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
0297 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
0298 cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
0299 cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
0300 break;
0301 case CMDQ_OP_PRI_RESP:
0302 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
0303 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
0304 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
0305 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
0306 switch (ent->pri.resp) {
0307 case PRI_RESP_DENY:
0308 case PRI_RESP_FAIL:
0309 case PRI_RESP_SUCC:
0310 break;
0311 default:
0312 return -EINVAL;
0313 }
0314 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
0315 break;
0316 case CMDQ_OP_RESUME:
0317 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid);
0318 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp);
0319 cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag);
0320 break;
0321 case CMDQ_OP_CMD_SYNC:
0322 if (ent->sync.msiaddr) {
0323 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
0324 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
0325 } else {
0326 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
0327 }
0328 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
0329 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
0330 break;
0331 default:
0332 return -ENOENT;
0333 }
0334
0335 return 0;
0336 }
0337
0338 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu)
0339 {
0340 return &smmu->cmdq;
0341 }
0342
0343 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
0344 struct arm_smmu_queue *q, u32 prod)
0345 {
0346 struct arm_smmu_cmdq_ent ent = {
0347 .opcode = CMDQ_OP_CMD_SYNC,
0348 };
0349
0350
0351
0352
0353
0354 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
0355 ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
0356 q->ent_dwords * 8;
0357 }
0358
0359 arm_smmu_cmdq_build_cmd(cmd, &ent);
0360 }
0361
0362 static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu,
0363 struct arm_smmu_queue *q)
0364 {
0365 static const char * const cerror_str[] = {
0366 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
0367 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
0368 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
0369 [CMDQ_ERR_CERROR_ATC_INV_IDX] = "ATC invalidate timeout",
0370 };
0371
0372 int i;
0373 u64 cmd[CMDQ_ENT_DWORDS];
0374 u32 cons = readl_relaxed(q->cons_reg);
0375 u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
0376 struct arm_smmu_cmdq_ent cmd_sync = {
0377 .opcode = CMDQ_OP_CMD_SYNC,
0378 };
0379
0380 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
0381 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
0382
0383 switch (idx) {
0384 case CMDQ_ERR_CERROR_ABT_IDX:
0385 dev_err(smmu->dev, "retrying command fetch\n");
0386 return;
0387 case CMDQ_ERR_CERROR_NONE_IDX:
0388 return;
0389 case CMDQ_ERR_CERROR_ATC_INV_IDX:
0390
0391
0392
0393
0394
0395
0396 return;
0397 case CMDQ_ERR_CERROR_ILL_IDX:
0398 default:
0399 break;
0400 }
0401
0402
0403
0404
0405
0406 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
0407 dev_err(smmu->dev, "skipping command in error state:\n");
0408 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
0409 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
0410
0411
0412 arm_smmu_cmdq_build_cmd(cmd, &cmd_sync);
0413
0414 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
0415 }
0416
0417 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
0418 {
0419 __arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q);
0420 }
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
0435 {
0436 int val;
0437
0438
0439
0440
0441
0442
0443
0444 if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
0445 return;
0446
0447 do {
0448 val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
0449 } while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
0450 }
0451
0452 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
0453 {
0454 (void)atomic_dec_return_release(&cmdq->lock);
0455 }
0456
0457 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
0458 {
0459 if (atomic_read(&cmdq->lock) == 1)
0460 return false;
0461
0462 arm_smmu_cmdq_shared_unlock(cmdq);
0463 return true;
0464 }
0465
0466 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags) \
0467 ({ \
0468 bool __ret; \
0469 local_irq_save(flags); \
0470 __ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN); \
0471 if (!__ret) \
0472 local_irq_restore(flags); \
0473 __ret; \
0474 })
0475
0476 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags) \
0477 ({ \
0478 atomic_set_release(&cmdq->lock, 0); \
0479 local_irq_restore(flags); \
0480 })
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
0523 u32 sprod, u32 eprod, bool set)
0524 {
0525 u32 swidx, sbidx, ewidx, ebidx;
0526 struct arm_smmu_ll_queue llq = {
0527 .max_n_shift = cmdq->q.llq.max_n_shift,
0528 .prod = sprod,
0529 };
0530
0531 ewidx = BIT_WORD(Q_IDX(&llq, eprod));
0532 ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
0533
0534 while (llq.prod != eprod) {
0535 unsigned long mask;
0536 atomic_long_t *ptr;
0537 u32 limit = BITS_PER_LONG;
0538
0539 swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
0540 sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;
0541
0542 ptr = &cmdq->valid_map[swidx];
0543
0544 if ((swidx == ewidx) && (sbidx < ebidx))
0545 limit = ebidx;
0546
0547 mask = GENMASK(limit - 1, sbidx);
0548
0549
0550
0551
0552
0553
0554
0555 if (set) {
0556 atomic_long_xor(mask, ptr);
0557 } else {
0558 unsigned long valid;
0559
0560 valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
0561 atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
0562 }
0563
0564 llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
0565 }
0566 }
0567
0568
0569 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
0570 u32 sprod, u32 eprod)
0571 {
0572 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
0573 }
0574
0575
0576 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
0577 u32 sprod, u32 eprod)
0578 {
0579 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
0580 }
0581
0582
0583 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
0584 struct arm_smmu_ll_queue *llq)
0585 {
0586 unsigned long flags;
0587 struct arm_smmu_queue_poll qp;
0588 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
0589 int ret = 0;
0590
0591
0592
0593
0594
0595 if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
0596 WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
0597 arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
0598 llq->val = READ_ONCE(cmdq->q.llq.val);
0599 return 0;
0600 }
0601
0602 queue_poll_init(smmu, &qp);
0603 do {
0604 llq->val = READ_ONCE(cmdq->q.llq.val);
0605 if (!queue_full(llq))
0606 break;
0607
0608 ret = queue_poll(&qp);
0609 } while (!ret);
0610
0611 return ret;
0612 }
0613
0614
0615
0616
0617
0618 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
0619 struct arm_smmu_ll_queue *llq)
0620 {
0621 int ret = 0;
0622 struct arm_smmu_queue_poll qp;
0623 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
0624 u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
0625
0626 queue_poll_init(smmu, &qp);
0627
0628
0629
0630
0631
0632 qp.wfe = false;
0633 smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
0634 llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
0635 return ret;
0636 }
0637
0638
0639
0640
0641
0642 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
0643 struct arm_smmu_ll_queue *llq)
0644 {
0645 struct arm_smmu_queue_poll qp;
0646 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
0647 u32 prod = llq->prod;
0648 int ret = 0;
0649
0650 queue_poll_init(smmu, &qp);
0651 llq->val = READ_ONCE(cmdq->q.llq.val);
0652 do {
0653 if (queue_consumed(llq, prod))
0654 break;
0655
0656 ret = queue_poll(&qp);
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686 llq->cons = readl(cmdq->q.cons_reg);
0687 } while (!ret);
0688
0689 return ret;
0690 }
0691
0692 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
0693 struct arm_smmu_ll_queue *llq)
0694 {
0695 if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
0696 return __arm_smmu_cmdq_poll_until_msi(smmu, llq);
0697
0698 return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
0699 }
0700
0701 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
0702 u32 prod, int n)
0703 {
0704 int i;
0705 struct arm_smmu_ll_queue llq = {
0706 .max_n_shift = cmdq->q.llq.max_n_shift,
0707 .prod = prod,
0708 };
0709
0710 for (i = 0; i < n; ++i) {
0711 u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];
0712
0713 prod = queue_inc_prod_n(&llq, i);
0714 queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
0715 }
0716 }
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734 static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
0735 u64 *cmds, int n, bool sync)
0736 {
0737 u64 cmd_sync[CMDQ_ENT_DWORDS];
0738 u32 prod;
0739 unsigned long flags;
0740 bool owner;
0741 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
0742 struct arm_smmu_ll_queue llq, head;
0743 int ret = 0;
0744
0745 llq.max_n_shift = cmdq->q.llq.max_n_shift;
0746
0747
0748 local_irq_save(flags);
0749 llq.val = READ_ONCE(cmdq->q.llq.val);
0750 do {
0751 u64 old;
0752
0753 while (!queue_has_space(&llq, n + sync)) {
0754 local_irq_restore(flags);
0755 if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
0756 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
0757 local_irq_save(flags);
0758 }
0759
0760 head.cons = llq.cons;
0761 head.prod = queue_inc_prod_n(&llq, n + sync) |
0762 CMDQ_PROD_OWNED_FLAG;
0763
0764 old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
0765 if (old == llq.val)
0766 break;
0767
0768 llq.val = old;
0769 } while (1);
0770 owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
0771 head.prod &= ~CMDQ_PROD_OWNED_FLAG;
0772 llq.prod &= ~CMDQ_PROD_OWNED_FLAG;
0773
0774
0775
0776
0777
0778 arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
0779 if (sync) {
0780 prod = queue_inc_prod_n(&llq, n);
0781 arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod);
0782 queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);
0783
0784
0785
0786
0787
0788
0789
0790 arm_smmu_cmdq_shared_lock(cmdq);
0791 }
0792
0793
0794 dma_wmb();
0795 arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
0796
0797
0798 if (owner) {
0799
0800 atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);
0801
0802
0803 prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
0804 &cmdq->q.llq.atomic.prod);
0805 prod &= ~CMDQ_PROD_OWNED_FLAG;
0806
0807
0808
0809
0810
0811
0812 arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);
0813
0814
0815
0816
0817
0818 writel_relaxed(prod, cmdq->q.prod_reg);
0819
0820
0821
0822
0823
0824
0825 atomic_set_release(&cmdq->owner_prod, prod);
0826 }
0827
0828
0829 if (sync) {
0830 llq.prod = queue_inc_prod_n(&llq, n);
0831 ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
0832 if (ret) {
0833 dev_err_ratelimited(smmu->dev,
0834 "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
0835 llq.prod,
0836 readl_relaxed(cmdq->q.prod_reg),
0837 readl_relaxed(cmdq->q.cons_reg));
0838 }
0839
0840
0841
0842
0843
0844 if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
0845 WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
0846 arm_smmu_cmdq_shared_unlock(cmdq);
0847 }
0848 }
0849
0850 local_irq_restore(flags);
0851 return ret;
0852 }
0853
0854 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
0855 struct arm_smmu_cmdq_ent *ent,
0856 bool sync)
0857 {
0858 u64 cmd[CMDQ_ENT_DWORDS];
0859
0860 if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) {
0861 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
0862 ent->opcode);
0863 return -EINVAL;
0864 }
0865
0866 return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync);
0867 }
0868
0869 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
0870 struct arm_smmu_cmdq_ent *ent)
0871 {
0872 return __arm_smmu_cmdq_issue_cmd(smmu, ent, false);
0873 }
0874
0875 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu,
0876 struct arm_smmu_cmdq_ent *ent)
0877 {
0878 return __arm_smmu_cmdq_issue_cmd(smmu, ent, true);
0879 }
0880
0881 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
0882 struct arm_smmu_cmdq_batch *cmds,
0883 struct arm_smmu_cmdq_ent *cmd)
0884 {
0885 int index;
0886
0887 if (cmds->num == CMDQ_BATCH_ENTRIES) {
0888 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
0889 cmds->num = 0;
0890 }
0891
0892 index = cmds->num * CMDQ_ENT_DWORDS;
0893 if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) {
0894 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
0895 cmd->opcode);
0896 return;
0897 }
0898
0899 cmds->num++;
0900 }
0901
0902 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
0903 struct arm_smmu_cmdq_batch *cmds)
0904 {
0905 return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
0906 }
0907
0908 static int arm_smmu_page_response(struct device *dev,
0909 struct iommu_fault_event *unused,
0910 struct iommu_page_response *resp)
0911 {
0912 struct arm_smmu_cmdq_ent cmd = {0};
0913 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
0914 int sid = master->streams[0].id;
0915
0916 if (master->stall_enabled) {
0917 cmd.opcode = CMDQ_OP_RESUME;
0918 cmd.resume.sid = sid;
0919 cmd.resume.stag = resp->grpid;
0920 switch (resp->code) {
0921 case IOMMU_PAGE_RESP_INVALID:
0922 case IOMMU_PAGE_RESP_FAILURE:
0923 cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT;
0924 break;
0925 case IOMMU_PAGE_RESP_SUCCESS:
0926 cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY;
0927 break;
0928 default:
0929 return -EINVAL;
0930 }
0931 } else {
0932 return -ENODEV;
0933 }
0934
0935 arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
0936
0937
0938
0939
0940
0941
0942
0943 return 0;
0944 }
0945
0946
0947 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
0948 {
0949 struct arm_smmu_cmdq_ent cmd = {
0950 .opcode = smmu->features & ARM_SMMU_FEAT_E2H ?
