Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
0003  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
0004  *
0005  * This software is available to you under a choice of one of two
0006  * licenses.  You may choose to be licensed under the terms of the GNU
0007  * General Public License (GPL) Version 2, available from the file
0008  * COPYING in the main directory of this source tree, or the
0009  * OpenIB.org BSD license below:
0010  *
0011  *     Redistribution and use in source and binary forms, with or
0012  *     without modification, are permitted provided that the following
0013  *     conditions are met:
0014  *
0015  *      - Redistributions of source code must retain the above
0016  *        copyright notice, this list of conditions and the following
0017  *        disclaimer.
0018  *
0019  *      - Redistributions in binary form must reproduce the above
0020  *        copyright notice, this list of conditions and the following
0021  *        disclaimer in the documentation and/or other materials
0022  *        provided with the distribution.
0023  *
0024  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0025  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0026  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0027  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0028  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0029  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0030  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0031  * SOFTWARE.
0032  *
0033  */
0034 
0035 #include <linux/module.h>
0036 #include <linux/init.h>
0037 #include <linux/slab.h>
0038 #include <linux/err.h>
0039 #include <linux/ctype.h>
0040 #include <linux/kthread.h>
0041 #include <linux/string.h>
0042 #include <linux/delay.h>
0043 #include <linux/atomic.h>
0044 #include <linux/inet.h>
0045 #include <rdma/ib_cache.h>
0046 #include <scsi/scsi_proto.h>
0047 #include <scsi/scsi_tcq.h>
0048 #include <target/target_core_base.h>
0049 #include <target/target_core_fabric.h>
0050 #include "ib_srpt.h"
0051 
0052 /* Name of this kernel module. */
0053 #define DRV_NAME        "ib_srpt"
0054 
0055 #define SRPT_ID_STRING  "Linux SRP target"
0056 
0057 #undef pr_fmt
0058 #define pr_fmt(fmt) DRV_NAME " " fmt
0059 
0060 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
0061 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
0062 MODULE_LICENSE("Dual BSD/GPL");
0063 
0064 /*
0065  * Global Variables
0066  */
0067 
0068 static u64 srpt_service_guid;
0069 static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
0070 static LIST_HEAD(srpt_dev_list);    /* List of srpt_device structures. */
0071 
0072 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
0073 module_param(srp_max_req_size, int, 0444);
0074 MODULE_PARM_DESC(srp_max_req_size,
0075          "Maximum size of SRP request messages in bytes.");
0076 
0077 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
0078 module_param(srpt_srq_size, int, 0444);
0079 MODULE_PARM_DESC(srpt_srq_size,
0080          "Shared receive queue (SRQ) size.");
0081 
0082 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
0083 {
0084     return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
0085 }
0086 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
0087           0444);
0088 MODULE_PARM_DESC(srpt_service_guid,
0089          "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
0090 
0091 static struct ib_client srpt_client;
0092 /* Protects both rdma_cm_port and rdma_cm_id. */
0093 static DEFINE_MUTEX(rdma_cm_mutex);
0094 /* Port number RDMA/CM will bind to. */
0095 static u16 rdma_cm_port;
0096 static struct rdma_cm_id *rdma_cm_id;
0097 static void srpt_release_cmd(struct se_cmd *se_cmd);
0098 static void srpt_free_ch(struct kref *kref);
0099 static int srpt_queue_status(struct se_cmd *cmd);
0100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
0101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
0102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
0103 
0104 /*
0105  * The only allowed channel state changes are those that change the channel
0106  * state into a state with a higher numerical value. Hence the new > prev test.
0107  */
0108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
0109 {
0110     unsigned long flags;
0111     enum rdma_ch_state prev;
0112     bool changed = false;
0113 
0114     spin_lock_irqsave(&ch->spinlock, flags);
0115     prev = ch->state;
0116     if (new > prev) {
0117         ch->state = new;
0118         changed = true;
0119     }
0120     spin_unlock_irqrestore(&ch->spinlock, flags);
0121 
0122     return changed;
0123 }
0124 
0125 /**
0126  * srpt_event_handler - asynchronous IB event callback function
0127  * @handler: IB event handler registered by ib_register_event_handler().
0128  * @event: Description of the event that occurred.
0129  *
0130  * Callback function called by the InfiniBand core when an asynchronous IB
0131  * event occurs. This callback may occur in interrupt context. See also
0132  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
0133  * Architecture Specification.
0134  */
0135 static void srpt_event_handler(struct ib_event_handler *handler,
0136                    struct ib_event *event)
0137 {
0138     struct srpt_device *sdev =
0139         container_of(handler, struct srpt_device, event_handler);
0140     struct srpt_port *sport;
0141     u8 port_num;
0142 
0143     pr_debug("ASYNC event= %d on device= %s\n", event->event,
0144          dev_name(&sdev->device->dev));
0145 
0146     switch (event->event) {
0147     case IB_EVENT_PORT_ERR:
0148         port_num = event->element.port_num - 1;
0149         if (port_num < sdev->device->phys_port_cnt) {
0150             sport = &sdev->port[port_num];
0151             sport->lid = 0;
0152             sport->sm_lid = 0;
0153         } else {
0154             WARN(true, "event %d: port_num %d out of range 1..%d\n",
0155                  event->event, port_num + 1,
0156                  sdev->device->phys_port_cnt);
0157         }
0158         break;
0159     case IB_EVENT_PORT_ACTIVE:
0160     case IB_EVENT_LID_CHANGE:
0161     case IB_EVENT_PKEY_CHANGE:
0162     case IB_EVENT_SM_CHANGE:
0163     case IB_EVENT_CLIENT_REREGISTER:
0164     case IB_EVENT_GID_CHANGE:
0165         /* Refresh port data asynchronously. */
0166         port_num = event->element.port_num - 1;
0167         if (port_num < sdev->device->phys_port_cnt) {
0168             sport = &sdev->port[port_num];
0169             if (!sport->lid && !sport->sm_lid)
0170                 schedule_work(&sport->work);
0171         } else {
0172             WARN(true, "event %d: port_num %d out of range 1..%d\n",
0173                  event->event, port_num + 1,
0174                  sdev->device->phys_port_cnt);
0175         }
0176         break;
0177     default:
0178         pr_err("received unrecognized IB event %d\n", event->event);
0179         break;
0180     }
0181 }
0182 
0183 /**
0184  * srpt_srq_event - SRQ event callback function
0185  * @event: Description of the event that occurred.
0186  * @ctx: Context pointer specified at SRQ creation time.
0187  */
0188 static void srpt_srq_event(struct ib_event *event, void *ctx)
0189 {
0190     pr_debug("SRQ event %d\n", event->event);
0191 }
0192 
0193 static const char *get_ch_state_name(enum rdma_ch_state s)
0194 {
0195     switch (s) {
0196     case CH_CONNECTING:
0197         return "connecting";
0198     case CH_LIVE:
0199         return "live";
0200     case CH_DISCONNECTING:
0201         return "disconnecting";
0202     case CH_DRAINING:
0203         return "draining";
0204     case CH_DISCONNECTED:
0205         return "disconnected";
0206     }
0207     return "???";
0208 }
0209 
0210 /**
0211  * srpt_qp_event - QP event callback function
0212  * @event: Description of the event that occurred.
0213  * @ch: SRPT RDMA channel.
0214  */
0215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
0216 {
0217     pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
0218          event->event, ch, ch->sess_name, ch->qp->qp_num,
0219          get_ch_state_name(ch->state));
0220 
0221     switch (event->event) {
0222     case IB_EVENT_COMM_EST:
0223         if (ch->using_rdma_cm)
0224             rdma_notify(ch->rdma_cm.cm_id, event->event);
0225         else
0226             ib_cm_notify(ch->ib_cm.cm_id, event->event);
0227         break;
0228     case IB_EVENT_QP_LAST_WQE_REACHED:
0229         pr_debug("%s-%d, state %s: received Last WQE event.\n",
0230              ch->sess_name, ch->qp->qp_num,
0231              get_ch_state_name(ch->state));
0232         break;
0233     default:
0234         pr_err("received unrecognized IB QP event %d\n", event->event);
0235         break;
0236     }
0237 }
0238 
0239 /**
0240  * srpt_set_ioc - initialize a IOUnitInfo structure
0241  * @c_list: controller list.
0242  * @slot: one-based slot number.
0243  * @value: four-bit value.
0244  *
0245  * Copies the lowest four bits of value in element slot of the array of four
0246  * bit elements called c_list (controller list). The index slot is one-based.
0247  */
0248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
0249 {
0250     u16 id;
0251     u8 tmp;
0252 
0253     id = (slot - 1) / 2;
0254     if (slot & 0x1) {
0255         tmp = c_list[id] & 0xf;
0256         c_list[id] = (value << 4) | tmp;
0257     } else {
0258         tmp = c_list[id] & 0xf0;
0259         c_list[id] = (value & 0xf) | tmp;
0260     }
0261 }
0262 
0263 /**
0264  * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
0265  * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
0266  *
0267  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
0268  * Specification.
0269  */
0270 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
0271 {
0272     struct ib_class_port_info *cif;
0273 
0274     cif = (struct ib_class_port_info *)mad->data;
0275     memset(cif, 0, sizeof(*cif));
0276     cif->base_version = 1;
0277     cif->class_version = 1;
0278 
0279     ib_set_cpi_resp_time(cif, 20);
0280     mad->mad_hdr.status = 0;
0281 }
0282 
0283 /**
0284  * srpt_get_iou - write IOUnitInfo to a management datagram
0285  * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
0286  *
0287  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
0288  * Specification. See also section B.7, table B.6 in the SRP r16a document.
0289  */
0290 static void srpt_get_iou(struct ib_dm_mad *mad)
0291 {
0292     struct ib_dm_iou_info *ioui;
0293     u8 slot;
0294     int i;
0295 
0296     ioui = (struct ib_dm_iou_info *)mad->data;
0297     ioui->change_id = cpu_to_be16(1);
0298     ioui->max_controllers = 16;
0299 
0300     /* set present for slot 1 and empty for the rest */
0301     srpt_set_ioc(ioui->controller_list, 1, 1);
0302     for (i = 1, slot = 2; i < 16; i++, slot++)
0303         srpt_set_ioc(ioui->controller_list, slot, 0);
0304 
0305     mad->mad_hdr.status = 0;
0306 }
0307 
0308 /**
0309  * srpt_get_ioc - write IOControllerprofile to a management datagram
0310  * @sport: HCA port through which the MAD has been received.
0311  * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
0312  * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
0313  *
0314  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
0315  * Architecture Specification. See also section B.7, table B.7 in the SRP
0316  * r16a document.
0317  */
0318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
0319              struct ib_dm_mad *mad)
0320 {
0321     struct srpt_device *sdev = sport->sdev;
0322     struct ib_dm_ioc_profile *iocp;
0323     int send_queue_depth;
0324 
0325     iocp = (struct ib_dm_ioc_profile *)mad->data;
0326 
0327     if (!slot || slot > 16) {
0328         mad->mad_hdr.status
0329             = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
0330         return;
0331     }
0332 
0333     if (slot > 2) {
0334         mad->mad_hdr.status
0335             = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
0336         return;
0337     }
0338 
0339     if (sdev->use_srq)
0340         send_queue_depth = sdev->srq_size;
0341     else
0342         send_queue_depth = min(MAX_SRPT_RQ_SIZE,
0343                        sdev->device->attrs.max_qp_wr);
0344 
0345     memset(iocp, 0, sizeof(*iocp));
0346     strcpy(iocp->id_string, SRPT_ID_STRING);
0347     iocp->guid = cpu_to_be64(srpt_service_guid);
0348     iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
0349     iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
0350     iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
0351     iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
0352     iocp->subsys_device_id = 0x0;
0353     iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
0354     iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
0355     iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
0356     iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
0357     iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
0358     iocp->rdma_read_depth = 4;
0359     iocp->send_size = cpu_to_be32(srp_max_req_size);
0360     iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
0361                       1U << 24));
0362     iocp->num_svc_entries = 1;
0363     iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
0364         SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
0365 
0366     mad->mad_hdr.status = 0;
0367 }
0368 
0369 /**
0370  * srpt_get_svc_entries - write ServiceEntries to a management datagram
0371  * @ioc_guid: I/O controller GUID to use in reply.
0372  * @slot: I/O controller number.
0373  * @hi: End of the range of service entries to be specified in the reply.
0374  * @lo: Start of the range of service entries to be specified in the reply..
0375  * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
0376  *
0377  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
0378  * Specification. See also section B.7, table B.8 in the SRP r16a document.
0379  */
0380 static void srpt_get_svc_entries(u64 ioc_guid,
0381                  u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
0382 {
0383     struct ib_dm_svc_entries *svc_entries;
0384 
0385     WARN_ON(!ioc_guid);
0386 
0387     if (!slot || slot > 16) {
0388         mad->mad_hdr.status
0389             = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
0390         return;
0391     }
0392 
0393     if (slot > 2 || lo > hi || hi > 1) {
0394         mad->mad_hdr.status
0395             = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
0396         return;
0397     }
0398 
0399     svc_entries = (struct ib_dm_svc_entries *)mad->data;
0400     memset(svc_entries, 0, sizeof(*svc_entries));
0401     svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
0402     snprintf(svc_entries->service_entries[0].name,
0403          sizeof(svc_entries->service_entries[0].name),
0404          "%s%016llx",
0405          SRP_SERVICE_NAME_PREFIX,
0406          ioc_guid);
0407 
0408     mad->mad_hdr.status = 0;
0409 }
0410 
0411 /**
0412  * srpt_mgmt_method_get - process a received management datagram
0413  * @sp:      HCA port through which the MAD has been received.
0414  * @rq_mad:  received MAD.
0415  * @rsp_mad: response MAD.
