Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
0004  * Author: Joerg Roedel <jroedel@suse.de>
0005  *         Leo Duran <leo.duran@amd.com>
0006  */
0007 
0008 #define pr_fmt(fmt)     "AMD-Vi: " fmt
0009 #define dev_fmt(fmt)    pr_fmt(fmt)
0010 
0011 #include <linux/ratelimit.h>
0012 #include <linux/pci.h>
0013 #include <linux/acpi.h>
0014 #include <linux/amba/bus.h>
0015 #include <linux/platform_device.h>
0016 #include <linux/pci-ats.h>
0017 #include <linux/bitmap.h>
0018 #include <linux/slab.h>
0019 #include <linux/debugfs.h>
0020 #include <linux/scatterlist.h>
0021 #include <linux/dma-map-ops.h>
0022 #include <linux/dma-direct.h>
0023 #include <linux/dma-iommu.h>
0024 #include <linux/iommu-helper.h>
0025 #include <linux/delay.h>
0026 #include <linux/amd-iommu.h>
0027 #include <linux/notifier.h>
0028 #include <linux/export.h>
0029 #include <linux/irq.h>
0030 #include <linux/msi.h>
0031 #include <linux/irqdomain.h>
0032 #include <linux/percpu.h>
0033 #include <linux/io-pgtable.h>
0034 #include <linux/cc_platform.h>
0035 #include <asm/irq_remapping.h>
0036 #include <asm/io_apic.h>
0037 #include <asm/apic.h>
0038 #include <asm/hw_irq.h>
0039 #include <asm/proto.h>
0040 #include <asm/iommu.h>
0041 #include <asm/gart.h>
0042 #include <asm/dma.h>
0043 
0044 #include "amd_iommu.h"
0045 #include "../irq_remapping.h"
0046 
0047 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
0048 
0049 #define LOOP_TIMEOUT    100000
0050 
0051 /* IO virtual address start page frame number */
0052 #define IOVA_START_PFN      (1)
0053 #define IOVA_PFN(addr)      ((addr) >> PAGE_SHIFT)
0054 
0055 /* Reserved IOVA ranges */
0056 #define MSI_RANGE_START     (0xfee00000)
0057 #define MSI_RANGE_END       (0xfeefffff)
0058 #define HT_RANGE_START      (0xfd00000000ULL)
0059 #define HT_RANGE_END        (0xffffffffffULL)
0060 
0061 #define DEFAULT_PGTABLE_LEVEL   PAGE_MODE_3_LEVEL
0062 
0063 static DEFINE_SPINLOCK(pd_bitmap_lock);
0064 
0065 LIST_HEAD(ioapic_map);
0066 LIST_HEAD(hpet_map);
0067 LIST_HEAD(acpihid_map);
0068 
0069 /*
0070  * Domain for untranslated devices - only allocated
0071  * if iommu=pt passed on kernel cmd line.
0072  */
0073 const struct iommu_ops amd_iommu_ops;
0074 
0075 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
0076 int amd_iommu_max_glx_val = -1;
0077 
0078 /*
0079  * general struct to manage commands send to an IOMMU
0080  */
0081 struct iommu_cmd {
0082     u32 data[4];
0083 };
0084 
0085 struct kmem_cache *amd_iommu_irq_cache;
0086 
0087 static void detach_device(struct device *dev);
0088 
0089 /****************************************************************************
0090  *
0091  * Helper functions
0092  *
0093  ****************************************************************************/
0094 
0095 static inline int get_acpihid_device_id(struct device *dev,
0096                     struct acpihid_map_entry **entry)
0097 {
0098     struct acpi_device *adev = ACPI_COMPANION(dev);
0099     struct acpihid_map_entry *p;
0100 
0101     if (!adev)
0102         return -ENODEV;
0103 
0104     list_for_each_entry(p, &acpihid_map, list) {
0105         if (acpi_dev_hid_uid_match(adev, p->hid,
0106                        p->uid[0] ? p->uid : NULL)) {
0107             if (entry)
0108                 *entry = p;
0109             return p->devid;
0110         }
0111     }
0112     return -EINVAL;
0113 }
0114 
0115 static inline int get_device_sbdf_id(struct device *dev)
0116 {
0117     int sbdf;
0118 
0119     if (dev_is_pci(dev))
0120         sbdf = get_pci_sbdf_id(to_pci_dev(dev));
0121     else
0122         sbdf = get_acpihid_device_id(dev, NULL);
0123 
0124     return sbdf;
0125 }
0126 
0127 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
0128 {
0129     struct dev_table_entry *dev_table;
0130     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0131 
0132     BUG_ON(pci_seg == NULL);
0133     dev_table = pci_seg->dev_table;
0134     BUG_ON(dev_table == NULL);
0135 
0136     return dev_table;
0137 }
0138 
0139 static inline u16 get_device_segment(struct device *dev)
0140 {
0141     u16 seg;
0142 
0143     if (dev_is_pci(dev)) {
0144         struct pci_dev *pdev = to_pci_dev(dev);
0145 
0146         seg = pci_domain_nr(pdev->bus);
0147     } else {
0148         u32 devid = get_acpihid_device_id(dev, NULL);
0149 
0150         seg = PCI_SBDF_TO_SEGID(devid);
0151     }
0152 
0153     return seg;
0154 }
0155 
0156 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
0157 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
0158 {
0159     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0160 
0161     pci_seg->rlookup_table[devid] = iommu;
0162 }
0163 
0164 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
0165 {
0166     struct amd_iommu_pci_seg *pci_seg;
0167 
0168     for_each_pci_segment(pci_seg) {
0169         if (pci_seg->id == seg)
0170             return pci_seg->rlookup_table[devid];
0171     }
0172     return NULL;
0173 }
0174 
0175 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
0176 {
0177     u16 seg = get_device_segment(dev);
0178     int devid = get_device_sbdf_id(dev);
0179 
0180     if (devid < 0)
0181         return NULL;
0182     return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
0183 }
0184 
0185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
0186 {
0187     return container_of(dom, struct protection_domain, domain);
0188 }
0189 
0190 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
0191 {
0192     struct iommu_dev_data *dev_data;
0193     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0194 
0195     dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
0196     if (!dev_data)
0197         return NULL;
0198 
0199     spin_lock_init(&dev_data->lock);
0200     dev_data->devid = devid;
0201     ratelimit_default_init(&dev_data->rs);
0202 
0203     llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
0204     return dev_data;
0205 }
0206 
0207 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
0208 {
0209     struct iommu_dev_data *dev_data;
0210     struct llist_node *node;
0211     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0212 
0213     if (llist_empty(&pci_seg->dev_data_list))
0214         return NULL;
0215 
0216     node = pci_seg->dev_data_list.first;
0217     llist_for_each_entry(dev_data, node, dev_data_list) {
0218         if (dev_data->devid == devid)
0219             return dev_data;
0220     }
0221 
0222     return NULL;
0223 }
0224 
0225 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
0226 {
0227     struct amd_iommu *iommu;
0228     struct dev_table_entry *dev_table;
0229     u16 devid = pci_dev_id(pdev);
0230 
0231     if (devid == alias)
0232         return 0;
0233 
0234     iommu = rlookup_amd_iommu(&pdev->dev);
0235     if (!iommu)
0236         return 0;
0237 
0238     amd_iommu_set_rlookup_table(iommu, alias);
0239     dev_table = get_dev_table(iommu);
0240     memcpy(dev_table[alias].data,
0241            dev_table[devid].data,
0242            sizeof(dev_table[alias].data));
0243 
0244     return 0;
0245 }
0246 
0247 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
0248 {
0249     struct pci_dev *pdev;
0250 
0251     if (!dev_is_pci(dev))
0252         return;
0253     pdev = to_pci_dev(dev);
0254 
0255     /*
0256      * The IVRS alias stored in the alias table may not be
0257      * part of the PCI DMA aliases if it's bus differs
0258      * from the original device.
0259      */
0260     clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
0261 
0262     pci_for_each_dma_alias(pdev, clone_alias, NULL);
0263 }
0264 
0265 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
0266 {
0267     struct pci_dev *pdev = to_pci_dev(dev);
0268     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0269     u16 ivrs_alias;
0270 
0271     /* For ACPI HID devices, there are no aliases */
0272     if (!dev_is_pci(dev))
0273         return;
0274 
0275     /*
0276      * Add the IVRS alias to the pci aliases if it is on the same
0277      * bus. The IVRS table may know about a quirk that we don't.
0278      */
0279     ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
0280     if (ivrs_alias != pci_dev_id(pdev) &&
0281         PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
0282         pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
0283 
0284     clone_aliases(iommu, dev);
0285 }
0286 
0287 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
0288 {
0289     struct iommu_dev_data *dev_data;
0290 
0291     dev_data = search_dev_data(iommu, devid);
0292 
0293     if (dev_data == NULL) {
0294         dev_data = alloc_dev_data(iommu, devid);
0295         if (!dev_data)
0296             return NULL;
0297 
0298         if (translation_pre_enabled(iommu))
0299             dev_data->defer_attach = true;
0300     }
0301 
0302     return dev_data;
0303 }
0304 
0305 /*
0306 * Find or create an IOMMU group for a acpihid device.
0307 */
0308 static struct iommu_group *acpihid_device_group(struct device *dev)
0309 {
0310     struct acpihid_map_entry *p, *entry = NULL;
0311     int devid;
0312 
0313     devid = get_acpihid_device_id(dev, &entry);
0314     if (devid < 0)
0315         return ERR_PTR(devid);
0316 
0317     list_for_each_entry(p, &acpihid_map, list) {
0318         if ((devid == p->devid) && p->group)
0319             entry->group = p->group;
0320     }
0321 
0322     if (!entry->group)
0323         entry->group = generic_device_group(dev);
0324     else
0325         iommu_group_ref_get(entry->group);
0326 
0327     return entry->group;
0328 }
0329 
0330 static bool pci_iommuv2_capable(struct pci_dev *pdev)
0331 {
0332     static const int caps[] = {
0333         PCI_EXT_CAP_ID_PRI,
0334         PCI_EXT_CAP_ID_PASID,
0335     };
0336     int i, pos;
0337 
0338     if (!pci_ats_supported(pdev))
0339         return false;
0340 
0341     for (i = 0; i < 2; ++i) {
0342         pos = pci_find_ext_capability(pdev, caps[i]);
0343         if (pos == 0)
0344             return false;
0345     }
0346 
0347     return true;
0348 }
0349 
0350 /*
0351  * This function checks if the driver got a valid device from the caller to
0352  * avoid dereferencing invalid pointers.
0353  */
0354 static bool check_device(struct device *dev)
0355 {
0356     struct amd_iommu_pci_seg *pci_seg;
0357     struct amd_iommu *iommu;
0358     int devid, sbdf;
0359 
0360     if (!dev)
0361         return false;
0362 
0363     sbdf = get_device_sbdf_id(dev);
0364     if (sbdf < 0)
0365         return false;
0366     devid = PCI_SBDF_TO_DEVID(sbdf);
0367 
0368     iommu = rlookup_amd_iommu(dev);
0369     if (!iommu)
0370         return false;
0371 
0372     /* Out of our scope? */
0373     pci_seg = iommu->pci_seg;
0374     if (devid > pci_seg->last_bdf)
0375         return false;
0376 
0377     return true;
0378 }
0379 
0380 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
0381 {
0382     struct iommu_dev_data *dev_data;
0383     int devid, sbdf;
0384 
0385     if (dev_iommu_priv_get(dev))
0386         return 0;
0387 
0388     sbdf = get_device_sbdf_id(dev);
0389     if (sbdf < 0)
0390         return sbdf;
0391 
0392     devid = PCI_SBDF_TO_DEVID(sbdf);
0393     dev_data = find_dev_data(iommu, devid);
0394     if (!dev_data)
0395         return -ENOMEM;
0396 
0397     dev_data->dev = dev;
0398     setup_aliases(iommu, dev);
0399 
0400     /*
0401      * By default we use passthrough mode for IOMMUv2 capable device.
0402      * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
0403      * invalid address), we ignore the capability for the device so
0404      * it'll be forced to go into translation mode.
0405      */
0406     if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
0407         dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
0408         dev_data->iommu_v2 = iommu->is_iommu_v2;
0409     }
0410 
0411     dev_iommu_priv_set(dev, dev_data);
0412 
0413     return 0;
0414 }
0415 
0416 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
0417 {
0418     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
0419     struct dev_table_entry *dev_table = get_dev_table(iommu);
0420     int devid, sbdf;
0421 
0422     sbdf = get_device_sbdf_id(dev);
0423     if (sbdf < 0)
0424         return;
0425 
0426     devid = PCI_SBDF_TO_DEVID(sbdf);
0427     pci_seg->rlookup_table[devid] = NULL;
0428     memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
0429 
0430     setup_aliases(iommu, dev);
0431 }
0432 
0433 static void amd_iommu_uninit_device(struct device *dev)
0434 {
0435     struct iommu_dev_data *dev_data;
0436 
0437     dev_data = dev_iommu_priv_get(dev);
0438     if (!dev_data)
0439         return;
0440 
0441     if (dev_data->domain)
0442         detach_device(dev);
0443 
0444     dev_iommu_priv_set(dev, NULL);
0445 
0446     /*
0447      * We keep dev_data around for unplugged devices and reuse it when the
0448      * device is re-plugged - not doing so would introduce a ton of races.