0951 CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
0952 .tlbi.asid = asid,
0953 };
0954
0955 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
0956 }
0957
0958 static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
0959 int ssid, bool leaf)
0960 {
0961 size_t i;
0962 unsigned long flags;
0963 struct arm_smmu_master *master;
0964 struct arm_smmu_cmdq_batch cmds;
0965 struct arm_smmu_device *smmu = smmu_domain->smmu;
0966 struct arm_smmu_cmdq_ent cmd = {
0967 .opcode = CMDQ_OP_CFGI_CD,
0968 .cfgi = {
0969 .ssid = ssid,
0970 .leaf = leaf,
0971 },
0972 };
0973
0974 cmds.num = 0;
0975
0976 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
0977 list_for_each_entry(master, &smmu_domain->devices, domain_head) {
0978 for (i = 0; i < master->num_streams; i++) {
0979 cmd.cfgi.sid = master->streams[i].id;
0980 arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
0981 }
0982 }
0983 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
0984
0985 arm_smmu_cmdq_batch_submit(smmu, &cmds);
0986 }
0987
0988 static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
0989 struct arm_smmu_l1_ctx_desc *l1_desc)
0990 {
0991 size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
0992
0993 l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
0994 &l1_desc->l2ptr_dma, GFP_KERNEL);
0995 if (!l1_desc->l2ptr) {
0996 dev_warn(smmu->dev,
0997 "failed to allocate context descriptor table\n");
0998 return -ENOMEM;
0999 }
1000 return 0;
1001 }
1002
1003 static void arm_smmu_write_cd_l1_desc(__le64 *dst,
1004 struct arm_smmu_l1_ctx_desc *l1_desc)
1005 {
1006 u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
1007 CTXDESC_L1_DESC_V;
1008
1009
1010 WRITE_ONCE(*dst, cpu_to_le64(val));
1011 }
1012
1013 static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
1014 u32 ssid)
1015 {
1016 __le64 *l1ptr;
1017 unsigned int idx;
1018 struct arm_smmu_l1_ctx_desc *l1_desc;
1019 struct arm_smmu_device *smmu = smmu_domain->smmu;
1020 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1021
1022 if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
1023 return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;
1024
1025 idx = ssid >> CTXDESC_SPLIT;
1026 l1_desc = &cdcfg->l1_desc[idx];
1027 if (!l1_desc->l2ptr) {
1028 if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
1029 return NULL;
1030
1031 l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
1032 arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
1033
1034 arm_smmu_sync_cd(smmu_domain, ssid, false);
1035 }
1036 idx = ssid & (CTXDESC_L2_ENTRIES - 1);
1037 return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
1038 }
1039
1040 int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
1041 struct arm_smmu_ctx_desc *cd)
1042 {
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054 u64 val;
1055 bool cd_live;
1056 __le64 *cdptr;
1057
1058 if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
1059 return -E2BIG;
1060
1061 cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
1062 if (!cdptr)
1063 return -ENOMEM;
1064
1065 val = le64_to_cpu(cdptr[0]);
1066 cd_live = !!(val & CTXDESC_CD_0_V);
1067
1068 if (!cd) {
1069 val = 0;
1070 } else if (cd == &quiet_cd) {
1071 val |= CTXDESC_CD_0_TCR_EPD0;
1072 } else if (cd_live) {
1073 val &= ~CTXDESC_CD_0_ASID;
1074 val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
1075
1076
1077
1078
1079 } else {
1080 cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
1081 cdptr[2] = 0;
1082 cdptr[3] = cpu_to_le64(cd->mair);
1083
1084
1085
1086
1087
1088
1089 arm_smmu_sync_cd(smmu_domain, ssid, true);
1090
1091 val = cd->tcr |
1092 #ifdef __BIG_ENDIAN
1093 CTXDESC_CD_0_ENDI |
1094 #endif
1095 CTXDESC_CD_0_R | CTXDESC_CD_0_A |
1096 (cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1097 CTXDESC_CD_0_AA64 |
1098 FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
1099 CTXDESC_CD_0_V;
1100
1101 if (smmu_domain->stall_enabled)
1102 val |= CTXDESC_CD_0_S;
1103 }
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114 WRITE_ONCE(cdptr[0], cpu_to_le64(val));
1115 arm_smmu_sync_cd(smmu_domain, ssid, true);
1116 return 0;
1117 }
1118
1119 static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
1120 {
1121 int ret;
1122 size_t l1size;
1123 size_t max_contexts;
1124 struct arm_smmu_device *smmu = smmu_domain->smmu;
1125 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1126 struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;
1127
1128 max_contexts = 1 << cfg->s1cdmax;
1129
1130 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
1131 max_contexts <= CTXDESC_L2_ENTRIES) {
1132 cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
1133 cdcfg->num_l1_ents = max_contexts;
1134
1135 l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
1136 } else {
1137 cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
1138 cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
1139 CTXDESC_L2_ENTRIES);
1140
1141 cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
1142 sizeof(*cdcfg->l1_desc),
1143 GFP_KERNEL);
1144 if (!cdcfg->l1_desc)
1145 return -ENOMEM;
1146
1147 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1148 }
1149
1150 cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
1151 GFP_KERNEL);
1152 if (!cdcfg->cdtab) {
1153 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1154 ret = -ENOMEM;
1155 goto err_free_l1;
1156 }
1157
1158 return 0;
1159
1160 err_free_l1:
1161 if (cdcfg->l1_desc) {
1162 devm_kfree(smmu->dev, cdcfg->l1_desc);
1163 cdcfg->l1_desc = NULL;
1164 }
1165 return ret;
1166 }
1167
1168 static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
1169 {
1170 int i;
1171 size_t size, l1size;
1172 struct arm_smmu_device *smmu = smmu_domain->smmu;
1173 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1174
1175 if (cdcfg->l1_desc) {
1176 size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
1177
1178 for (i = 0; i < cdcfg->num_l1_ents; i++) {
1179 if (!cdcfg->l1_desc[i].l2ptr)
1180 continue;
1181
1182 dmam_free_coherent(smmu->dev, size,
1183 cdcfg->l1_desc[i].l2ptr,
1184 cdcfg->l1_desc[i].l2ptr_dma);
1185 }
1186 devm_kfree(smmu->dev, cdcfg->l1_desc);
1187 cdcfg->l1_desc = NULL;
1188
1189 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1190 } else {
1191 l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
1192 }
1193
1194 dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
1195 cdcfg->cdtab_dma = 0;
1196 cdcfg->cdtab = NULL;
1197 }
1198
1199 bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1200 {
1201 bool free;
1202 struct arm_smmu_ctx_desc *old_cd;
1203
1204 if (!cd->asid)
1205 return false;
1206
1207 free = refcount_dec_and_test(&cd->refs);
1208 if (free) {
1209 old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
1210 WARN_ON(old_cd != cd);
1211 }
1212 return free;
1213 }
1214
1215
1216 static void
1217 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1218 {
1219 u64 val = 0;
1220
1221 val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1222 val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1223
1224
1225 WRITE_ONCE(*dst, cpu_to_le64(val));
1226 }
1227
1228 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1229 {
1230 struct arm_smmu_cmdq_ent cmd = {
1231 .opcode = CMDQ_OP_CFGI_STE,
1232 .cfgi = {
1233 .sid = sid,
1234 .leaf = true,
1235 },
1236 };
1237
1238 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1239 }
1240
1241 static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
1242 __le64 *dst)
1243 {
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260 u64 val = le64_to_cpu(dst[0]);
1261 bool ste_live = false;
1262 struct arm_smmu_device *smmu = NULL;
1263 struct arm_smmu_s1_cfg *s1_cfg = NULL;
1264 struct arm_smmu_s2_cfg *s2_cfg = NULL;
1265 struct arm_smmu_domain *smmu_domain = NULL;
1266 struct arm_smmu_cmdq_ent prefetch_cmd = {
1267 .opcode = CMDQ_OP_PREFETCH_CFG,
1268 .prefetch = {
1269 .sid = sid,
1270 },
1271 };
1272
1273 if (master) {
1274 smmu_domain = master->domain;
1275 smmu = master->smmu;
1276 }
1277
1278 if (smmu_domain) {
1279 switch (smmu_domain->stage) {
1280 case ARM_SMMU_DOMAIN_S1:
1281 s1_cfg = &smmu_domain->s1_cfg;
1282 break;
1283 case ARM_SMMU_DOMAIN_S2:
1284 case ARM_SMMU_DOMAIN_NESTED:
1285 s2_cfg = &smmu_domain->s2_cfg;
1286 break;
1287 default:
1288 break;
1289 }
1290 }
1291
1292 if (val & STRTAB_STE_0_V) {
1293 switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1294 case STRTAB_STE_0_CFG_BYPASS:
1295 break;
1296 case STRTAB_STE_0_CFG_S1_TRANS:
1297 case STRTAB_STE_0_CFG_S2_TRANS:
1298 ste_live = true;
1299 break;
1300 case STRTAB_STE_0_CFG_ABORT:
1301 BUG_ON(!disable_bypass);
1302 break;
1303 default:
1304 BUG();
1305 }
1306 }
1307
1308
1309 val = STRTAB_STE_0_V;
1310
1311
1312 if (!smmu_domain || !(s1_cfg || s2_cfg)) {
1313 if (!smmu_domain && disable_bypass)
1314 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1315 else
1316 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1317
1318 dst[0] = cpu_to_le64(val);
1319 dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1320 STRTAB_STE_1_SHCFG_INCOMING));
1321 dst[2] = 0;
1322
1323
1324
1325
1326 if (smmu)
1327 arm_smmu_sync_ste_for_sid(smmu, sid);
1328 return;
1329 }
1330
1331 if (s1_cfg) {
1332 u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ?