0416  */
0417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
0418                  struct ib_dm_mad *rsp_mad)
0419 {
0420     u16 attr_id;
0421     u32 slot;
0422     u8 hi, lo;
0423 
0424     attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
0425     switch (attr_id) {
0426     case DM_ATTR_CLASS_PORT_INFO:
0427         srpt_get_class_port_info(rsp_mad);
0428         break;
0429     case DM_ATTR_IOU_INFO:
0430         srpt_get_iou(rsp_mad);
0431         break;
0432     case DM_ATTR_IOC_PROFILE:
0433         slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
0434         srpt_get_ioc(sp, slot, rsp_mad);
0435         break;
0436     case DM_ATTR_SVC_ENTRIES:
0437         slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
0438         hi = (u8) ((slot >> 8) & 0xff);
0439         lo = (u8) (slot & 0xff);
0440         slot = (u16) ((slot >> 16) & 0xffff);
0441         srpt_get_svc_entries(srpt_service_guid,
0442                      slot, hi, lo, rsp_mad);
0443         break;
0444     default:
0445         rsp_mad->mad_hdr.status =
0446             cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
0447         break;
0448     }
0449 }
0450 
0451 /**
0452  * srpt_mad_send_handler - MAD send completion callback
0453  * @mad_agent: Return value of ib_register_mad_agent().
0454  * @mad_wc: Work completion reporting that the MAD has been sent.
0455  */
0456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
0457                   struct ib_mad_send_wc *mad_wc)
0458 {
0459     rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
0460     ib_free_send_mad(mad_wc->send_buf);
0461 }
0462 
0463 /**
0464  * srpt_mad_recv_handler - MAD reception callback function
0465  * @mad_agent: Return value of ib_register_mad_agent().
0466  * @send_buf: Not used.
0467  * @mad_wc: Work completion reporting that a MAD has been received.
0468  */
0469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
0470                   struct ib_mad_send_buf *send_buf,
0471                   struct ib_mad_recv_wc *mad_wc)
0472 {
0473     struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
0474     struct ib_ah *ah;
0475     struct ib_mad_send_buf *rsp;
0476     struct ib_dm_mad *dm_mad;
0477 
0478     if (!mad_wc || !mad_wc->recv_buf.mad)
0479         return;
0480 
0481     ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
0482                   mad_wc->recv_buf.grh, mad_agent->port_num);
0483     if (IS_ERR(ah))
0484         goto err;
0485 
0486     BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
0487 
0488     rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
0489                  mad_wc->wc->pkey_index, 0,
0490                  IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
0491                  GFP_KERNEL,
0492                  IB_MGMT_BASE_VERSION);
0493     if (IS_ERR(rsp))
0494         goto err_rsp;
0495 
0496     rsp->ah = ah;
0497 
0498     dm_mad = rsp->mad;
0499     memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
0500     dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
0501     dm_mad->mad_hdr.status = 0;
0502 
0503     switch (mad_wc->recv_buf.mad->mad_hdr.method) {
0504     case IB_MGMT_METHOD_GET:
0505         srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
0506         break;
0507     case IB_MGMT_METHOD_SET:
0508         dm_mad->mad_hdr.status =
0509             cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
0510         break;
0511     default:
0512         dm_mad->mad_hdr.status =
0513             cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
0514         break;
0515     }
0516 
0517     if (!ib_post_send_mad(rsp, NULL)) {
0518         ib_free_recv_mad(mad_wc);
0519         /* will destroy_ah & free_send_mad in send completion */
0520         return;
0521     }
0522 
0523     ib_free_send_mad(rsp);
0524 
0525 err_rsp:
0526     rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
0527 err:
0528     ib_free_recv_mad(mad_wc);
0529 }
0530 
0531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
0532 {
0533     const __be16 *g = (const __be16 *)guid;
0534 
0535     return snprintf(buf, size, "%04x:%04x:%04x:%04x",
0536             be16_to_cpu(g[0]), be16_to_cpu(g[1]),
0537             be16_to_cpu(g[2]), be16_to_cpu(g[3]));
0538 }
0539 
0540 /**
0541  * srpt_refresh_port - configure a HCA port
0542  * @sport: SRPT HCA port.
0543  *
0544  * Enable InfiniBand management datagram processing, update the cached sm_lid,
0545  * lid and gid values, and register a callback function for processing MADs
0546  * on the specified port.
0547  *
0548  * Note: It is safe to call this function more than once for the same port.
0549  */
0550 static int srpt_refresh_port(struct srpt_port *sport)
0551 {
0552     struct ib_mad_reg_req reg_req;
0553     struct ib_port_modify port_modify;
0554     struct ib_port_attr port_attr;
0555     int ret;
0556 
0557     ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
0558     if (ret)
0559         return ret;
0560 
0561     sport->sm_lid = port_attr.sm_lid;
0562     sport->lid = port_attr.lid;
0563 
0564     ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
0565     if (ret)
0566         return ret;
0567 
0568     srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
0569              &sport->gid.global.interface_id);
0570     snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
0571          "0x%016llx%016llx",
0572          be64_to_cpu(sport->gid.global.subnet_prefix),
0573          be64_to_cpu(sport->gid.global.interface_id));
0574 
0575     if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
0576         return 0;
0577 
0578     memset(&port_modify, 0, sizeof(port_modify));
0579     port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
0580     port_modify.clr_port_cap_mask = 0;
0581 
0582     ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
0583     if (ret) {
0584         pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
0585             dev_name(&sport->sdev->device->dev), sport->port, ret);
0586         return 0;
0587     }
0588 
0589     if (!sport->mad_agent) {
0590         memset(&reg_req, 0, sizeof(reg_req));
0591         reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
0592         reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
0593         set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
0594         set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
0595 
0596         sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
0597                              sport->port,
0598                              IB_QPT_GSI,
0599                              &reg_req, 0,
0600                              srpt_mad_send_handler,
0601                              srpt_mad_recv_handler,
0602                              sport, 0);
0603         if (IS_ERR(sport->mad_agent)) {
0604             pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
0605                    dev_name(&sport->sdev->device->dev), sport->port,
0606                    PTR_ERR(sport->mad_agent));
0607             sport->mad_agent = NULL;
0608             memset(&port_modify, 0, sizeof(port_modify));
0609             port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
0610             ib_modify_port(sport->sdev->device, sport->port, 0,
0611                        &port_modify);
0612 
0613         }
0614     }
0615 
0616     return 0;
0617 }
0618 
0619 /**
0620  * srpt_unregister_mad_agent - unregister MAD callback functions
0621  * @sdev: SRPT HCA pointer.
0622  * @port_cnt: number of ports with registered MAD
0623  *
0624  * Note: It is safe to call this function more than once for the same device.
0625  */
0626 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
0627 {
0628     struct ib_port_modify port_modify = {
0629         .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
0630     };
0631     struct srpt_port *sport;
0632     int i;
0633 
0634     for (i = 1; i <= port_cnt; i++) {
0635         sport = &sdev->port[i - 1];
0636         WARN_ON(sport->port != i);
0637         if (sport->mad_agent) {
0638             ib_modify_port(sdev->device, i, 0, &port_modify);
0639             ib_unregister_mad_agent(sport->mad_agent);
0640             sport->mad_agent = NULL;
0641         }
0642     }
0643 }
0644 
0645 /**
0646  * srpt_alloc_ioctx - allocate a SRPT I/O context structure
0647  * @sdev: SRPT HCA pointer.
0648  * @ioctx_size: I/O context size.
0649  * @buf_cache: I/O buffer cache.
0650  * @dir: DMA data direction.
0651  */
0652 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
0653                        int ioctx_size,
0654                        struct kmem_cache *buf_cache,
0655                        enum dma_data_direction dir)
0656 {
0657     struct srpt_ioctx *ioctx;
0658 
0659     ioctx = kzalloc(ioctx_size, GFP_KERNEL);
0660     if (!ioctx)
0661         goto err;
0662 
0663     ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
0664     if (!ioctx->buf)
0665         goto err_free_ioctx;
0666 
0667     ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
0668                        kmem_cache_size(buf_cache), dir);
0669     if (ib_dma_mapping_error(sdev->device, ioctx->dma))
0670         goto err_free_buf;
0671 
0672     return ioctx;
0673 
0674 err_free_buf:
0675     kmem_cache_free(buf_cache, ioctx->buf);
0676 err_free_ioctx:
0677     kfree(ioctx);
0678 err:
0679     return NULL;
0680 }
0681 
0682 /**
0683  * srpt_free_ioctx - free a SRPT I/O context structure
0684  * @sdev: SRPT HCA pointer.
0685  * @ioctx: I/O context pointer.
0686  * @buf_cache: I/O buffer cache.
0687  * @dir: DMA data direction.
0688  */
0689 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
0690                 struct kmem_cache *buf_cache,
0691                 enum dma_data_direction dir)
0692 {
0693     if (!ioctx)
0694         return;
0695 
0696     ib_dma_unmap_single(sdev->device, ioctx->dma,
0697                 kmem_cache_size(buf_cache), dir);
0698     kmem_cache_free(buf_cache, ioctx->buf);
0699     kfree(ioctx);
0700 }
0701 
0702 /**
0703  * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
0704  * @sdev:       Device to allocate the I/O context ring for.
0705  * @ring_size:  Number of elements in the I/O context ring.
0706  * @ioctx_size: I/O context size.
0707  * @buf_cache:  I/O buffer cache.
0708  * @alignment_offset: Offset in each ring buffer at which the SRP information
0709  *      unit starts.
0710  * @dir:        DMA data direction.
0711  */
0712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
0713                 int ring_size, int ioctx_size,
0714                 struct kmem_cache *buf_cache,
0715                 int alignment_offset,
0716                 enum dma_data_direction dir)
0717 {
0718     struct srpt_ioctx **ring;
0719     int i;
0720 
0721     WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
0722         ioctx_size != sizeof(struct srpt_send_ioctx));
0723 
0724     ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
0725     if (!ring)
0726         goto out;
0727     for (i = 0; i < ring_size; ++i) {
0728         ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
0729         if (!ring[i])
0730             goto err;
0731         ring[i]->index = i;
0732         ring[i]->offset = alignment_offset;
0733     }
0734     goto out;
0735 
0736 err:
0737     while (--i >= 0)
0738         srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
0739     kvfree(ring);
0740     ring = NULL;
0741 out:
0742     return ring;
0743 }
0744 
0745 /**
0746  * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
0747  * @ioctx_ring: I/O context ring to be freed.
0748  * @sdev: SRPT HCA pointer.
0749  * @ring_size: Number of ring elements.
0750  * @buf_cache: I/O buffer cache.
0751  * @dir: DMA data direction.
0752  */
0753 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
0754                  struct srpt_device *sdev, int ring_size,
0755                  struct kmem_cache *buf_cache,
0756                  enum dma_data_direction dir)
0757 {
0758     int i;
0759 
0760     if (!ioctx_ring)
0761         return;
0762 
0763     for (i = 0; i < ring_size; ++i)
0764         srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
0765     kvfree(ioctx_ring);
0766 }
0767 
0768 /**
0769  * srpt_set_cmd_state - set the state of a SCSI command
0770  * @ioctx: Send I/O context.
0771  * @new: New I/O context state.
0772  *
0773  * Does not modify the state of aborted commands. Returns the previous command
0774  * state.
0775  */
0776 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
0777                           enum srpt_command_state new)
0778 {
0779     enum srpt_command_state previous;
0780 
0781     previous = ioctx->state;
0782     if (previous != SRPT_STATE_DONE)
0783         ioctx->state = new;
0784 
0785     return previous;
0786 }
0787 
0788 /**
0789  * srpt_test_and_set_cmd_state - test and set the state of a command
0790  * @ioctx: Send I/O context.
0791  * @old: Current I/O context state.
0792  * @new: New I/O context state.
0793  *
0794  * Returns true if and only if the previous command state was equal to 'old'.
0795  */
0796 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
0797                     enum srpt_command_state old,
0798                     enum srpt_command_state new)
0799 {
0800     enum srpt_command_state previous;
0801 
0802     WARN_ON(!ioctx);
0803     WARN_ON(old == SRPT_STATE_DONE);
0804     WARN_ON(new == SRPT_STATE_NEW);
0805 
0806     previous = ioctx->state;
0807     if (previous == old)
0808         ioctx->state = new;
0809 
0810     return previous == old;
0811 }
0812 
0813 /**
0814  * srpt_post_recv - post an IB receive request
0815  * @sdev: SRPT HCA pointer.
0816  * @ch: SRPT RDMA channel.
0817  * @ioctx: Receive I/O context pointer.
0818  */
0819 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
0820               struct srpt_recv_ioctx *ioctx)
0821 {
0822     struct ib_sge list;
0823     struct ib_recv_wr wr;
0824 
0825     BUG_ON(!sdev);
0826     list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
0827     list.length = srp_max_req_size;
0828     list.lkey = sdev->lkey;
0829 
0830     ioctx->ioctx.cqe.done = srpt_recv_done;
0831     wr.wr_cqe = &ioctx->ioctx.cqe;
0832     wr.next = NULL;
0833     wr.sg_list = &list;
0834     wr.num_sge = 1;
0835 
0836     if (sdev->use_srq)
0837         return ib_post_srq_recv(sdev->srq, &wr, NULL);
0838     else
0839         return ib_post_recv(ch->qp, &wr, NULL);
0840 }
0841 
0842 /**
0843  * srpt_zerolength_write - perform a zero-length RDMA write
0844  * @ch: SRPT RDMA channel.
0845  *
0846  * A quote from the InfiniBand specification: C9-88: For an HCA responder
0847  * using Reliable Connection service, for each zero-length RDMA READ or WRITE
0848  * request, the R_Key shall not be validated, even if the request includes
0849  * Immediate data.