0449      */
0450 }
0451 
0452 /****************************************************************************
0453  *
0454  * Interrupt handling functions
0455  *
0456  ****************************************************************************/
0457 
0458 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
0459 {
0460     int i;
0461     struct dev_table_entry *dev_table = get_dev_table(iommu);
0462 
0463     for (i = 0; i < 4; ++i)
0464         pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
0465 }
0466 
0467 static void dump_command(unsigned long phys_addr)
0468 {
0469     struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
0470     int i;
0471 
0472     for (i = 0; i < 4; ++i)
0473         pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
0474 }
0475 
0476 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
0477 {
0478     struct iommu_dev_data *dev_data = NULL;
0479     int devid, vmg_tag, flags;
0480     struct pci_dev *pdev;
0481     u64 spa;
0482 
0483     devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
0484     vmg_tag = (event[1]) & 0xFFFF;
0485     flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
0486     spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
0487 
0488     pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
0489                        devid & 0xff);
0490     if (pdev)
0491         dev_data = dev_iommu_priv_get(&pdev->dev);
0492 
0493     if (dev_data) {
0494         if (__ratelimit(&dev_data->rs)) {
0495             pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
0496                 vmg_tag, spa, flags);
0497         }
0498     } else {
0499         pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
0500             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0501             vmg_tag, spa, flags);
0502     }
0503 
0504     if (pdev)
0505         pci_dev_put(pdev);
0506 }
0507 
0508 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
0509 {
0510     struct iommu_dev_data *dev_data = NULL;
0511     int devid, flags_rmp, vmg_tag, flags;
0512     struct pci_dev *pdev;
0513     u64 gpa;
0514 
0515     devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
0516     flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
0517     vmg_tag   = (event[1]) & 0xFFFF;
0518     flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
0519     gpa       = ((u64)event[3] << 32) | event[2];
0520 
0521     pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
0522                        devid & 0xff);
0523     if (pdev)
0524         dev_data = dev_iommu_priv_get(&pdev->dev);
0525 
0526     if (dev_data) {
0527         if (__ratelimit(&dev_data->rs)) {
0528             pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
0529                 vmg_tag, gpa, flags_rmp, flags);
0530         }
0531     } else {
0532         pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
0533             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0534             vmg_tag, gpa, flags_rmp, flags);
0535     }
0536 
0537     if (pdev)
0538         pci_dev_put(pdev);
0539 }
0540 
0541 #define IS_IOMMU_MEM_TRANSACTION(flags)     \
0542     (((flags) & EVENT_FLAG_I) == 0)
0543 
0544 #define IS_WRITE_REQUEST(flags)         \
0545     ((flags) & EVENT_FLAG_RW)
0546 
0547 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
0548                     u16 devid, u16 domain_id,
0549                     u64 address, int flags)
0550 {
0551     struct iommu_dev_data *dev_data = NULL;
0552     struct pci_dev *pdev;
0553 
0554     pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
0555                        devid & 0xff);
0556     if (pdev)
0557         dev_data = dev_iommu_priv_get(&pdev->dev);
0558 
0559     if (dev_data) {
0560         /*
0561          * If this is a DMA fault (for which the I(nterrupt)
0562          * bit will be unset), allow report_iommu_fault() to
0563          * prevent logging it.
0564          */
0565         if (IS_IOMMU_MEM_TRANSACTION(flags)) {
0566             if (!report_iommu_fault(&dev_data->domain->domain,
0567                         &pdev->dev, address,
0568                         IS_WRITE_REQUEST(flags) ?
0569                             IOMMU_FAULT_WRITE :
0570                             IOMMU_FAULT_READ))
0571                 goto out;
0572         }
0573 
0574         if (__ratelimit(&dev_data->rs)) {
0575             pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
0576                 domain_id, address, flags);
0577         }
0578     } else {
0579         pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
0580             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0581             domain_id, address, flags);
0582     }
0583 
0584 out:
0585     if (pdev)
0586         pci_dev_put(pdev);
0587 }
0588 
0589 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
0590 {
0591     struct device *dev = iommu->iommu.dev;
0592     int type, devid, flags, tag;
0593     volatile u32 *event = __evt;
0594     int count = 0;
0595     u64 address;
0596     u32 pasid;
0597 
0598 retry:
0599     type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
0600     devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
0601     pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
0602           (event[1] & EVENT_DOMID_MASK_LO);
0603     flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
0604     address = (u64)(((u64)event[3]) << 32) | event[2];
0605 
0606     if (type == 0) {
0607         /* Did we hit the erratum? */
0608         if (++count == LOOP_TIMEOUT) {
0609             pr_err("No event written to event log\n");
0610             return;
0611         }
0612         udelay(1);
0613         goto retry;
0614     }
0615 
0616     if (type == EVENT_TYPE_IO_FAULT) {
0617         amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
0618         return;
0619     }
0620 
0621     switch (type) {
0622     case EVENT_TYPE_ILL_DEV:
0623         dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
0624             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0625             pasid, address, flags);
0626         dump_dte_entry(iommu, devid);
0627         break;
0628     case EVENT_TYPE_DEV_TAB_ERR:
0629         dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
0630             "address=0x%llx flags=0x%04x]\n",
0631             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0632             address, flags);
0633         break;
0634     case EVENT_TYPE_PAGE_TAB_ERR:
0635         dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
0636             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0637             pasid, address, flags);
0638         break;
0639     case EVENT_TYPE_ILL_CMD:
0640         dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
0641         dump_command(address);
0642         break;
0643     case EVENT_TYPE_CMD_HARD_ERR:
0644         dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
0645             address, flags);
0646         break;
0647     case EVENT_TYPE_IOTLB_INV_TO:
0648         dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
0649             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0650             address);
0651         break;
0652     case EVENT_TYPE_INV_DEV_REQ:
0653         dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
0654             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0655             pasid, address, flags);
0656         break;
0657     case EVENT_TYPE_RMP_FAULT:
0658         amd_iommu_report_rmp_fault(iommu, event);
0659         break;
0660     case EVENT_TYPE_RMP_HW_ERR:
0661         amd_iommu_report_rmp_hw_error(iommu, event);
0662         break;
0663     case EVENT_TYPE_INV_PPR_REQ:
0664         pasid = PPR_PASID(*((u64 *)__evt));
0665         tag = event[1] & 0x03FF;
0666         dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
0667             iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
0668             pasid, address, flags, tag);
0669         break;
0670     default:
0671         dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
0672             event[0], event[1], event[2], event[3]);
0673     }
0674 
0675     memset(__evt, 0, 4 * sizeof(u32));
0676 }
0677 
0678 static void iommu_poll_events(struct amd_iommu *iommu)
0679 {
0680     u32 head, tail;
0681 
0682     head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
0683     tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
0684 
0685     while (head != tail) {
0686         iommu_print_event(iommu, iommu->evt_buf + head);
0687         head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
0688     }
0689 
0690     writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
0691 }
0692 
0693 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
0694 {
0695     struct amd_iommu_fault fault;
0696 
0697     if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
0698         pr_err_ratelimited("Unknown PPR request received\n");
0699         return;
0700     }
0701 
0702     fault.address   = raw[1];
0703     fault.pasid     = PPR_PASID(raw[0]);
0704     fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
0705     fault.tag       = PPR_TAG(raw[0]);
0706     fault.flags     = PPR_FLAGS(raw[0]);
0707 
0708     atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
0709 }
0710 
0711 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
0712 {
0713     u32 head, tail;
0714 
0715     if (iommu->ppr_log == NULL)
0716         return;
0717 
0718     head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
0719     tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
0720 
0721     while (head != tail) {
0722         volatile u64 *raw;
0723         u64 entry[2];
0724         int i;
0725 
0726         raw = (u64 *)(iommu->ppr_log + head);
0727 
0728         /*
0729          * Hardware bug: Interrupt may arrive before the entry is
0730          * written to memory. If this happens we need to wait for the
0731          * entry to arrive.
0732          */
0733         for (i = 0; i < LOOP_TIMEOUT; ++i) {
0734             if (PPR_REQ_TYPE(raw[0]) != 0)
0735                 break;
0736             udelay(1);
0737         }
0738 
0739         /* Avoid memcpy function-call overhead */
0740         entry[0] = raw[0];
0741         entry[1] = raw[1];
0742 
0743         /*
0744          * To detect the hardware bug we need to clear the entry
0745          * back to zero.
0746          */
0747         raw[0] = raw[1] = 0UL;
0748 
0749         /* Update head pointer of hardware ring-buffer */
0750         head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
0751         writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
0752 
0753         /* Handle PPR entry */
0754         iommu_handle_ppr_entry(iommu, entry);
0755 
0756         /* Refresh ring-buffer information */
0757         head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
0758         tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
0759     }
0760 }
0761 
0762 #ifdef CONFIG_IRQ_REMAP
0763 static int (*iommu_ga_log_notifier)(u32);
0764 
0765 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
0766 {
0767     iommu_ga_log_notifier = notifier;
0768 
0769     return 0;
0770 }
0771 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
0772 
0773 static void iommu_poll_ga_log(struct amd_iommu *iommu)
0774 {
0775     u32 head, tail, cnt = 0;
0776 
0777     if (iommu->ga_log == NULL)
0778         return;
0779 
0780     head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
0781     tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
0782 
0783     while (head != tail) {
0784         volatile u64 *raw;
0785         u64 log_entry;
0786 
0787         raw = (u64 *)(iommu->ga_log + head);
0788         cnt++;
0789 
0790         /* Avoid memcpy function-call overhead */
0791         log_entry = *raw;
0792 
0793         /* Update head pointer of hardware ring-buffer */
0794         head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
0795         writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
0796 
0797         /* Handle GA entry */
0798         switch (GA_REQ_TYPE(log_entry)) {
0799         case GA_GUEST_NR:
0800             if (!iommu_ga_log_notifier)
0801                 break;
0802 
0803             pr_debug("%s: devid=%#x, ga_tag=%#x\n",
0804                  __func__, GA_DEVID(log_entry),
0805                  GA_TAG(log_entry));
0806 
0807             if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
0808                 pr_err("GA log notifier failed.\n");
0809             break;
0810         default:
0811             break;
0812         }
0813     }
0814 }
0815 
0816 static void
0817 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
0818 {
0819     if (!irq_remapping_enabled || !dev_is_pci(dev) ||
0820         pci_dev_has_special_msi_domain(to_pci_dev(dev)))
0821         return;
0822 
0823     dev_set_msi_domain(dev, iommu->msi_domain);
0824 }
0825 
0826 #else /* CONFIG_IRQ_REMAP */
0827 static inline void
0828 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
0829 #endif /* !CONFIG_IRQ_REMAP */
0830 
0831 #define AMD_IOMMU_INT_MASK  \
0832     (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
0833      MMIO_STATUS_EVT_INT_MASK | \
0834      MMIO_STATUS_PPR_INT_MASK | \
0835      MMIO_STATUS_GALOG_INT_MASK)
0836 
0837 irqreturn_t amd_iommu_int_thread(int irq, void *data)
0838 {
0839     struct amd_iommu *iommu = (struct amd_iommu *) data;
0840     u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
0841 
0842     while (status & AMD_IOMMU_INT_MASK) {
0843         /* Enable interrupt sources again */
0844         writel(AMD_IOMMU_INT_MASK,
0845             iommu->mmio_base + MMIO_STATUS_OFFSET);
0846 
0847         if (status & MMIO_STATUS_EVT_INT_MASK) {
0848             pr_devel("Processing IOMMU Event Log\n");
0849             iommu_poll_events(iommu);
0850         }
0851 
0852         if (status & MMIO_STATUS_PPR_INT_MASK) {
0853             pr_devel("Processing IOMMU PPR Log\n");
0854             iommu_poll_ppr_log(iommu);
0855         }
0856 
0857 #ifdef CONFIG_IRQ_REMAP
0858         if (status & MMIO_STATUS_GALOG_INT_MASK) {
0859             pr_devel("Processing IOMMU GA Log\n");
0860             iommu_poll_ga_log(iommu);
0861         }
0862 #endif
0863 
0864         if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
0865             pr_info_ratelimited("IOMMU event log overflow\n");
0866             amd_iommu_restart_event_logging(iommu);
0867         }
0868 
0869         /*
0870          * Hardware bug: ERBT1312
0871          * When re-enabling interrupt (by writing 1
0872          * to clear the bit), the hardware might also try to set
0873          * the interrupt bit in the event status register.
0874          * In this scenario, the bit will be set, and disable
0875          * subsequent interrupts.
0876          *
0877          * Workaround: The IOMMU driver should read back the
0878          * status register and check if the interrupt bits are cleared.
0879          * If not, driver will need to go through the interrupt handler
0880          * again and re-clear the bits
0881          */
0882         status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
0883     }
0884     return IRQ_HANDLED;
0885 }
0886 
0887 irqreturn_t amd_iommu_int_handler(int irq, void *data)
0888 {
0889     return IRQ_WAKE_THREAD;
0890 }
0891 
0892 /****************************************************************************
0893  *
0894  * IOMMU command queuing functions
0895  *
0896  ****************************************************************************/
0897 
0898 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
0899 {
0900     int i = 0;
0901 
0902     while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
0903         udelay(1);
0904         i += 1;
0905     }
0906 
0907     if (i == LOOP_TIMEOUT) {
0908         pr_alert("Completion-Wait loop timed out\n");
0909         return -EIO;
0910     }
0911 
0912     return 0;
0913 }
0914 
0915 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
0916                    struct iommu_cmd *cmd)
0917 {
0918     u8 *target;
0919     u32 tail;
0920 
0921     /* Copy command to buffer */
0922     tail = iommu->cmd_buf_tail;
0923     target = iommu->cmd_buf + tail;
0924     memcpy(target, cmd, sizeof(*cmd));
0925 
0926     tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
0927     iommu->cmd_buf_tail = tail;
0928 
0929     /* Tell the IOMMU about it */
0930     writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
0931 }
0932 
0933 static void build_completion_wait(struct iommu_cmd *cmd,
0934                   struct amd_iommu *iommu,
0935                   u64 data)
0936 {
0937     u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
0938 
0939     memset(cmd, 0, sizeof(*cmd));
0940     cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
0941     cmd->data[1] = upper_32_bits(paddr);
0942     cmd->data[2] = lower_32_bits(data);
0943     cmd->data[3] = upper_32_bits(data);
0944     CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
0945 }
0946 
0947 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
0948 {
0949     memset(cmd, 0, sizeof(*cmd));
0950     cmd->data[0] = devid;
0951     CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
0952 }
0953 
0954 /*
0955  * Builds an invalidation address which is suitable for one page or multiple
0956  * pages. Sets the size bit (S) as needed is more than one page is flushed.