1333 STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1;
1334
1335 BUG_ON(ste_live);
1336 dst[1] = cpu_to_le64(
1337 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1338 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1339 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1340 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1341 FIELD_PREP(STRTAB_STE_1_STRW, strw));
1342
1343 if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1344 !master->stall_enabled)
1345 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1346
1347 val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1348 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
1349 FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
1350 FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1351 }
1352
1353 if (s2_cfg) {
1354 BUG_ON(ste_live);
1355 dst[2] = cpu_to_le64(
1356 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
1357 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1358 #ifdef __BIG_ENDIAN
1359 STRTAB_STE_2_S2ENDI |
1360 #endif
1361 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1362 STRTAB_STE_2_S2R);
1363
1364 dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1365
1366 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1367 }
1368
1369 if (master->ats_enabled)
1370 dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
1371 STRTAB_STE_1_EATS_TRANS));
1372
1373 arm_smmu_sync_ste_for_sid(smmu, sid);
1374
1375 WRITE_ONCE(dst[0], cpu_to_le64(val));
1376 arm_smmu_sync_ste_for_sid(smmu, sid);
1377
1378
1379 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1380 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1381 }
1382
1383 static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent, bool force)
1384 {
1385 unsigned int i;
1386 u64 val = STRTAB_STE_0_V;
1387
1388 if (disable_bypass && !force)
1389 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1390 else
1391 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1392
1393 for (i = 0; i < nent; ++i) {
1394 strtab[0] = cpu_to_le64(val);
1395 strtab[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1396 STRTAB_STE_1_SHCFG_INCOMING));
1397 strtab[2] = 0;
1398 strtab += STRTAB_STE_DWORDS;
1399 }
1400 }
1401
1402 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1403 {
1404 size_t size;
1405 void *strtab;
1406 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1407 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1408
1409 if (desc->l2ptr)
1410 return 0;
1411
1412 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1413 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1414
1415 desc->span = STRTAB_SPLIT + 1;
1416 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1417 GFP_KERNEL);
1418 if (!desc->l2ptr) {
1419 dev_err(smmu->dev,
1420 "failed to allocate l2 stream table for SID %u\n",
1421 sid);
1422 return -ENOMEM;
1423 }
1424
1425 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT, false);
1426 arm_smmu_write_strtab_l1_desc(strtab, desc);
1427 return 0;
1428 }
1429
1430 static struct arm_smmu_master *
1431 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid)
1432 {
1433 struct rb_node *node;
1434 struct arm_smmu_stream *stream;
1435
1436 lockdep_assert_held(&smmu->streams_mutex);
1437
1438 node = smmu->streams.rb_node;
1439 while (node) {
1440 stream = rb_entry(node, struct arm_smmu_stream, node);
1441 if (stream->id < sid)
1442 node = node->rb_right;
1443 else if (stream->id > sid)
1444 node = node->rb_left;
1445 else
1446 return stream->master;
1447 }
1448
1449 return NULL;
1450 }
1451
1452
1453 static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt)
1454 {
1455 int ret;
1456 u32 reason;
1457 u32 perm = 0;
1458 struct arm_smmu_master *master;
1459 bool ssid_valid = evt[0] & EVTQ_0_SSV;
1460 u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]);
1461 struct iommu_fault_event fault_evt = { };
1462 struct iommu_fault *flt = &fault_evt.fault;
1463
1464 switch (FIELD_GET(EVTQ_0_ID, evt[0])) {
1465 case EVT_ID_TRANSLATION_FAULT:
1466 reason = IOMMU_FAULT_REASON_PTE_FETCH;
1467 break;
1468 case EVT_ID_ADDR_SIZE_FAULT:
1469 reason = IOMMU_FAULT_REASON_OOR_ADDRESS;
1470 break;
1471 case EVT_ID_ACCESS_FAULT:
1472 reason = IOMMU_FAULT_REASON_ACCESS;
1473 break;
1474 case EVT_ID_PERMISSION_FAULT:
1475 reason = IOMMU_FAULT_REASON_PERMISSION;
1476 break;
1477 default:
1478 return -EOPNOTSUPP;
1479 }
1480
1481
1482 if (evt[1] & EVTQ_1_S2)
1483 return -EFAULT;
1484
1485 if (evt[1] & EVTQ_1_RnW)
1486 perm |= IOMMU_FAULT_PERM_READ;
1487 else
1488 perm |= IOMMU_FAULT_PERM_WRITE;
1489
1490 if (evt[1] & EVTQ_1_InD)
1491 perm |= IOMMU_FAULT_PERM_EXEC;
1492
1493 if (evt[1] & EVTQ_1_PnU)
1494 perm |= IOMMU_FAULT_PERM_PRIV;
1495
1496 if (evt[1] & EVTQ_1_STALL) {
1497 flt->type = IOMMU_FAULT_PAGE_REQ;
1498 flt->prm = (struct iommu_fault_page_request) {
1499 .flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE,
1500 .grpid = FIELD_GET(EVTQ_1_STAG, evt[1]),
1501 .perm = perm,
1502 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1503 };
1504
1505 if (ssid_valid) {
1506 flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1507 flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1508 }
1509 } else {
1510 flt->type = IOMMU_FAULT_DMA_UNRECOV;
1511 flt->event = (struct iommu_fault_unrecoverable) {
1512 .reason = reason,
1513 .flags = IOMMU_FAULT_UNRECOV_ADDR_VALID,
1514 .perm = perm,
1515 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1516 };
1517
1518 if (ssid_valid) {
1519 flt->event.flags |= IOMMU_FAULT_UNRECOV_PASID_VALID;
1520 flt->event.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1521 }
1522 }
1523
1524 mutex_lock(&smmu->streams_mutex);
1525 master = arm_smmu_find_master(smmu, sid);
1526 if (!master) {
1527 ret = -EINVAL;
1528 goto out_unlock;
1529 }
1530
1531 ret = iommu_report_device_fault(master->dev, &fault_evt);
1532 if (ret && flt->type == IOMMU_FAULT_PAGE_REQ) {
1533
1534 struct iommu_page_response resp = {
1535 .pasid = flt->prm.pasid,
1536 .grpid = flt->prm.grpid,
1537 .code = IOMMU_PAGE_RESP_FAILURE,
1538 };
1539 arm_smmu_page_response(master->dev, &fault_evt, &resp);
1540 }
1541
1542 out_unlock:
1543 mutex_unlock(&smmu->streams_mutex);
1544 return ret;
1545 }
1546
1547 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1548 {
1549 int i, ret;
1550 struct arm_smmu_device *smmu = dev;
1551 struct arm_smmu_queue *q = &smmu->evtq.q;
1552 struct arm_smmu_ll_queue *llq = &q->llq;
1553 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1554 DEFAULT_RATELIMIT_BURST);
1555 u64 evt[EVTQ_ENT_DWORDS];
1556
1557 do {
1558 while (!queue_remove_raw(q, evt)) {
1559 u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1560
1561 ret = arm_smmu_handle_evt(smmu, evt);
1562 if (!ret || !__ratelimit(&rs))
1563 continue;
1564
1565 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1566 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1567 dev_info(smmu->dev, "\t0x%016llx\n",
1568 (unsigned long long)evt[i]);
1569
1570 cond_resched();
1571 }
1572
1573
1574
1575
1576
1577 if (queue_sync_prod_in(q) == -EOVERFLOW)
1578 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1579 } while (!queue_empty(llq));
1580
1581
1582 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
1583 Q_IDX(llq, llq->cons);
1584 return IRQ_HANDLED;
1585 }
1586
1587 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1588 {
1589 u32 sid, ssid;
1590 u16 grpid;
1591 bool ssv, last;
1592
1593 sid = FIELD_GET(PRIQ_0_SID, evt[0]);
1594 ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
1595 ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
1596 last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
1597 grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1598
1599 dev_info(smmu->dev, "unexpected PRI request received:\n");
1600 dev_info(smmu->dev,
1601 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1602 sid, ssid, grpid, last ? "L" : "",
1603 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1604 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1605 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1606 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1607 evt[1] & PRIQ_1_ADDR_MASK);
1608
1609 if (last) {
1610 struct arm_smmu_cmdq_ent cmd = {
1611 .opcode = CMDQ_OP_PRI_RESP,
1612 .substream_valid = ssv,
1613 .pri = {
1614 .sid = sid,
1615 .ssid = ssid,
1616 .grpid = grpid,
1617 .resp = PRI_RESP_DENY,
1618 },
1619 };
1620
1621 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1622 }
1623 }
1624
1625 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1626 {
1627 struct arm_smmu_device *smmu = dev;
1628 struct arm_smmu_queue *q = &smmu->priq.q;
1629 struct arm_smmu_ll_queue *llq = &q->llq;
1630 u64 evt[PRIQ_ENT_DWORDS];
1631
1632 do {
1633 while (!queue_remove_raw(q, evt))
1634 arm_smmu_handle_ppr(smmu, evt);
1635
1636 if (queue_sync_prod_in(q) == -EOVERFLOW)
1637 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1638 } while (!queue_empty(llq));
1639
1640
1641 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
1642 Q_IDX(llq, llq->cons);
1643 queue_sync_cons_out(q);
1644 return IRQ_HANDLED;
1645 }
1646
1647 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1648
1649 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1650 {
1651 u32 gerror, gerrorn, active;
1652 struct arm_smmu_device *smmu = dev;
1653
1654 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1655 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1656
1657 active = gerror ^ gerrorn;
1658 if (!(active & GERROR_ERR_MASK))
1659 return IRQ_NONE;
1660
1661 dev_warn(smmu->dev,
1662 "unexpected global error reported (0x%08x), this could be serious\n",
1663 active);
1664
1665 if (active & GERROR_SFM_ERR) {
1666 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1667 arm_smmu_device_disable(smmu);
1668 }
1669
1670 if (active & GERROR_MSI_GERROR_ABT_ERR)
1671 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1672
1673 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1674 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1675
1676 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1677 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1678
1679 if (active & GERROR_MSI_CMDQ_ABT_ERR)
1680 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1681
1682 if (active & GERROR_PRIQ_ABT_ERR)
1683 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1684
1685 if (active & GERROR_EVTQ_ABT_ERR)
1686 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1687
1688 if (active & GERROR_CMDQ_ERR)
1689 arm_smmu_cmdq_skip_err(smmu);
1690
1691 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1692 return IRQ_HANDLED;
1693 }
1694
1695 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1696 {
1697 struct arm_smmu_device *smmu = dev;
1698
1699 arm_smmu_evtq_thread(irq, dev);
1700 if (smmu->features & ARM_SMMU_FEAT_PRI)
1701 arm_smmu_priq_thread(irq, dev);
1702
1703 return IRQ_HANDLED;
1704 }
1705
1706 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1707 {
1708 arm_smmu_gerror_handler(irq, dev);
1709 return IRQ_WAKE_THREAD;
1710 }
1711
1712 static void
1713 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
1714 struct arm_smmu_cmdq_ent *cmd)
1715 {
1716 size_t log2_span;
1717 size_t span_mask;
1718
1719 size_t inval_grain_shift = 12;
1720 unsigned long page_start, page_end;
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736 *cmd = (struct arm_smmu_cmdq_ent) {
1737 .opcode = CMDQ_OP_ATC_INV,
1738 .substream_valid = !!ssid,
1739 .atc.ssid = ssid,
1740 };
1741
1742 if (!size) {
1743 cmd->atc.size = ATC_INV_SIZE_ALL;
