0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014 #include <linux/bitmap.h>
0015 #include <linux/delay.h>
0016 #include <linux/fs.h>
0017 #include <linux/irq.h>
0018 #include <linux/pm.h>
0019 #include <linux/slab.h>
0020 #include <linux/of.h>
0021 #include <linux/irqdomain.h>
0022 #include <uapi/linux/input.h>
0023 #include <linux/rmi.h>
0024 #include "rmi_bus.h"
0025 #include "rmi_driver.h"
0026
0027 #define HAS_NONSTANDARD_PDT_MASK 0x40
0028 #define RMI4_MAX_PAGE 0xff
0029 #define RMI4_PAGE_SIZE 0x100
0030 #define RMI4_PAGE_MASK 0xFF00
0031
0032 #define RMI_DEVICE_RESET_CMD 0x01
0033 #define DEFAULT_RESET_DELAY_MS 100
0034
0035 void rmi_free_function_list(struct rmi_device *rmi_dev)
0036 {
0037 struct rmi_function *fn, *tmp;
0038 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0039
0040 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
0041
0042
0043 list_for_each_entry_safe_reverse(fn, tmp,
0044 &data->function_list, node) {
0045 list_del(&fn->node);
0046 rmi_unregister_function(fn);
0047 }
0048
0049 devm_kfree(&rmi_dev->dev, data->irq_memory);
0050 data->irq_memory = NULL;
0051 data->irq_status = NULL;
0052 data->fn_irq_bits = NULL;
0053 data->current_irq_mask = NULL;
0054 data->new_irq_mask = NULL;
0055
0056 data->f01_container = NULL;
0057 data->f34_container = NULL;
0058 }
0059
0060 static int reset_one_function(struct rmi_function *fn)
0061 {
0062 struct rmi_function_handler *fh;
0063 int retval = 0;
0064
0065 if (!fn || !fn->dev.driver)
0066 return 0;
0067
0068 fh = to_rmi_function_handler(fn->dev.driver);
0069 if (fh->reset) {
0070 retval = fh->reset(fn);
0071 if (retval < 0)
0072 dev_err(&fn->dev, "Reset failed with code %d.\n",
0073 retval);
0074 }
0075
0076 return retval;
0077 }
0078
0079 static int configure_one_function(struct rmi_function *fn)
0080 {
0081 struct rmi_function_handler *fh;
0082 int retval = 0;
0083
0084 if (!fn || !fn->dev.driver)
0085 return 0;
0086
0087 fh = to_rmi_function_handler(fn->dev.driver);
0088 if (fh->config) {
0089 retval = fh->config(fn);
0090 if (retval < 0)
0091 dev_err(&fn->dev, "Config failed with code %d.\n",
0092 retval);
0093 }
0094
0095 return retval;
0096 }
0097
0098 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
0099 {
0100 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0101 struct rmi_function *entry;
0102 int retval;
0103
0104 list_for_each_entry(entry, &data->function_list, node) {
0105 retval = reset_one_function(entry);
0106 if (retval < 0)
0107 return retval;
0108 }
0109
0110 return 0;
0111 }
0112
0113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
0114 {
0115 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0116 struct rmi_function *entry;
0117 int retval;
0118
0119 list_for_each_entry(entry, &data->function_list, node) {
0120 retval = configure_one_function(entry);
0121 if (retval < 0)
0122 return retval;
0123 }
0124
0125 return 0;
0126 }
0127
0128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
0129 {
0130 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0131 struct device *dev = &rmi_dev->dev;
0132 int i;
0133 int error;
0134
0135 if (!data)
0136 return 0;
0137
0138 if (!data->attn_data.data) {
0139 error = rmi_read_block(rmi_dev,
0140 data->f01_container->fd.data_base_addr + 1,
0141 data->irq_status, data->num_of_irq_regs);
0142 if (error < 0) {
0143 dev_err(dev, "Failed to read irqs, code=%d\n", error);
0144 return error;
0145 }
0146 }
0147
0148 mutex_lock(&data->irq_mutex);
0149 bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
0150 data->irq_count);
0151
0152
0153
0154
0155 mutex_unlock(&data->irq_mutex);
0156
0157 for_each_set_bit(i, data->irq_status, data->irq_count)
0158 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
0159
0160 if (data->input)
0161 input_sync(data->input);
0162
0163 return 0;
0164 }
0165
0166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
0167 void *data, size_t size)
0168 {
0169 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