0957  */
0958 static inline u64 build_inv_address(u64 address, size_t size)
0959 {
0960     u64 pages, end, msb_diff;
0961 
0962     pages = iommu_num_pages(address, size, PAGE_SIZE);
0963 
0964     if (pages == 1)
0965         return address & PAGE_MASK;
0966 
0967     end = address + size - 1;
0968 
0969     /*
0970      * msb_diff would hold the index of the most significant bit that
0971      * flipped between the start and end.
0972      */
0973     msb_diff = fls64(end ^ address) - 1;
0974 
0975     /*
0976      * Bits 63:52 are sign extended. If for some reason bit 51 is different
0977      * between the start and the end, invalidate everything.
0978      */
0979     if (unlikely(msb_diff > 51)) {
0980         address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
0981     } else {
0982         /*
0983          * The msb-bit must be clear on the address. Just set all the
0984          * lower bits.
0985          */
0986         address |= (1ull << msb_diff) - 1;
0987     }
0988 
0989     /* Clear bits 11:0 */
0990     address &= PAGE_MASK;
0991 
0992     /* Set the size bit - we flush more than one 4kb page */
0993     return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
0994 }
0995 
0996 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
0997                   size_t size, u16 domid, int pde)
0998 {
0999     u64 inv_address = build_inv_address(address, size);
1000 
1001     memset(cmd, 0, sizeof(*cmd));
1002     cmd->data[1] |= domid;
1003     cmd->data[2]  = lower_32_bits(inv_address);
1004     cmd->data[3]  = upper_32_bits(inv_address);
1005     CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1006     if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1007         cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1008 }
1009 
1010 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1011                   u64 address, size_t size)
1012 {
1013     u64 inv_address = build_inv_address(address, size);
1014 
1015     memset(cmd, 0, sizeof(*cmd));
1016     cmd->data[0]  = devid;
1017     cmd->data[0] |= (qdep & 0xff) << 24;
1018     cmd->data[1]  = devid;
1019     cmd->data[2]  = lower_32_bits(inv_address);
1020     cmd->data[3]  = upper_32_bits(inv_address);
1021     CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1022 }
1023 
1024 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1025                   u64 address, bool size)
1026 {
1027     memset(cmd, 0, sizeof(*cmd));
1028 
1029     address &= ~(0xfffULL);
1030 
1031     cmd->data[0]  = pasid;
1032     cmd->data[1]  = domid;
1033     cmd->data[2]  = lower_32_bits(address);
1034     cmd->data[3]  = upper_32_bits(address);
1035     cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1036     cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1037     if (size)
1038         cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1039     CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1040 }
1041 
1042 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1043                   int qdep, u64 address, bool size)
1044 {
1045     memset(cmd, 0, sizeof(*cmd));
1046 
1047     address &= ~(0xfffULL);
1048 
1049     cmd->data[0]  = devid;
1050     cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1051     cmd->data[0] |= (qdep  & 0xff) << 24;
1052     cmd->data[1]  = devid;
1053     cmd->data[1] |= (pasid & 0xff) << 16;
1054     cmd->data[2]  = lower_32_bits(address);
1055     cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1056     cmd->data[3]  = upper_32_bits(address);
1057     if (size)
1058         cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1059     CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1060 }
1061 
1062 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1063                    int status, int tag, bool gn)
1064 {
1065     memset(cmd, 0, sizeof(*cmd));
1066 
1067     cmd->data[0]  = devid;
1068     if (gn) {
1069         cmd->data[1]  = pasid;
1070         cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1071     }
1072     cmd->data[3]  = tag & 0x1ff;
1073     cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1074 
1075     CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1076 }
1077 
1078 static void build_inv_all(struct iommu_cmd *cmd)
1079 {
1080     memset(cmd, 0, sizeof(*cmd));
1081     CMD_SET_TYPE(cmd, CMD_INV_ALL);
1082 }
1083 
1084 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1085 {
1086     memset(cmd, 0, sizeof(*cmd));
1087     cmd->data[0] = devid;
1088     CMD_SET_TYPE(cmd, CMD_INV_IRT);
1089 }
1090 
1091 /*
1092  * Writes the command to the IOMMUs command buffer and informs the
1093  * hardware about the new command.
1094  */
1095 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1096                       struct iommu_cmd *cmd,
1097                       bool sync)
1098 {
1099     unsigned int count = 0;
1100     u32 left, next_tail;
1101 
1102     next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1103 again:
1104     left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1105 
1106     if (left <= 0x20) {
1107         /* Skip udelay() the first time around */
1108         if (count++) {
1109             if (count == LOOP_TIMEOUT) {
1110                 pr_err("Command buffer timeout\n");
1111                 return -EIO;
1112             }
1113 
1114             udelay(1);
1115         }
1116 
1117         /* Update head and recheck remaining space */
1118         iommu->cmd_buf_head = readl(iommu->mmio_base +
1119                         MMIO_CMD_HEAD_OFFSET);
1120 
1121         goto again;
1122     }
1123 
1124     copy_cmd_to_buffer(iommu, cmd);
1125 
1126     /* Do we need to make sure all commands are processed? */
1127     iommu->need_sync = sync;
1128 
1129     return 0;
1130 }
1131 
1132 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1133                     struct iommu_cmd *cmd,
1134                     bool sync)
1135 {
1136     unsigned long flags;
1137     int ret;
1138 
1139     raw_spin_lock_irqsave(&iommu->lock, flags);
1140     ret = __iommu_queue_command_sync(iommu, cmd, sync);
1141     raw_spin_unlock_irqrestore(&iommu->lock, flags);
1142 
1143     return ret;
1144 }
1145 
1146 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1147 {
1148     return iommu_queue_command_sync(iommu, cmd, true);
1149 }
1150 
1151 /*
1152  * This function queues a completion wait command into the command
1153  * buffer of an IOMMU
1154  */
1155 static int iommu_completion_wait(struct amd_iommu *iommu)
1156 {
1157     struct iommu_cmd cmd;
1158     unsigned long flags;
1159     int ret;
1160     u64 data;
1161 
1162     if (!iommu->need_sync)
1163         return 0;
1164 
1165     raw_spin_lock_irqsave(&iommu->lock, flags);
1166 
1167     data = ++iommu->cmd_sem_val;
1168     build_completion_wait(&cmd, iommu, data);
1169 
1170     ret = __iommu_queue_command_sync(iommu, &cmd, false);
1171     if (ret)
1172         goto out_unlock;
1173 
1174     ret = wait_on_sem(iommu, data);
1175 
1176 out_unlock:
1177     raw_spin_unlock_irqrestore(&iommu->lock, flags);
1178 
1179     return ret;
1180 }
1181 
1182 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1183 {
1184     struct iommu_cmd cmd;
1185 
1186     build_inv_dte(&cmd, devid);
1187 
1188     return iommu_queue_command(iommu, &cmd);
1189 }
1190 
1191 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1192 {
1193     u32 devid;
1194     u16 last_bdf = iommu->pci_seg->last_bdf;
1195 
1196     for (devid = 0; devid <= last_bdf; ++devid)
1197         iommu_flush_dte(iommu, devid);
1198 
1199     iommu_completion_wait(iommu);
1200 }
1201 
1202 /*
1203  * This function uses heavy locking and may disable irqs for some time. But
1204  * this is no issue because it is only called during resume.
1205  */
1206 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1207 {
1208     u32 dom_id;
1209     u16 last_bdf = iommu->pci_seg->last_bdf;
1210 
1211     for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1212         struct iommu_cmd cmd;
1213         build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1214                       dom_id, 1);
1215         iommu_queue_command(iommu, &cmd);
1216     }
1217 
1218     iommu_completion_wait(iommu);
1219 }
1220 
1221 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1222 {
1223     struct iommu_cmd cmd;
1224 
1225     build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1226                   dom_id, 1);
1227     iommu_queue_command(iommu, &cmd);
1228 
1229     iommu_completion_wait(iommu);
1230 }
1231 
1232 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1233 {
1234     struct iommu_cmd cmd;
1235 
1236     build_inv_all(&cmd);
1237 
1238     iommu_queue_command(iommu, &cmd);
1239     iommu_completion_wait(iommu);
1240 }
1241 
1242 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1243 {
1244     struct iommu_cmd cmd;
1245 
1246     build_inv_irt(&cmd, devid);
1247 
1248     iommu_queue_command(iommu, &cmd);
1249 }
1250 
1251 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1252 {
1253     u32 devid;
1254     u16 last_bdf = iommu->pci_seg->last_bdf;
1255 
1256     for (devid = 0; devid <= last_bdf; devid++)
1257         iommu_flush_irt(iommu, devid);
1258 
1259     iommu_completion_wait(iommu);
1260 }
1261 
1262 void iommu_flush_all_caches(struct amd_iommu *iommu)
1263 {
1264     if (iommu_feature(iommu, FEATURE_IA)) {
1265         amd_iommu_flush_all(iommu);
1266     } else {
1267         amd_iommu_flush_dte_all(iommu);
1268         amd_iommu_flush_irt_all(iommu);
1269         amd_iommu_flush_tlb_all(iommu);
1270     }
1271 }
1272 
1273 /*
1274  * Command send function for flushing on-device TLB
1275  */
1276 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1277                   u64 address, size_t size)
1278 {
1279     struct amd_iommu *iommu;
1280     struct iommu_cmd cmd;
1281     int qdep;
1282 
1283     qdep     = dev_data->ats.qdep;
1284     iommu    = rlookup_amd_iommu(dev_data->dev);
1285     if (!iommu)
1286         return -EINVAL;
1287 
1288     build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1289 
1290     return iommu_queue_command(iommu, &cmd);
1291 }
1292 
1293 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1294 {
1295     struct amd_iommu *iommu = data;
1296 
1297     return iommu_flush_dte(iommu, alias);
1298 }
1299 
1300 /*
1301  * Command send function for invalidating a device table entry
1302  */
1303 static int device_flush_dte(struct iommu_dev_data *dev_data)
1304 {
1305     struct amd_iommu *iommu;
1306     struct pci_dev *pdev = NULL;
1307     struct amd_iommu_pci_seg *pci_seg;
1308     u16 alias;
1309     int ret;
1310 
1311     iommu = rlookup_amd_iommu(dev_data->dev);
1312     if (!iommu)
1313         return -EINVAL;
1314 
1315     if (dev_is_pci(dev_data->dev))
1316         pdev = to_pci_dev(dev_data->dev);
1317 
1318     if (pdev)
1319         ret = pci_for_each_dma_alias(pdev,
1320                          device_flush_dte_alias, iommu);
1321     else
1322         ret = iommu_flush_dte(iommu, dev_data->devid);
1323     if (ret)
1324         return ret;
1325 
1326     pci_seg = iommu->pci_seg;
1327     alias = pci_seg->alias_table[dev_data->devid];
1328     if (alias != dev_data->devid) {
1329         ret = iommu_flush_dte(iommu, alias);
1330         if (ret)
1331             return ret;
1332     }
1333 
1334     if (dev_data->ats.enabled)
1335         ret = device_flush_iotlb(dev_data, 0, ~0UL);
1336 
1337     return ret;
1338 }
1339 
1340 /*
1341  * TLB invalidation function which is called from the mapping functions.
1342  * It invalidates a single PTE if the range to flush is within a single
1343  * page. Otherwise it flushes the whole TLB of the IOMMU.
1344  */
1345 static void __domain_flush_pages(struct protection_domain *domain,
1346                  u64 address, size_t size, int pde)
1347 {
1348     struct iommu_dev_data *dev_data;
1349     struct iommu_cmd cmd;
1350     int ret = 0, i;
1351 
1352     build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1353 
1354     for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1355         if (!domain->dev_iommu[i])
1356             continue;
1357 
1358         /*
1359          * Devices of this domain are behind this IOMMU
1360          * We need a TLB flush
1361          */
1362         ret |= iommu_queue_command(amd_iommus[i], &cmd);
1363     }
1364 
1365     list_for_each_entry(dev_data, &domain->dev_list, list) {
1366 
1367         if (!dev_data->ats.enabled)
1368             continue;
1369 
1370         ret |= device_flush_iotlb(dev_data, address, size);
1371     }
1372 
1373     WARN_ON(ret);
1374 }
1375 
1376 static void domain_flush_pages(struct protection_domain *domain,
1377                    u64 address, size_t size, int pde)
1378 {
1379     if (likely(!amd_iommu_np_cache)) {
1380         __domain_flush_pages(domain, address, size, pde);
1381         return;
1382     }
1383 
1384     /*
1385      * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1386      * In such setups it is best to avoid flushes of ranges which are not
1387      * naturally aligned, since it would lead to flushes of unmodified
1388      * PTEs. Such flushes would require the hypervisor to do more work than
1389      * necessary. Therefore, perform repeated flushes of aligned ranges
1390      * until you cover the range. Each iteration flushes the smaller
1391      * between the natural alignment of the address that we flush and the
1392      * greatest naturally aligned region that fits in the range.
1393      */
1394     while (size != 0) {
1395         int addr_alignment = __ffs(address);
1396         int size_alignment = __fls(size);
1397         int min_alignment;
1398         size_t flush_size;
1399 
1400         /*
1401          * size is always non-zero, but address might be zero, causing
1402          * addr_alignment to be negative. As the casting of the
1403          * argument in __ffs(address) to long might trim the high bits
1404          * of the address on x86-32, cast to long when doing the check.