1744 return;
1745 }
1746
1747 page_start = iova >> inval_grain_shift;
1748 page_end = (iova + size - 1) >> inval_grain_shift;
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770 log2_span = fls_long(page_start ^ page_end);
1771 span_mask = (1ULL << log2_span) - 1;
1772
1773 page_start &= ~span_mask;
1774
1775 cmd->atc.addr = page_start << inval_grain_shift;
1776 cmd->atc.size = log2_span;
1777 }
1778
1779 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1780 {
1781 int i;
1782 struct arm_smmu_cmdq_ent cmd;
1783 struct arm_smmu_cmdq_batch cmds;
1784
1785 arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1786
1787 cmds.num = 0;
1788 for (i = 0; i < master->num_streams; i++) {
1789 cmd.atc.sid = master->streams[i].id;
1790 arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd);
1791 }
1792
1793 return arm_smmu_cmdq_batch_submit(master->smmu, &cmds);
1794 }
1795
1796 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid,
1797 unsigned long iova, size_t size)
1798 {
1799 int i;
1800 unsigned long flags;
1801 struct arm_smmu_cmdq_ent cmd;
1802 struct arm_smmu_master *master;
1803 struct arm_smmu_cmdq_batch cmds;
1804
1805 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
1806 return 0;
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821 smp_mb();
1822 if (!atomic_read(&smmu_domain->nr_ats_masters))
1823 return 0;
1824
1825 arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);
1826
1827 cmds.num = 0;
1828
1829 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1830 list_for_each_entry(master, &smmu_domain->devices, domain_head) {
1831 if (!master->ats_enabled)
1832 continue;
1833
1834 for (i = 0; i < master->num_streams; i++) {
1835 cmd.atc.sid = master->streams[i].id;
1836 arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
1837 }
1838 }
1839 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1840
1841 return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1842 }
1843
1844
1845 static void arm_smmu_tlb_inv_context(void *cookie)
1846 {
1847 struct arm_smmu_domain *smmu_domain = cookie;
1848 struct arm_smmu_device *smmu = smmu_domain->smmu;
1849 struct arm_smmu_cmdq_ent cmd;
1850
1851
1852
1853
1854
1855
1856
1857
1858 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1859 arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid);
1860 } else {
1861 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1862 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1863 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1864 }
1865 arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1866 }
1867
1868 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
1869 unsigned long iova, size_t size,
1870 size_t granule,
1871 struct arm_smmu_domain *smmu_domain)
1872 {
1873 struct arm_smmu_device *smmu = smmu_domain->smmu;
1874 unsigned long end = iova + size, num_pages = 0, tg = 0;
1875 size_t inv_range = granule;
1876 struct arm_smmu_cmdq_batch cmds;
1877
1878 if (!size)
1879 return;
1880
1881 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1882
1883 tg = __ffs(smmu_domain->domain.pgsize_bitmap);
1884
1885
1886 cmd->tlbi.tg = (tg - 10) / 2;
1887
1888
1889 cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
1890
1891 num_pages = size >> tg;
1892 }
1893
1894 cmds.num = 0;
1895
1896 while (iova < end) {
1897 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1898
1899
1900
1901
1902
1903
1904
1905 unsigned long scale, num;
1906
1907
1908 scale = __ffs(num_pages);
1909 cmd->tlbi.scale = scale;
1910
1911
1912 num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
1913 cmd->tlbi.num = num - 1;
1914
1915
1916 inv_range = num << (scale + tg);
1917
1918
1919 num_pages -= num << scale;
1920 }
1921
1922 cmd->tlbi.addr = iova;
1923 arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
1924 iova += inv_range;
1925 }
1926 arm_smmu_cmdq_batch_submit(smmu, &cmds);
1927 }
1928
1929 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
1930 size_t granule, bool leaf,
1931 struct arm_smmu_domain *smmu_domain)
1932 {
1933 struct arm_smmu_cmdq_ent cmd = {
1934 .tlbi = {
1935 .leaf = leaf,
1936 },
1937 };
1938
1939 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1940 cmd.opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1941 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
1942 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1943 } else {
1944 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1945 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1946 }
1947 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1948
1949
1950
1951
1952
1953 arm_smmu_atc_inv_domain(smmu_domain, 0, iova, size);
1954 }
1955
1956 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
1957 size_t granule, bool leaf,
1958 struct arm_smmu_domain *smmu_domain)
1959 {
1960 struct arm_smmu_cmdq_ent cmd = {
1961 .opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1962 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
1963 .tlbi = {
1964 .asid = asid,
1965 .leaf = leaf,
1966 },
1967 };
1968
1969 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1970 }
1971
1972 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
1973 unsigned long iova, size_t granule,
1974 void *cookie)
1975 {
1976 struct arm_smmu_domain *smmu_domain = cookie;
1977 struct iommu_domain *domain = &smmu_domain->domain;
1978
1979 iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1980 }
1981
1982 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
1983 size_t granule, void *cookie)
1984 {
1985 arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
1986 }
1987
1988 static const struct iommu_flush_ops arm_smmu_flush_ops = {
1989 .tlb_flush_all = arm_smmu_tlb_inv_context,
1990 .tlb_flush_walk = arm_smmu_tlb_inv_walk,
1991 .tlb_add_page = arm_smmu_tlb_inv_page_nosync,
1992 };
1993
1994
1995 static bool arm_smmu_capable(enum iommu_cap cap)
1996 {
1997 switch (cap) {
1998 case IOMMU_CAP_CACHE_COHERENCY:
1999 return true;
2000 case IOMMU_CAP_NOEXEC:
2001 return true;
2002 default:
2003 return false;
2004 }
2005 }
2006
2007 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
2008 {
2009 struct arm_smmu_domain *smmu_domain;
2010
2011 if (type != IOMMU_DOMAIN_UNMANAGED &&
2012 type != IOMMU_DOMAIN_DMA &&
2013 type != IOMMU_DOMAIN_DMA_FQ &&
2014 type != IOMMU_DOMAIN_IDENTITY)
2015 return NULL;
2016
2017
2018
2019
2020
2021
2022 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
2023 if (!smmu_domain)
2024 return NULL;
2025
2026 mutex_init(&smmu_domain->init_mutex);
2027 INIT_LIST_HEAD(&smmu_domain->devices);
2028 spin_lock_init(&smmu_domain->devices_lock);
2029 INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);
2030
2031 return &smmu_domain->domain;
2032 }
2033
2034 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
2035 {
2036 int idx, size = 1 << span;
2037
2038 do {
2039 idx = find_first_zero_bit(map, size);
2040 if (idx == size)
2041 return -ENOSPC;
2042 } while (test_and_set_bit(idx, map));
2043
2044 return idx;
2045 }
2046
2047 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
2048 {
2049 clear_bit(idx, map);
2050 }
2051
2052 static void arm_smmu_domain_free(struct iommu_domain *domain)
2053 {
2054 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2055 struct arm_smmu_device *smmu = smmu_domain->smmu;
2056
2057 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2058
2059
2060 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2061 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2062
2063
2064 mutex_lock(&arm_smmu_asid_lock);
2065 if (cfg->cdcfg.cdtab)
2066 arm_smmu_free_cd_tables(smmu_domain);
2067 arm_smmu_free_asid(&cfg->cd);
2068 mutex_unlock(&arm_smmu_asid_lock);
2069 } else {
2070 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2071 if (cfg->vmid)
2072 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
2073 }
2074
2075 kfree(smmu_domain);
2076 }
2077
2078 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
2079 struct arm_smmu_master *master,
2080 struct io_pgtable_cfg *pgtbl_cfg)
2081 {
2082 int ret;
2083 u32 asid;
2084 struct arm_smmu_device *smmu = smmu_domain->smmu;
2085 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2086 typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
2087
2088 refcount_set(&cfg->cd.refs, 1);
2089
2090
2091 mutex_lock(&arm_smmu_asid_lock);
2092 ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
2093 XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
2094 if (ret)
2095 goto out_unlock;
2096
2097 cfg->s1cdmax = master->ssid_bits;
2098
2099 smmu_domain->stall_enabled = master->stall_enabled;
2100
2101 ret = arm_smmu_alloc_cd_tables(smmu_domain);
2102 if (ret)
2103 goto out_free_asid;
2104
2105 cfg->cd.asid = (u16)asid;
2106 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
2107 cfg->cd.tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
2108 FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
2109 FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
2110 FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
2111 FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
2112 FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
2113 CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
2114 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair;
2115
2116
2117
2118
2119
2120
2121 ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
2122 if (ret)
2123 goto out_free_cd_tables;
2124
2125 mutex_unlock(&arm_smmu_asid_lock);
2126 return 0;
2127
2128 out_free_cd_tables:
2129 arm_smmu_free_cd_tables(smmu_domain);
2130 out_free_asid:
2131 arm_smmu_free_asid(&cfg->cd);
2132 out_unlock:
2133 mutex_unlock(&arm_smmu_asid_lock);
2134 return ret;
2135 }
2136
2137 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
2138 struct arm_smmu_master *master,
2139 struct io_pgtable_cfg *pgtbl_cfg)
2140 {
2141 int vmid;
2142 struct arm_smmu_device *smmu = smmu_domain->smmu;
2143 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2144 typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
2145
2146 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2147 if (vmid < 0)
2148 return vmid;
2149
2150 vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
2151 cfg->vmid = (u16)vmid;
2152 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
2153 cfg->vtcr = FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
2154 FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
2155 FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
2156 FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
2157 FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
2158 FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
2159 FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
2160 return 0;
2161 }
2162
2163 static int arm_smmu_domain_finalise(struct iommu_domain *domain,
2164 struct arm_smmu_master *master)
2165 {
2166 int ret;
2167 unsigned long ias, oas;
2168 enum io_pgtable_fmt fmt;
2169 struct io_pgtable_cfg pgtbl_cfg;
2170 struct io_pgtable_ops *pgtbl_ops;
2171 int (*finalise_stage_fn)(struct arm_smmu_domain *,
2172 struct arm_smmu_master *,
2173 struct io_pgtable_cfg *);
2174 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2175 struct arm_smmu_device *smmu = smmu_domain->smmu;
2176
2177 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
2178 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
2179 return 0;
2180 }
2181
2182
2183 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
2184 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
2185 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