0850  */
0851 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
0852 {
0853     struct ib_rdma_wr wr = {
0854         .wr = {
0855             .next       = NULL,
0856             { .wr_cqe   = &ch->zw_cqe, },
0857             .opcode     = IB_WR_RDMA_WRITE,
0858             .send_flags = IB_SEND_SIGNALED,
0859         }
0860     };
0861 
0862     pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
0863          ch->qp->qp_num);
0864 
0865     return ib_post_send(ch->qp, &wr.wr, NULL);
0866 }
0867 
0868 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
0869 {
0870     struct srpt_rdma_ch *ch = wc->qp->qp_context;
0871 
0872     pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
0873          wc->status);
0874 
0875     if (wc->status == IB_WC_SUCCESS) {
0876         srpt_process_wait_list(ch);
0877     } else {
0878         if (srpt_set_ch_state(ch, CH_DISCONNECTED))
0879             schedule_work(&ch->release_work);
0880         else
0881             pr_debug("%s-%d: already disconnected.\n",
0882                  ch->sess_name, ch->qp->qp_num);
0883     }
0884 }
0885 
0886 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
0887         struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
0888         unsigned *sg_cnt)
0889 {
0890     enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
0891     struct srpt_rdma_ch *ch = ioctx->ch;
0892     struct scatterlist *prev = NULL;
0893     unsigned prev_nents;
0894     int ret, i;
0895 
0896     if (nbufs == 1) {
0897         ioctx->rw_ctxs = &ioctx->s_rw_ctx;
0898     } else {
0899         ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
0900             GFP_KERNEL);
0901         if (!ioctx->rw_ctxs)
0902             return -ENOMEM;
0903     }
0904 
0905     for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
0906         struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
0907         u64 remote_addr = be64_to_cpu(db->va);
0908         u32 size = be32_to_cpu(db->len);
0909         u32 rkey = be32_to_cpu(db->key);
0910 
0911         ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
0912                 i < nbufs - 1);
0913         if (ret)
0914             goto unwind;
0915 
0916         ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
0917                 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
0918         if (ret < 0) {
0919             target_free_sgl(ctx->sg, ctx->nents);
0920             goto unwind;
0921         }
0922 
0923         ioctx->n_rdma += ret;
0924         ioctx->n_rw_ctx++;
0925 
0926         if (prev) {
0927             sg_unmark_end(&prev[prev_nents - 1]);
0928             sg_chain(prev, prev_nents + 1, ctx->sg);
0929         } else {
0930             *sg = ctx->sg;
0931         }
0932 
0933         prev = ctx->sg;
0934         prev_nents = ctx->nents;
0935 
0936         *sg_cnt += ctx->nents;
0937     }
0938 
0939     return 0;
0940 
0941 unwind:
0942     while (--i >= 0) {
0943         struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
0944 
0945         rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
0946                 ctx->sg, ctx->nents, dir);
0947         target_free_sgl(ctx->sg, ctx->nents);
0948     }
0949     if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
0950         kfree(ioctx->rw_ctxs);
0951     return ret;
0952 }
0953 
0954 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
0955                     struct srpt_send_ioctx *ioctx)
0956 {
0957     enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
0958     int i;
0959 
0960     for (i = 0; i < ioctx->n_rw_ctx; i++) {
0961         struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
0962 
0963         rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
0964                 ctx->sg, ctx->nents, dir);
0965         target_free_sgl(ctx->sg, ctx->nents);
0966     }
0967 
0968     if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
0969         kfree(ioctx->rw_ctxs);
0970 }
0971 
0972 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
0973 {
0974     /*
0975      * The pointer computations below will only be compiled correctly
0976      * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
0977      * whether srp_cmd::add_data has been declared as a byte pointer.
0978      */
0979     BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
0980              !__same_type(srp_cmd->add_data[0], (u8)0));
0981 
0982     /*
0983      * According to the SRP spec, the lower two bits of the 'ADDITIONAL
0984      * CDB LENGTH' field are reserved and the size in bytes of this field
0985      * is four times the value specified in bits 3..7. Hence the "& ~3".
0986      */
0987     return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
0988 }
0989 
0990 /**
0991  * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
0992  * @recv_ioctx: I/O context associated with the received command @srp_cmd.
0993  * @ioctx: I/O context that will be used for responding to the initiator.
0994  * @srp_cmd: Pointer to the SRP_CMD request data.
0995  * @dir: Pointer to the variable to which the transfer direction will be
0996  *   written.
0997  * @sg: [out] scatterlist for the parsed SRP_CMD.
0998  * @sg_cnt: [out] length of @sg.
0999  * @data_len: Pointer to the variable to which the total data length of all
1000  *   descriptors in the SRP_CMD request will be written.
1001  * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1002  *   starts.
1003  *
1004  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1005  *
1006  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1007  * -ENOMEM when memory allocation fails and zero upon success.
1008  */
1009 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1010         struct srpt_send_ioctx *ioctx,
1011         struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1012         struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1013         u16 imm_data_offset)
1014 {
1015     BUG_ON(!dir);
1016     BUG_ON(!data_len);
1017 
1018     /*
1019      * The lower four bits of the buffer format field contain the DATA-IN
1020      * buffer descriptor format, and the highest four bits contain the
1021      * DATA-OUT buffer descriptor format.
1022      */
1023     if (srp_cmd->buf_fmt & 0xf)
1024         /* DATA-IN: transfer data from target to initiator (read). */
1025         *dir = DMA_FROM_DEVICE;
1026     else if (srp_cmd->buf_fmt >> 4)
1027         /* DATA-OUT: transfer data from initiator to target (write). */
1028         *dir = DMA_TO_DEVICE;
1029     else
1030         *dir = DMA_NONE;
1031 
1032     /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1033     ioctx->cmd.data_direction = *dir;
1034 
1035     if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1036         ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1037         struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1038 
1039         *data_len = be32_to_cpu(db->len);
1040         return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1041     } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1042            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1043         struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1044         int nbufs = be32_to_cpu(idb->table_desc.len) /
1045                 sizeof(struct srp_direct_buf);
1046 
1047         if (nbufs >
1048             (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1049             pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1050                    srp_cmd->data_out_desc_cnt,
1051                    srp_cmd->data_in_desc_cnt,
1052                    be32_to_cpu(idb->table_desc.len),
1053                    sizeof(struct srp_direct_buf));
1054             return -EINVAL;
1055         }
1056 
1057         *data_len = be32_to_cpu(idb->len);
1058         return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1059                 sg, sg_cnt);
1060     } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1061         struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1062         void *data = (void *)srp_cmd + imm_data_offset;
1063         uint32_t len = be32_to_cpu(imm_buf->len);
1064         uint32_t req_size = imm_data_offset + len;
1065 
1066         if (req_size > srp_max_req_size) {
1067             pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1068                    imm_data_offset, len, srp_max_req_size);
1069             return -EINVAL;
1070         }
1071         if (recv_ioctx->byte_len < req_size) {
1072             pr_err("Received too few data - %d < %d\n",
1073                    recv_ioctx->byte_len, req_size);
1074             return -EIO;
1075         }
1076         /*
1077          * The immediate data buffer descriptor must occur before the
1078          * immediate data itself.
1079          */
1080         if ((void *)(imm_buf + 1) > (void *)data) {
1081             pr_err("Received invalid write request\n");
1082             return -EINVAL;
1083         }
1084         *data_len = len;
1085         ioctx->recv_ioctx = recv_ioctx;
1086         if ((uintptr_t)data & 511) {
1087             pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1088             return -EINVAL;
1089         }
1090         sg_init_one(&ioctx->imm_sg, data, len);
1091         *sg = &ioctx->imm_sg;
1092         *sg_cnt = 1;
1093         return 0;
1094     } else {
1095         *data_len = 0;
1096         return 0;
1097     }
1098 }
1099 
1100 /**
1101  * srpt_init_ch_qp - initialize queue pair attributes
1102  * @ch: SRPT RDMA channel.
1103  * @qp: Queue pair pointer.
1104  *
1105  * Initialized the attributes of queue pair 'qp' by allowing local write,
1106  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1107  */
1108 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109 {
1110     struct ib_qp_attr *attr;
1111     int ret;
1112 
1113     WARN_ON_ONCE(ch->using_rdma_cm);
1114 
1115     attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1116     if (!attr)
1117         return -ENOMEM;
1118 
1119     attr->qp_state = IB_QPS_INIT;
1120     attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1121     attr->port_num = ch->sport->port;
1122 
1123     ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1124                   ch->pkey, &attr->pkey_index);
1125     if (ret < 0)
1126         pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1127                ch->pkey, ret);
1128 
1129     ret = ib_modify_qp(qp, attr,
1130                IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1131                IB_QP_PKEY_INDEX);
1132 
1133     kfree(attr);
1134     return ret;
1135 }
1136 
1137 /**
1138  * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1139  * @ch: channel of the queue pair.
1140  * @qp: queue pair to change the state of.
1141  *
1142  * Returns zero upon success and a negative value upon failure.
1143  *
1144  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1145  * If this structure ever becomes larger, it might be necessary to allocate
1146  * it dynamically instead of on the stack.
1147  */
1148 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1149 {
1150     struct ib_qp_attr qp_attr;
1151     int attr_mask;
1152     int ret;
1153 
1154     WARN_ON_ONCE(ch->using_rdma_cm);
1155 
1156     qp_attr.qp_state = IB_QPS_RTR;
1157     ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1158     if (ret)
1159         goto out;
1160 
1161     qp_attr.max_dest_rd_atomic = 4;
1162 
1163     ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1164 
1165 out:
1166     return ret;
1167 }
1168 
1169 /**
1170  * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1171  * @ch: channel of the queue pair.
1172  * @qp: queue pair to change the state of.
1173  *
1174  * Returns zero upon success and a negative value upon failure.
1175  *
1176  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1177  * If this structure ever becomes larger, it might be necessary to allocate
1178  * it dynamically instead of on the stack.
1179  */
1180 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1181 {
1182     struct ib_qp_attr qp_attr;
1183     int attr_mask;
1184     int ret;
1185 
1186     qp_attr.qp_state = IB_QPS_RTS;
1187     ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1188     if (ret)
1189         goto out;
1190 
1191     qp_attr.max_rd_atomic = 4;
1192 
1193     ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1194 
1195 out:
1196     return ret;
1197 }
1198 
1199 /**
1200  * srpt_ch_qp_err - set the channel queue pair state to 'error'
1201  * @ch: SRPT RDMA channel.
1202  */
1203 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1204 {
1205     struct ib_qp_attr qp_attr;
1206 
1207     qp_attr.qp_state = IB_QPS_ERR;
1208     return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1209 }
1210 
1211 /**
1212  * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1213  * @ch: SRPT RDMA channel.
1214  */
1215 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1216 {
1217     struct srpt_send_ioctx *ioctx;
1218     int tag, cpu;
1219 
1220     BUG_ON(!ch);
1221 
1222     tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1223     if (tag < 0)
1224         return NULL;
1225 
1226     ioctx = ch->ioctx_ring[tag];
1227     BUG_ON(ioctx->ch != ch);
1228     ioctx->state = SRPT_STATE_NEW;
1229     WARN_ON_ONCE(ioctx->recv_ioctx);
1230     ioctx->n_rdma = 0;
1231     ioctx->n_rw_ctx = 0;
1232     ioctx->queue_status_only = false;
1233     /*
1234      * transport_init_se_cmd() does not initialize all fields, so do it
1235      * here.
1236      */
1237     memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1238     memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1239     ioctx->cmd.map_tag = tag;
1240     ioctx->cmd.map_cpu = cpu;
1241 
1242     return ioctx;
1243 }
1244 
1245 /**
1246  * srpt_abort_cmd - abort a SCSI command
1247  * @ioctx:   I/O context associated with the SCSI command.
1248  */
1249 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1250 {
1251     enum srpt_command_state state;
1252 
1253     BUG_ON(!ioctx);
1254 
1255     /*
1256      * If the command is in a state where the target core is waiting for
1257      * the ib_srpt driver, change the state to the next state.
1258      */
1259 
1260     state = ioctx->state;
1261     switch (state) {
1262     case SRPT_STATE_NEED_DATA:
1263         ioctx->state = SRPT_STATE_DATA_IN;
1264         break;
1265     case SRPT_STATE_CMD_RSP_SENT:
1266     case SRPT_STATE_MGMT_RSP_SENT:
1267         ioctx->state = SRPT_STATE_DONE;
1268         break;
1269     default:
1270         WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1271               __func__, state);
1272         break;
1273     }
1274 
1275     pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1276          ioctx->state, ioctx->cmd.tag);
1277 
1278     switch (state) {
1279     case SRPT_STATE_NEW:
1280     case SRPT_STATE_DATA_IN:
1281     case SRPT_STATE_MGMT:
1282     case SRPT_STATE_DONE:
1283         /*
1284          * Do nothing - defer abort processing until
1285          * srpt_queue_response() is invoked.
1286          */
1287         break;
1288     case SRPT_STATE_NEED_DATA:
1289         pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1290         transport_generic_request_failure(&ioctx->cmd,
1291                     TCM_CHECK_CONDITION_ABORT_CMD);
1292         break;
1293     case SRPT_STATE_CMD_RSP_SENT:
1294         /*
1295          * SRP_RSP sending failed or the SRP_RSP send completion has
1296          * not been received in time.
1297          */
1298         transport_generic_free_cmd(&ioctx->cmd, 0);
1299         break;
1300     case SRPT_STATE_MGMT_RSP_SENT:
1301         transport_generic_free_cmd(&ioctx->cmd, 0);
1302         break;
1303     default:
1304         WARN(1, "Unexpected command state (%d)", state);
1305         break;
1306     }
1307 
1308     return state;
1309 }
1310 
1311 /**
1312  * srpt_rdma_read_done - RDMA read completion callback
1313  * @cq: Completion queue.
1314  * @wc: Work completion.
1315  *
1316  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1317  * the data that has been transferred via IB RDMA had to be postponed until the
1318  * check_stop_free() callback.  None of this is necessary anymore and needs to
1319  * be cleaned up.