1405          */
1406         if (likely((unsigned long)address != 0))
1407             min_alignment = min(addr_alignment, size_alignment);
1408         else
1409             min_alignment = size_alignment;
1410 
1411         flush_size = 1ul << min_alignment;
1412 
1413         __domain_flush_pages(domain, address, flush_size, pde);
1414         address += flush_size;
1415         size -= flush_size;
1416     }
1417 }
1418 
1419 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1420 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1421 {
1422     domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1423 }
1424 
1425 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1426 {
1427     int i;
1428 
1429     for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1430         if (domain && !domain->dev_iommu[i])
1431             continue;
1432 
1433         /*
1434          * Devices of this domain are behind this IOMMU
1435          * We need to wait for completion of all commands.
1436          */
1437         iommu_completion_wait(amd_iommus[i]);
1438     }
1439 }
1440 
1441 /* Flush the not present cache if it exists */
1442 static void domain_flush_np_cache(struct protection_domain *domain,
1443         dma_addr_t iova, size_t size)
1444 {
1445     if (unlikely(amd_iommu_np_cache)) {
1446         unsigned long flags;
1447 
1448         spin_lock_irqsave(&domain->lock, flags);
1449         domain_flush_pages(domain, iova, size, 1);
1450         amd_iommu_domain_flush_complete(domain);
1451         spin_unlock_irqrestore(&domain->lock, flags);
1452     }
1453 }
1454 
1455 
1456 /*
1457  * This function flushes the DTEs for all devices in domain
1458  */
1459 static void domain_flush_devices(struct protection_domain *domain)
1460 {
1461     struct iommu_dev_data *dev_data;
1462 
1463     list_for_each_entry(dev_data, &domain->dev_list, list)
1464         device_flush_dte(dev_data);
1465 }
1466 
1467 /****************************************************************************
1468  *
1469  * The next functions belong to the domain allocation. A domain is
1470  * allocated for every IOMMU as the default domain. If device isolation
1471  * is enabled, every device get its own domain. The most important thing
1472  * about domains is the page table mapping the DMA address space they
1473  * contain.
1474  *
1475  ****************************************************************************/
1476 
1477 static u16 domain_id_alloc(void)
1478 {
1479     int id;
1480 
1481     spin_lock(&pd_bitmap_lock);
1482     id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1483     BUG_ON(id == 0);
1484     if (id > 0 && id < MAX_DOMAIN_ID)
1485         __set_bit(id, amd_iommu_pd_alloc_bitmap);
1486     else
1487         id = 0;
1488     spin_unlock(&pd_bitmap_lock);
1489 
1490     return id;
1491 }
1492 
1493 static void domain_id_free(int id)
1494 {
1495     spin_lock(&pd_bitmap_lock);
1496     if (id > 0 && id < MAX_DOMAIN_ID)
1497         __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1498     spin_unlock(&pd_bitmap_lock);
1499 }
1500 
1501 static void free_gcr3_tbl_level1(u64 *tbl)
1502 {
1503     u64 *ptr;
1504     int i;
1505 
1506     for (i = 0; i < 512; ++i) {
1507         if (!(tbl[i] & GCR3_VALID))
1508             continue;
1509 
1510         ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1511 
1512         free_page((unsigned long)ptr);
1513     }
1514 }
1515 
1516 static void free_gcr3_tbl_level2(u64 *tbl)
1517 {
1518     u64 *ptr;
1519     int i;
1520 
1521     for (i = 0; i < 512; ++i) {
1522         if (!(tbl[i] & GCR3_VALID))
1523             continue;
1524 
1525         ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1526 
1527         free_gcr3_tbl_level1(ptr);
1528     }
1529 }
1530 
1531 static void free_gcr3_table(struct protection_domain *domain)
1532 {
1533     if (domain->glx == 2)
1534         free_gcr3_tbl_level2(domain->gcr3_tbl);
1535     else if (domain->glx == 1)
1536         free_gcr3_tbl_level1(domain->gcr3_tbl);
1537     else
1538         BUG_ON(domain->glx != 0);
1539 
1540     free_page((unsigned long)domain->gcr3_tbl);
1541 }
1542 
1543 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1544               struct protection_domain *domain, bool ats, bool ppr)
1545 {
1546     u64 pte_root = 0;
1547     u64 flags = 0;
1548     u32 old_domid;
1549     struct dev_table_entry *dev_table = get_dev_table(iommu);
1550 
1551     if (domain->iop.mode != PAGE_MODE_NONE)
1552         pte_root = iommu_virt_to_phys(domain->iop.root);
1553 
1554     pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1555             << DEV_ENTRY_MODE_SHIFT;
1556 
1557     pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1558 
1559     /*
1560      * When SNP is enabled, Only set TV bit when IOMMU
1561      * page translation is in use.
1562      */
1563     if (!amd_iommu_snp_en || (domain->id != 0))
1564         pte_root |= DTE_FLAG_TV;
1565 
1566     flags = dev_table[devid].data[1];
1567 
1568     if (ats)
1569         flags |= DTE_FLAG_IOTLB;
1570 
1571     if (ppr) {
1572         if (iommu_feature(iommu, FEATURE_EPHSUP))
1573             pte_root |= 1ULL << DEV_ENTRY_PPR;
1574     }
1575 
1576     if (domain->flags & PD_IOMMUV2_MASK) {
1577         u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1578         u64 glx  = domain->glx;
1579         u64 tmp;
1580 
1581         pte_root |= DTE_FLAG_GV;
1582         pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1583 
1584         /* First mask out possible old values for GCR3 table */
1585         tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1586         flags    &= ~tmp;
1587 
1588         tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1589         flags    &= ~tmp;
1590 
1591         /* Encode GCR3 table into DTE */
1592         tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1593         pte_root |= tmp;
1594 
1595         tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1596         flags    |= tmp;
1597 
1598         tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1599         flags    |= tmp;
1600     }
1601 
1602     flags &= ~DEV_DOMID_MASK;
1603     flags |= domain->id;
1604 
1605     old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1606     dev_table[devid].data[1]  = flags;
1607     dev_table[devid].data[0]  = pte_root;
1608 
1609     /*
1610      * A kdump kernel might be replacing a domain ID that was copied from
1611      * the previous kernel--if so, it needs to flush the translation cache
1612      * entries for the old domain ID that is being overwritten
1613      */
1614     if (old_domid) {
1615         amd_iommu_flush_tlb_domid(iommu, old_domid);
1616     }
1617 }
1618 
1619 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1620 {
1621     struct dev_table_entry *dev_table = get_dev_table(iommu);
1622 
1623     /* remove entry from the device table seen by the hardware */
1624     dev_table[devid].data[0]  = DTE_FLAG_V;
1625 
1626     if (!amd_iommu_snp_en)
1627         dev_table[devid].data[0] |= DTE_FLAG_TV;
1628 
1629     dev_table[devid].data[1] &= DTE_FLAG_MASK;
1630 
1631     amd_iommu_apply_erratum_63(iommu, devid);
1632 }
1633 
1634 static void do_attach(struct iommu_dev_data *dev_data,
1635               struct protection_domain *domain)
1636 {
1637     struct amd_iommu *iommu;
1638     bool ats;
1639 
1640     iommu = rlookup_amd_iommu(dev_data->dev);
1641     if (!iommu)
1642         return;
1643     ats   = dev_data->ats.enabled;
1644 
1645     /* Update data structures */
1646     dev_data->domain = domain;
1647     list_add(&dev_data->list, &domain->dev_list);
1648 
1649     /* Do reference counting */
1650     domain->dev_iommu[iommu->index] += 1;
1651     domain->dev_cnt                 += 1;
1652 
1653     /* Update device table */
1654     set_dte_entry(iommu, dev_data->devid, domain,
1655               ats, dev_data->iommu_v2);
1656     clone_aliases(iommu, dev_data->dev);
1657 
1658     device_flush_dte(dev_data);
1659 }
1660 
1661 static void do_detach(struct iommu_dev_data *dev_data)
1662 {
1663     struct protection_domain *domain = dev_data->domain;
1664     struct amd_iommu *iommu;
1665 
1666     iommu = rlookup_amd_iommu(dev_data->dev);
1667     if (!iommu)
1668         return;
1669 
1670     /* Update data structures */
1671     dev_data->domain = NULL;
1672     list_del(&dev_data->list);
1673     clear_dte_entry(iommu, dev_data->devid);
1674     clone_aliases(iommu, dev_data->dev);
1675 
1676     /* Flush the DTE entry */
1677     device_flush_dte(dev_data);
1678 
1679     /* Flush IOTLB */
1680     amd_iommu_domain_flush_tlb_pde(domain);
1681 
1682     /* Wait for the flushes to finish */
1683     amd_iommu_domain_flush_complete(domain);
1684 
1685     /* decrease reference counters - needs to happen after the flushes */
1686     domain->dev_iommu[iommu->index] -= 1;
1687     domain->dev_cnt                 -= 1;
1688 }
1689 
1690 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1691 {
1692     pci_disable_ats(pdev);
1693     pci_disable_pri(pdev);
1694     pci_disable_pasid(pdev);
1695 }
1696 
1697 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1698 {
1699     int ret;
1700 
1701     /* Only allow access to user-accessible pages */
1702     ret = pci_enable_pasid(pdev, 0);
1703     if (ret)
1704         goto out_err;
1705 
1706     /* First reset the PRI state of the device */
1707     ret = pci_reset_pri(pdev);
1708     if (ret)
1709         goto out_err;
1710 
1711     /* Enable PRI */
1712     /* FIXME: Hardcode number of outstanding requests for now */
1713     ret = pci_enable_pri(pdev, 32);
1714     if (ret)
1715         goto out_err;
1716 
1717     ret = pci_enable_ats(pdev, PAGE_SHIFT);
1718     if (ret)
1719         goto out_err;
1720 
1721     return 0;
1722 
1723 out_err:
1724     pci_disable_pri(pdev);
1725     pci_disable_pasid(pdev);
1726 
1727     return ret;
1728 }
1729 
1730 /*
1731  * If a device is not yet associated with a domain, this function makes the
1732  * device visible in the domain
1733  */
1734 static int attach_device(struct device *dev,
1735              struct protection_domain *domain)
1736 {
1737     struct iommu_dev_data *dev_data;
1738     struct pci_dev *pdev;
1739     unsigned long flags;
1740     int ret;
1741 
1742     spin_lock_irqsave(&domain->lock, flags);
1743 
1744     dev_data = dev_iommu_priv_get(dev);
1745 
1746     spin_lock(&dev_data->lock);
1747 
1748     ret = -EBUSY;
1749     if (dev_data->domain != NULL)
1750         goto out;
1751 
1752     if (!dev_is_pci(dev))
1753         goto skip_ats_check;
1754 
1755     pdev = to_pci_dev(dev);
1756     if (domain->flags & PD_IOMMUV2_MASK) {
1757         struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1758 
1759         ret = -EINVAL;
1760         if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1761             goto out;
1762 
1763         if (dev_data->iommu_v2) {
1764             if (pdev_iommuv2_enable(pdev) != 0)
1765                 goto out;
1766 
1767             dev_data->ats.enabled = true;
1768             dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1769             dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1770         }
1771     } else if (amd_iommu_iotlb_sup &&
1772            pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1773         dev_data->ats.enabled = true;
1774         dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1775     }
1776 
1777 skip_ats_check:
1778     ret = 0;
1779 
1780     do_attach(dev_data, domain);
1781 
1782     /*
1783      * We might boot into a crash-kernel here. The crashed kernel
1784      * left the caches in the IOMMU dirty. So we have to flush
1785      * here to evict all dirty stuff.
1786      */
1787     amd_iommu_domain_flush_tlb_pde(domain);
1788 
1789     amd_iommu_domain_flush_complete(domain);
1790 
1791 out:
1792     spin_unlock(&dev_data->lock);
1793 
1794     spin_unlock_irqrestore(&domain->lock, flags);
1795 
1796     return ret;
1797 }
1798 
1799 /*
1800  * Removes a device from a protection domain (with devtable_lock held)
1801  */
1802 static void detach_device(struct device *dev)
1803 {
1804     struct protection_domain *domain;
1805     struct iommu_dev_data *dev_data;
1806     unsigned long flags;
1807 
1808     dev_data = dev_iommu_priv_get(dev);
1809     domain   = dev_data->domain;
1810 
1811     spin_lock_irqsave(&domain->lock, flags);
1812 
1813     spin_lock(&dev_data->lock);
1814 
1815     /*
1816      * First check if the device is still attached. It might already
1817      * be detached from its domain because the generic
1818      * iommu_detach_group code detached it and we try again here in
1819      * our alias handling.