2186 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
2187
2188 switch (smmu_domain->stage) {
2189 case ARM_SMMU_DOMAIN_S1:
2190 ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
2191 ias = min_t(unsigned long, ias, VA_BITS);
2192 oas = smmu->ias;
2193 fmt = ARM_64_LPAE_S1;
2194 finalise_stage_fn = arm_smmu_domain_finalise_s1;
2195 break;
2196 case ARM_SMMU_DOMAIN_NESTED:
2197 case ARM_SMMU_DOMAIN_S2:
2198 ias = smmu->ias;
2199 oas = smmu->oas;
2200 fmt = ARM_64_LPAE_S2;
2201 finalise_stage_fn = arm_smmu_domain_finalise_s2;
2202 break;
2203 default:
2204 return -EINVAL;
2205 }
2206
2207 pgtbl_cfg = (struct io_pgtable_cfg) {
2208 .pgsize_bitmap = smmu->pgsize_bitmap,
2209 .ias = ias,
2210 .oas = oas,
2211 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENCY,
2212 .tlb = &arm_smmu_flush_ops,
2213 .iommu_dev = smmu->dev,
2214 };
2215
2216 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
2217 if (!pgtbl_ops)
2218 return -ENOMEM;
2219
2220 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2221 domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2222 domain->geometry.force_aperture = true;
2223
2224 ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2225 if (ret < 0) {
2226 free_io_pgtable_ops(pgtbl_ops);
2227 return ret;
2228 }
2229
2230 smmu_domain->pgtbl_ops = pgtbl_ops;
2231 return 0;
2232 }
2233
2234 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
2235 {
2236 __le64 *step;
2237 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2238
2239 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2240 struct arm_smmu_strtab_l1_desc *l1_desc;
2241 int idx;
2242
2243
2244 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
2245 l1_desc = &cfg->l1_desc[idx];
2246 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
2247 step = &l1_desc->l2ptr[idx];
2248 } else {
2249
2250 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
2251 }
2252
2253 return step;
2254 }
2255
2256 static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2257 {
2258 int i, j;
2259 struct arm_smmu_device *smmu = master->smmu;
2260
2261 for (i = 0; i < master->num_streams; ++i) {
2262 u32 sid = master->streams[i].id;
2263 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
2264
2265
2266 for (j = 0; j < i; j++)
2267 if (master->streams[j].id == sid)
2268 break;
2269 if (j < i)
2270 continue;
2271
2272 arm_smmu_write_strtab_ent(master, sid, step);
2273 }
2274 }
2275
2276 static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2277 {
2278 struct device *dev = master->dev;
2279 struct arm_smmu_device *smmu = master->smmu;
2280 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2281
2282 if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2283 return false;
2284
2285 if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
2286 return false;
2287
2288 return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2289 }
2290
2291 static void arm_smmu_enable_ats(struct arm_smmu_master *master)
2292 {
2293 size_t stu;
2294 struct pci_dev *pdev;
2295 struct arm_smmu_device *smmu = master->smmu;
2296 struct arm_smmu_domain *smmu_domain = master->domain;
2297
2298
2299 if (!master->ats_enabled)
2300 return;
2301
2302
2303 stu = __ffs(smmu->pgsize_bitmap);
2304 pdev = to_pci_dev(master->dev);
2305
2306 atomic_inc(&smmu_domain->nr_ats_masters);
2307 arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2308 if (pci_enable_ats(pdev, stu))
2309 dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2310 }
2311
2312 static void arm_smmu_disable_ats(struct arm_smmu_master *master)
2313 {
2314 struct arm_smmu_domain *smmu_domain = master->domain;
2315
2316 if (!master->ats_enabled)
2317 return;
2318
2319 pci_disable_ats(to_pci_dev(master->dev));
2320
2321
2322
2323
2324 wmb();
2325 arm_smmu_atc_inv_master(master);
2326 atomic_dec(&smmu_domain->nr_ats_masters);
2327 }
2328
2329 static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
2330 {
2331 int ret;
2332 int features;
2333 int num_pasids;
2334 struct pci_dev *pdev;
2335
2336 if (!dev_is_pci(master->dev))
2337 return -ENODEV;
2338
2339 pdev = to_pci_dev(master->dev);
2340
2341 features = pci_pasid_features(pdev);
2342 if (features < 0)
2343 return features;
2344
2345 num_pasids = pci_max_pasids(pdev);
2346 if (num_pasids <= 0)
2347 return num_pasids;
2348
2349 ret = pci_enable_pasid(pdev, features);
2350 if (ret) {
2351 dev_err(&pdev->dev, "Failed to enable PASID\n");
2352 return ret;
2353 }
2354
2355 master->ssid_bits = min_t(u8, ilog2(num_pasids),
2356 master->smmu->ssid_bits);
2357 return 0;
2358 }
2359
2360 static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
2361 {
2362 struct pci_dev *pdev;
2363
2364 if (!dev_is_pci(master->dev))
2365 return;
2366
2367 pdev = to_pci_dev(master->dev);
2368
2369 if (!pdev->pasid_enabled)
2370 return;
2371
2372 master->ssid_bits = 0;
2373 pci_disable_pasid(pdev);
2374 }
2375
2376 static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2377 {
2378 unsigned long flags;
2379 struct arm_smmu_domain *smmu_domain = master->domain;
2380
2381 if (!smmu_domain)
2382 return;
2383
2384 arm_smmu_disable_ats(master);
2385
2386 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2387 list_del(&master->domain_head);
2388 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2389
2390 master->domain = NULL;
2391 master->ats_enabled = false;
2392 arm_smmu_install_ste_for_dev(master);
2393 }
2394
2395 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
2396 {
2397 int ret = 0;
2398 unsigned long flags;
2399 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2400 struct arm_smmu_device *smmu;
2401 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2402 struct arm_smmu_master *master;
2403
2404 if (!fwspec)
2405 return -ENOENT;
2406
2407 master = dev_iommu_priv_get(dev);
2408 smmu = master->smmu;
2409
2410
2411
2412
2413
2414
2415 if (arm_smmu_master_sva_enabled(master)) {
2416 dev_err(dev, "cannot attach - SVA enabled\n");
2417 return -EBUSY;
2418 }
2419
2420 arm_smmu_detach_dev(master);
2421
2422 mutex_lock(&smmu_domain->init_mutex);
2423
2424 if (!smmu_domain->smmu) {
2425 smmu_domain->smmu = smmu;
2426 ret = arm_smmu_domain_finalise(domain, master);
2427 if (ret) {
2428 smmu_domain->smmu = NULL;
2429 goto out_unlock;
2430 }
2431 } else if (smmu_domain->smmu != smmu) {
2432 dev_err(dev,
2433 "cannot attach to SMMU %s (upstream of %s)\n",
2434 dev_name(smmu_domain->smmu->dev),
2435 dev_name(smmu->dev));
2436 ret = -ENXIO;
2437 goto out_unlock;
2438 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2439 master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
2440 dev_err(dev,
2441 "cannot attach to incompatible domain (%u SSID bits != %u)\n",
2442 smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
2443 ret = -EINVAL;
2444 goto out_unlock;
2445 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2446 smmu_domain->stall_enabled != master->stall_enabled) {
2447 dev_err(dev, "cannot attach to stall-%s domain\n",
2448 smmu_domain->stall_enabled ? "enabled" : "disabled");
2449 ret = -EINVAL;
2450 goto out_unlock;
2451 }
2452
2453 master->domain = smmu_domain;
2454
2455 if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2456 master->ats_enabled = arm_smmu_ats_supported(master);
2457
2458 arm_smmu_install_ste_for_dev(master);
2459
2460 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2461 list_add(&master->domain_head, &smmu_domain->devices);
2462 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2463
2464 arm_smmu_enable_ats(master);
2465
2466 out_unlock:
2467 mutex_unlock(&smmu_domain->init_mutex);
2468 return ret;
2469 }
2470
2471 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
2472 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2473 int prot, gfp_t gfp, size_t *mapped)
2474 {
2475 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2476
2477 if (!ops)
2478 return -ENODEV;
2479
2480 return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
2481 }
2482
2483 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
2484 size_t pgsize, size_t pgcount,
2485 struct iommu_iotlb_gather *gather)
2486 {
2487 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2488 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2489
2490 if (!ops)
2491 return 0;
2492
2493 return ops->unmap_pages(ops, iova, pgsize, pgcount, gather);
2494 }
2495
2496 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
2497 {
2498 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2499
2500 if (smmu_domain->smmu)
2501 arm_smmu_tlb_inv_context(smmu_domain);
2502 }
2503
2504 static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
2505 struct iommu_iotlb_gather *gather)
2506 {
2507 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2508
2509 if (!gather->pgsize)
2510 return;
2511
2512 arm_smmu_tlb_inv_range_domain(gather->start,
2513 gather->end - gather->start + 1,
2514 gather->pgsize, true, smmu_domain);
2515 }
2516
2517 static phys_addr_t
2518 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2519 {
2520 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2521
2522 if (!ops)
2523 return 0;
2524
2525 return ops->iova_to_phys(ops, iova);
2526 }
2527
2528 static struct platform_driver arm_smmu_driver;
2529
2530 static
2531 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2532 {
2533 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
2534 fwnode);
2535 put_device(dev);
2536 return dev ? dev_get_drvdata(dev) : NULL;
2537 }
2538
2539 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
2540 {
2541 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
2542
2543 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2544 limit *= 1UL << STRTAB_SPLIT;
2545
2546 return sid < limit;
2547 }
2548
2549 static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid)
2550 {
2551
2552 if (!arm_smmu_sid_in_range(smmu, sid))
2553 return -ERANGE;
2554
2555
2556 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2557 return arm_smmu_init_l2_strtab(smmu, sid);
2558
2559 return 0;
2560 }
2561
2562 static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
2563 struct arm_smmu_master *master)
2564 {
2565 int i;
2566 int ret = 0;
2567 struct arm_smmu_stream *new_stream, *cur_stream;
2568 struct rb_node **new_node, *parent_node = NULL;
2569 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2570
2571 master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
2572 GFP_KERNEL);
2573 if (!master->streams)
2574 return -ENOMEM;
2575 master->num_streams = fwspec->num_ids;
2576
2577 mutex_lock(&smmu->streams_mutex);
2578 for (i = 0; i < fwspec->num_ids; i++) {
2579 u32 sid = fwspec->ids[i];
2580
2581 new_stream = &master->streams[i];
2582 new_stream->id = sid;
2583 new_stream->master = master;
2584
2585 ret = arm_smmu_init_sid_strtab(smmu, sid);
2586 if (ret)
2587 break;
2588
2589
2590 new_node = &(smmu->streams.rb_node);
2591 while (*new_node) {
2592 cur_stream = rb_entry(*new_node, struct arm_smmu_stream,
2593 node);
2594 parent_node = *new_node;
2595 if (cur_stream->id > new_stream->id) {
2596 new_node = &((*new_node)->rb_left);
2597 } else if (cur_stream->id < new_stream->id) {
2598 new_node = &((*new_node)->rb_right);
2599 } else {
2600 dev_warn(master->dev,
2601 "stream %u already in tree\n",
2602 cur_stream->id);
2603 ret = -EINVAL;
2604 break;
2605 }
2606 }
2607 if (ret)
2608 break;
2609
2610 rb_link_node(&new_stream->node, parent_node, new_node);
2611 rb_insert_color(&new_stream->node, &smmu->streams);
2612 }
2613
2614 if (ret) {
2615 for (i--; i >= 0; i--)
2616 rb_erase(&master->streams[i].node, &smmu->streams);
2617 kfree(master->streams);