1320  */
1321 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1322 {
1323     struct srpt_rdma_ch *ch = wc->qp->qp_context;
1324     struct srpt_send_ioctx *ioctx =
1325         container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1326 
1327     WARN_ON(ioctx->n_rdma <= 0);
1328     atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1329     ioctx->n_rdma = 0;
1330 
1331     if (unlikely(wc->status != IB_WC_SUCCESS)) {
1332         pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1333             ioctx, wc->status);
1334         srpt_abort_cmd(ioctx);
1335         return;
1336     }
1337 
1338     if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1339                     SRPT_STATE_DATA_IN))
1340         target_execute_cmd(&ioctx->cmd);
1341     else
1342         pr_err("%s[%d]: wrong state = %d\n", __func__,
1343                __LINE__, ioctx->state);
1344 }
1345 
1346 /**
1347  * srpt_build_cmd_rsp - build a SRP_RSP response
1348  * @ch: RDMA channel through which the request has been received.
1349  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1350  *   be built in the buffer ioctx->buf points at and hence this function will
1351  *   overwrite the request data.
1352  * @tag: tag of the request for which this response is being generated.
1353  * @status: value for the STATUS field of the SRP_RSP information unit.
1354  *
1355  * Returns the size in bytes of the SRP_RSP response.
1356  *
1357  * An SRP_RSP response contains a SCSI status or service response. See also
1358  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1359  * response. See also SPC-2 for more information about sense data.
1360  */
1361 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1362                   struct srpt_send_ioctx *ioctx, u64 tag,
1363                   int status)
1364 {
1365     struct se_cmd *cmd = &ioctx->cmd;
1366     struct srp_rsp *srp_rsp;
1367     const u8 *sense_data;
1368     int sense_data_len, max_sense_len;
1369     u32 resid = cmd->residual_count;
1370 
1371     /*
1372      * The lowest bit of all SAM-3 status codes is zero (see also
1373      * paragraph 5.3 in SAM-3).
1374      */
1375     WARN_ON(status & 1);
1376 
1377     srp_rsp = ioctx->ioctx.buf;
1378     BUG_ON(!srp_rsp);
1379 
1380     sense_data = ioctx->sense_data;
1381     sense_data_len = ioctx->cmd.scsi_sense_length;
1382     WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1383 
1384     memset(srp_rsp, 0, sizeof(*srp_rsp));
1385     srp_rsp->opcode = SRP_RSP;
1386     srp_rsp->req_lim_delta =
1387         cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1388     srp_rsp->tag = tag;
1389     srp_rsp->status = status;
1390 
1391     if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1392         if (cmd->data_direction == DMA_TO_DEVICE) {
1393             /* residual data from an underflow write */
1394             srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1395             srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1396         } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1397             /* residual data from an underflow read */
1398             srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1399             srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1400         }
1401     } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1402         if (cmd->data_direction == DMA_TO_DEVICE) {
1403             /* residual data from an overflow write */
1404             srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1405             srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1406         } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1407             /* residual data from an overflow read */
1408             srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1409             srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1410         }
1411     }
1412 
1413     if (sense_data_len) {
1414         BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1415         max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1416         if (sense_data_len > max_sense_len) {
1417             pr_warn("truncated sense data from %d to %d bytes\n",
1418                 sense_data_len, max_sense_len);
1419             sense_data_len = max_sense_len;
1420         }
1421 
1422         srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1423         srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1424         memcpy(srp_rsp + 1, sense_data, sense_data_len);
1425     }
1426 
1427     return sizeof(*srp_rsp) + sense_data_len;
1428 }
1429 
1430 /**
1431  * srpt_build_tskmgmt_rsp - build a task management response
1432  * @ch:       RDMA channel through which the request has been received.
1433  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1434  * @rsp_code: RSP_CODE that will be stored in the response.
1435  * @tag:      Tag of the request for which this response is being generated.
1436  *
1437  * Returns the size in bytes of the SRP_RSP response.
1438  *
1439  * An SRP_RSP response contains a SCSI status or service response. See also
1440  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1441  * response.
1442  */
1443 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1444                   struct srpt_send_ioctx *ioctx,
1445                   u8 rsp_code, u64 tag)
1446 {
1447     struct srp_rsp *srp_rsp;
1448     int resp_data_len;
1449     int resp_len;
1450 
1451     resp_data_len = 4;
1452     resp_len = sizeof(*srp_rsp) + resp_data_len;
1453 
1454     srp_rsp = ioctx->ioctx.buf;
1455     BUG_ON(!srp_rsp);
1456     memset(srp_rsp, 0, sizeof(*srp_rsp));
1457 
1458     srp_rsp->opcode = SRP_RSP;
1459     srp_rsp->req_lim_delta =
1460         cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1461     srp_rsp->tag = tag;
1462 
1463     srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1464     srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1465     srp_rsp->data[3] = rsp_code;
1466 
1467     return resp_len;
1468 }
1469 
1470 static int srpt_check_stop_free(struct se_cmd *cmd)
1471 {
1472     struct srpt_send_ioctx *ioctx = container_of(cmd,
1473                 struct srpt_send_ioctx, cmd);
1474 
1475     return target_put_sess_cmd(&ioctx->cmd);
1476 }
1477 
1478 /**
1479  * srpt_handle_cmd - process a SRP_CMD information unit
1480  * @ch: SRPT RDMA channel.
1481  * @recv_ioctx: Receive I/O context.
1482  * @send_ioctx: Send I/O context.
1483  */
1484 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1485                 struct srpt_recv_ioctx *recv_ioctx,
1486                 struct srpt_send_ioctx *send_ioctx)
1487 {
1488     struct se_cmd *cmd;
1489     struct srp_cmd *srp_cmd;
1490     struct scatterlist *sg = NULL;
1491     unsigned sg_cnt = 0;
1492     u64 data_len;
1493     enum dma_data_direction dir;
1494     int rc;
1495 
1496     BUG_ON(!send_ioctx);
1497 
1498     srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1499     cmd = &send_ioctx->cmd;
1500     cmd->tag = srp_cmd->tag;
1501 
1502     switch (srp_cmd->task_attr) {
1503     case SRP_CMD_SIMPLE_Q:
1504         cmd->sam_task_attr = TCM_SIMPLE_TAG;
1505         break;
1506     case SRP_CMD_ORDERED_Q:
1507     default:
1508         cmd->sam_task_attr = TCM_ORDERED_TAG;
1509         break;
1510     case SRP_CMD_HEAD_OF_Q:
1511         cmd->sam_task_attr = TCM_HEAD_TAG;
1512         break;
1513     case SRP_CMD_ACA:
1514         cmd->sam_task_attr = TCM_ACA_TAG;
1515         break;
1516     }
1517 
1518     rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1519                    &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1520     if (rc) {
1521         if (rc != -EAGAIN) {
1522             pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1523                    srp_cmd->tag);
1524         }
1525         goto busy;
1526     }
1527 
1528     rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1529                  scsilun_to_int(&srp_cmd->lun), data_len,
1530                  TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1531     if (rc != 0) {
1532         pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1533              srp_cmd->tag);
1534         goto busy;
1535     }
1536 
1537     if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1538                    GFP_KERNEL))
1539         return;
1540 
1541     target_submit(cmd);
1542     return;
1543 
1544 busy:
1545     target_send_busy(cmd);
1546 }
1547 
1548 static int srp_tmr_to_tcm(int fn)
1549 {
1550     switch (fn) {
1551     case SRP_TSK_ABORT_TASK:
1552         return TMR_ABORT_TASK;
1553     case SRP_TSK_ABORT_TASK_SET:
1554         return TMR_ABORT_TASK_SET;
1555     case SRP_TSK_CLEAR_TASK_SET:
1556         return TMR_CLEAR_TASK_SET;
1557     case SRP_TSK_LUN_RESET:
1558         return TMR_LUN_RESET;
1559     case SRP_TSK_CLEAR_ACA:
1560         return TMR_CLEAR_ACA;
1561     default:
1562         return -1;
1563     }
1564 }
1565 
1566 /**
1567  * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1568  * @ch: SRPT RDMA channel.
1569  * @recv_ioctx: Receive I/O context.
1570  * @send_ioctx: Send I/O context.
1571  *
1572  * Returns 0 if and only if the request will be processed by the target core.
1573  *
1574  * For more information about SRP_TSK_MGMT information units, see also section
1575  * 6.7 in the SRP r16a document.
1576  */
1577 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1578                  struct srpt_recv_ioctx *recv_ioctx,
1579                  struct srpt_send_ioctx *send_ioctx)
1580 {
1581     struct srp_tsk_mgmt *srp_tsk;
1582     struct se_cmd *cmd;
1583     struct se_session *sess = ch->sess;
1584     int tcm_tmr;
1585     int rc;
1586 
1587     BUG_ON(!send_ioctx);
1588 
1589     srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1590     cmd = &send_ioctx->cmd;
1591 
1592     pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1593          srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1594          ch->sess);
1595 
1596     srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1597     send_ioctx->cmd.tag = srp_tsk->tag;
1598     tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1599     rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1600                    scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1601                    GFP_KERNEL, srp_tsk->task_tag,
1602                    TARGET_SCF_ACK_KREF);
1603     if (rc != 0) {
1604         send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1605         cmd->se_tfo->queue_tm_rsp(cmd);
1606     }
1607     return;
1608 }
1609 
1610 /**
1611  * srpt_handle_new_iu - process a newly received information unit
1612  * @ch:    RDMA channel through which the information unit has been received.
1613  * @recv_ioctx: Receive I/O context associated with the information unit.
1614  */
1615 static bool
1616 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1617 {
1618     struct srpt_send_ioctx *send_ioctx = NULL;
1619     struct srp_cmd *srp_cmd;
1620     bool res = false;
1621     u8 opcode;
1622 
1623     BUG_ON(!ch);
1624     BUG_ON(!recv_ioctx);
1625 
1626     if (unlikely(ch->state == CH_CONNECTING))
1627         goto push;
1628 
1629     ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1630                    recv_ioctx->ioctx.dma,
1631                    recv_ioctx->ioctx.offset + srp_max_req_size,
1632                    DMA_FROM_DEVICE);
1633 
1634     srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1635     opcode = srp_cmd->opcode;
1636     if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1637         send_ioctx = srpt_get_send_ioctx(ch);
1638         if (unlikely(!send_ioctx))
1639             goto push;
1640     }
1641 
1642     if (!list_empty(&recv_ioctx->wait_list)) {
1643         WARN_ON_ONCE(!ch->processing_wait_list);
1644         list_del_init(&recv_ioctx->wait_list);
1645     }
1646 
1647     switch (opcode) {
1648     case SRP_CMD:
1649         srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1650         break;
1651     case SRP_TSK_MGMT:
1652         srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1653         break;
1654     case SRP_I_LOGOUT:
1655         pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1656         break;
1657     case SRP_CRED_RSP:
1658         pr_debug("received SRP_CRED_RSP\n");
1659         break;
1660     case SRP_AER_RSP:
1661         pr_debug("received SRP_AER_RSP\n");
1662         break;
1663     case SRP_RSP:
1664         pr_err("Received SRP_RSP\n");
1665         break;
1666     default:
1667         pr_err("received IU with unknown opcode 0x%x\n", opcode);
1668         break;
1669     }
1670 
1671     if (!send_ioctx || !send_ioctx->recv_ioctx)
1672         srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1673     res = true;
1674 
1675 out:
1676     return res;
1677 
1678 push:
1679     if (list_empty(&recv_ioctx->wait_list)) {
1680         WARN_ON_ONCE(ch->processing_wait_list);
1681         list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1682     }
1683     goto out;
1684 }
1685 
1686 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1687 {
1688     struct srpt_rdma_ch *ch = wc->qp->qp_context;
1689     struct srpt_recv_ioctx *ioctx =
1690         container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1691 
1692     if (wc->status == IB_WC_SUCCESS) {
1693         int req_lim;
1694 
1695         req_lim = atomic_dec_return(&ch->req_lim);
1696         if (unlikely(req_lim < 0))
1697             pr_err("req_lim = %d < 0\n", req_lim);
1698         ioctx->byte_len = wc->byte_len;
1699         srpt_handle_new_iu(ch, ioctx);
1700     } else {
1701         pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1702                     ioctx, wc->status);
1703     }
1704 }
1705 
1706 /*
1707  * This function must be called from the context in which RDMA completions are
1708  * processed because it accesses the wait list without protection against
1709  * access from other threads.
1710  */
1711 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1712 {
1713     struct srpt_recv_ioctx *recv_ioctx, *tmp;
1714 
1715     WARN_ON_ONCE(ch->state == CH_CONNECTING);
1716 
1717     if (list_empty(&ch->cmd_wait_list))
1718         return;
1719 
1720     WARN_ON_ONCE(ch->processing_wait_list);
1721     ch->processing_wait_list = true;
1722     list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1723                  wait_list) {
1724         if (!srpt_handle_new_iu(ch, recv_ioctx))
1725             break;
1726     }
1727     ch->processing_wait_list = false;
1728 }
1729 
1730 /**
1731  * srpt_send_done - send completion callback
1732  * @cq: Completion queue.
1733  * @wc: Work completion.
1734  *
1735  * Note: Although this has not yet been observed during tests, at least in
1736  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1737  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1738  * value in each response is set to one, and it is possible that this response
1739  * makes the initiator send a new request before the send completion for that
1740  * response has been processed. This could e.g. happen if the call to
1741  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1742  * if IB retransmission causes generation of the send completion to be
1743  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1744  * are queued on cmd_wait_list. The code below processes these delayed
1745  * requests one at a time.