0170 struct rmi4_attn_data attn_data;
0171 void *fifo_data;
0172
0173 if (!drvdata->enabled)
0174 return;
0175
0176 fifo_data = kmemdup(data, size, GFP_ATOMIC);
0177 if (!fifo_data)
0178 return;
0179
0180 attn_data.irq_status = irq_status;
0181 attn_data.size = size;
0182 attn_data.data = fifo_data;
0183
0184 kfifo_put(&drvdata->attn_fifo, attn_data);
0185 }
0186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
0187
0188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
0189 {
0190 struct rmi_device *rmi_dev = dev_id;
0191 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
0192 struct rmi4_attn_data attn_data = {0};
0193 int ret, count;
0194
0195 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
0196 if (count) {
0197 *(drvdata->irq_status) = attn_data.irq_status;
0198 drvdata->attn_data = attn_data;
0199 }
0200
0201 ret = rmi_process_interrupt_requests(rmi_dev);
0202 if (ret)
0203 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
0204 "Failed to process interrupt request: %d\n", ret);
0205
0206 if (count) {
0207 kfree(attn_data.data);
0208 drvdata->attn_data.data = NULL;
0209 }
0210
0211 if (!kfifo_is_empty(&drvdata->attn_fifo))
0212 return rmi_irq_fn(irq, dev_id);
0213
0214 return IRQ_HANDLED;
0215 }
0216
0217 static int rmi_irq_init(struct rmi_device *rmi_dev)
0218 {
0219 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
0220 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0221 int irq_flags = irq_get_trigger_type(pdata->irq);
0222 int ret;
0223
0224 if (!irq_flags)
0225 irq_flags = IRQF_TRIGGER_LOW;
0226
0227 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
0228 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
0229 dev_driver_string(rmi_dev->xport->dev),
0230 rmi_dev);
0231 if (ret < 0) {
0232 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
0233 pdata->irq);
0234
0235 return ret;
0236 }
0237
0238 data->enabled = true;
0239
0240 return 0;
0241 }
0242
0243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
0244 {
0245 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0246 struct rmi_function *entry;
0247
0248 list_for_each_entry(entry, &data->function_list, node) {
0249 if (entry->fd.function_number == number)
0250 return entry;
0251 }
0252
0253 return NULL;
0254 }
0255
0256 static int suspend_one_function(struct rmi_function *fn)
0257 {
0258 struct rmi_function_handler *fh;
0259 int retval = 0;
0260
0261 if (!fn || !fn->dev.driver)
0262 return 0;
0263
0264 fh = to_rmi_function_handler(fn->dev.driver);
0265 if (fh->suspend) {
0266 retval = fh->suspend(fn);
0267 if (retval < 0)
0268 dev_err(&fn->dev, "Suspend failed with code %d.\n",
0269 retval);
0270 }
0271
0272 return retval;
0273 }
0274
0275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
0276 {
0277 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0278 struct rmi_function *entry;
0279 int retval;
0280
0281 list_for_each_entry(entry, &data->function_list, node) {
0282 retval = suspend_one_function(entry);
0283 if (retval < 0)
0284 return retval;
0285 }
0286
0287 return 0;
0288 }
0289
0290 static int resume_one_function(struct rmi_function *fn)
0291 {
0292 struct rmi_function_handler *fh;
0293 int retval = 0;
0294
0295 if (!fn || !fn->dev.driver)
0296 return 0;
0297
0298 fh = to_rmi_function_handler(fn->dev.driver);
0299 if (fh->resume) {
0300 retval = fh->resume(fn);
0301 if (retval < 0)
0302 dev_err(&fn->dev, "Resume failed with code %d.\n",
0303 retval);
0304 }
0305
0306 return retval;
0307 }
0308
0309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
0310 {
0311 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0312 struct rmi_function *entry;
0313 int retval;
0314
0315 list_for_each_entry(entry, &data->function_list, node) {
0316 retval = resume_one_function(entry);
0317 if (retval < 0)
0318 return retval;
0319 }
0320
0321 return 0;
0322 }
0323
0324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
0325 {
0326 int retval = 0;
0327