2618 }
2619 mutex_unlock(&smmu->streams_mutex);
2620
2621 return ret;
2622 }
2623
2624 static void arm_smmu_remove_master(struct arm_smmu_master *master)
2625 {
2626 int i;
2627 struct arm_smmu_device *smmu = master->smmu;
2628 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2629
2630 if (!smmu || !master->streams)
2631 return;
2632
2633 mutex_lock(&smmu->streams_mutex);
2634 for (i = 0; i < fwspec->num_ids; i++)
2635 rb_erase(&master->streams[i].node, &smmu->streams);
2636 mutex_unlock(&smmu->streams_mutex);
2637
2638 kfree(master->streams);
2639 }
2640
2641 static struct iommu_ops arm_smmu_ops;
2642
2643 static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2644 {
2645 int ret;
2646 struct arm_smmu_device *smmu;
2647 struct arm_smmu_master *master;
2648 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2649
2650 if (!fwspec || fwspec->ops != &arm_smmu_ops)
2651 return ERR_PTR(-ENODEV);
2652
2653 if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2654 return ERR_PTR(-EBUSY);
2655
2656 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2657 if (!smmu)
2658 return ERR_PTR(-ENODEV);
2659
2660 master = kzalloc(sizeof(*master), GFP_KERNEL);
2661 if (!master)
2662 return ERR_PTR(-ENOMEM);
2663
2664 master->dev = dev;
2665 master->smmu = smmu;
2666 INIT_LIST_HEAD(&master->bonds);
2667 dev_iommu_priv_set(dev, master);
2668
2669 ret = arm_smmu_insert_master(smmu, master);
2670 if (ret)
2671 goto err_free_master;
2672
2673 device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
2674 master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684 arm_smmu_enable_pasid(master);
2685
2686 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
2687 master->ssid_bits = min_t(u8, master->ssid_bits,
2688 CTXDESC_LINEAR_CDMAX);
2689
2690 if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
2691 device_property_read_bool(dev, "dma-can-stall")) ||
2692 smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
2693 master->stall_enabled = true;
2694
2695 return &smmu->iommu;
2696
2697 err_free_master:
2698 kfree(master);
2699 dev_iommu_priv_set(dev, NULL);
2700 return ERR_PTR(ret);
2701 }
2702
2703 static void arm_smmu_release_device(struct device *dev)
2704 {
2705 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2706
2707 if (WARN_ON(arm_smmu_master_sva_enabled(master)))
2708 iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
2709 arm_smmu_detach_dev(master);
2710 arm_smmu_disable_pasid(master);
2711 arm_smmu_remove_master(master);
2712 kfree(master);
2713 }
2714
2715 static struct iommu_group *arm_smmu_device_group(struct device *dev)
2716 {
2717 struct iommu_group *group;
2718
2719
2720
2721
2722
2723
2724 if (dev_is_pci(dev))
2725 group = pci_device_group(dev);
2726 else
2727 group = generic_device_group(dev);
2728
2729 return group;
2730 }
2731
2732 static int arm_smmu_enable_nesting(struct iommu_domain *domain)
2733 {
2734 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2735 int ret = 0;
2736
2737 mutex_lock(&smmu_domain->init_mutex);
2738 if (smmu_domain->smmu)
2739 ret = -EPERM;
2740 else
2741 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
2742 mutex_unlock(&smmu_domain->init_mutex);
2743
2744 return ret;
2745 }
2746
2747 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
2748 {
2749 return iommu_fwspec_add_ids(dev, args->args, 1);
2750 }
2751
2752 static void arm_smmu_get_resv_regions(struct device *dev,
2753 struct list_head *head)
2754 {
2755 struct iommu_resv_region *region;
2756 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2757
2758 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2759 prot, IOMMU_RESV_SW_MSI);
2760 if (!region)
2761 return;
2762
2763 list_add_tail(®ion->list, head);
2764
2765 iommu_dma_get_resv_regions(dev, head);
2766 }
2767
2768 static int arm_smmu_dev_enable_feature(struct device *dev,
2769 enum iommu_dev_features feat)
2770 {
2771 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2772
2773 if (!master)
2774 return -ENODEV;
2775
2776 switch (feat) {
2777 case IOMMU_DEV_FEAT_IOPF:
2778 if (!arm_smmu_master_iopf_supported(master))
2779 return -EINVAL;
2780 if (master->iopf_enabled)
2781 return -EBUSY;
2782 master->iopf_enabled = true;
2783 return 0;
2784 case IOMMU_DEV_FEAT_SVA:
2785 if (!arm_smmu_master_sva_supported(master))
2786 return -EINVAL;
2787 if (arm_smmu_master_sva_enabled(master))
2788 return -EBUSY;
2789 return arm_smmu_master_enable_sva(master);
2790 default:
2791 return -EINVAL;
2792 }
2793 }
2794
2795 static int arm_smmu_dev_disable_feature(struct device *dev,
2796 enum iommu_dev_features feat)
2797 {
2798 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2799
2800 if (!master)
2801 return -EINVAL;
2802
2803 switch (feat) {
2804 case IOMMU_DEV_FEAT_IOPF:
2805 if (!master->iopf_enabled)
2806 return -EINVAL;
2807 if (master->sva_enabled)
2808 return -EBUSY;
2809 master->iopf_enabled = false;
2810 return 0;
2811 case IOMMU_DEV_FEAT_SVA:
2812 if (!arm_smmu_master_sva_enabled(master))
2813 return -EINVAL;
2814 return arm_smmu_master_disable_sva(master);
2815 default:
2816 return -EINVAL;
2817 }
2818 }
2819
2820 static struct iommu_ops arm_smmu_ops = {
2821 .capable = arm_smmu_capable,
2822 .domain_alloc = arm_smmu_domain_alloc,
2823 .probe_device = arm_smmu_probe_device,
2824 .release_device = arm_smmu_release_device,
2825 .device_group = arm_smmu_device_group,
2826 .of_xlate = arm_smmu_of_xlate,
2827 .get_resv_regions = arm_smmu_get_resv_regions,
2828 .dev_enable_feat = arm_smmu_dev_enable_feature,
2829 .dev_disable_feat = arm_smmu_dev_disable_feature,
2830 .sva_bind = arm_smmu_sva_bind,
2831 .sva_unbind = arm_smmu_sva_unbind,
2832 .sva_get_pasid = arm_smmu_sva_get_pasid,
2833 .page_response = arm_smmu_page_response,
2834 .pgsize_bitmap = -1UL,
2835 .owner = THIS_MODULE,
2836 .default_domain_ops = &(const struct iommu_domain_ops) {
2837 .attach_dev = arm_smmu_attach_dev,
2838 .map_pages = arm_smmu_map_pages,
2839 .unmap_pages = arm_smmu_unmap_pages,
2840 .flush_iotlb_all = arm_smmu_flush_iotlb_all,
2841 .iotlb_sync = arm_smmu_iotlb_sync,
2842 .iova_to_phys = arm_smmu_iova_to_phys,
2843 .enable_nesting = arm_smmu_enable_nesting,
2844 .free = arm_smmu_domain_free,
2845 }
2846 };
2847
2848
2849 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2850 struct arm_smmu_queue *q,
2851 void __iomem *page,
2852 unsigned long prod_off,
2853 unsigned long cons_off,
2854 size_t dwords, const char *name)
2855 {
2856 size_t qsz;
2857
2858 do {
2859 qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2860 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
2861 GFP_KERNEL);
2862 if (q->base || qsz < PAGE_SIZE)
2863 break;
2864
2865 q->llq.max_n_shift--;
2866 } while (1);
2867
2868 if (!q->base) {
2869 dev_err(smmu->dev,
2870 "failed to allocate queue (0x%zx bytes) for %s\n",
2871 qsz, name);
2872 return -ENOMEM;
2873 }
2874
2875 if (!WARN_ON(q->base_dma & (qsz - 1))) {
2876 dev_info(smmu->dev, "allocated %u entries for %s\n",
2877 1 << q->llq.max_n_shift, name);
2878 }
2879
2880 q->prod_reg = page + prod_off;
2881 q->cons_reg = page + cons_off;
2882 q->ent_dwords = dwords;
2883
2884 q->q_base = Q_BASE_RWA;
2885 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2886 q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2887
2888 q->llq.prod = q->llq.cons = 0;
2889 return 0;
2890 }
2891
2892 static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
2893 {
2894 struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
2895 unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
2896
2897 atomic_set(&cmdq->owner_prod, 0);
2898 atomic_set(&cmdq->lock, 0);
2899
2900 cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents,
2901 GFP_KERNEL);
2902 if (!cmdq->valid_map)
2903 return -ENOMEM;
2904
2905 return 0;
2906 }
2907
2908 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2909 {
2910 int ret;
2911
2912
2913 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
2914 ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
2915 CMDQ_ENT_DWORDS, "cmdq");
2916 if (ret)
2917 return ret;
2918
2919 ret = arm_smmu_cmdq_init(smmu);
2920 if (ret)
2921 return ret;
2922
2923
2924 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
2925 ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
2926 EVTQ_ENT_DWORDS, "evtq");
2927 if (ret)
2928 return ret;
2929
2930 if ((smmu->features & ARM_SMMU_FEAT_SVA) &&
2931 (smmu->features & ARM_SMMU_FEAT_STALLS)) {
2932 smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev));
2933 if (!smmu->evtq.iopf)
2934 return -ENOMEM;
2935 }
2936
2937
2938 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2939 return 0;
2940
2941 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
2942 ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
2943 PRIQ_ENT_DWORDS, "priq");
2944 }
2945
2946 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2947 {
2948 unsigned int i;
2949 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2950 void *strtab = smmu->strtab_cfg.strtab;
2951
2952 cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents,
2953 sizeof(*cfg->l1_desc), GFP_KERNEL);
2954 if (!cfg->l1_desc)
2955 return -ENOMEM;
2956
2957 for (i = 0; i < cfg->num_l1_ents; ++i) {
2958 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2959 strtab += STRTAB_L1_DESC_DWORDS << 3;
2960 }
2961
2962 return 0;
2963 }
2964
2965 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2966 {
2967 void *strtab;
2968 u64 reg;
2969 u32 size, l1size;
2970 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2971
2972
2973 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2974 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2975 cfg->num_l1_ents = 1 << size;
2976
2977 size += STRTAB_SPLIT;
2978 if (size < smmu->sid_bits)
2979 dev_warn(smmu->dev,
2980 "2-level strtab only covers %u/%u bits of SID\n",
2981 size, smmu->sid_bits);
2982
2983 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2984 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2985 GFP_KERNEL);
2986 if (!strtab) {
2987 dev_err(smmu->dev,
2988 "failed to allocate l1 stream table (%u bytes)\n",
2989 l1size);
2990 return -ENOMEM;
2991 }
2992 cfg->strtab = strtab;
2993
2994
2995 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
2996 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
2997 reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2998 cfg->strtab_base_cfg = reg;
2999
3000 return arm_smmu_init_l1_strtab(smmu);
3001 }
3002
3003 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
3004 {
3005 void *strtab;
3006 u64 reg;
3007 u32 size;
3008 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3009
3010 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
3011 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
3012 GFP_KERNEL);
3013 if (!strtab) {
3014 dev_err(smmu->dev,
3015 "failed to allocate linear stream table (%u bytes)\n",
3016 size);
3017 return -ENOMEM;
3018 }
3019 cfg->strtab = strtab;
3020 cfg->num_l1_ents = 1 << smmu->sid_bits;
3021
3022
3023 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
3024 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
3025 cfg->strtab_base_cfg = reg;
3026
3027 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents, false);
3028 return 0;
3029 }
3030
3031 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
3032 {
3033 u64 reg;
3034 int ret;
3035
3036 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3037 ret = arm_smmu_init_strtab_2lvl(smmu);
3038 else
3039 ret = arm_smmu_init_strtab_linear(smmu);
3040
3041 if (ret)
3042 return ret;
3043
3044
3045 reg = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