1820      */
1821     if (WARN_ON(!dev_data->domain))
1822         goto out;
1823 
1824     do_detach(dev_data);
1825 
1826     if (!dev_is_pci(dev))
1827         goto out;
1828 
1829     if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1830         pdev_iommuv2_disable(to_pci_dev(dev));
1831     else if (dev_data->ats.enabled)
1832         pci_disable_ats(to_pci_dev(dev));
1833 
1834     dev_data->ats.enabled = false;
1835 
1836 out:
1837     spin_unlock(&dev_data->lock);
1838 
1839     spin_unlock_irqrestore(&domain->lock, flags);
1840 }
1841 
1842 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1843 {
1844     struct iommu_device *iommu_dev;
1845     struct amd_iommu *iommu;
1846     int ret;
1847 
1848     if (!check_device(dev))
1849         return ERR_PTR(-ENODEV);
1850 
1851     iommu = rlookup_amd_iommu(dev);
1852     if (!iommu)
1853         return ERR_PTR(-ENODEV);
1854 
1855     if (dev_iommu_priv_get(dev))
1856         return &iommu->iommu;
1857 
1858     ret = iommu_init_device(iommu, dev);
1859     if (ret) {
1860         if (ret != -ENOTSUPP)
1861             dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1862         iommu_dev = ERR_PTR(ret);
1863         iommu_ignore_device(iommu, dev);
1864     } else {
1865         amd_iommu_set_pci_msi_domain(dev, iommu);
1866         iommu_dev = &iommu->iommu;
1867     }
1868 
1869     iommu_completion_wait(iommu);
1870 
1871     return iommu_dev;
1872 }
1873 
1874 static void amd_iommu_probe_finalize(struct device *dev)
1875 {
1876     /* Domains are initialized for this device - have a look what we ended up with */
1877     set_dma_ops(dev, NULL);
1878     iommu_setup_dma_ops(dev, 0, U64_MAX);
1879 }
1880 
1881 static void amd_iommu_release_device(struct device *dev)
1882 {
1883     struct amd_iommu *iommu;
1884 
1885     if (!check_device(dev))
1886         return;
1887 
1888     iommu = rlookup_amd_iommu(dev);
1889     if (!iommu)
1890         return;
1891 
1892     amd_iommu_uninit_device(dev);
1893     iommu_completion_wait(iommu);
1894 }
1895 
1896 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1897 {
1898     if (dev_is_pci(dev))
1899         return pci_device_group(dev);
1900 
1901     return acpihid_device_group(dev);
1902 }
1903 
1904 /*****************************************************************************
1905  *
1906  * The next functions belong to the dma_ops mapping/unmapping code.
1907  *
1908  *****************************************************************************/
1909 
1910 static void update_device_table(struct protection_domain *domain)
1911 {
1912     struct iommu_dev_data *dev_data;
1913 
1914     list_for_each_entry(dev_data, &domain->dev_list, list) {
1915         struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1916 
1917         if (!iommu)
1918             continue;
1919         set_dte_entry(iommu, dev_data->devid, domain,
1920                   dev_data->ats.enabled, dev_data->iommu_v2);
1921         clone_aliases(iommu, dev_data->dev);
1922     }
1923 }
1924 
1925 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1926 {
1927     update_device_table(domain);
1928     domain_flush_devices(domain);
1929 }
1930 
1931 void amd_iommu_domain_update(struct protection_domain *domain)
1932 {
1933     /* Update device table */
1934     amd_iommu_update_and_flush_device_table(domain);
1935 
1936     /* Flush domain TLB(s) and wait for completion */
1937     amd_iommu_domain_flush_tlb_pde(domain);
1938     amd_iommu_domain_flush_complete(domain);
1939 }
1940 
1941 int __init amd_iommu_init_api(void)
1942 {
1943     int err;
1944 
1945     err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1946     if (err)
1947         return err;
1948 #ifdef CONFIG_ARM_AMBA
1949     err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1950     if (err)
1951         return err;
1952 #endif
1953     err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1954     if (err)
1955         return err;
1956 
1957     return 0;
1958 }
1959 
1960 /*****************************************************************************
1961  *
1962  * The following functions belong to the exported interface of AMD IOMMU
1963  *
1964  * This interface allows access to lower level functions of the IOMMU
1965  * like protection domain handling and assignement of devices to domains
1966  * which is not possible with the dma_ops interface.
1967  *
1968  *****************************************************************************/
1969 
1970 static void cleanup_domain(struct protection_domain *domain)
1971 {
1972     struct iommu_dev_data *entry;
1973     unsigned long flags;
1974 
1975     spin_lock_irqsave(&domain->lock, flags);
1976 
1977     while (!list_empty(&domain->dev_list)) {
1978         entry = list_first_entry(&domain->dev_list,
1979                      struct iommu_dev_data, list);
1980         BUG_ON(!entry->domain);
1981         do_detach(entry);
1982     }
1983 
1984     spin_unlock_irqrestore(&domain->lock, flags);
1985 }
1986 
1987 static void protection_domain_free(struct protection_domain *domain)
1988 {
1989     if (!domain)
1990         return;
1991 
1992     if (domain->id)
1993         domain_id_free(domain->id);
1994 
1995     if (domain->iop.pgtbl_cfg.tlb)
1996         free_io_pgtable_ops(&domain->iop.iop.ops);
1997 
1998     kfree(domain);
1999 }
2000 
2001 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2002 {
2003     u64 *pt_root = NULL;
2004 
2005     BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2006 
2007     spin_lock_init(&domain->lock);
2008     domain->id = domain_id_alloc();
2009     if (!domain->id)
2010         return -ENOMEM;
2011     INIT_LIST_HEAD(&domain->dev_list);
2012 
2013     if (mode != PAGE_MODE_NONE) {
2014         pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2015         if (!pt_root)
2016             return -ENOMEM;
2017     }
2018 
2019     amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2020 
2021     return 0;
2022 }
2023 
2024 static struct protection_domain *protection_domain_alloc(unsigned int type)
2025 {
2026     struct io_pgtable_ops *pgtbl_ops;
2027     struct protection_domain *domain;
2028     int pgtable = amd_iommu_pgtable;
2029     int mode = DEFAULT_PGTABLE_LEVEL;
2030     int ret;
2031 
2032     domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2033     if (!domain)
2034         return NULL;
2035 
2036     /*
2037      * Force IOMMU v1 page table when iommu=pt and
2038      * when allocating domain for pass-through devices.
2039      */
2040     if (type == IOMMU_DOMAIN_IDENTITY) {
2041         pgtable = AMD_IOMMU_V1;
2042         mode = PAGE_MODE_NONE;
2043     } else if (type == IOMMU_DOMAIN_UNMANAGED) {
2044         pgtable = AMD_IOMMU_V1;
2045     }
2046 
2047     switch (pgtable) {
2048     case AMD_IOMMU_V1:
2049         ret = protection_domain_init_v1(domain, mode);
2050         break;
2051     default:
2052         ret = -EINVAL;
2053     }
2054 
2055     if (ret)
2056         goto out_err;
2057 
2058     pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2059     if (!pgtbl_ops)
2060         goto out_err;
2061 
2062     return domain;
2063 out_err:
2064     kfree(domain);
2065     return NULL;
2066 }
2067 
2068 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2069 {
2070     struct protection_domain *domain;
2071 
2072     /*
2073      * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2074      * default to use IOMMU_DOMAIN_DMA[_FQ].
2075      */
2076     if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2077         return NULL;
2078 
2079     domain = protection_domain_alloc(type);
2080     if (!domain)
2081         return NULL;
2082 
2083     domain->domain.geometry.aperture_start = 0;
2084     domain->domain.geometry.aperture_end   = ~0ULL;
2085     domain->domain.geometry.force_aperture = true;
2086 
2087     return &domain->domain;
2088 }
2089 
2090 static void amd_iommu_domain_free(struct iommu_domain *dom)
2091 {
2092     struct protection_domain *domain;
2093 
2094     domain = to_pdomain(dom);
2095 
2096     if (domain->dev_cnt > 0)
2097         cleanup_domain(domain);
2098 
2099     BUG_ON(domain->dev_cnt != 0);
2100 
2101     if (!dom)
2102         return;
2103 
2104     if (domain->flags & PD_IOMMUV2_MASK)
2105         free_gcr3_table(domain);
2106 
2107     protection_domain_free(domain);
2108 }
2109 
2110 static void amd_iommu_detach_device(struct iommu_domain *dom,
2111                     struct device *dev)
2112 {
2113     struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2114     struct amd_iommu *iommu;
2115 
2116     if (!check_device(dev))
2117         return;
2118 
2119     if (dev_data->domain != NULL)
2120         detach_device(dev);
2121 
2122     iommu = rlookup_amd_iommu(dev);
2123     if (!iommu)
2124         return;
2125 
2126 #ifdef CONFIG_IRQ_REMAP
2127     if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2128         (dom->type == IOMMU_DOMAIN_UNMANAGED))
2129         dev_data->use_vapic = 0;
2130 #endif
2131 
2132     iommu_completion_wait(iommu);
2133 }
2134 
2135 static int amd_iommu_attach_device(struct iommu_domain *dom,
2136                    struct device *dev)
2137 {
2138     struct protection_domain *domain = to_pdomain(dom);
2139     struct iommu_dev_data *dev_data;
2140     struct amd_iommu *iommu;
2141     int ret;
2142 
2143     if (!check_device(dev))
2144         return -EINVAL;
2145 
2146     dev_data = dev_iommu_priv_get(dev);
2147     dev_data->defer_attach = false;
2148 
2149     iommu = rlookup_amd_iommu(dev);
2150     if (!iommu)
2151         return -EINVAL;
2152 
2153     if (dev_data->domain)
2154         detach_device(dev);
2155 
2156     ret = attach_device(dev, domain);
2157 
2158 #ifdef CONFIG_IRQ_REMAP
2159     if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2160         if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2161             dev_data->use_vapic = 1;
2162         else
2163             dev_data->use_vapic = 0;
2164     }
2165 #endif
2166 
2167     iommu_completion_wait(iommu);
2168 
2169     return ret;
2170 }
2171 
2172 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2173                      unsigned long iova, size_t size)
2174 {
2175     struct protection_domain *domain = to_pdomain(dom);
2176     struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2177 
2178     if (ops->map)
2179         domain_flush_np_cache(domain, iova, size);
2180 }
2181 
2182 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2183              phys_addr_t paddr, size_t page_size, int iommu_prot,
2184              gfp_t gfp)
2185 {
2186     struct protection_domain *domain = to_pdomain(dom);
2187     struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2188     int prot = 0;
2189     int ret = -EINVAL;
2190 
2191     if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2192         (domain->iop.mode == PAGE_MODE_NONE))
2193         return -EINVAL;
2194 
2195     if (iommu_prot & IOMMU_READ)
2196         prot |= IOMMU_PROT_IR;
2197     if (iommu_prot & IOMMU_WRITE)
2198         prot |= IOMMU_PROT_IW;
2199 
2200     if (ops->map)
2201         ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2202 
2203     return ret;
2204 }
2205 
2206 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2207                         struct iommu_iotlb_gather *gather,
2208                         unsigned long iova, size_t size)
2209 {
2210     /*
2211      * AMD's IOMMU can flush as many pages as necessary in a single flush.
2212      * Unless we run in a virtual machine, which can be inferred according
2213      * to whether "non-present cache" is on, it is probably best to prefer
2214      * (potentially) too extensive TLB flushing (i.e., more misses) over
2215      * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2216      * hypervisor needs to synchronize the host IOMMU PTEs with those of
2217      * the guest, and the trade-off is different: unnecessary TLB flushes
2218      * should be avoided.
2219      */
2220     if (amd_iommu_np_cache &&
2221         iommu_iotlb_gather_is_disjoint(gather, iova, size))
2222         iommu_iotlb_sync(domain, gather);
2223 
2224     iommu_iotlb_gather_add_range(gather, iova, size);
2225 }
2226 
2227 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2228                   size_t page_size,
2229                   struct iommu_iotlb_gather *gather)
2230 {
2231     struct protection_domain *domain = to_pdomain(dom);
2232     struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2233     size_t r;
2234 
2235     if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2236         (domain->iop.mode == PAGE_MODE_NONE))
2237         return 0;
2238 
2239     r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2240 
2241     amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2242 
2243     return r;
2244 }
2245 
2246 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2247                       dma_addr_t iova)
2248 {
2249     struct protection_domain *domain = to_pdomain(dom);
2250     struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2251 
2252     return ops->iova_to_phys(ops, iova);
2253 }
2254 
2255 static bool amd_iommu_capable(enum iommu_cap cap)
2256 {
2257     switch (cap) {
2258     case IOMMU_CAP_CACHE_COHERENCY:
2259         return true;
2260     case IOMMU_CAP_INTR_REMAP:
2261         return (irq_remapping_enabled == 1);
2262     case IOMMU_CAP_NOEXEC:
2263         return false;
2264     case IOMMU_CAP_PRE_BOOT_PROTECTION:
2265         return amdr_ivrs_remap_support;
2266     default:
2267         break;
2268     }
2269 
2270     return false;
2271 }
2272 
2273 static void amd_iommu_get_resv_regions(struct device *dev,
2274                        struct list_head *head)
2275 {
2276     struct iommu_resv_region *region;
2277     struct unity_map_entry *entry;
2278     struct amd_iommu *iommu;
2279     struct amd_iommu_pci_seg *pci_seg;
2280     int devid, sbdf;
2281 
2282     sbdf = get_device_sbdf_id(dev);
2283     if (sbdf < 0)
2284         return;
2285 
2286     devid = PCI_SBDF_TO_DEVID(sbdf);
2287     iommu = rlookup_amd_iommu(dev);
2288     if (!iommu)
2289         return;
2290     pci_seg = iommu->pci_seg;
2291 
2292     list_for_each_entry(entry, &pci_seg->unity_map, list) {
2293         int type, prot = 0;
2294         size_t length;
2295 
2296         if (devid < entry->devid_start || devid > entry->devid_end)
2297             continue;
2298 
2299         type   = IOMMU_RESV_DIRECT;
2300         length = entry->address_end - entry->address_start;
2301         if (entry->prot & IOMMU_PROT_IR)
2302             prot |= IOMMU_READ;
2303         if (entry->prot & IOMMU_PROT_IW)
2304             prot |= IOMMU_WRITE;
2305         if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2306             /* Exclusion range */
2307             type = IOMMU_RESV_RESERVED;
2308 
2309         region = iommu_alloc_resv_region(entry->address_start,
2310                          length, prot, type);
2311         if (!region) {
2312             dev_err(dev, "Out of memory allocating dm-regions\n");
2313             return;
2314         }
2315         list_add_tail(&region->list, head);
2316     }
2317 
2318     region = iommu_alloc_resv_region(MSI_RANGE_START,
2319                      MSI_RANGE_END - MSI_RANGE_START + 1,
2320                      0, IOMMU_RESV_MSI);
2321     if (!region)
2322         return;
2323     list_add_tail(&region->list, head);
2324 
2325     region = iommu_alloc_resv_region(HT_RANGE_START,
2326                      HT_RANGE_END - HT_RANGE_START + 1,
2327                      0, IOMMU_RESV_RESERVED);
2328     if (!region)
2329         return;
2330     list_add_tail(&region->list, head);
2331 }
2332 
2333 bool amd_iommu_is_attach_deferred(struct device *dev)
2334 {
2335     struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2336 
2337     return dev_data->defer_attach;
2338 }
2339 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2340 
2341 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2342 {
2343     struct protection_domain *dom = to_pdomain(domain);
2344     unsigned long flags;
2345 
2346     spin_lock_irqsave(&dom->lock, flags);
2347     amd_iommu_domain_flush_tlb_pde(dom);
2348     amd_iommu_domain_flush_complete(dom);
2349     spin_unlock_irqrestore(&dom->lock, flags);
2350 }
2351 
2352 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2353                  struct iommu_iotlb_gather *gather)
2354 {
2355     struct protection_domain *dom = to_pdomain(domain);
2356     unsigned long flags;
2357 
2358     spin_lock_irqsave(&dom->lock, flags);
2359     domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2360     amd_iommu_domain_flush_complete(dom);
2361     spin_unlock_irqrestore(&dom->lock, flags);
2362 }
2363 
2364 static int amd_iommu_def_domain_type(struct device *dev)
2365 {
2366     struct iommu_dev_data *dev_data;
2367 
2368     dev_data = dev_iommu_priv_get(dev);
2369     if (!dev_data)
2370         return 0;
2371 
2372     /*
2373      * Do not identity map IOMMUv2 capable devices when memory encryption is
2374      * active, because some of those devices (AMD GPUs) don't have the
2375      * encryption bit in their DMA-mask and require remapping.