1746  */
1747 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1748 {
1749     struct srpt_rdma_ch *ch = wc->qp->qp_context;
1750     struct srpt_send_ioctx *ioctx =
1751         container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1752     enum srpt_command_state state;
1753 
1754     state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1755 
1756     WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1757         state != SRPT_STATE_MGMT_RSP_SENT);
1758 
1759     atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1760 
1761     if (wc->status != IB_WC_SUCCESS)
1762         pr_info("sending response for ioctx 0x%p failed with status %d\n",
1763             ioctx, wc->status);
1764 
1765     if (state != SRPT_STATE_DONE) {
1766         transport_generic_free_cmd(&ioctx->cmd, 0);
1767     } else {
1768         pr_err("IB completion has been received too late for wr_id = %u.\n",
1769                ioctx->ioctx.index);
1770     }
1771 
1772     srpt_process_wait_list(ch);
1773 }
1774 
1775 /**
1776  * srpt_create_ch_ib - create receive and send completion queues
1777  * @ch: SRPT RDMA channel.
1778  */
1779 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1780 {
1781     struct ib_qp_init_attr *qp_init;
1782     struct srpt_port *sport = ch->sport;
1783     struct srpt_device *sdev = sport->sdev;
1784     const struct ib_device_attr *attrs = &sdev->device->attrs;
1785     int sq_size = sport->port_attrib.srp_sq_size;
1786     int i, ret;
1787 
1788     WARN_ON(ch->rq_size < 1);
1789 
1790     ret = -ENOMEM;
1791     qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1792     if (!qp_init)
1793         goto out;
1794 
1795 retry:
1796     ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1797                  IB_POLL_WORKQUEUE);
1798     if (IS_ERR(ch->cq)) {
1799         ret = PTR_ERR(ch->cq);
1800         pr_err("failed to create CQ cqe= %d ret= %d\n",
1801                ch->rq_size + sq_size, ret);
1802         goto out;
1803     }
1804     ch->cq_size = ch->rq_size + sq_size;
1805 
1806     qp_init->qp_context = (void *)ch;
1807     qp_init->event_handler
1808         = (void(*)(struct ib_event *, void*))srpt_qp_event;
1809     qp_init->send_cq = ch->cq;
1810     qp_init->recv_cq = ch->cq;
1811     qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1812     qp_init->qp_type = IB_QPT_RC;
1813     /*
1814      * We divide up our send queue size into half SEND WRs to send the
1815      * completions, and half R/W contexts to actually do the RDMA
1816      * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1817      * both both, as RDMA contexts will also post completions for the
1818      * RDMA READ case.
1819      */
1820     qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1821     qp_init->cap.max_rdma_ctxs = sq_size / 2;
1822     qp_init->cap.max_send_sge = attrs->max_send_sge;
1823     qp_init->cap.max_recv_sge = 1;
1824     qp_init->port_num = ch->sport->port;
1825     if (sdev->use_srq)
1826         qp_init->srq = sdev->srq;
1827     else
1828         qp_init->cap.max_recv_wr = ch->rq_size;
1829 
1830     if (ch->using_rdma_cm) {
1831         ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1832         ch->qp = ch->rdma_cm.cm_id->qp;
1833     } else {
1834         ch->qp = ib_create_qp(sdev->pd, qp_init);
1835         if (!IS_ERR(ch->qp)) {
1836             ret = srpt_init_ch_qp(ch, ch->qp);
1837             if (ret)
1838                 ib_destroy_qp(ch->qp);
1839         } else {
1840             ret = PTR_ERR(ch->qp);
1841         }
1842     }
1843     if (ret) {
1844         bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1845 
1846         if (retry) {
1847             pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1848                  sq_size, ret);
1849             ib_cq_pool_put(ch->cq, ch->cq_size);
1850             sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1851             goto retry;
1852         } else {
1853             pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1854                    sq_size, ret);
1855             goto err_destroy_cq;
1856         }
1857     }
1858 
1859     atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1860 
1861     pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1862          __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1863          qp_init->cap.max_send_wr, ch);
1864 
1865     if (!sdev->use_srq)
1866         for (i = 0; i < ch->rq_size; i++)
1867             srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1868 
1869 out:
1870     kfree(qp_init);
1871     return ret;
1872 
1873 err_destroy_cq:
1874     ch->qp = NULL;
1875     ib_cq_pool_put(ch->cq, ch->cq_size);
1876     goto out;
1877 }
1878 
1879 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1880 {
1881     ib_destroy_qp(ch->qp);
1882     ib_cq_pool_put(ch->cq, ch->cq_size);
1883 }
1884 
1885 /**
1886  * srpt_close_ch - close a RDMA channel
1887  * @ch: SRPT RDMA channel.
1888  *
1889  * Make sure all resources associated with the channel will be deallocated at
1890  * an appropriate time.
1891  *
1892  * Returns true if and only if the channel state has been modified into
1893  * CH_DRAINING.
1894  */
1895 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1896 {
1897     int ret;
1898 
1899     if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1900         pr_debug("%s: already closed\n", ch->sess_name);
1901         return false;
1902     }
1903 
1904     kref_get(&ch->kref);
1905 
1906     ret = srpt_ch_qp_err(ch);
1907     if (ret < 0)
1908         pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1909                ch->sess_name, ch->qp->qp_num, ret);
1910 
1911     ret = srpt_zerolength_write(ch);
1912     if (ret < 0) {
1913         pr_err("%s-%d: queuing zero-length write failed: %d\n",
1914                ch->sess_name, ch->qp->qp_num, ret);
1915         if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1916             schedule_work(&ch->release_work);
1917         else
1918             WARN_ON_ONCE(true);
1919     }
1920 
1921     kref_put(&ch->kref, srpt_free_ch);
1922 
1923     return true;
1924 }
1925 
1926 /*
1927  * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1928  * reached the connected state, close it. If a channel is in the connected
1929  * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1930  * the responsibility of the caller to ensure that this function is not
1931  * invoked concurrently with the code that accepts a connection. This means
1932  * that this function must either be invoked from inside a CM callback
1933  * function or that it must be invoked with the srpt_port.mutex held.
1934  */
1935 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1936 {
1937     int ret;
1938 
1939     if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1940         return -ENOTCONN;
1941 
1942     if (ch->using_rdma_cm) {
1943         ret = rdma_disconnect(ch->rdma_cm.cm_id);
1944     } else {
1945         ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1946         if (ret < 0)
1947             ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1948     }
1949 
1950     if (ret < 0 && srpt_close_ch(ch))
1951         ret = 0;
1952 
1953     return ret;
1954 }
1955 
1956 /* Send DREQ and wait for DREP. */
1957 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1958 {
1959     DECLARE_COMPLETION_ONSTACK(closed);
1960     struct srpt_port *sport = ch->sport;
1961 
1962     pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1963          ch->state);
1964 
1965     ch->closed = &closed;
1966 
1967     mutex_lock(&sport->mutex);
1968     srpt_disconnect_ch(ch);
1969     mutex_unlock(&sport->mutex);
1970 
1971     while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1972         pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1973             ch->sess_name, ch->qp->qp_num, ch->state);
1974 
1975 }
1976 
1977 static void __srpt_close_all_ch(struct srpt_port *sport)
1978 {
1979     struct srpt_nexus *nexus;
1980     struct srpt_rdma_ch *ch;
1981 
1982     lockdep_assert_held(&sport->mutex);
1983 
1984     list_for_each_entry(nexus, &sport->nexus_list, entry) {
1985         list_for_each_entry(ch, &nexus->ch_list, list) {
1986             if (srpt_disconnect_ch(ch) >= 0)
1987                 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1988                     ch->sess_name, ch->qp->qp_num,
1989                     dev_name(&sport->sdev->device->dev),
1990                     sport->port);
1991             srpt_close_ch(ch);
1992         }
1993     }
1994 }
1995 
1996 /*
1997  * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1998  * it does not yet exist.
1999  */
2000 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2001                      const u8 i_port_id[16],
2002                      const u8 t_port_id[16])
2003 {
2004     struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2005 
2006     for (;;) {
2007         mutex_lock(&sport->mutex);
2008         list_for_each_entry(n, &sport->nexus_list, entry) {
2009             if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2010                 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2011                 nexus = n;
2012                 break;
2013             }
2014         }
2015         if (!nexus && tmp_nexus) {
2016             list_add_tail_rcu(&tmp_nexus->entry,
2017                       &sport->nexus_list);
2018             swap(nexus, tmp_nexus);
2019         }
2020         mutex_unlock(&sport->mutex);
2021 
2022         if (nexus)
2023             break;
2024         tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2025         if (!tmp_nexus) {
2026             nexus = ERR_PTR(-ENOMEM);
2027             break;
2028         }
2029         INIT_LIST_HEAD(&tmp_nexus->ch_list);
2030         memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2031         memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2032     }
2033 
2034     kfree(tmp_nexus);
2035 
2036     return nexus;
2037 }
2038 
2039 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2040     __must_hold(&sport->mutex)
2041 {
2042     lockdep_assert_held(&sport->mutex);
2043 
2044     if (sport->enabled == enabled)
2045         return;
2046     sport->enabled = enabled;
2047     if (!enabled)
2048         __srpt_close_all_ch(sport);
2049 }
2050 
2051 static void srpt_drop_sport_ref(struct srpt_port *sport)
2052 {
2053     if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2054         complete(sport->freed_channels);
2055 }
2056 
2057 static void srpt_free_ch(struct kref *kref)
2058 {
2059     struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2060 
2061     srpt_drop_sport_ref(ch->sport);
2062     kfree_rcu(ch, rcu);
2063 }
2064 
2065 /*
2066  * Shut down the SCSI target session, tell the connection manager to
2067  * disconnect the associated RDMA channel, transition the QP to the error
2068  * state and remove the channel from the channel list. This function is
2069  * typically called from inside srpt_zerolength_write_done(). Concurrent
2070  * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2071  * as long as the channel is on sport->nexus_list.
2072  */
2073 static void srpt_release_channel_work(struct work_struct *w)
2074 {
2075     struct srpt_rdma_ch *ch;
2076     struct srpt_device *sdev;
2077     struct srpt_port *sport;
2078     struct se_session *se_sess;
2079 
2080     ch = container_of(w, struct srpt_rdma_ch, release_work);
2081     pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2082 
2083     sdev = ch->sport->sdev;
2084     BUG_ON(!sdev);
2085 
2086     se_sess = ch->sess;
2087     BUG_ON(!se_sess);
2088 
2089     target_stop_session(se_sess);
2090     target_wait_for_sess_cmds(se_sess);
2091 
2092     target_remove_session(se_sess);
2093     ch->sess = NULL;
2094 
2095     if (ch->using_rdma_cm)
2096         rdma_destroy_id(ch->rdma_cm.cm_id);
2097     else
2098         ib_destroy_cm_id(ch->ib_cm.cm_id);
2099 
2100     sport = ch->sport;
2101     mutex_lock(&sport->mutex);
2102     list_del_rcu(&ch->list);
2103     mutex_unlock(&sport->mutex);
2104 
2105     if (ch->closed)
2106         complete(ch->closed);
2107 
2108     srpt_destroy_ch_ib(ch);
2109 
2110     srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2111                  ch->sport->sdev, ch->rq_size,
2112                  ch->rsp_buf_cache, DMA_TO_DEVICE);
2113 
2114     kmem_cache_destroy(ch->rsp_buf_cache);
2115 
2116     srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2117                  sdev, ch->rq_size,
2118                  ch->req_buf_cache, DMA_FROM_DEVICE);
2119 
2120     kmem_cache_destroy(ch->req_buf_cache);
2121 
2122     kref_put(&ch->kref, srpt_free_ch);
2123 }
2124 
2125 /**
2126  * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2127  * @sdev: HCA through which the login request was received.
2128  * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2129  * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2130  * @port_num: Port through which the REQ message was received.
2131  * @pkey: P_Key of the incoming connection.
2132  * @req: SRP login request.
2133  * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2134  * the login request.
2135  *
2136  * Ownership of the cm_id is transferred to the target session if this
2137  * function returns zero. Otherwise the caller remains the owner of cm_id.
2138  */
2139 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2140                 struct ib_cm_id *ib_cm_id,
2141                 struct rdma_cm_id *rdma_cm_id,
2142                 u8 port_num, __be16 pkey,
2143                 const struct srp_login_req *req,
2144                 const char *src_addr)
2145 {
2146     struct srpt_port *sport = &sdev->port[port_num - 1];
2147     struct srpt_nexus *nexus;
2148     struct srp_login_rsp *rsp = NULL;
2149     struct srp_login_rej *rej = NULL;
2150     union {
2151         struct rdma_conn_param rdma_cm;
2152         struct ib_cm_rep_param ib_cm;
2153     } *rep_param = NULL;
2154     struct srpt_rdma_ch *ch = NULL;
2155     char i_port_id[36];
2156     u32 it_iu_len;
2157     int i, tag_num, tag_size, ret;
2158     struct srpt_tpg *stpg;
2159 
2160     WARN_ON_ONCE(irqs_disabled());
2161 
2162     it_iu_len = be32_to_cpu(req->req_it_iu_len);
2163 
2164     pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2165         req->initiator_port_id, req->target_port_id, it_iu_len,
2166         port_num, &sport->gid, be16_to_cpu(pkey));
2167 
2168     nexus = srpt_get_nexus(sport, req->initiator_port_id,
2169                    req->target_port_id);
2170     if (IS_ERR(nexus)) {
2171         ret = PTR_ERR(nexus);
2172         goto out;
2173     }
2174 
2175     ret = -ENOMEM;
2176     rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2177     rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2178     rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2179     if (!rsp || !rej || !rep_param)
2180         goto out;
2181 
2182     ret = -EINVAL;
2183     if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2184         rej->reason = cpu_to_be32(
2185                 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2186         pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2187                it_iu_len, 64, srp_max_req_size);
2188         goto reject;
2189     }
2190 
2191     if (!sport->enabled) {
2192         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2193         pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2194             dev_name(&sport->sdev->device->dev), port_num);
2195         goto reject;
2196     }
2197 
2198     if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2199         || *(__be64 *)(req->target_port_id + 8) !=
2200            cpu_to_be64(srpt_service_guid)) {
2201         rej->reason = cpu_to_be32(
2202                 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2203         pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2204         goto reject;
2205     }
2206 
2207     ret = -ENOMEM;
2208     ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2209     if (!ch) {
2210         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2211         pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2212         goto reject;
2213     }
2214 
2215     kref_init(&ch->kref);
2216     ch->pkey = be16_to_cpu(pkey);
2217     ch->nexus = nexus;
2218     ch->zw_cqe.done = srpt_zerolength_write_done;
2219     INIT_WORK(&ch->release_work, srpt_release_channel_work);
2220     ch->sport = sport;
2221     if (rdma_cm_id) {
2222         ch->using_rdma_cm = true;
2223         ch->rdma_cm.cm_id = rdma_cm_id;
2224         rdma_cm_id->context = ch;
2225     } else {
2226         ch->ib_cm.cm_id = ib_cm_id;
2227         ib_cm_id->context = ch;
2228     }
2229     /*
2230      * ch->rq_size should be at least as large as the initiator queue
2231      * depth to avoid that the initiator driver has to report QUEUE_FULL
2232      * to the SCSI mid-layer.