0328 retval = rmi_driver_process_config_requests(rmi_dev);
0329 if (retval < 0)
0330 return retval;
0331
0332 return rmi_process_interrupt_requests(rmi_dev);
0333 }
0334
0335
0336
0337
0338
0339
0340
0341
0342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
0343 struct input_dev *input)
0344 {
0345 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
0346 input->id.vendor = SYNAPTICS_VENDOR_ID;
0347 input->id.bustype = BUS_RMI;
0348 return 0;
0349 }
0350
0351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
0352 struct input_dev *input)
0353 {
0354 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0355 const char *device_name = rmi_f01_get_product_ID(data->f01_container);
0356 char *name;
0357
0358 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
0359 "Synaptics %s", device_name);
0360 if (!name)
0361 return;
0362
0363 input->name = name;
0364 }
0365
0366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
0367 unsigned long *mask)
0368 {
0369 int error = 0;
0370 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0371 struct device *dev = &rmi_dev->dev;
0372
0373 mutex_lock(&data->irq_mutex);
0374 bitmap_or(data->new_irq_mask,
0375 data->current_irq_mask, mask, data->irq_count);
0376
0377 error = rmi_write_block(rmi_dev,
0378 data->f01_container->fd.control_base_addr + 1,
0379 data->new_irq_mask, data->num_of_irq_regs);
0380 if (error < 0) {
0381 dev_err(dev, "%s: Failed to change enabled interrupts!",
0382 __func__);
0383 goto error_unlock;
0384 }
0385 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
0386 data->num_of_irq_regs);
0387
0388 bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
0389
0390 error_unlock:
0391 mutex_unlock(&data->irq_mutex);
0392 return error;
0393 }
0394
0395 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
0396 unsigned long *mask)
0397 {
0398 int error = 0;
0399 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0400 struct device *dev = &rmi_dev->dev;
0401
0402 mutex_lock(&data->irq_mutex);
0403 bitmap_andnot(data->fn_irq_bits,
0404 data->fn_irq_bits, mask, data->irq_count);
0405 bitmap_andnot(data->new_irq_mask,
0406 data->current_irq_mask, mask, data->irq_count);
0407
0408 error = rmi_write_block(rmi_dev,
0409 data->f01_container->fd.control_base_addr + 1,
0410 data->new_irq_mask, data->num_of_irq_regs);
0411 if (error < 0) {
0412 dev_err(dev, "%s: Failed to change enabled interrupts!",
0413 __func__);
0414 goto error_unlock;
0415 }
0416 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
0417 data->num_of_irq_regs);
0418
0419 error_unlock:
0420 mutex_unlock(&data->irq_mutex);
0421 return error;
0422 }
0423
0424 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
0425 {
0426 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0427 int error;
0428
0429
0430
0431
0432
0433 if (!data || !data->f01_container) {
0434 dev_warn(&rmi_dev->dev,
0435 "Not ready to handle reset yet!\n");
0436 return 0;
0437 }
0438
0439 error = rmi_read_block(rmi_dev,
0440 data->f01_container->fd.control_base_addr + 1,
0441 data->current_irq_mask, data->num_of_irq_regs);
0442 if (error < 0) {
0443 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
0444 __func__);
0445 return error;
0446 }
0447
0448 error = rmi_driver_process_reset_requests(rmi_dev);
0449 if (error < 0)
0450 return error;
0451
0452 error = rmi_driver_process_config_requests(rmi_dev);
0453 if (error < 0)
0454 return error;
0455
0456 return 0;
0457 }
0458
0459 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
0460 struct pdt_entry *entry, u16 pdt_address)
0461 {
0462 u8 buf[RMI_PDT_ENTRY_SIZE];
0463 int error;
0464
0465 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
0466 if (error) {
0467 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
0468 pdt_address, error);
0469 return error;
0470 }
0471
0472 entry->page_start = pdt_address & RMI4_PAGE_MASK;
0473 entry->query_base_addr = buf[0];
0474 entry->command_base_addr = buf[1];
0475 entry->control_base_addr = buf[2];