2376      */
2377     if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2378         return IOMMU_DOMAIN_IDENTITY;
2379 
2380     return 0;
2381 }
2382 
2383 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2384 {
2385     /* IOMMU_PTE_FC is always set */
2386     return true;
2387 }
2388 
2389 const struct iommu_ops amd_iommu_ops = {
2390     .capable = amd_iommu_capable,
2391     .domain_alloc = amd_iommu_domain_alloc,
2392     .probe_device = amd_iommu_probe_device,
2393     .release_device = amd_iommu_release_device,
2394     .probe_finalize = amd_iommu_probe_finalize,
2395     .device_group = amd_iommu_device_group,
2396     .get_resv_regions = amd_iommu_get_resv_regions,
2397     .is_attach_deferred = amd_iommu_is_attach_deferred,
2398     .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
2399     .def_domain_type = amd_iommu_def_domain_type,
2400     .default_domain_ops = &(const struct iommu_domain_ops) {
2401         .attach_dev = amd_iommu_attach_device,
2402         .detach_dev = amd_iommu_detach_device,
2403         .map        = amd_iommu_map,
2404         .unmap      = amd_iommu_unmap,
2405         .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2406         .iova_to_phys   = amd_iommu_iova_to_phys,
2407         .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2408         .iotlb_sync = amd_iommu_iotlb_sync,
2409         .free       = amd_iommu_domain_free,
2410         .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2411     }
2412 };
2413 
2414 /*****************************************************************************
2415  *
2416  * The next functions do a basic initialization of IOMMU for pass through
2417  * mode
2418  *
2419  * In passthrough mode the IOMMU is initialized and enabled but not used for
2420  * DMA-API translation.
2421  *
2422  *****************************************************************************/
2423 
2424 /* IOMMUv2 specific functions */
2425 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2426 {
2427     return atomic_notifier_chain_register(&ppr_notifier, nb);
2428 }
2429 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2430 
2431 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2432 {
2433     return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2434 }
2435 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2436 
2437 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2438 {
2439     struct protection_domain *domain = to_pdomain(dom);
2440     unsigned long flags;
2441 
2442     spin_lock_irqsave(&domain->lock, flags);
2443 
2444     if (domain->iop.pgtbl_cfg.tlb)
2445         free_io_pgtable_ops(&domain->iop.iop.ops);
2446 
2447     spin_unlock_irqrestore(&domain->lock, flags);
2448 }
2449 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2450 
2451 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2452 {
2453     struct protection_domain *domain = to_pdomain(dom);
2454     unsigned long flags;
2455     int levels, ret;
2456 
2457     /* Number of GCR3 table levels required */
2458     for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2459         levels += 1;
2460 
2461     if (levels > amd_iommu_max_glx_val)
2462         return -EINVAL;
2463 
2464     spin_lock_irqsave(&domain->lock, flags);
2465 
2466     /*
2467      * Save us all sanity checks whether devices already in the
2468      * domain support IOMMUv2. Just force that the domain has no
2469      * devices attached when it is switched into IOMMUv2 mode.
2470      */
2471     ret = -EBUSY;
2472     if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2473         goto out;
2474 
2475     ret = -ENOMEM;
2476     domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2477     if (domain->gcr3_tbl == NULL)
2478         goto out;
2479 
2480     domain->glx      = levels;
2481     domain->flags   |= PD_IOMMUV2_MASK;
2482 
2483     amd_iommu_domain_update(domain);
2484 
2485     ret = 0;
2486 
2487 out:
2488     spin_unlock_irqrestore(&domain->lock, flags);
2489 
2490     return ret;
2491 }
2492 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2493 
2494 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2495              u64 address, bool size)
2496 {
2497     struct iommu_dev_data *dev_data;
2498     struct iommu_cmd cmd;
2499     int i, ret;
2500 
2501     if (!(domain->flags & PD_IOMMUV2_MASK))
2502         return -EINVAL;
2503 
2504     build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2505 
2506     /*
2507      * IOMMU TLB needs to be flushed before Device TLB to
2508      * prevent device TLB refill from IOMMU TLB
2509      */
2510     for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2511         if (domain->dev_iommu[i] == 0)
2512             continue;
2513 
2514         ret = iommu_queue_command(amd_iommus[i], &cmd);
2515         if (ret != 0)
2516             goto out;
2517     }
2518 
2519     /* Wait until IOMMU TLB flushes are complete */
2520     amd_iommu_domain_flush_complete(domain);
2521 
2522     /* Now flush device TLBs */
2523     list_for_each_entry(dev_data, &domain->dev_list, list) {
2524         struct amd_iommu *iommu;
2525         int qdep;
2526 
2527         /*
2528            There might be non-IOMMUv2 capable devices in an IOMMUv2
2529          * domain.
2530          */
2531         if (!dev_data->ats.enabled)
2532             continue;
2533 
2534         qdep  = dev_data->ats.qdep;
2535         iommu = rlookup_amd_iommu(dev_data->dev);
2536         if (!iommu)
2537             continue;
2538         build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2539                       qdep, address, size);
2540 
2541         ret = iommu_queue_command(iommu, &cmd);
2542         if (ret != 0)
2543             goto out;
2544     }
2545 
2546     /* Wait until all device TLBs are flushed */
2547     amd_iommu_domain_flush_complete(domain);
2548 
2549     ret = 0;
2550 
2551 out:
2552 
2553     return ret;
2554 }
2555 
2556 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2557                   u64 address)
2558 {
2559     return __flush_pasid(domain, pasid, address, false);
2560 }
2561 
2562 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2563              u64 address)
2564 {
2565     struct protection_domain *domain = to_pdomain(dom);
2566     unsigned long flags;
2567     int ret;
2568 
2569     spin_lock_irqsave(&domain->lock, flags);
2570     ret = __amd_iommu_flush_page(domain, pasid, address);
2571     spin_unlock_irqrestore(&domain->lock, flags);
2572 
2573     return ret;
2574 }
2575 EXPORT_SYMBOL(amd_iommu_flush_page);
2576 
2577 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2578 {
2579     return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2580                  true);
2581 }
2582 
2583 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2584 {
2585     struct protection_domain *domain = to_pdomain(dom);
2586     unsigned long flags;
2587     int ret;
2588 
2589     spin_lock_irqsave(&domain->lock, flags);
2590     ret = __amd_iommu_flush_tlb(domain, pasid);
2591     spin_unlock_irqrestore(&domain->lock, flags);
2592 
2593     return ret;
2594 }
2595 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2596 
2597 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2598 {
2599     int index;
2600     u64 *pte;
2601 
2602     while (true) {
2603 
2604         index = (pasid >> (9 * level)) & 0x1ff;
2605         pte   = &root[index];
2606 
2607         if (level == 0)
2608             break;
2609 
2610         if (!(*pte & GCR3_VALID)) {
2611             if (!alloc)
2612                 return NULL;
2613 
2614             root = (void *)get_zeroed_page(GFP_ATOMIC);
2615             if (root == NULL)
2616                 return NULL;
2617 
2618             *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2619         }
2620 
2621         root = iommu_phys_to_virt(*pte & PAGE_MASK);
2622 
2623         level -= 1;
2624     }
2625 
2626     return pte;
2627 }
2628 
2629 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2630               unsigned long cr3)
2631 {
2632     u64 *pte;
2633 
2634     if (domain->iop.mode != PAGE_MODE_NONE)
2635         return -EINVAL;
2636 
2637     pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2638     if (pte == NULL)
2639         return -ENOMEM;
2640 
2641     *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2642 
2643     return __amd_iommu_flush_tlb(domain, pasid);
2644 }
2645 
2646 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2647 {
2648     u64 *pte;
2649 
2650     if (domain->iop.mode != PAGE_MODE_NONE)
2651         return -EINVAL;
2652 
2653     pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2654     if (pte == NULL)
2655         return 0;
2656 
2657     *pte = 0;
2658 
2659     return __amd_iommu_flush_tlb(domain, pasid);
2660 }
2661 
2662 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2663                   unsigned long cr3)
2664 {
2665     struct protection_domain *domain = to_pdomain(dom);
2666     unsigned long flags;
2667     int ret;
2668 
2669     spin_lock_irqsave(&domain->lock, flags);
2670     ret = __set_gcr3(domain, pasid, cr3);
2671     spin_unlock_irqrestore(&domain->lock, flags);
2672 
2673     return ret;
2674 }
2675 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2676 
2677 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2678 {
2679     struct protection_domain *domain = to_pdomain(dom);
2680     unsigned long flags;
2681     int ret;
2682 
2683     spin_lock_irqsave(&domain->lock, flags);
2684     ret = __clear_gcr3(domain, pasid);
2685     spin_unlock_irqrestore(&domain->lock, flags);
2686 
2687     return ret;
2688 }
2689 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2690 
2691 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2692                int status, int tag)
2693 {
2694     struct iommu_dev_data *dev_data;
2695     struct amd_iommu *iommu;
2696     struct iommu_cmd cmd;
2697 
2698     dev_data = dev_iommu_priv_get(&pdev->dev);
2699     iommu    = rlookup_amd_iommu(&pdev->dev);
2700     if (!iommu)
2701         return -ENODEV;
2702 
2703     build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2704                tag, dev_data->pri_tlp);
2705 
2706     return iommu_queue_command(iommu, &cmd);
2707 }
2708 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2709 
2710 int amd_iommu_device_info(struct pci_dev *pdev,
2711                           struct amd_iommu_device_info *info)
2712 {
2713     int max_pasids;
2714     int pos;
2715 
2716     if (pdev == NULL || info == NULL)
2717         return -EINVAL;
2718 
2719     if (!amd_iommu_v2_supported())
2720         return -EINVAL;
2721 
2722     memset(info, 0, sizeof(*info));
2723 
2724     if (pci_ats_supported(pdev))
2725         info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2726 
2727     pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2728     if (pos)
2729         info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2730 
2731     pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2732     if (pos) {
2733         int features;
2734 
2735         max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2736         max_pasids = min(max_pasids, (1 << 20));
2737 
2738         info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2739         info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2740 
2741         features = pci_pasid_features(pdev);
2742         if (features & PCI_PASID_CAP_EXEC)
2743             info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2744         if (features & PCI_PASID_CAP_PRIV)
2745             info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2746     }
2747 
2748     return 0;
2749 }
2750 EXPORT_SYMBOL(amd_iommu_device_info);
2751 
2752 #ifdef CONFIG_IRQ_REMAP
2753 
2754 /*****************************************************************************
2755  *
2756  * Interrupt Remapping Implementation
2757  *
2758  *****************************************************************************/
2759 
2760 static struct irq_chip amd_ir_chip;
2761 static DEFINE_SPINLOCK(iommu_table_lock);
2762 
2763 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2764                   struct irq_remap_table *table)
2765 {
2766     u64 dte;
2767     struct dev_table_entry *dev_table = get_dev_table(iommu);
2768 
2769     dte = dev_table[devid].data[2];
2770     dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2771     dte |= iommu_virt_to_phys(table->table);
2772     dte |= DTE_IRQ_REMAP_INTCTL;
2773     dte |= DTE_INTTABLEN;
2774     dte |= DTE_IRQ_REMAP_ENABLE;
2775 
2776     dev_table[devid].data[2] = dte;
2777 }
2778 
2779 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2780 {
2781     struct irq_remap_table *table;
2782     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2783 
2784     if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2785               "%s: no iommu for devid %x:%x\n",
2786               __func__, pci_seg->id, devid))
2787         return NULL;
2788 
2789     table = pci_seg->irq_lookup_table[devid];
2790     if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2791               __func__, pci_seg->id, devid))
2792         return NULL;
2793 
2794     return table;
2795 }
2796 
2797 static struct irq_remap_table *__alloc_irq_table(void)
2798 {
2799     struct irq_remap_table *table;
2800 
2801     table = kzalloc(sizeof(*table), GFP_KERNEL);
2802     if (!table)
2803         return NULL;
2804 
2805     table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2806     if (!table->table) {
2807         kfree(table);
2808         return NULL;
2809     }
2810     raw_spin_lock_init(&table->lock);
2811 
2812     if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2813         memset(table->table, 0,
2814                MAX_IRQS_PER_TABLE * sizeof(u32));
2815     else
2816         memset(table->table, 0,
2817                (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2818     return table;
2819 }
2820 
2821 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2822                   struct irq_remap_table *table)
2823 {
2824     struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2825 
2826     pci_seg->irq_lookup_table[devid] = table;