2233      */
2234     ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2235     spin_lock_init(&ch->spinlock);
2236     ch->state = CH_CONNECTING;
2237     INIT_LIST_HEAD(&ch->cmd_wait_list);
2238     ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2239 
2240     ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2241                           512, 0, NULL);
2242     if (!ch->rsp_buf_cache)
2243         goto free_ch;
2244 
2245     ch->ioctx_ring = (struct srpt_send_ioctx **)
2246         srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2247                       sizeof(*ch->ioctx_ring[0]),
2248                       ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2249     if (!ch->ioctx_ring) {
2250         pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2251         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2252         goto free_rsp_cache;
2253     }
2254 
2255     for (i = 0; i < ch->rq_size; i++)
2256         ch->ioctx_ring[i]->ch = ch;
2257     if (!sdev->use_srq) {
2258         u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2259             be16_to_cpu(req->imm_data_offset) : 0;
2260         u16 alignment_offset;
2261         u32 req_sz;
2262 
2263         if (req->req_flags & SRP_IMMED_REQUESTED)
2264             pr_debug("imm_data_offset = %d\n",
2265                  be16_to_cpu(req->imm_data_offset));
2266         if (imm_data_offset >= sizeof(struct srp_cmd)) {
2267             ch->imm_data_offset = imm_data_offset;
2268             rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2269         } else {
2270             ch->imm_data_offset = 0;
2271         }
2272         alignment_offset = round_up(imm_data_offset, 512) -
2273             imm_data_offset;
2274         req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2275         ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2276                               512, 0, NULL);
2277         if (!ch->req_buf_cache)
2278             goto free_rsp_ring;
2279 
2280         ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2281             srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2282                           sizeof(*ch->ioctx_recv_ring[0]),
2283                           ch->req_buf_cache,
2284                           alignment_offset,
2285                           DMA_FROM_DEVICE);
2286         if (!ch->ioctx_recv_ring) {
2287             pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2288             rej->reason =
2289                 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2290             goto free_recv_cache;
2291         }
2292         for (i = 0; i < ch->rq_size; i++)
2293             INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2294     }
2295 
2296     ret = srpt_create_ch_ib(ch);
2297     if (ret) {
2298         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2299         pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2300         goto free_recv_ring;
2301     }
2302 
2303     strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2304     snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2305             be64_to_cpu(*(__be64 *)nexus->i_port_id),
2306             be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2307 
2308     pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2309          i_port_id);
2310 
2311     tag_num = ch->rq_size;
2312     tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2313 
2314     if (sport->guid_id) {
2315         mutex_lock(&sport->guid_id->mutex);
2316         list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2317             if (!IS_ERR_OR_NULL(ch->sess))
2318                 break;
2319             ch->sess = target_setup_session(&stpg->tpg, tag_num,
2320                         tag_size, TARGET_PROT_NORMAL,
2321                         ch->sess_name, ch, NULL);
2322         }
2323         mutex_unlock(&sport->guid_id->mutex);
2324     }
2325 
2326     if (sport->gid_id) {
2327         mutex_lock(&sport->gid_id->mutex);
2328         list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2329             if (!IS_ERR_OR_NULL(ch->sess))
2330                 break;
2331             ch->sess = target_setup_session(&stpg->tpg, tag_num,
2332                     tag_size, TARGET_PROT_NORMAL, i_port_id,
2333                     ch, NULL);
2334             if (!IS_ERR_OR_NULL(ch->sess))
2335                 break;
2336             /* Retry without leading "0x" */
2337             ch->sess = target_setup_session(&stpg->tpg, tag_num,
2338                         tag_size, TARGET_PROT_NORMAL,
2339                         i_port_id + 2, ch, NULL);
2340         }
2341         mutex_unlock(&sport->gid_id->mutex);
2342     }
2343 
2344     if (IS_ERR_OR_NULL(ch->sess)) {
2345         WARN_ON_ONCE(ch->sess == NULL);
2346         ret = PTR_ERR(ch->sess);
2347         ch->sess = NULL;
2348         pr_info("Rejected login for initiator %s: ret = %d.\n",
2349             ch->sess_name, ret);
2350         rej->reason = cpu_to_be32(ret == -ENOMEM ?
2351                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2352                 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2353         goto destroy_ib;
2354     }
2355 
2356     /*
2357      * Once a session has been created destruction of srpt_rdma_ch objects
2358      * will decrement sport->refcount. Hence increment sport->refcount now.
2359      */
2360     atomic_inc(&sport->refcount);
2361 
2362     mutex_lock(&sport->mutex);
2363 
2364     if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2365         struct srpt_rdma_ch *ch2;
2366 
2367         list_for_each_entry(ch2, &nexus->ch_list, list) {
2368             if (srpt_disconnect_ch(ch2) < 0)
2369                 continue;
2370             pr_info("Relogin - closed existing channel %s\n",
2371                 ch2->sess_name);
2372             rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2373         }
2374     } else {
2375         rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2376     }
2377 
2378     list_add_tail_rcu(&ch->list, &nexus->ch_list);
2379 
2380     if (!sport->enabled) {
2381         rej->reason = cpu_to_be32(
2382                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2383         pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2384             dev_name(&sdev->device->dev), port_num);
2385         mutex_unlock(&sport->mutex);
2386         ret = -EINVAL;
2387         goto reject;
2388     }
2389 
2390     mutex_unlock(&sport->mutex);
2391 
2392     ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2393     if (ret) {
2394         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2395         pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2396                ret);
2397         goto reject;
2398     }
2399 
2400     pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2401          ch->sess_name, ch);
2402 
2403     /* create srp_login_response */
2404     rsp->opcode = SRP_LOGIN_RSP;
2405     rsp->tag = req->tag;
2406     rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2407     rsp->max_ti_iu_len = req->req_it_iu_len;
2408     ch->max_ti_iu_len = it_iu_len;
2409     rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2410                    SRP_BUF_FORMAT_INDIRECT);
2411     rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2412     atomic_set(&ch->req_lim, ch->rq_size);
2413     atomic_set(&ch->req_lim_delta, 0);
2414 
2415     /* create cm reply */
2416     if (ch->using_rdma_cm) {
2417         rep_param->rdma_cm.private_data = (void *)rsp;
2418         rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2419         rep_param->rdma_cm.rnr_retry_count = 7;
2420         rep_param->rdma_cm.flow_control = 1;
2421         rep_param->rdma_cm.responder_resources = 4;
2422         rep_param->rdma_cm.initiator_depth = 4;
2423     } else {
2424         rep_param->ib_cm.qp_num = ch->qp->qp_num;
2425         rep_param->ib_cm.private_data = (void *)rsp;
2426         rep_param->ib_cm.private_data_len = sizeof(*rsp);
2427         rep_param->ib_cm.rnr_retry_count = 7;
2428         rep_param->ib_cm.flow_control = 1;
2429         rep_param->ib_cm.failover_accepted = 0;
2430         rep_param->ib_cm.srq = 1;
2431         rep_param->ib_cm.responder_resources = 4;
2432         rep_param->ib_cm.initiator_depth = 4;
2433     }
2434 
2435     /*
2436      * Hold the sport mutex while accepting a connection to avoid that
2437      * srpt_disconnect_ch() is invoked concurrently with this code.
2438      */
2439     mutex_lock(&sport->mutex);
2440     if (sport->enabled && ch->state == CH_CONNECTING) {
2441         if (ch->using_rdma_cm)
2442             ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2443         else
2444             ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2445     } else {
2446         ret = -EINVAL;
2447     }
2448     mutex_unlock(&sport->mutex);
2449 
2450     switch (ret) {
2451     case 0:
2452         break;
2453     case -EINVAL:
2454         goto reject;
2455     default:
2456         rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2457         pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2458                ret);
2459         goto reject;
2460     }
2461 
2462     goto out;
2463 
2464 destroy_ib:
2465     srpt_destroy_ch_ib(ch);
2466 
2467 free_recv_ring:
2468     srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2469                  ch->sport->sdev, ch->rq_size,
2470                  ch->req_buf_cache, DMA_FROM_DEVICE);
2471 
2472 free_recv_cache:
2473     kmem_cache_destroy(ch->req_buf_cache);
2474 
2475 free_rsp_ring:
2476     srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2477                  ch->sport->sdev, ch->rq_size,
2478                  ch->rsp_buf_cache, DMA_TO_DEVICE);
2479 
2480 free_rsp_cache:
2481     kmem_cache_destroy(ch->rsp_buf_cache);
2482 
2483 free_ch:
2484     if (rdma_cm_id)
2485         rdma_cm_id->context = NULL;
2486     else
2487         ib_cm_id->context = NULL;
2488     kfree(ch);
2489     ch = NULL;
2490 
2491     WARN_ON_ONCE(ret == 0);
2492 
2493 reject:
2494     pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2495     rej->opcode = SRP_LOGIN_REJ;
2496     rej->tag = req->tag;
2497     rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2498                    SRP_BUF_FORMAT_INDIRECT);
2499 
2500     if (rdma_cm_id)
2501         rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2502                 IB_CM_REJ_CONSUMER_DEFINED);
2503     else
2504         ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2505                    rej, sizeof(*rej));
2506 
2507     if (ch && ch->sess) {
2508         srpt_close_ch(ch);
2509         /*
2510          * Tell the caller not to free cm_id since
2511          * srpt_release_channel_work() will do that.
2512          */
2513         ret = 0;
2514     }
2515 
2516 out:
2517     kfree(rep_param);
2518     kfree(rsp);
2519     kfree(rej);
2520 
2521     return ret;
2522 }
2523 
2524 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2525                    const struct ib_cm_req_event_param *param,
2526                    void *private_data)
2527 {
2528     char sguid[40];
2529 
2530     srpt_format_guid(sguid, sizeof(sguid),
2531              &param->primary_path->dgid.global.interface_id);
2532 
2533     return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2534                 param->primary_path->pkey,
2535                 private_data, sguid);
2536 }
2537 
2538 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2539                  struct rdma_cm_event *event)
2540 {
2541     struct srpt_device *sdev;
2542     struct srp_login_req req;
2543     const struct srp_login_req_rdma *req_rdma;
2544     struct sa_path_rec *path_rec = cm_id->route.path_rec;
2545     char src_addr[40];
2546 
2547     sdev = ib_get_client_data(cm_id->device, &srpt_client);
2548     if (!sdev)
2549         return -ECONNREFUSED;
2550 
2551     if (event->param.conn.private_data_len < sizeof(*req_rdma))
2552         return -EINVAL;
2553 
2554     /* Transform srp_login_req_rdma into srp_login_req. */
2555     req_rdma = event->param.conn.private_data;
2556     memset(&req, 0, sizeof(req));
2557     req.opcode      = req_rdma->opcode;
2558     req.tag         = req_rdma->tag;
2559     req.req_it_iu_len   = req_rdma->req_it_iu_len;
2560     req.req_buf_fmt     = req_rdma->req_buf_fmt;
2561     req.req_flags       = req_rdma->req_flags;
2562     memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2563     memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2564     req.imm_data_offset = req_rdma->imm_data_offset;
2565 
2566     snprintf(src_addr, sizeof(src_addr), "%pIS",
2567          &cm_id->route.addr.src_addr);
2568 
2569     return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2570                 path_rec ? path_rec->pkey : 0, &req, src_addr);
2571 }
2572 
2573 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2574                  enum ib_cm_rej_reason reason,
2575                  const u8 *private_data,
2576                  u8 private_data_len)
2577 {
2578     char *priv = NULL;
2579     int i;
2580 
2581     if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2582                         GFP_KERNEL))) {
2583         for (i = 0; i < private_data_len; i++)
2584             sprintf(priv + 3 * i, " %02x", private_data[i]);
2585     }
2586     pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2587         ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2588         "; private data" : "", priv ? priv : " (?)");
2589     kfree(priv);
2590 }
2591 
2592 /**
2593  * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2594  * @ch: SRPT RDMA channel.
2595  *
2596  * An RTU (ready to use) message indicates that the connection has been
2597  * established and that the recipient may begin transmitting.
2598  */
2599 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2600 {
2601     int ret;
2602 
2603     ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2604     if (ret < 0) {
2605         pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2606                ch->qp->qp_num);
2607         srpt_close_ch(ch);
2608         return;
2609     }
2610 
2611     /*
2612      * Note: calling srpt_close_ch() if the transition to the LIVE state
2613      * fails is not necessary since that means that that function has
2614      * already been invoked from another thread.