0476 entry->data_base_addr = buf[3];
0477 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
0478 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
0479 entry->function_number = buf[5];
0480
0481 return 0;
0482 }
0483
0484 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
0485 struct rmi_function_descriptor *fd)
0486 {
0487 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
0488 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
0489 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
0490 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
0491 fd->function_number = pdt->function_number;
0492 fd->interrupt_source_count = pdt->interrupt_source_count;
0493 fd->function_version = pdt->function_version;
0494 }
0495
0496 #define RMI_SCAN_CONTINUE 0
0497 #define RMI_SCAN_DONE 1
0498
0499 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
0500 int page,
0501 int *empty_pages,
0502 void *ctx,
0503 int (*callback)(struct rmi_device *rmi_dev,
0504 void *ctx,
0505 const struct pdt_entry *entry))
0506 {
0507 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0508 struct pdt_entry pdt_entry;
0509 u16 page_start = RMI4_PAGE_SIZE * page;
0510 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
0511 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
0512 u16 addr;
0513 int error;
0514 int retval;
0515
0516 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
0517 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
0518 if (error)
0519 return error;
0520
0521 if (RMI4_END_OF_PDT(pdt_entry.function_number))
0522 break;
0523
0524 retval = callback(rmi_dev, ctx, &pdt_entry);
0525 if (retval != RMI_SCAN_CONTINUE)
0526 return retval;
0527 }
0528
0529
0530
0531
0532
0533 if (addr == pdt_start)
0534 ++*empty_pages;
0535 else
0536 *empty_pages = 0;
0537
0538 return (data->bootloader_mode || *empty_pages >= 2) ?
0539 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
0540 }
0541
0542 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
0543 int (*callback)(struct rmi_device *rmi_dev,
0544 void *ctx, const struct pdt_entry *entry))
0545 {
0546 int page;
0547 int empty_pages = 0;
0548 int retval = RMI_SCAN_DONE;
0549
0550 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
0551 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
0552 ctx, callback);
0553 if (retval != RMI_SCAN_CONTINUE)
0554 break;
0555 }
0556
0557 return retval < 0 ? retval : 0;
0558 }
0559
0560 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
0561 struct rmi_register_descriptor *rdesc)
0562 {
0563 int ret;
0564 u8 size_presence_reg;
0565 u8 buf[35];
0566 int presense_offset = 1;
0567 u8 *struct_buf;
0568 int reg;
0569 int offset = 0;
0570 int map_offset = 0;
0571 int i;
0572 int b;
0573
0574
0575
0576
0577
0578 ret = rmi_read(d, addr, &size_presence_reg);
0579 if (ret)
0580 return ret;
0581 ++addr;
0582
0583 if (size_presence_reg < 0 || size_presence_reg > 35)
0584 return -EIO;
0585
0586 memset(buf, 0, sizeof(buf));
0587
0588
0589
0590
0591
0592
0593 ret = rmi_read_block(d, addr, buf, size_presence_reg);
0594 if (ret)
0595 return ret;
0596 ++addr;
0597
0598 if (buf[0] == 0) {
0599 presense_offset = 3;
0600 rdesc->struct_size = buf[1] | (buf[2] << 8);
0601 } else {
0602 rdesc->struct_size = buf[0];
0603 }
0604
0605 for (i = presense_offset; i < size_presence_reg; i++) {
0606 for (b = 0; b < 8; b++) {
0607 if (buf[i] & (0x1 << b))
0608 bitmap_set(rdesc->presense_map, map_offset, 1);
0609 ++map_offset;
0610 }
0611 }
0612
0613 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
0614 RMI_REG_DESC_PRESENSE_BITS);
0615
0616 rdesc->registers = devm_kcalloc(&d->dev,
0617 rdesc->num_registers,
0618 sizeof(struct rmi_register_desc_item),
0619 GFP_KERNEL);
0620 if (!rdesc->registers)
0621 return -ENOMEM;
0622
0623
0624
0625
0626
0627
0628 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
0629 if (!struct_buf)
0630 return -ENOMEM;
0631
0632
0633
0634
0635
0636
0637
0638 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