3046 reg |= STRTAB_BASE_RA;
3047 smmu->strtab_cfg.strtab_base = reg;
3048
3049
3050 set_bit(0, smmu->vmid_map);
3051 return 0;
3052 }
3053
3054 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
3055 {
3056 int ret;
3057
3058 mutex_init(&smmu->streams_mutex);
3059 smmu->streams = RB_ROOT;
3060
3061 ret = arm_smmu_init_queues(smmu);
3062 if (ret)
3063 return ret;
3064
3065 return arm_smmu_init_strtab(smmu);
3066 }
3067
3068 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
3069 unsigned int reg_off, unsigned int ack_off)
3070 {
3071 u32 reg;
3072
3073 writel_relaxed(val, smmu->base + reg_off);
3074 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
3075 1, ARM_SMMU_POLL_TIMEOUT_US);
3076 }
3077
3078
3079 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
3080 {
3081 int ret;
3082 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
3083
3084 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3085 1, ARM_SMMU_POLL_TIMEOUT_US);
3086 if (ret)
3087 return ret;
3088
3089 reg &= ~clr;
3090 reg |= set;
3091 writel_relaxed(reg | GBPA_UPDATE, gbpa);
3092 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3093 1, ARM_SMMU_POLL_TIMEOUT_US);
3094
3095 if (ret)
3096 dev_err(smmu->dev, "GBPA not responding to update\n");
3097 return ret;
3098 }
3099
3100 static void arm_smmu_free_msis(void *data)
3101 {
3102 struct device *dev = data;
3103 platform_msi_domain_free_irqs(dev);
3104 }
3105
3106 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
3107 {
3108 phys_addr_t doorbell;
3109 struct device *dev = msi_desc_to_dev(desc);
3110 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
3111 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index];
3112
3113 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3114 doorbell &= MSI_CFG0_ADDR_MASK;
3115
3116 writeq_relaxed(doorbell, smmu->base + cfg[0]);
3117 writel_relaxed(msg->data, smmu->base + cfg[1]);
3118 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3119 }
3120
3121 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
3122 {
3123 int ret, nvec = ARM_SMMU_MAX_MSIS;
3124 struct device *dev = smmu->dev;
3125
3126
3127 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
3128 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
3129
3130 if (smmu->features & ARM_SMMU_FEAT_PRI)
3131 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
3132 else
3133 nvec--;
3134
3135 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
3136 return;
3137
3138 if (!dev->msi.domain) {
3139 dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
3140 return;
3141 }
3142
3143
3144 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
3145 if (ret) {
3146 dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3147 return;
3148 }
3149
3150 smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX);
3151 smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX);
3152 smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX);
3153
3154
3155 devm_add_action(dev, arm_smmu_free_msis, dev);
3156 }
3157
3158 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3159 {
3160 int irq, ret;
3161
3162 arm_smmu_setup_msis(smmu);
3163
3164
3165 irq = smmu->evtq.q.irq;
3166 if (irq) {
3167 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3168 arm_smmu_evtq_thread,
3169 IRQF_ONESHOT,
3170 "arm-smmu-v3-evtq", smmu);
3171 if (ret < 0)
3172 dev_warn(smmu->dev, "failed to enable evtq irq\n");
3173 } else {
3174 dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3175 }
3176
3177 irq = smmu->gerr_irq;
3178 if (irq) {
3179 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
3180 0, "arm-smmu-v3-gerror", smmu);
3181 if (ret < 0)
3182 dev_warn(smmu->dev, "failed to enable gerror irq\n");
3183 } else {
3184 dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3185 }
3186
3187 if (smmu->features & ARM_SMMU_FEAT_PRI) {
3188 irq = smmu->priq.q.irq;
3189 if (irq) {
3190 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3191 arm_smmu_priq_thread,
3192 IRQF_ONESHOT,
3193 "arm-smmu-v3-priq",
3194 smmu);
3195 if (ret < 0)
3196 dev_warn(smmu->dev,
3197 "failed to enable priq irq\n");
3198 } else {
3199 dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3200 }
3201 }
3202 }
3203
3204 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
3205 {
3206 int ret, irq;
3207 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
3208
3209
3210 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
3211 ARM_SMMU_IRQ_CTRLACK);
3212 if (ret) {
3213 dev_err(smmu->dev, "failed to disable irqs\n");
3214 return ret;
3215 }
3216
3217 irq = smmu->combined_irq;
3218 if (irq) {
3219
3220
3221
3222
3223 ret = devm_request_threaded_irq(smmu->dev, irq,
3224 arm_smmu_combined_irq_handler,
3225 arm_smmu_combined_irq_thread,
3226 IRQF_ONESHOT,
3227 "arm-smmu-v3-combined-irq", smmu);
3228 if (ret < 0)
3229 dev_warn(smmu->dev, "failed to enable combined irq\n");
3230 } else
3231 arm_smmu_setup_unique_irqs(smmu);
3232
3233 if (smmu->features & ARM_SMMU_FEAT_PRI)
3234 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3235
3236
3237 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3238 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
3239 if (ret)
3240 dev_warn(smmu->dev, "failed to enable irqs\n");
3241
3242 return 0;
3243 }
3244
3245 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
3246 {
3247 int ret;
3248
3249 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
3250 if (ret)
3251 dev_err(smmu->dev, "failed to clear cr0\n");
3252
3253 return ret;
3254 }
3255
3256 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3257 {
3258 int ret;
3259 u32 reg, enables;
3260 struct arm_smmu_cmdq_ent cmd;
3261
3262
3263 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3264 if (reg & CR0_SMMUEN) {
3265 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3266 WARN_ON(is_kdump_kernel() && !disable_bypass);
3267 arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3268 }
3269
3270 ret = arm_smmu_device_disable(smmu);
3271 if (ret)
3272 return ret;
3273
3274
3275 reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
3276 FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
3277 FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
3278 FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
3279 FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
3280 FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3281 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
3282
3283
3284 reg = CR2_PTM | CR2_RECINVSID;
3285
3286 if (smmu->features & ARM_SMMU_FEAT_E2H)
3287 reg |= CR2_E2H;
3288
3289 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
3290
3291
3292 writeq_relaxed(smmu->strtab_cfg.strtab_base,
3293 smmu->base + ARM_SMMU_STRTAB_BASE);
3294 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
3295 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
3296
3297
3298 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3299 writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
3300 writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3301
3302 enables = CR0_CMDQEN;
3303 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3304 ARM_SMMU_CR0ACK);
3305 if (ret) {
3306 dev_err(smmu->dev, "failed to enable command queue\n");
3307 return ret;
3308 }
3309
3310
3311 cmd.opcode = CMDQ_OP_CFGI_ALL;
3312 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3313
3314
3315 if (smmu->features & ARM_SMMU_FEAT_HYP) {
3316 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
3317 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3318 }
3319
3320 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
3321 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3322
3323
3324 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3325 writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
3326 writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);
3327
3328 enables |= CR0_EVTQEN;
3329 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3330 ARM_SMMU_CR0ACK);
3331 if (ret) {
3332 dev_err(smmu->dev, "failed to enable event queue\n");
3333 return ret;
3334 }
3335
3336
3337 if (smmu->features & ARM_SMMU_FEAT_PRI) {
3338 writeq_relaxed(smmu->priq.q.q_base,
3339 smmu->base + ARM_SMMU_PRIQ_BASE);
3340 writel_relaxed(smmu->priq.q.llq.prod,
3341 smmu->page1 + ARM_SMMU_PRIQ_PROD);
3342 writel_relaxed(smmu->priq.q.llq.cons,
3343 smmu->page1 + ARM_SMMU_PRIQ_CONS);
3344
3345 enables |= CR0_PRIQEN;
3346 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3347 ARM_SMMU_CR0ACK);
3348 if (ret) {
3349 dev_err(smmu->dev, "failed to enable PRI queue\n");
3350 return ret;
3351 }
3352 }
3353
3354 if (smmu->features & ARM_SMMU_FEAT_ATS) {
3355 enables |= CR0_ATSCHK;
3356 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3357 ARM_SMMU_CR0ACK);
3358 if (ret) {
3359 dev_err(smmu->dev, "failed to enable ATS check\n");
3360 return ret;
3361 }
3362 }
3363
3364 ret = arm_smmu_setup_irqs(smmu);
3365 if (ret) {
3366 dev_err(smmu->dev, "failed to setup irqs\n");
3367 return ret;
3368 }
3369
3370 if (is_kdump_kernel())
3371 enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3372
3373
3374 if (!bypass || disable_bypass) {
3375 enables |= CR0_SMMUEN;
3376 } else {
3377 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3378 if (ret)
3379 return ret;
3380 }
3381 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3382 ARM_SMMU_CR0ACK);
3383 if (ret) {
3384 dev_err(smmu->dev, "failed to enable SMMU interface\n");
3385 return ret;
3386 }
3387
3388 return 0;
3389 }
3390
3391 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3392 {
3393 u32 reg;
3394 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3395
3396
3397 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
3398
3399
3400 if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3401 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
3402
3403 if (reg & IDR0_CD2L)
3404 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
3405
3406
3407
3408
3409
3410
3411 switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3412 case IDR0_TTENDIAN_MIXED:
3413 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
3414 break;
3415 #ifdef __BIG_ENDIAN
3416 case IDR0_TTENDIAN_BE:
3417 smmu->features |= ARM_SMMU_FEAT_TT_BE;
3418 break;
3419 #else
3420 case IDR0_TTENDIAN_LE:
3421 smmu->features |= ARM_SMMU_FEAT_TT_LE;
3422 break;
3423 #endif
3424 default:
3425 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
3426 return -ENXIO;
3427 }
3428
3429
3430 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
3431 smmu->features |= ARM_SMMU_FEAT_PRI;
3432
3433 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
3434 smmu->features |= ARM_SMMU_FEAT_ATS;
3435
3436 if (reg & IDR0_SEV)
3437 smmu->features |= ARM_SMMU_FEAT_SEV;
3438
3439 if (reg & IDR0_MSI) {
3440 smmu->features |= ARM_SMMU_FEAT_MSI;
3441 if (coherent && !disable_msipolling)
3442 smmu->options |= ARM_SMMU_OPT_MSIPOLL;
3443 }
3444
3445 if (reg & IDR0_HYP) {
3446 smmu->features |= ARM_SMMU_FEAT_HYP;
3447 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
3448 smmu->features |= ARM_SMMU_FEAT_E2H;
3449 }
3450
3451
3452
3453
3454
3455 if (!!(reg & IDR0_COHACC) != coherent)
3456 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3457 coherent ? "true" : "false");
3458
3459 switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3460 case IDR0_STALL_MODEL_FORCE:
3461 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3462 fallthrough;
3463 case IDR0_STALL_MODEL_STALL:
3464 smmu->features |= ARM_SMMU_FEAT_STALLS;
3465 }
3466
3467 if (reg & IDR0_S1P)
3468 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