2827     set_dte_irq_entry(iommu, devid, table);
2828     iommu_flush_dte(iommu, devid);
2829 }
2830 
2831 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2832                        void *data)
2833 {
2834     struct irq_remap_table *table = data;
2835     struct amd_iommu_pci_seg *pci_seg;
2836     struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2837 
2838     if (!iommu)
2839         return -EINVAL;
2840 
2841     pci_seg = iommu->pci_seg;
2842     pci_seg->irq_lookup_table[alias] = table;
2843     set_dte_irq_entry(iommu, alias, table);
2844     iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2845 
2846     return 0;
2847 }
2848 
2849 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2850                            u16 devid, struct pci_dev *pdev)
2851 {
2852     struct irq_remap_table *table = NULL;
2853     struct irq_remap_table *new_table = NULL;
2854     struct amd_iommu_pci_seg *pci_seg;
2855     unsigned long flags;
2856     u16 alias;
2857 
2858     spin_lock_irqsave(&iommu_table_lock, flags);
2859 
2860     pci_seg = iommu->pci_seg;
2861     table = pci_seg->irq_lookup_table[devid];
2862     if (table)
2863         goto out_unlock;
2864 
2865     alias = pci_seg->alias_table[devid];
2866     table = pci_seg->irq_lookup_table[alias];
2867     if (table) {
2868         set_remap_table_entry(iommu, devid, table);
2869         goto out_wait;
2870     }
2871     spin_unlock_irqrestore(&iommu_table_lock, flags);
2872 
2873     /* Nothing there yet, allocate new irq remapping table */
2874     new_table = __alloc_irq_table();
2875     if (!new_table)
2876         return NULL;
2877 
2878     spin_lock_irqsave(&iommu_table_lock, flags);
2879 
2880     table = pci_seg->irq_lookup_table[devid];
2881     if (table)
2882         goto out_unlock;
2883 
2884     table = pci_seg->irq_lookup_table[alias];
2885     if (table) {
2886         set_remap_table_entry(iommu, devid, table);
2887         goto out_wait;
2888     }
2889 
2890     table = new_table;
2891     new_table = NULL;
2892 
2893     if (pdev)
2894         pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2895                        table);
2896     else
2897         set_remap_table_entry(iommu, devid, table);
2898 
2899     if (devid != alias)
2900         set_remap_table_entry(iommu, alias, table);
2901 
2902 out_wait:
2903     iommu_completion_wait(iommu);
2904 
2905 out_unlock:
2906     spin_unlock_irqrestore(&iommu_table_lock, flags);
2907 
2908     if (new_table) {
2909         kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2910         kfree(new_table);
2911     }
2912     return table;
2913 }
2914 
2915 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2916                bool align, struct pci_dev *pdev)
2917 {
2918     struct irq_remap_table *table;
2919     int index, c, alignment = 1;
2920     unsigned long flags;
2921 
2922     table = alloc_irq_table(iommu, devid, pdev);
2923     if (!table)
2924         return -ENODEV;
2925 
2926     if (align)
2927         alignment = roundup_pow_of_two(count);
2928 
2929     raw_spin_lock_irqsave(&table->lock, flags);
2930 
2931     /* Scan table for free entries */
2932     for (index = ALIGN(table->min_index, alignment), c = 0;
2933          index < MAX_IRQS_PER_TABLE;) {
2934         if (!iommu->irte_ops->is_allocated(table, index)) {
2935             c += 1;
2936         } else {
2937             c     = 0;
2938             index = ALIGN(index + 1, alignment);
2939             continue;
2940         }
2941 
2942         if (c == count) {
2943             for (; c != 0; --c)
2944                 iommu->irte_ops->set_allocated(table, index - c + 1);
2945 
2946             index -= count - 1;
2947             goto out;
2948         }
2949 
2950         index++;
2951     }
2952 
2953     index = -ENOSPC;
2954 
2955 out:
2956     raw_spin_unlock_irqrestore(&table->lock, flags);
2957 
2958     return index;
2959 }
2960 
2961 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
2962               struct irte_ga *irte, struct amd_ir_data *data)
2963 {
2964     bool ret;
2965     struct irq_remap_table *table;
2966     unsigned long flags;
2967     struct irte_ga *entry;
2968 
2969     table = get_irq_table(iommu, devid);
2970     if (!table)
2971         return -ENOMEM;
2972 
2973     raw_spin_lock_irqsave(&table->lock, flags);
2974 
2975     entry = (struct irte_ga *)table->table;
2976     entry = &entry[index];
2977 
2978     ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2979                  entry->lo.val, entry->hi.val,
2980                  irte->lo.val, irte->hi.val);
2981     /*
2982      * We use cmpxchg16 to atomically update the 128-bit IRTE,
2983      * and it cannot be updated by the hardware or other processors
2984      * behind us, so the return value of cmpxchg16 should be the
2985      * same as the old value.
2986      */
2987     WARN_ON(!ret);
2988 
2989     if (data)
2990         data->ref = entry;
2991 
2992     raw_spin_unlock_irqrestore(&table->lock, flags);
2993 
2994     iommu_flush_irt(iommu, devid);
2995     iommu_completion_wait(iommu);
2996 
2997     return 0;
2998 }
2999 
3000 static int modify_irte(struct amd_iommu *iommu,
3001                u16 devid, int index, union irte *irte)
3002 {
3003     struct irq_remap_table *table;
3004     unsigned long flags;
3005 
3006     table = get_irq_table(iommu, devid);
3007     if (!table)
3008         return -ENOMEM;
3009 
3010     raw_spin_lock_irqsave(&table->lock, flags);
3011     table->table[index] = irte->val;
3012     raw_spin_unlock_irqrestore(&table->lock, flags);
3013 
3014     iommu_flush_irt(iommu, devid);
3015     iommu_completion_wait(iommu);
3016 
3017     return 0;
3018 }
3019 
3020 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3021 {
3022     struct irq_remap_table *table;
3023     unsigned long flags;
3024 
3025     table = get_irq_table(iommu, devid);
3026     if (!table)
3027         return;
3028 
3029     raw_spin_lock_irqsave(&table->lock, flags);
3030     iommu->irte_ops->clear_allocated(table, index);
3031     raw_spin_unlock_irqrestore(&table->lock, flags);
3032 
3033     iommu_flush_irt(iommu, devid);
3034     iommu_completion_wait(iommu);
3035 }
3036 
3037 static void irte_prepare(void *entry,
3038              u32 delivery_mode, bool dest_mode,
3039              u8 vector, u32 dest_apicid, int devid)
3040 {
3041     union irte *irte = (union irte *) entry;
3042 
3043     irte->val                = 0;
3044     irte->fields.vector      = vector;
3045     irte->fields.int_type    = delivery_mode;
3046     irte->fields.destination = dest_apicid;
3047     irte->fields.dm          = dest_mode;
3048     irte->fields.valid       = 1;
3049 }
3050 
3051 static void irte_ga_prepare(void *entry,
3052                 u32 delivery_mode, bool dest_mode,
3053                 u8 vector, u32 dest_apicid, int devid)
3054 {
3055     struct irte_ga *irte = (struct irte_ga *) entry;
3056 
3057     irte->lo.val                      = 0;
3058     irte->hi.val                      = 0;
3059     irte->lo.fields_remap.int_type    = delivery_mode;
3060     irte->lo.fields_remap.dm          = dest_mode;
3061     irte->hi.fields.vector            = vector;
3062     irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3063     irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3064     irte->lo.fields_remap.valid       = 1;
3065 }
3066 
3067 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3068 {
3069     union irte *irte = (union irte *) entry;
3070 
3071     irte->fields.valid = 1;
3072     modify_irte(iommu, devid, index, irte);
3073 }
3074 
3075 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3076 {
3077     struct irte_ga *irte = (struct irte_ga *) entry;
3078 
3079     irte->lo.fields_remap.valid = 1;
3080     modify_irte_ga(iommu, devid, index, irte, NULL);
3081 }
3082 
3083 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3084 {
3085     union irte *irte = (union irte *) entry;
3086 
3087     irte->fields.valid = 0;
3088     modify_irte(iommu, devid, index, irte);
3089 }
3090 
3091 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3092 {
3093     struct irte_ga *irte = (struct irte_ga *) entry;
3094 
3095     irte->lo.fields_remap.valid = 0;
3096     modify_irte_ga(iommu, devid, index, irte, NULL);
3097 }
3098 
3099 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3100                   u8 vector, u32 dest_apicid)
3101 {
3102     union irte *irte = (union irte *) entry;
3103 
3104     irte->fields.vector = vector;
3105     irte->fields.destination = dest_apicid;
3106     modify_irte(iommu, devid, index, irte);
3107 }
3108 
3109 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3110                  u8 vector, u32 dest_apicid)
3111 {
3112     struct irte_ga *irte = (struct irte_ga *) entry;
3113 
3114     if (!irte->lo.fields_remap.guest_mode) {
3115         irte->hi.fields.vector = vector;
3116         irte->lo.fields_remap.destination =
3117                     APICID_TO_IRTE_DEST_LO(dest_apicid);
3118         irte->hi.fields.destination =
3119                     APICID_TO_IRTE_DEST_HI(dest_apicid);
3120         modify_irte_ga(iommu, devid, index, irte, NULL);
3121     }
3122 }
3123 
3124 #define IRTE_ALLOCATED (~1U)
3125 static void irte_set_allocated(struct irq_remap_table *table, int index)
3126 {
3127     table->table[index] = IRTE_ALLOCATED;
3128 }
3129 
3130 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3131 {
3132     struct irte_ga *ptr = (struct irte_ga *)table->table;
3133     struct irte_ga *irte = &ptr[index];
3134 
3135     memset(&irte->lo.val, 0, sizeof(u64));
3136     memset(&irte->hi.val, 0, sizeof(u64));
3137     irte->hi.fields.vector = 0xff;
3138 }
3139 
3140 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3141 {
3142     union irte *ptr = (union irte *)table->table;
3143     union irte *irte = &ptr[index];
3144 
3145     return irte->val != 0;
3146 }
3147 
3148 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3149 {
3150     struct irte_ga *ptr = (struct irte_ga *)table->table;
3151     struct irte_ga *irte = &ptr[index];
3152 
3153     return irte->hi.fields.vector != 0;
3154 }
3155 
3156 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3157 {
3158     table->table[index] = 0;
3159 }
3160 
3161 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3162 {
3163     struct irte_ga *ptr = (struct irte_ga *)table->table;
3164     struct irte_ga *irte = &ptr[index];
3165 
3166     memset(&irte->lo.val, 0, sizeof(u64));
3167     memset(&irte->hi.val, 0, sizeof(u64));
3168 }
3169 
3170 static int get_devid(struct irq_alloc_info *info)
3171 {
3172     switch (info->type) {
3173     case X86_IRQ_ALLOC_TYPE_IOAPIC:
3174         return get_ioapic_devid(info->devid);
3175     case X86_IRQ_ALLOC_TYPE_HPET:
3176         return get_hpet_devid(info->devid);
3177     case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3178     case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3179         return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3180     default:
3181         WARN_ON_ONCE(1);
3182         return -1;
3183     }
3184 }
3185 
3186 struct irq_remap_ops amd_iommu_irq_ops = {
3187     .prepare        = amd_iommu_prepare,
3188     .enable         = amd_iommu_enable,
3189     .disable        = amd_iommu_disable,
3190     .reenable       = amd_iommu_reenable,
3191     .enable_faulting    = amd_iommu_enable_faulting,
3192 };
3193 
3194 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3195 {
3196     msg->data = index;
3197     msg->address_lo = 0;
3198     msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3199     msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3200 }
3201 
3202 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3203                        struct irq_cfg *irq_cfg,
3204                        struct irq_alloc_info *info,
3205                        int devid, int index, int sub_handle)
3206 {
3207     struct irq_2_irte *irte_info = &data->irq_2_irte;
3208     struct amd_iommu *iommu = data->iommu;
3209 
3210     if (!iommu)
3211         return;
3212 
3213     data->irq_2_irte.devid = devid;
3214     data->irq_2_irte.index = index + sub_handle;
3215     iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3216                  apic->dest_mode_logical, irq_cfg->vector,
3217                  irq_cfg->dest_apicid, devid);
3218 
3219     switch (info->type) {
3220     case X86_IRQ_ALLOC_TYPE_IOAPIC:
3221     case X86_IRQ_ALLOC_TYPE_HPET:
3222     case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3223     case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3224         fill_msi_msg(&data->msi_entry, irte_info->index);
3225         break;
3226 
3227     default:
3228         BUG_ON(1);
3229         break;
3230     }
3231 }
3232 
3233 struct amd_irte_ops irte_32_ops = {
3234     .prepare = irte_prepare,
3235     .activate = irte_activate,
3236     .deactivate = irte_deactivate,
3237     .set_affinity = irte_set_affinity,
3238     .set_allocated = irte_set_allocated,
3239     .is_allocated = irte_is_allocated,
3240     .clear_allocated = irte_clear_allocated,
3241 };
3242 
3243 struct amd_irte_ops irte_128_ops = {
3244     .prepare = irte_ga_prepare,
3245     .activate = irte_ga_activate,
3246     .deactivate = irte_ga_deactivate,
3247     .set_affinity = irte_ga_set_affinity,
3248     .set_allocated = irte_ga_set_allocated,
3249     .is_allocated = irte_ga_is_allocated,
3250     .clear_allocated = irte_ga_clear_allocated,
3251 };
3252 
3253 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3254                    unsigned int nr_irqs, void *arg)
3255 {
3256     struct irq_alloc_info *info = arg;
3257     struct irq_data *irq_data;
3258     struct amd_ir_data *data = NULL;
3259     struct amd_iommu *iommu;
3260     struct irq_cfg *cfg;
3261     int i, ret, devid, seg, sbdf;
3262     int index;
3263 
3264     if (!info)
3265         return -EINVAL;
3266     if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3267         info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3268         return -EINVAL;
3269 
3270     /*
3271      * With IRQ remapping enabled, don't need contiguous CPU vectors
3272      * to support multiple MSI interrupts.