0639 if (ret)
0640 goto free_struct_buff;
0641
0642 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
0643 for (i = 0; i < rdesc->num_registers; i++) {
0644 struct rmi_register_desc_item *item = &rdesc->registers[i];
0645 int reg_size = struct_buf[offset];
0646
0647 ++offset;
0648 if (reg_size == 0) {
0649 reg_size = struct_buf[offset] |
0650 (struct_buf[offset + 1] << 8);
0651 offset += 2;
0652 }
0653
0654 if (reg_size == 0) {
0655 reg_size = struct_buf[offset] |
0656 (struct_buf[offset + 1] << 8) |
0657 (struct_buf[offset + 2] << 16) |
0658 (struct_buf[offset + 3] << 24);
0659 offset += 4;
0660 }
0661
0662 item->reg = reg;
0663 item->reg_size = reg_size;
0664
0665 map_offset = 0;
0666
0667 do {
0668 for (b = 0; b < 7; b++) {
0669 if (struct_buf[offset] & (0x1 << b))
0670 bitmap_set(item->subpacket_map,
0671 map_offset, 1);
0672 ++map_offset;
0673 }
0674 } while (struct_buf[offset++] & 0x80);
0675
0676 item->num_subpackets = bitmap_weight(item->subpacket_map,
0677 RMI_REG_DESC_SUBPACKET_BITS);
0678
0679 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
0680 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
0681 item->reg, item->reg_size, item->num_subpackets);
0682
0683 reg = find_next_bit(rdesc->presense_map,
0684 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
0685 }
0686
0687 free_struct_buff:
0688 kfree(struct_buf);
0689 return ret;
0690 }
0691
0692 const struct rmi_register_desc_item *rmi_get_register_desc_item(
0693 struct rmi_register_descriptor *rdesc, u16 reg)
0694 {
0695 const struct rmi_register_desc_item *item;
0696 int i;
0697
0698 for (i = 0; i < rdesc->num_registers; i++) {
0699 item = &rdesc->registers[i];
0700 if (item->reg == reg)
0701 return item;
0702 }
0703
0704 return NULL;
0705 }
0706
0707 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
0708 {
0709 const struct rmi_register_desc_item *item;
0710 int i;
0711 size_t size = 0;
0712
0713 for (i = 0; i < rdesc->num_registers; i++) {
0714 item = &rdesc->registers[i];
0715 size += item->reg_size;
0716 }
0717 return size;
0718 }
0719
0720
0721 int rmi_register_desc_calc_reg_offset(
0722 struct rmi_register_descriptor *rdesc, u16 reg)
0723 {
0724 const struct rmi_register_desc_item *item;
0725 int offset = 0;
0726 int i;
0727
0728 for (i = 0; i < rdesc->num_registers; i++) {
0729 item = &rdesc->registers[i];
0730 if (item->reg == reg)
0731 return offset;
0732 ++offset;
0733 }
0734 return -1;
0735 }
0736
0737 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
0738 u8 subpacket)
0739 {
0740 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
0741 subpacket) == subpacket;
0742 }
0743
0744 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
0745 const struct pdt_entry *pdt)
0746 {
0747 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0748 int ret;
0749 u8 status;
0750
0751 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
0752 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
0753 if (ret) {
0754 dev_err(&rmi_dev->dev,
0755 "Failed to read F34 status: %d.\n", ret);
0756 return ret;
0757 }
0758
0759 if (status & BIT(7))
0760 data->bootloader_mode = true;
0761 } else if (pdt->function_number == 0x01) {
0762 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
0763 if (ret) {
0764 dev_err(&rmi_dev->dev,
0765 "Failed to read F01 status: %d.\n", ret);
0766 return ret;
0767 }
0768
0769 if (status & BIT(6))
0770 data->bootloader_mode = true;
0771 }
0772
0773 return 0;
0774 }
0775
0776 static int rmi_count_irqs(struct rmi_device *rmi_dev,
0777 void *ctx, const struct pdt_entry *pdt)
0778 {
0779 int *irq_count = ctx;
0780 int ret;
0781
0782 *irq_count += pdt->interrupt_source_count;
0783
0784 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
0785 if (ret < 0)
0786 return ret;
0787
0788 return RMI_SCAN_CONTINUE;
0789 }
0790
0791 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
0792 const struct pdt_entry *pdt)
0793 {
0794 int error;
0795
0796 if (pdt->function_number == 0x01) {