2615      */
2616     if (!srpt_set_ch_state(ch, CH_LIVE)) {
2617         pr_err("%s-%d: channel transition to LIVE state failed\n",
2618                ch->sess_name, ch->qp->qp_num);
2619         return;
2620     }
2621 
2622     /* Trigger wait list processing. */
2623     ret = srpt_zerolength_write(ch);
2624     WARN_ONCE(ret < 0, "%d\n", ret);
2625 }
2626 
2627 /**
2628  * srpt_cm_handler - IB connection manager callback function
2629  * @cm_id: IB/CM connection identifier.
2630  * @event: IB/CM event.
2631  *
2632  * A non-zero return value will cause the caller destroy the CM ID.
2633  *
2634  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2635  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2636  * a non-zero value in any other case will trigger a race with the
2637  * ib_destroy_cm_id() call in srpt_release_channel().
2638  */
2639 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2640                const struct ib_cm_event *event)
2641 {
2642     struct srpt_rdma_ch *ch = cm_id->context;
2643     int ret;
2644 
2645     ret = 0;
2646     switch (event->event) {
2647     case IB_CM_REQ_RECEIVED:
2648         ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2649                       event->private_data);
2650         break;
2651     case IB_CM_REJ_RECEIVED:
2652         srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2653                  event->private_data,
2654                  IB_CM_REJ_PRIVATE_DATA_SIZE);
2655         break;
2656     case IB_CM_RTU_RECEIVED:
2657     case IB_CM_USER_ESTABLISHED:
2658         srpt_cm_rtu_recv(ch);
2659         break;
2660     case IB_CM_DREQ_RECEIVED:
2661         srpt_disconnect_ch(ch);
2662         break;
2663     case IB_CM_DREP_RECEIVED:
2664         pr_info("Received CM DREP message for ch %s-%d.\n",
2665             ch->sess_name, ch->qp->qp_num);
2666         srpt_close_ch(ch);
2667         break;
2668     case IB_CM_TIMEWAIT_EXIT:
2669         pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2670             ch->sess_name, ch->qp->qp_num);
2671         srpt_close_ch(ch);
2672         break;
2673     case IB_CM_REP_ERROR:
2674         pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2675             ch->qp->qp_num);
2676         break;
2677     case IB_CM_DREQ_ERROR:
2678         pr_info("Received CM DREQ ERROR event.\n");
2679         break;
2680     case IB_CM_MRA_RECEIVED:
2681         pr_info("Received CM MRA event\n");
2682         break;
2683     default:
2684         pr_err("received unrecognized CM event %d\n", event->event);
2685         break;
2686     }
2687 
2688     return ret;
2689 }
2690 
2691 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2692                 struct rdma_cm_event *event)
2693 {
2694     struct srpt_rdma_ch *ch = cm_id->context;
2695     int ret = 0;
2696 
2697     switch (event->event) {
2698     case RDMA_CM_EVENT_CONNECT_REQUEST:
2699         ret = srpt_rdma_cm_req_recv(cm_id, event);
2700         break;
2701     case RDMA_CM_EVENT_REJECTED:
2702         srpt_cm_rej_recv(ch, event->status,
2703                  event->param.conn.private_data,
2704                  event->param.conn.private_data_len);
2705         break;
2706     case RDMA_CM_EVENT_ESTABLISHED:
2707         srpt_cm_rtu_recv(ch);
2708         break;
2709     case RDMA_CM_EVENT_DISCONNECTED:
2710         if (ch->state < CH_DISCONNECTING)
2711             srpt_disconnect_ch(ch);
2712         else
2713             srpt_close_ch(ch);
2714         break;
2715     case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2716         srpt_close_ch(ch);
2717         break;
2718     case RDMA_CM_EVENT_UNREACHABLE:
2719         pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2720             ch->qp->qp_num);
2721         break;
2722     case RDMA_CM_EVENT_DEVICE_REMOVAL:
2723     case RDMA_CM_EVENT_ADDR_CHANGE:
2724         break;
2725     default:
2726         pr_err("received unrecognized RDMA CM event %d\n",
2727                event->event);
2728         break;
2729     }
2730 
2731     return ret;
2732 }
2733 
2734 /*
2735  * srpt_write_pending - Start data transfer from initiator to target (write).
2736  */
2737 static int srpt_write_pending(struct se_cmd *se_cmd)
2738 {
2739     struct srpt_send_ioctx *ioctx =
2740         container_of(se_cmd, struct srpt_send_ioctx, cmd);
2741     struct srpt_rdma_ch *ch = ioctx->ch;
2742     struct ib_send_wr *first_wr = NULL;
2743     struct ib_cqe *cqe = &ioctx->rdma_cqe;
2744     enum srpt_command_state new_state;
2745     int ret, i;
2746 
2747     if (ioctx->recv_ioctx) {
2748         srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2749         target_execute_cmd(&ioctx->cmd);
2750         return 0;
2751     }
2752 
2753     new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2754     WARN_ON(new_state == SRPT_STATE_DONE);
2755 
2756     if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2757         pr_warn("%s: IB send queue full (needed %d)\n",
2758                 __func__, ioctx->n_rdma);
2759         ret = -ENOMEM;
2760         goto out_undo;
2761     }
2762 
2763     cqe->done = srpt_rdma_read_done;
2764     for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2765         struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2766 
2767         first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2768                 cqe, first_wr);
2769         cqe = NULL;
2770     }
2771 
2772     ret = ib_post_send(ch->qp, first_wr, NULL);
2773     if (ret) {
2774         pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2775              __func__, ret, ioctx->n_rdma,
2776              atomic_read(&ch->sq_wr_avail));
2777         goto out_undo;
2778     }
2779 
2780     return 0;
2781 out_undo:
2782     atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2783     return ret;
2784 }
2785 
2786 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2787 {
2788     switch (tcm_mgmt_status) {
2789     case TMR_FUNCTION_COMPLETE:
2790         return SRP_TSK_MGMT_SUCCESS;
2791     case TMR_FUNCTION_REJECTED:
2792         return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2793     }
2794     return SRP_TSK_MGMT_FAILED;
2795 }
2796 
2797 /**
2798  * srpt_queue_response - transmit the response to a SCSI command
2799  * @cmd: SCSI target command.
2800  *
2801  * Callback function called by the TCM core. Must not block since it can be
2802  * invoked on the context of the IB completion handler.
2803  */
2804 static void srpt_queue_response(struct se_cmd *cmd)
2805 {
2806     struct srpt_send_ioctx *ioctx =
2807         container_of(cmd, struct srpt_send_ioctx, cmd);
2808     struct srpt_rdma_ch *ch = ioctx->ch;
2809     struct srpt_device *sdev = ch->sport->sdev;
2810     struct ib_send_wr send_wr, *first_wr = &send_wr;
2811     struct ib_sge sge;
2812     enum srpt_command_state state;
2813     int resp_len, ret, i;
2814     u8 srp_tm_status;
2815 
2816     state = ioctx->state;
2817     switch (state) {
2818     case SRPT_STATE_NEW:
2819     case SRPT_STATE_DATA_IN:
2820         ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2821         break;
2822     case SRPT_STATE_MGMT:
2823         ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2824         break;
2825     default:
2826         WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2827             ch, ioctx->ioctx.index, ioctx->state);
2828         break;
2829     }
2830 
2831     if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2832         return;
2833 
2834     /* For read commands, transfer the data to the initiator. */
2835     if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2836         ioctx->cmd.data_length &&
2837         !ioctx->queue_status_only) {
2838         for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2839             struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2840 
2841             first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2842                     ch->sport->port, NULL, first_wr);
2843         }
2844     }
2845 
2846     if (state != SRPT_STATE_MGMT)
2847         resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2848                           cmd->scsi_status);
2849     else {
2850         srp_tm_status
2851             = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2852         resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2853                          ioctx->cmd.tag);
2854     }
2855 
2856     atomic_inc(&ch->req_lim);
2857 
2858     if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2859             &ch->sq_wr_avail) < 0)) {
2860         pr_warn("%s: IB send queue full (needed %d)\n",
2861                 __func__, ioctx->n_rdma);
2862         goto out;
2863     }
2864 
2865     ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2866                       DMA_TO_DEVICE);
2867 
2868     sge.addr = ioctx->ioctx.dma;
2869     sge.length = resp_len;
2870     sge.lkey = sdev->lkey;
2871 
2872     ioctx->ioctx.cqe.done = srpt_send_done;
2873     send_wr.next = NULL;
2874     send_wr.wr_cqe = &ioctx->ioctx.cqe;
2875     send_wr.sg_list = &sge;
2876     send_wr.num_sge = 1;
2877     send_wr.opcode = IB_WR_SEND;
2878     send_wr.send_flags = IB_SEND_SIGNALED;
2879 
2880     ret = ib_post_send(ch->qp, first_wr, NULL);
2881     if (ret < 0) {
2882         pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2883             __func__, ioctx->cmd.tag, ret);
2884         goto out;
2885     }
2886 
2887     return;
2888 
2889 out:
2890     atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2891     atomic_dec(&ch->req_lim);
2892     srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2893     target_put_sess_cmd(&ioctx->cmd);
2894 }
2895 
2896 static int srpt_queue_data_in(struct se_cmd *cmd)
2897 {
2898     srpt_queue_response(cmd);
2899     return 0;
2900 }
2901 
2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2903 {
2904     srpt_queue_response(cmd);
2905 }
2906 
2907 /*
2908  * This function is called for aborted commands if no response is sent to the
2909  * initiator. Make sure that the credits freed by aborting a command are
2910  * returned to the initiator the next time a response is sent by incrementing
2911  * ch->req_lim_delta.
2912  */
2913 static void srpt_aborted_task(struct se_cmd *cmd)
2914 {
2915     struct srpt_send_ioctx *ioctx = container_of(cmd,
2916                 struct srpt_send_ioctx, cmd);
2917     struct srpt_rdma_ch *ch = ioctx->ch;
2918 
2919     atomic_inc(&ch->req_lim_delta);
2920 }
2921 
2922 static int srpt_queue_status(struct se_cmd *cmd)
2923 {
2924     struct srpt_send_ioctx *ioctx;
2925 
2926     ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2927     BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2928     if (cmd->se_cmd_flags &
2929         (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2930         WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2931     ioctx->queue_status_only = true;
2932     srpt_queue_response(cmd);
2933     return 0;
2934 }
2935 
2936 static void srpt_refresh_port_work(struct work_struct *work)
2937 {
2938     struct srpt_port *sport = container_of(work, struct srpt_port, work);
2939 
2940     srpt_refresh_port(sport);
2941 }
2942 
2943 /**
2944  * srpt_release_sport - disable login and wait for associated channels
2945  * @sport: SRPT HCA port.
2946  */
2947 static int srpt_release_sport(struct srpt_port *sport)
2948 {
2949     DECLARE_COMPLETION_ONSTACK(c);
2950     struct srpt_nexus *nexus, *next_n;
2951     struct srpt_rdma_ch *ch;
2952 
2953     WARN_ON_ONCE(irqs_disabled());
2954 
2955     sport->freed_channels = &c;
2956 
2957     mutex_lock(&sport->mutex);
2958     srpt_set_enabled(sport, false);
2959     mutex_unlock(&sport->mutex);
2960 
2961     while (atomic_read(&sport->refcount) > 0 &&
2962            wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2963         pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2964             dev_name(&sport->sdev->device->dev), sport->port,
2965             atomic_read(&sport->refcount));
2966         rcu_read_lock();
2967         list_for_each_entry(nexus, &sport->nexus_list, entry) {
2968             list_for_each_entry(ch, &nexus->ch_list, list) {
2969                 pr_info("%s-%d: state %s\n",
2970                     ch->sess_name, ch->qp->qp_num,
2971                     get_ch_state_name(ch->state));
2972             }
2973         }
2974         rcu_read_unlock();
2975     }
2976 
2977     mutex_lock(&sport->mutex);
2978     list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2979         list_del(&nexus->entry);
2980         kfree_rcu(nexus, rcu);
2981     }
2982     mutex_unlock(&sport->mutex);
2983 
2984     return 0;
2985 }
2986 
2987 struct port_and_port_id {
2988     struct srpt_port *sport;
2989     struct srpt_port_id **port_id;
2990 };
2991 
2992 static struct port_and_port_id __srpt_lookup_port(const char *name)
2993 {
2994     struct ib_device *dev;
2995     struct srpt_device *sdev;
2996     struct srpt_port *sport;
2997     int i;
2998 
2999     list_for_each_entry(sdev, &srpt_dev_list, list) {
3000         dev = sdev->device;
3001         if (!dev)
3002             continue;
3003 
3004         for (i = 0; i < dev->phys_port_cnt; i++) {
3005             sport = &sdev->port[i];
3006 
3007             if (strcmp(sport->guid_name, name) == 0) {
3008                 kref_get(&sdev->refcnt);
3009                 return (struct port_and_port_id){
3010                     sport, &sport->guid_id};
3011             }
3012             if (strcmp(sport->gid_name, name) == 0) {
3013                 kref_get(&sdev->refcnt);
3014                 return (struct port_and_port_id){
3015                     sport, &sport->gid_id};
3016             }
3017         }
3018     }
3019 
3020     return (struct port_and_port_id){};
3021 }
3022 
3023 /**
3024  * srpt_lookup_port() - Look up an RDMA port by name
3025  * @name: ASCII port name
3026  *
3027  * Increments the RDMA port reference count if an RDMA port pointer is returned.
3028  * The caller must drop that reference count by calling srpt_port_put_ref().