3273      */
3274     if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3275         info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3276 
3277     sbdf = get_devid(info);
3278     if (sbdf < 0)
3279         return -EINVAL;
3280 
3281     seg = PCI_SBDF_TO_SEGID(sbdf);
3282     devid = PCI_SBDF_TO_DEVID(sbdf);
3283     iommu = __rlookup_amd_iommu(seg, devid);
3284     if (!iommu)
3285         return -EINVAL;
3286 
3287     ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3288     if (ret < 0)
3289         return ret;
3290 
3291     if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3292         struct irq_remap_table *table;
3293 
3294         table = alloc_irq_table(iommu, devid, NULL);
3295         if (table) {
3296             if (!table->min_index) {
3297                 /*
3298                  * Keep the first 32 indexes free for IOAPIC
3299                  * interrupts.
3300                  */
3301                 table->min_index = 32;
3302                 for (i = 0; i < 32; ++i)
3303                     iommu->irte_ops->set_allocated(table, i);
3304             }
3305             WARN_ON(table->min_index != 32);
3306             index = info->ioapic.pin;
3307         } else {
3308             index = -ENOMEM;
3309         }
3310     } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3311            info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3312         bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3313 
3314         index = alloc_irq_index(iommu, devid, nr_irqs, align,
3315                     msi_desc_to_pci_dev(info->desc));
3316     } else {
3317         index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3318     }
3319 
3320     if (index < 0) {
3321         pr_warn("Failed to allocate IRTE\n");
3322         ret = index;
3323         goto out_free_parent;
3324     }
3325 
3326     for (i = 0; i < nr_irqs; i++) {
3327         irq_data = irq_domain_get_irq_data(domain, virq + i);
3328         cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3329         if (!cfg) {
3330             ret = -EINVAL;
3331             goto out_free_data;
3332         }
3333 
3334         ret = -ENOMEM;
3335         data = kzalloc(sizeof(*data), GFP_KERNEL);
3336         if (!data)
3337             goto out_free_data;
3338 
3339         if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3340             data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3341         else
3342             data->entry = kzalloc(sizeof(struct irte_ga),
3343                              GFP_KERNEL);
3344         if (!data->entry) {
3345             kfree(data);
3346             goto out_free_data;
3347         }
3348 
3349         data->iommu = iommu;
3350         irq_data->hwirq = (devid << 16) + i;
3351         irq_data->chip_data = data;
3352         irq_data->chip = &amd_ir_chip;
3353         irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3354         irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3355     }
3356 
3357     return 0;
3358 
3359 out_free_data:
3360     for (i--; i >= 0; i--) {
3361         irq_data = irq_domain_get_irq_data(domain, virq + i);
3362         if (irq_data)
3363             kfree(irq_data->chip_data);
3364     }
3365     for (i = 0; i < nr_irqs; i++)
3366         free_irte(iommu, devid, index + i);
3367 out_free_parent:
3368     irq_domain_free_irqs_common(domain, virq, nr_irqs);
3369     return ret;
3370 }
3371 
3372 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3373                    unsigned int nr_irqs)
3374 {
3375     struct irq_2_irte *irte_info;
3376     struct irq_data *irq_data;
3377     struct amd_ir_data *data;
3378     int i;
3379 
3380     for (i = 0; i < nr_irqs; i++) {
3381         irq_data = irq_domain_get_irq_data(domain, virq  + i);
3382         if (irq_data && irq_data->chip_data) {
3383             data = irq_data->chip_data;
3384             irte_info = &data->irq_2_irte;
3385             free_irte(data->iommu, irte_info->devid, irte_info->index);
3386             kfree(data->entry);
3387             kfree(data);
3388         }
3389     }
3390     irq_domain_free_irqs_common(domain, virq, nr_irqs);
3391 }
3392 
3393 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3394                    struct amd_ir_data *ir_data,
3395                    struct irq_2_irte *irte_info,
3396                    struct irq_cfg *cfg);
3397 
3398 static int irq_remapping_activate(struct irq_domain *domain,
3399                   struct irq_data *irq_data, bool reserve)
3400 {
3401     struct amd_ir_data *data = irq_data->chip_data;
3402     struct irq_2_irte *irte_info = &data->irq_2_irte;
3403     struct amd_iommu *iommu = data->iommu;
3404     struct irq_cfg *cfg = irqd_cfg(irq_data);
3405 
3406     if (!iommu)
3407         return 0;
3408 
3409     iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3410                   irte_info->index);
3411     amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3412     return 0;
3413 }
3414 
3415 static void irq_remapping_deactivate(struct irq_domain *domain,
3416                      struct irq_data *irq_data)
3417 {
3418     struct amd_ir_data *data = irq_data->chip_data;
3419     struct irq_2_irte *irte_info = &data->irq_2_irte;
3420     struct amd_iommu *iommu = data->iommu;
3421 
3422     if (iommu)
3423         iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3424                         irte_info->index);
3425 }
3426 
3427 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3428                 enum irq_domain_bus_token bus_token)
3429 {
3430     struct amd_iommu *iommu;
3431     int devid = -1;
3432 
3433     if (!amd_iommu_irq_remap)
3434         return 0;
3435 
3436     if (x86_fwspec_is_ioapic(fwspec))
3437         devid = get_ioapic_devid(fwspec->param[0]);
3438     else if (x86_fwspec_is_hpet(fwspec))
3439         devid = get_hpet_devid(fwspec->param[0]);
3440 
3441     if (devid < 0)
3442         return 0;
3443     iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3444 
3445     return iommu && iommu->ir_domain == d;
3446 }
3447 
3448 static const struct irq_domain_ops amd_ir_domain_ops = {
3449     .select = irq_remapping_select,
3450     .alloc = irq_remapping_alloc,
3451     .free = irq_remapping_free,
3452     .activate = irq_remapping_activate,
3453     .deactivate = irq_remapping_deactivate,
3454 };
3455 
3456 int amd_iommu_activate_guest_mode(void *data)
3457 {
3458     struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3459     struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3460     u64 valid;
3461 
3462     if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3463         !entry || entry->lo.fields_vapic.guest_mode)
3464         return 0;
3465 
3466     valid = entry->lo.fields_vapic.valid;
3467 
3468     entry->lo.val = 0;
3469     entry->hi.val = 0;
3470 
3471     entry->lo.fields_vapic.valid       = valid;
3472     entry->lo.fields_vapic.guest_mode  = 1;
3473     entry->lo.fields_vapic.ga_log_intr = 1;
3474     entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3475     entry->hi.fields.vector            = ir_data->ga_vector;
3476     entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3477 
3478     return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3479                   ir_data->irq_2_irte.index, entry, ir_data);
3480 }
3481 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3482 
3483 int amd_iommu_deactivate_guest_mode(void *data)
3484 {
3485     struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3486     struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3487     struct irq_cfg *cfg = ir_data->cfg;
3488     u64 valid;
3489 
3490     if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3491         !entry || !entry->lo.fields_vapic.guest_mode)
3492         return 0;
3493 
3494     valid = entry->lo.fields_remap.valid;
3495 
3496     entry->lo.val = 0;
3497     entry->hi.val = 0;
3498 
3499     entry->lo.fields_remap.valid       = valid;
3500     entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3501     entry->lo.fields_remap.int_type    = apic->delivery_mode;
3502     entry->hi.fields.vector            = cfg->vector;
3503     entry->lo.fields_remap.destination =
3504                 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3505     entry->hi.fields.destination =
3506                 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3507 
3508     return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3509                   ir_data->irq_2_irte.index, entry, ir_data);
3510 }
3511 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3512 
3513 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3514 {
3515     int ret;
3516     struct amd_iommu_pi_data *pi_data = vcpu_info;
3517     struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3518     struct amd_ir_data *ir_data = data->chip_data;
3519     struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3520     struct iommu_dev_data *dev_data;
3521 
3522     if (ir_data->iommu == NULL)
3523         return -EINVAL;
3524 
3525     dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3526 
3527     /* Note:
3528      * This device has never been set up for guest mode.
3529      * we should not modify the IRTE
3530      */
3531     if (!dev_data || !dev_data->use_vapic)
3532         return 0;
3533 
3534     ir_data->cfg = irqd_cfg(data);
3535     pi_data->ir_data = ir_data;
3536 
3537     /* Note:
3538      * SVM tries to set up for VAPIC mode, but we are in
3539      * legacy mode. So, we force legacy mode instead.
3540      */
3541     if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3542         pr_debug("%s: Fall back to using intr legacy remap\n",
3543              __func__);
3544         pi_data->is_guest_mode = false;
3545     }
3546 
3547     pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3548     if (pi_data->is_guest_mode) {
3549         ir_data->ga_root_ptr = (pi_data->base >> 12);
3550         ir_data->ga_vector = vcpu_pi_info->vector;
3551         ir_data->ga_tag = pi_data->ga_tag;
3552         ret = amd_iommu_activate_guest_mode(ir_data);
3553         if (!ret)
3554             ir_data->cached_ga_tag = pi_data->ga_tag;
3555     } else {
3556         ret = amd_iommu_deactivate_guest_mode(ir_data);
3557 
3558         /*
3559          * This communicates the ga_tag back to the caller
3560          * so that it can do all the necessary clean up.
3561          */
3562         if (!ret)
3563             ir_data->cached_ga_tag = 0;
3564     }
3565 
3566     return ret;
3567 }
3568 
3569 
3570 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3571                    struct amd_ir_data *ir_data,
3572                    struct irq_2_irte *irte_info,
3573                    struct irq_cfg *cfg)
3574 {
3575 
3576     /*
3577      * Atomically updates the IRTE with the new destination, vector
3578      * and flushes the interrupt entry cache.
3579      */
3580     iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3581                       irte_info->index, cfg->vector,
3582                       cfg->dest_apicid);
3583 }
3584 
3585 static int amd_ir_set_affinity(struct irq_data *data,
3586                    const struct cpumask *mask, bool force)
3587 {
3588     struct amd_ir_data *ir_data = data->chip_data;
3589     struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3590     struct irq_cfg *cfg = irqd_cfg(data);
3591     struct irq_data *parent = data->parent_data;
3592     struct amd_iommu *iommu = ir_data->iommu;
3593     int ret;
3594 
3595     if (!iommu)
3596         return -ENODEV;
3597 
3598     ret = parent->chip->irq_set_affinity(parent, mask, force);
3599     if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3600         return ret;
3601 
3602     amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3603     /*
3604      * After this point, all the interrupts will start arriving
3605      * at the new destination. So, time to cleanup the previous
3606      * vector allocation.
3607      */
3608     send_cleanup_vector(cfg);
3609 
3610     return IRQ_SET_MASK_OK_DONE;
3611 }
3612 
3613 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3614 {
3615     struct amd_ir_data *ir_data = irq_data->chip_data;
3616 
3617     *msg = ir_data->msi_entry;
3618 }
3619 
3620 static struct irq_chip amd_ir_chip = {
3621     .name           = "AMD-IR",
3622     .irq_ack        = apic_ack_irq,
3623     .irq_set_affinity   = amd_ir_set_affinity,
3624     .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
3625     .irq_compose_msi_msg    = ir_compose_msi_msg,
3626 };
3627 
3628 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3629 {
3630     struct fwnode_handle *fn;
3631 
3632     fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3633     if (!fn)
3634         return -ENOMEM;
3635     iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3636     if (!iommu->ir_domain) {
3637         irq_domain_free_fwnode(fn);
3638         return -ENOMEM;
3639     }
3640 
3641     iommu->ir_domain->parent = arch_get_ir_parent_domain();
3642     iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3643                                  "AMD-IR-MSI",
3644                                  iommu->index);
3645     return 0;
3646 }
3647 
3648 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3649 {
3650     unsigned long flags;
3651     struct amd_iommu *iommu;
3652     struct irq_remap_table *table;
3653     struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3654     int devid = ir_data->irq_2_irte.devid;
3655     struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3656     struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3657 
3658     if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3659         !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3660         return 0;
3661 
3662     iommu = ir_data->iommu;
3663     if (!iommu)
3664         return -ENODEV;
3665 
3666     table = get_irq_table(iommu, devid);
3667     if (!table)
3668         return -ENODEV;
3669 
3670     raw_spin_lock_irqsave(&table->lock, flags);
3671 
3672     if (ref->lo.fields_vapic.guest_mode) {
3673         if (cpu >= 0) {
3674             ref->lo.fields_vapic.destination =
3675                         APICID_TO_IRTE_DEST_LO(cpu);
3676             ref->hi.fields.destination =
3677                         APICID_TO_IRTE_DEST_HI(cpu);
3678         }
3679         ref->lo.fields_vapic.is_run = is_run;
3680         barrier();
3681     }
3682 
3683     raw_spin_unlock_irqrestore(&table->lock, flags);
3684 
3685     iommu_flush_irt(iommu, devid);
3686     iommu_completion_wait(iommu);
3687     return 0;
3688 }
3689 EXPORT_SYMBOL(amd_iommu_update_ga);
3690 #endif