0797 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
0798 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
0799 const struct rmi_device_platform_data *pdata =
0800 rmi_get_platform_data(rmi_dev);
0801
0802 if (rmi_dev->xport->ops->reset) {
0803 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
0804 cmd_addr);
0805 if (error)
0806 return error;
0807
0808 return RMI_SCAN_DONE;
0809 }
0810
0811 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
0812 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
0813 if (error) {
0814 dev_err(&rmi_dev->dev,
0815 "Initial reset failed. Code = %d.\n", error);
0816 return error;
0817 }
0818
0819 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
0820
0821 return RMI_SCAN_DONE;
0822 }
0823
0824
0825 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
0826 }
0827
0828 static int rmi_create_function(struct rmi_device *rmi_dev,
0829 void *ctx, const struct pdt_entry *pdt)
0830 {
0831 struct device *dev = &rmi_dev->dev;
0832 struct rmi_driver_data *data = dev_get_drvdata(dev);
0833 int *current_irq_count = ctx;
0834 struct rmi_function *fn;
0835 int i;
0836 int error;
0837
0838 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
0839 pdt->function_number);
0840
0841 fn = kzalloc(sizeof(struct rmi_function) +
0842 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
0843 GFP_KERNEL);
0844 if (!fn) {
0845 dev_err(dev, "Failed to allocate memory for F%02X\n",
0846 pdt->function_number);
0847 return -ENOMEM;
0848 }
0849
0850 INIT_LIST_HEAD(&fn->node);
0851 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
0852
0853 fn->rmi_dev = rmi_dev;
0854
0855 fn->num_of_irqs = pdt->interrupt_source_count;
0856 fn->irq_pos = *current_irq_count;
0857 *current_irq_count += fn->num_of_irqs;
0858
0859 for (i = 0; i < fn->num_of_irqs; i++)
0860 set_bit(fn->irq_pos + i, fn->irq_mask);
0861
0862 error = rmi_register_function(fn);
0863 if (error)
0864 return error;
0865
0866 if (pdt->function_number == 0x01)
0867 data->f01_container = fn;
0868 else if (pdt->function_number == 0x34)
0869 data->f34_container = fn;
0870
0871 list_add_tail(&fn->node, &data->function_list);
0872
0873 return RMI_SCAN_CONTINUE;
0874 }
0875
0876 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
0877 {
0878 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
0879 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0880 int irq = pdata->irq;
0881 int irq_flags;
0882 int retval;
0883
0884 mutex_lock(&data->enabled_mutex);
0885
0886 if (data->enabled)
0887 goto out;
0888
0889 enable_irq(irq);
0890 data->enabled = true;
0891 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
0892 retval = disable_irq_wake(irq);
0893 if (retval)
0894 dev_warn(&rmi_dev->dev,
0895 "Failed to disable irq for wake: %d\n",
0896 retval);
0897 }
0898
0899
0900
0901
0902
0903 irq_flags = irq_get_trigger_type(pdata->irq);
0904 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
0905 rmi_process_interrupt_requests(rmi_dev);
0906
0907 out:
0908 mutex_unlock(&data->enabled_mutex);
0909 }
0910
0911 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
0912 {
0913 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
0914 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0915 struct rmi4_attn_data attn_data = {0};
0916 int irq = pdata->irq;
0917 int retval, count;
0918
0919 mutex_lock(&data->enabled_mutex);
0920
0921 if (!data->enabled)
0922 goto out;
0923
0924 data->enabled = false;
0925 disable_irq(irq);
0926 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
0927 retval = enable_irq_wake(irq);
0928 if (retval)
0929 dev_warn(&rmi_dev->dev,
0930 "Failed to enable irq for wake: %d\n",
0931 retval);
0932 }
0933
0934
0935 while (!kfifo_is_empty(&data->attn_fifo)) {
0936 count = kfifo_get(&data->attn_fifo, &attn_data);
0937 if (count)
0938 kfree(attn_data.data);
0939 }
0940
0941 out:
0942 mutex_unlock(&data->enabled_mutex);
0943 }
0944
0945 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