3469
3470 if (reg & IDR0_S2P)
3471 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
3472
3473 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
3474 dev_err(smmu->dev, "no translation support!\n");
3475 return -ENXIO;
3476 }
3477
3478
3479 switch (FIELD_GET(IDR0_TTF, reg)) {
3480 case IDR0_TTF_AARCH32_64:
3481 smmu->ias = 40;
3482 fallthrough;
3483 case IDR0_TTF_AARCH64:
3484 break;
3485 default:
3486 dev_err(smmu->dev, "AArch64 table format not supported!\n");
3487 return -ENXIO;
3488 }
3489
3490
3491 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
3492 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
3493
3494
3495 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
3496 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
3497 dev_err(smmu->dev, "embedded implementation not supported\n");
3498 return -ENXIO;
3499 }
3500
3501
3502 smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
3503 FIELD_GET(IDR1_CMDQS, reg));
3504 if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3505
3506
3507
3508
3509
3510
3511 dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
3512 CMDQ_BATCH_ENTRIES);
3513 return -ENXIO;
3514 }
3515
3516 smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
3517 FIELD_GET(IDR1_EVTQS, reg));
3518 smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
3519 FIELD_GET(IDR1_PRIQS, reg));
3520
3521
3522 smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
3523 smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3524
3525
3526
3527
3528
3529 if (smmu->sid_bits <= STRTAB_SPLIT)
3530 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
3531
3532
3533 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
3534 if (FIELD_GET(IDR3_RIL, reg))
3535 smmu->features |= ARM_SMMU_FEAT_RANGE_INV;
3536
3537
3538 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
3539
3540
3541 smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3542
3543
3544 if (reg & IDR5_GRAN64K)
3545 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3546 if (reg & IDR5_GRAN16K)
3547 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3548 if (reg & IDR5_GRAN4K)
3549 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3550
3551
3552 if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
3553 smmu->features |= ARM_SMMU_FEAT_VAX;
3554
3555
3556 switch (FIELD_GET(IDR5_OAS, reg)) {
3557 case IDR5_OAS_32_BIT:
3558 smmu->oas = 32;
3559 break;
3560 case IDR5_OAS_36_BIT:
3561 smmu->oas = 36;
3562 break;
3563 case IDR5_OAS_40_BIT:
3564 smmu->oas = 40;
3565 break;
3566 case IDR5_OAS_42_BIT:
3567 smmu->oas = 42;
3568 break;
3569 case IDR5_OAS_44_BIT:
3570 smmu->oas = 44;
3571 break;
3572 case IDR5_OAS_52_BIT:
3573 smmu->oas = 52;
3574 smmu->pgsize_bitmap |= 1ULL << 42;
3575 break;
3576 default:
3577 dev_info(smmu->dev,
3578 "unknown output address size. Truncating to 48-bit\n");
3579 fallthrough;
3580 case IDR5_OAS_48_BIT:
3581 smmu->oas = 48;
3582 }
3583
3584 if (arm_smmu_ops.pgsize_bitmap == -1UL)
3585 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
3586 else
3587 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
3588
3589
3590 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
3591 dev_warn(smmu->dev,
3592 "failed to set DMA mask for table walker\n");
3593
3594 smmu->ias = max(smmu->ias, smmu->oas);
3595
3596 if (arm_smmu_sva_supported(smmu))
3597 smmu->features |= ARM_SMMU_FEAT_SVA;
3598
3599 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
3600 smmu->ias, smmu->oas, smmu->features);
3601 return 0;
3602 }
3603
3604 #ifdef CONFIG_ACPI
3605 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
3606 {
3607 switch (model) {
3608 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3609 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3610 break;
3611 case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3612 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
3613 break;
3614 }
3615
3616 dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
3617 }
3618
3619 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3620 struct arm_smmu_device *smmu)
3621 {
3622 struct acpi_iort_smmu_v3 *iort_smmu;
3623 struct device *dev = smmu->dev;
3624 struct acpi_iort_node *node;
3625
3626 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
3627
3628
3629 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
3630
3631 acpi_smmu_get_options(iort_smmu->model, smmu);
3632
3633 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
3634 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3635
3636 return 0;
3637 }
3638 #else
3639 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3640 struct arm_smmu_device *smmu)
3641 {
3642 return -ENODEV;
3643 }
3644 #endif
3645
3646 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
3647 struct arm_smmu_device *smmu)
3648 {
3649 struct device *dev = &pdev->dev;
3650 u32 cells;
3651 int ret = -EINVAL;
3652
3653 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
3654 dev_err(dev, "missing #iommu-cells property\n");
3655 else if (cells != 1)
3656 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
3657 else
3658 ret = 0;
3659
3660 parse_driver_options(smmu);
3661
3662 if (of_dma_is_coherent(dev->of_node))
3663 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3664
3665 return ret;
3666 }
3667
3668 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
3669 {
3670 if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
3671 return SZ_64K;
3672 else
3673 return SZ_128K;
3674 }
3675
3676 static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
3677 {
3678 int err;
3679
3680 #ifdef CONFIG_PCI
3681 if (pci_bus_type.iommu_ops != ops) {
3682 err = bus_set_iommu(&pci_bus_type, ops);
3683 if (err)
3684 return err;
3685 }
3686 #endif
3687 #ifdef CONFIG_ARM_AMBA
3688 if (amba_bustype.iommu_ops != ops) {
3689 err = bus_set_iommu(&amba_bustype, ops);
3690 if (err)
3691 goto err_reset_pci_ops;
3692 }
3693 #endif
3694 if (platform_bus_type.iommu_ops != ops) {
3695 err = bus_set_iommu(&platform_bus_type, ops);
3696 if (err)
3697 goto err_reset_amba_ops;
3698 }
3699
3700 return 0;
3701
3702 err_reset_amba_ops:
3703 #ifdef CONFIG_ARM_AMBA
3704 bus_set_iommu(&amba_bustype, NULL);
3705 #endif
3706 err_reset_pci_ops: __maybe_unused;
3707 #ifdef CONFIG_PCI
3708 bus_set_iommu(&pci_bus_type, NULL);
3709 #endif
3710 return err;
3711 }
3712
3713 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
3714 resource_size_t size)
3715 {
3716 struct resource res = DEFINE_RES_MEM(start, size);
3717
3718 return devm_ioremap_resource(dev, &res);
3719 }
3720
3721 static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu)
3722 {
3723 struct list_head rmr_list;
3724 struct iommu_resv_region *e;
3725
3726 INIT_LIST_HEAD(&rmr_list);
3727 iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
3728
3729 list_for_each_entry(e, &rmr_list, list) {
3730 __le64 *step;
3731 struct iommu_iort_rmr_data *rmr;
3732 int ret, i;
3733
3734 rmr = container_of(e, struct iommu_iort_rmr_data, rr);
3735 for (i = 0; i < rmr->num_sids; i++) {
3736 ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]);
3737 if (ret) {
3738 dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n",
3739 rmr->sids[i]);
3740 continue;
3741 }
3742
3743 step = arm_smmu_get_step_for_sid(smmu, rmr->sids[i]);
3744 arm_smmu_init_bypass_stes(step, 1, true);
3745 }
3746 }
3747
3748 iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
3749 }
3750
3751 static int arm_smmu_device_probe(struct platform_device *pdev)
3752 {
3753 int irq, ret;
3754 struct resource *res;
3755 resource_size_t ioaddr;
3756 struct arm_smmu_device *smmu;
3757 struct device *dev = &pdev->dev;
3758 bool bypass;
3759
3760 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
3761 if (!smmu)
3762 return -ENOMEM;
3763 smmu->dev = dev;
3764
3765 if (dev->of_node) {
3766 ret = arm_smmu_device_dt_probe(pdev, smmu);
3767 } else {
3768 ret = arm_smmu_device_acpi_probe(pdev, smmu);
3769 if (ret == -ENODEV)
3770 return ret;
3771 }
3772
3773
3774 bypass = !!ret;
3775
3776
3777 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3778 if (!res)
3779 return -EINVAL;
3780 if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3781 dev_err(dev, "MMIO region too small (%pr)\n", res);
3782 return -EINVAL;
3783 }
3784 ioaddr = res->start;
3785
3786
3787
3788
3789
3790 smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3791 if (IS_ERR(smmu->base))
3792 return PTR_ERR(smmu->base);
3793
3794 if (arm_smmu_resource_size(smmu) > SZ_64K) {
3795 smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
3796 ARM_SMMU_REG_SZ);
3797 if (IS_ERR(smmu->page1))
3798 return PTR_ERR(smmu->page1);
3799 } else {
3800 smmu->page1 = smmu->base;
3801 }
3802
3803
3804
3805 irq = platform_get_irq_byname_optional(pdev, "combined");
3806 if (irq > 0)
3807 smmu->combined_irq = irq;
3808 else {
3809 irq = platform_get_irq_byname_optional(pdev, "eventq");
3810 if (irq > 0)
3811 smmu->evtq.q.irq = irq;
3812
3813 irq = platform_get_irq_byname_optional(pdev, "priq");
3814 if (irq > 0)
3815 smmu->priq.q.irq = irq;
3816
3817 irq = platform_get_irq_byname_optional(pdev, "gerror");
3818 if (irq > 0)
3819 smmu->gerr_irq = irq;
3820 }
3821
3822 ret = arm_smmu_device_hw_probe(smmu);
3823 if (ret)
3824 return ret;
3825
3826
3827 ret = arm_smmu_init_structures(smmu);
3828 if (ret)
3829 return ret;
3830
3831
3832 platform_set_drvdata(pdev, smmu);
3833
3834
3835 arm_smmu_rmr_install_bypass_ste(smmu);
3836
3837
3838 ret = arm_smmu_device_reset(smmu, bypass);
3839 if (ret)
3840 return ret;
3841
3842
3843 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
3844 "smmu3.%pa", &ioaddr);
3845 if (ret)
3846 return ret;
3847
3848 ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
3849 if (ret) {
3850 dev_err(dev, "Failed to register iommu\n");
3851 goto err_sysfs_remove;
3852 }
3853
3854 ret = arm_smmu_set_bus_ops(&arm_smmu_ops);
3855 if (ret)
3856 goto err_unregister_device;
3857
3858 return 0;
3859
3860 err_unregister_device:
3861 iommu_device_unregister(&smmu->iommu);
3862 err_sysfs_remove:
3863 iommu_device_sysfs_remove(&smmu->iommu);
3864 return ret;
3865 }
3866
3867 static int arm_smmu_device_remove(struct platform_device *pdev)
3868 {
3869 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3870
3871 arm_smmu_set_bus_ops(NULL);
3872 iommu_device_unregister(&smmu->iommu);
3873 iommu_device_sysfs_remove(&smmu->iommu);
3874 arm_smmu_device_disable(smmu);
3875 iopf_queue_free(smmu->evtq.iopf);
3876
3877 return 0;
3878 }
3879
3880 static void arm_smmu_device_shutdown(struct platform_device *pdev)
3881 {
3882 arm_smmu_device_remove(pdev);
3883 }
3884
3885 static const struct of_device_id arm_smmu_of_match[] = {
3886 { .compatible = "arm,smmu-v3", },
3887 { },
3888 };
3889 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3890
3891 static void arm_smmu_driver_unregister(struct platform_driver *drv)
3892 {
3893 arm_smmu_sva_notifier_synchronize();
3894 platform_driver_unregister(drv);
3895 }
3896
3897 static struct platform_driver arm_smmu_driver = {
3898 .driver = {
3899 .name = "arm-smmu-v3",
3900 .of_match_table = arm_smmu_of_match,
3901 .suppress_bind_attrs = true,
3902 },
3903 .probe = arm_smmu_device_probe,
3904 .remove = arm_smmu_device_remove,
3905 .shutdown = arm_smmu_device_shutdown,
3906 };
3907 module_driver(arm_smmu_driver, platform_driver_register,
3908 arm_smmu_driver_unregister);
3909
3910 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3911 MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3912 MODULE_ALIAS("platform:arm-smmu-v3");
3913 MODULE_LICENSE("GPL v2");