0946 {
0947 int retval;
0948
0949 retval = rmi_suspend_functions(rmi_dev);
0950 if (retval)
0951 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
0952 retval);
0953
0954 rmi_disable_irq(rmi_dev, enable_wake);
0955 return retval;
0956 }
0957 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
0958
0959 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
0960 {
0961 int retval;
0962
0963 rmi_enable_irq(rmi_dev, clear_wake);
0964
0965 retval = rmi_resume_functions(rmi_dev);
0966 if (retval)
0967 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
0968 retval);
0969
0970 return retval;
0971 }
0972 EXPORT_SYMBOL_GPL(rmi_driver_resume);
0973
0974 static int rmi_driver_remove(struct device *dev)
0975 {
0976 struct rmi_device *rmi_dev = to_rmi_device(dev);
0977 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
0978
0979 rmi_disable_irq(rmi_dev, false);
0980
0981 irq_domain_remove(data->irqdomain);
0982 data->irqdomain = NULL;
0983
0984 rmi_f34_remove_sysfs(rmi_dev);
0985 rmi_free_function_list(rmi_dev);
0986
0987 return 0;
0988 }
0989
0990 #ifdef CONFIG_OF
0991 static int rmi_driver_of_probe(struct device *dev,
0992 struct rmi_device_platform_data *pdata)
0993 {
0994 int retval;
0995
0996 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
0997 "syna,reset-delay-ms", 1);
0998 if (retval)
0999 return retval;
1000
1001 return 0;
1002 }
1003 #else
1004 static inline int rmi_driver_of_probe(struct device *dev,
1005 struct rmi_device_platform_data *pdata)
1006 {
1007 return -ENODEV;
1008 }
1009 #endif
1010
1011 int rmi_probe_interrupts(struct rmi_driver_data *data)
1012 {
1013 struct rmi_device *rmi_dev = data->rmi_dev;
1014 struct device *dev = &rmi_dev->dev;
1015 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1016 int irq_count = 0;
1017 size_t size;
1018 int retval;
1019
1020
1021
1022
1023
1024
1025
1026 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1027 data->bootloader_mode = false;
1028
1029 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1030 if (retval < 0) {
1031 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1032 return retval;
1033 }
1034
1035 if (data->bootloader_mode)
1036 dev_warn(dev, "Device in bootloader mode.\n");
1037
1038
1039 data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1040 &irq_domain_simple_ops,
1041 data);
1042 if (!data->irqdomain) {
1043 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1044 return -ENOMEM;
1045 }
1046
1047 data->irq_count = irq_count;
1048 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049
1050 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1051 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1052 if (!data->irq_memory) {
1053 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1054 return -ENOMEM;
1055 }
1056
1057 data->irq_status = data->irq_memory + size * 0;
1058 data->fn_irq_bits = data->irq_memory + size * 1;
1059 data->current_irq_mask = data->irq_memory + size * 2;
1060 data->new_irq_mask = data->irq_memory + size * 3;
1061
1062 return retval;
1063 }
1064
1065 int rmi_init_functions(struct rmi_driver_data *data)
1066 {
1067 struct rmi_device *rmi_dev = data->rmi_dev;
1068 struct device *dev = &rmi_dev->dev;
1069 int irq_count = 0;
1070 int retval;
1071
1072 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1073 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074 if (retval < 0) {
1075 dev_err(dev, "Function creation failed with code %d.\n",
1076 retval);
1077 goto err_destroy_functions;
1078 }
1079
1080 if (!data->f01_container) {
1081 dev_err(dev, "Missing F01 container!\n");
1082 retval = -EINVAL;
1083 goto err_destroy_functions;
1084 }
1085
1086 retval = rmi_read_block(rmi_dev,
1087 data->f01_container->fd.control_base_addr + 1,
1088 data->current_irq_mask, data->num_of_irq_regs);
1089 if (retval < 0) {
1090 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091 __func__);
1092 goto err_destroy_functions;
1093 }
1094
1095 return 0;
1096
1097 err_destroy_functions:
1098 rmi_free_function_list(rmi_dev);
1099 return retval;
1100 }
1101
1102 static int rmi_driver_probe(struct device *dev)
1103 {
1104 struct rmi_driver *rmi_driver;
1105 struct rmi_driver_data *data;
1106 struct rmi_device_platform_data *pdata;
1107 struct rmi_device *rmi_dev;
1108 int retval;
1109
1110 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1111 __func__);
1112
1113 if (!rmi_is_physical_device(dev)) {
1114 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1115 return -ENODEV;
1116 }
1117
1118 rmi_dev = to_rmi_device(dev);
1119 rmi_driver = to_rmi_driver(dev->driver);
1120 rmi_dev->driver = rmi_driver;
1121
1122 pdata = rmi_get_platform_data(rmi_dev);
1123
1124 if (rmi_dev->xport->dev->of_node) {
1125 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1126 if (retval)
1127 return retval;
1128 }
1129
1130 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1131 if (!data)
1132 return -ENOMEM;
1133
1134 INIT_LIST_HEAD(&data->function_list);
1135 data->rmi_dev = rmi_dev;
1136 dev_set_drvdata(&rmi_dev->dev, data);
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160 if (retval < 0)
1161 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162
1163 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1164 if (retval < 0) {
1165
1166
1167
1168
1169 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1170 PDT_PROPERTIES_LOCATION, retval);
1171 }
1172
1173 mutex_init(&data->irq_mutex);
1174 mutex_init(&data->enabled_mutex);
1175
1176 retval = rmi_probe_interrupts(data);
1177 if (retval)
1178 goto err;
1179
1180 if (rmi_dev->xport->input) {
1181
1182
1183
1184
1185
1186
1187
1188 data->input = rmi_dev->xport->input;
1189 } else {
1190 data->input = devm_input_allocate_device(dev);
1191 if (!data->input) {
1192 dev_err(dev, "%s: Failed to allocate input device.\n",
1193 __func__);
1194 retval = -ENOMEM;
1195 goto err;
1196 }
1197 rmi_driver_set_input_params(rmi_dev, data->input);
1198 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1199 "%s/input0", dev_name(dev));
1200 }
1201
1202 retval = rmi_init_functions(data);
1203 if (retval)
1204 goto err;
1205
1206 retval = rmi_f34_create_sysfs(rmi_dev);
1207 if (retval)
1208 goto err;
1209
1210 if (data->input) {
1211 rmi_driver_set_input_name(rmi_dev, data->input);
1212 if (!rmi_dev->xport->input) {
1213 retval = input_register_device(data->input);
1214 if (retval) {
1215 dev_err(dev, "%s: Failed to register input device.\n",
1216 __func__);
1217 goto err_destroy_functions;
1218 }
1219 }
1220 }
1221
1222 retval = rmi_irq_init(rmi_dev);
1223 if (retval < 0)
1224 goto err_destroy_functions;
1225
1226 if (data->f01_container->dev.driver) {
1227
1228 retval = rmi_enable_sensor(rmi_dev);
1229 if (retval)
1230 goto err_disable_irq;
1231 }
1232
1233 return 0;
1234
1235 err_disable_irq:
1236 rmi_disable_irq(rmi_dev, false);
1237 err_destroy_functions:
1238 rmi_free_function_list(rmi_dev);
1239 err:
1240 return retval;
1241 }
1242
1243 static struct rmi_driver rmi_physical_driver = {
1244 .driver = {
1245 .owner = THIS_MODULE,
1246 .name = "rmi4_physical",
1247 .bus = &rmi_bus_type,
1248 .probe = rmi_driver_probe,
1249 .remove = rmi_driver_remove,
1250 },
1251 .reset_handler = rmi_driver_reset_handler,
1252 .clear_irq_bits = rmi_driver_clear_irq_bits,
1253 .set_irq_bits = rmi_driver_set_irq_bits,
1254 .set_input_params = rmi_driver_set_input_params,
1255 };
1256
1257 bool rmi_is_physical_driver(struct device_driver *drv)
1258 {
1259 return drv == &rmi_physical_driver.driver;
1260 }
1261
1262 int __init rmi_register_physical_driver(void)
1263 {
1264 int error;
1265
1266 error = driver_register(&rmi_physical_driver.driver);
1267 if (error) {
1268 pr_err("%s: driver register failed, code=%d.\n", __func__,
1269 error);
1270 return error;
1271 }
1272
1273 return 0;
1274 }
1275
1276 void __exit rmi_unregister_physical_driver(void)
1277 {
1278 driver_unregister(&rmi_physical_driver.driver);
1279 }