3029  */
3030 static struct port_and_port_id srpt_lookup_port(const char *name)
3031 {
3032     struct port_and_port_id papi;
3033 
3034     spin_lock(&srpt_dev_lock);
3035     papi = __srpt_lookup_port(name);
3036     spin_unlock(&srpt_dev_lock);
3037 
3038     return papi;
3039 }
3040 
3041 static void srpt_free_srq(struct srpt_device *sdev)
3042 {
3043     if (!sdev->srq)
3044         return;
3045 
3046     ib_destroy_srq(sdev->srq);
3047     srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3048                  sdev->srq_size, sdev->req_buf_cache,
3049                  DMA_FROM_DEVICE);
3050     kmem_cache_destroy(sdev->req_buf_cache);
3051     sdev->srq = NULL;
3052 }
3053 
3054 static int srpt_alloc_srq(struct srpt_device *sdev)
3055 {
3056     struct ib_srq_init_attr srq_attr = {
3057         .event_handler = srpt_srq_event,
3058         .srq_context = (void *)sdev,
3059         .attr.max_wr = sdev->srq_size,
3060         .attr.max_sge = 1,
3061         .srq_type = IB_SRQT_BASIC,
3062     };
3063     struct ib_device *device = sdev->device;
3064     struct ib_srq *srq;
3065     int i;
3066 
3067     WARN_ON_ONCE(sdev->srq);
3068     srq = ib_create_srq(sdev->pd, &srq_attr);
3069     if (IS_ERR(srq)) {
3070         pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3071         return PTR_ERR(srq);
3072     }
3073 
3074     pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3075          sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3076 
3077     sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3078                         srp_max_req_size, 0, 0, NULL);
3079     if (!sdev->req_buf_cache)
3080         goto free_srq;
3081 
3082     sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3083         srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3084                       sizeof(*sdev->ioctx_ring[0]),
3085                       sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3086     if (!sdev->ioctx_ring)
3087         goto free_cache;
3088 
3089     sdev->use_srq = true;
3090     sdev->srq = srq;
3091 
3092     for (i = 0; i < sdev->srq_size; ++i) {
3093         INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3094         srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3095     }
3096 
3097     return 0;
3098 
3099 free_cache:
3100     kmem_cache_destroy(sdev->req_buf_cache);
3101 
3102 free_srq:
3103     ib_destroy_srq(srq);
3104     return -ENOMEM;
3105 }
3106 
3107 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3108 {
3109     struct ib_device *device = sdev->device;
3110     int ret = 0;
3111 
3112     if (!use_srq) {
3113         srpt_free_srq(sdev);
3114         sdev->use_srq = false;
3115     } else if (use_srq && !sdev->srq) {
3116         ret = srpt_alloc_srq(sdev);
3117     }
3118     pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3119          dev_name(&device->dev), sdev->use_srq, ret);
3120     return ret;
3121 }
3122 
3123 static void srpt_free_sdev(struct kref *refcnt)
3124 {
3125     struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3126 
3127     kfree(sdev);
3128 }
3129 
3130 static void srpt_sdev_put(struct srpt_device *sdev)
3131 {
3132     kref_put(&sdev->refcnt, srpt_free_sdev);
3133 }
3134 
3135 /**
3136  * srpt_add_one - InfiniBand device addition callback function
3137  * @device: Describes a HCA.
3138  */
3139 static int srpt_add_one(struct ib_device *device)
3140 {
3141     struct srpt_device *sdev;
3142     struct srpt_port *sport;
3143     int ret;
3144     u32 i;
3145 
3146     pr_debug("device = %p\n", device);
3147 
3148     sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3149                GFP_KERNEL);
3150     if (!sdev)
3151         return -ENOMEM;
3152 
3153     kref_init(&sdev->refcnt);
3154     sdev->device = device;
3155     mutex_init(&sdev->sdev_mutex);
3156 
3157     sdev->pd = ib_alloc_pd(device, 0);
3158     if (IS_ERR(sdev->pd)) {
3159         ret = PTR_ERR(sdev->pd);
3160         goto free_dev;
3161     }
3162 
3163     sdev->lkey = sdev->pd->local_dma_lkey;
3164 
3165     sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3166 
3167     srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3168 
3169     if (!srpt_service_guid)
3170         srpt_service_guid = be64_to_cpu(device->node_guid);
3171 
3172     if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3173         sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3174     if (IS_ERR(sdev->cm_id)) {
3175         pr_info("ib_create_cm_id() failed: %ld\n",
3176             PTR_ERR(sdev->cm_id));
3177         ret = PTR_ERR(sdev->cm_id);
3178         sdev->cm_id = NULL;
3179         if (!rdma_cm_id)
3180             goto err_ring;
3181     }
3182 
3183     /* print out target login information */
3184     pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3185          srpt_service_guid, srpt_service_guid, srpt_service_guid);
3186 
3187     /*
3188      * We do not have a consistent service_id (ie. also id_ext of target_id)
3189      * to identify this target. We currently use the guid of the first HCA
3190      * in the system as service_id; therefore, the target_id will change
3191      * if this HCA is gone bad and replaced by different HCA
3192      */
3193     ret = sdev->cm_id ?
3194         ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3195         0;
3196     if (ret < 0) {
3197         pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3198                sdev->cm_id->state);
3199         goto err_cm;
3200     }
3201 
3202     INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3203                   srpt_event_handler);
3204     ib_register_event_handler(&sdev->event_handler);
3205 
3206     for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3207         sport = &sdev->port[i - 1];
3208         INIT_LIST_HEAD(&sport->nexus_list);
3209         mutex_init(&sport->mutex);
3210         sport->sdev = sdev;
3211         sport->port = i;
3212         sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3213         sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3214         sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3215         sport->port_attrib.use_srq = false;
3216         INIT_WORK(&sport->work, srpt_refresh_port_work);
3217 
3218         ret = srpt_refresh_port(sport);
3219         if (ret) {
3220             pr_err("MAD registration failed for %s-%d.\n",
3221                    dev_name(&sdev->device->dev), i);
3222             i--;
3223             goto err_port;
3224         }
3225     }
3226 
3227     spin_lock(&srpt_dev_lock);
3228     list_add_tail(&sdev->list, &srpt_dev_list);
3229     spin_unlock(&srpt_dev_lock);
3230 
3231     ib_set_client_data(device, &srpt_client, sdev);
3232     pr_debug("added %s.\n", dev_name(&device->dev));
3233     return 0;
3234 
3235 err_port:
3236     srpt_unregister_mad_agent(sdev, i);
3237     ib_unregister_event_handler(&sdev->event_handler);
3238 err_cm:
3239     if (sdev->cm_id)
3240         ib_destroy_cm_id(sdev->cm_id);
3241 err_ring:
3242     srpt_free_srq(sdev);
3243     ib_dealloc_pd(sdev->pd);
3244 free_dev:
3245     srpt_sdev_put(sdev);
3246     pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3247     return ret;
3248 }
3249 
3250 /**
3251  * srpt_remove_one - InfiniBand device removal callback function
3252  * @device: Describes a HCA.
3253  * @client_data: The value passed as the third argument to ib_set_client_data().
3254  */
3255 static void srpt_remove_one(struct ib_device *device, void *client_data)
3256 {
3257     struct srpt_device *sdev = client_data;
3258     int i;
3259 
3260     srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3261 
3262     ib_unregister_event_handler(&sdev->event_handler);
3263 
3264     /* Cancel any work queued by the just unregistered IB event handler. */
3265     for (i = 0; i < sdev->device->phys_port_cnt; i++)
3266         cancel_work_sync(&sdev->port[i].work);
3267 
3268     if (sdev->cm_id)
3269         ib_destroy_cm_id(sdev->cm_id);
3270 
3271     ib_set_client_data(device, &srpt_client, NULL);
3272 
3273     /*
3274      * Unregistering a target must happen after destroying sdev->cm_id
3275      * such that no new SRP_LOGIN_REQ information units can arrive while
3276      * destroying the target.
3277      */
3278     spin_lock(&srpt_dev_lock);
3279     list_del(&sdev->list);
3280     spin_unlock(&srpt_dev_lock);
3281 
3282     for (i = 0; i < sdev->device->phys_port_cnt; i++)
3283         srpt_release_sport(&sdev->port[i]);
3284 
3285     srpt_free_srq(sdev);
3286 
3287     ib_dealloc_pd(sdev->pd);
3288 
3289     srpt_sdev_put(sdev);
3290 }
3291 
3292 static struct ib_client srpt_client = {
3293     .name = DRV_NAME,
3294     .add = srpt_add_one,
3295     .remove = srpt_remove_one
3296 };
3297 
3298 static int srpt_check_true(struct se_portal_group *se_tpg)
3299 {
3300     return 1;
3301 }
3302 
3303 static int srpt_check_false(struct se_portal_group *se_tpg)
3304 {
3305     return 0;
3306 }
3307 
3308 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3309 {
3310     return tpg->se_tpg_wwn->priv;
3311 }
3312 
3313 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3314 {
3315     struct srpt_port *sport = wwn->priv;
3316 
3317     if (sport->guid_id && &sport->guid_id->wwn == wwn)
3318         return sport->guid_id;
3319     if (sport->gid_id && &sport->gid_id->wwn == wwn)
3320         return sport->gid_id;
3321     WARN_ON_ONCE(true);
3322     return NULL;
3323 }
3324 
3325 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3326 {
3327     struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3328 
3329     return stpg->sport_id->name;
3330 }
3331 
3332 static u16 srpt_get_tag(struct se_portal_group *tpg)
3333 {
3334     return 1;
3335 }
3336 
3337 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3338 {
3339     return 1;
3340 }
3341 
3342 static void srpt_release_cmd(struct se_cmd *se_cmd)
3343 {
3344     struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3345                 struct srpt_send_ioctx, cmd);
3346     struct srpt_rdma_ch *ch = ioctx->ch;
3347     struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3348 
3349     WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3350              !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3351 
3352     if (recv_ioctx) {
3353         WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3354         ioctx->recv_ioctx = NULL;
3355         srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3356     }
3357 
3358     if (ioctx->n_rw_ctx) {
3359         srpt_free_rw_ctxs(ch, ioctx);
3360         ioctx->n_rw_ctx = 0;
3361     }
3362 
3363     target_free_tag(se_cmd->se_sess, se_cmd);
3364 }
3365 
3366 /**
3367  * srpt_close_session - forcibly close a session
3368  * @se_sess: SCSI target session.
3369  *
3370  * Callback function invoked by the TCM core to clean up sessions associated
3371  * with a node ACL when the user invokes
3372  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3373  */
3374 static void srpt_close_session(struct se_session *se_sess)
3375 {
3376     struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3377 
3378     srpt_disconnect_ch_sync(ch);
3379 }
3380 
3381 /**
3382  * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3383  * @se_sess: SCSI target session.
3384  *
3385  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3386  * This object represents an arbitrary integer used to uniquely identify a
3387  * particular attached remote initiator port to a particular SCSI target port
3388  * within a particular SCSI target device within a particular SCSI instance.
3389  */
3390 static u32 srpt_sess_get_index(struct se_session *se_sess)
3391 {
3392     return 0;
3393 }
3394 
3395 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3396 {
3397 }
3398 
3399 /* Note: only used from inside debug printk's by the TCM core. */
3400 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3401 {
3402     struct srpt_send_ioctx *ioctx;
3403 
3404     ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3405     return ioctx->state;
3406 }
3407 
3408 static int srpt_parse_guid(u64 *guid, const char *name)
3409 {
3410     u16 w[4];
3411     int ret = -EINVAL;
3412 
3413     if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3414         goto out;
3415     *guid = get_unaligned_be64(w);
3416     ret = 0;
3417 out:
3418     return ret;
3419 }
3420 
3421 /**
3422  * srpt_parse_i_port_id - parse an initiator port ID
3423  * @name: ASCII representation of a 128-bit initiator port ID.
3424  * @i_port_id: Binary 128-bit port ID.
3425  */
3426 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3427 {
3428     const char *p;
3429     unsigned len, count, leading_zero_bytes;
3430     int ret;
3431 
3432     p = name;
3433     if (strncasecmp(p, "0x", 2) == 0)
3434         p += 2;
3435     ret = -EINVAL;
3436     len = strlen(p);
3437     if (len % 2)
3438         goto out;
3439     count = min(len / 2, 16U);
3440     leading_zero_bytes = 16 - count;
3441     memset(i_port_id, 0, leading_zero_bytes);
3442     ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3443 
3444 out:
3445     return ret;
3446 }
3447 
3448 /*
3449  * configfs callback function invoked for mkdir
3450  * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3451  *
3452  * i_port_id must be an initiator port GUID, GID or IP address. See also the
3453  * target_alloc_session() calls in this driver. Examples of valid initiator
3454  * port IDs:
3455  * 0x0000000000000000505400fffe4a0b7b
3456  * 0000000000000000505400fffe4a0b7b
3457  * 5054:00ff:fe4a:0b7b
3458  * 192.168.122.76
3459  */
3460 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3461 {
3462     struct sockaddr_storage sa;
3463     u64 guid;
3464     u8 i_port_id[16];
3465     int ret;
3466 
3467     ret = srpt_parse_guid(&guid, name);
3468     if (ret < 0)
3469         ret = srpt_parse_i_port_id(i_port_id, name);
3470     if (ret < 0)
3471         ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3472                        &sa);
3473     if (ret < 0)
3474         pr_err("invalid initiator port ID %s\n", name);
3475     return ret;
3476 }
3477 
3478 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3479         char *page)
3480 {
3481     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3482     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3483 
3484     return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3485 }
3486 
3487 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3488         const char *page, size_t count)
3489 {
3490     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3491     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3492     unsigned long val;
3493     int ret;
3494 
3495     ret = kstrtoul(page, 0, &val);
3496     if (ret < 0) {
3497         pr_err("kstrtoul() failed with ret: %d\n", ret);
3498         return -EINVAL;
3499     }
3500     if (val > MAX_SRPT_RDMA_SIZE) {
3501         pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3502             MAX_SRPT_RDMA_SIZE);
3503         return -EINVAL;
3504     }
3505     if (val < DEFAULT_MAX_RDMA_SIZE) {
3506         pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3507             val, DEFAULT_MAX_RDMA_SIZE);
3508         return -EINVAL;
3509     }
3510     sport->port_attrib.srp_max_rdma_size = val;
3511 
3512     return count;
3513 }
3514 
3515 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3516         char *page)
3517 {
3518     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3519     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3520 
3521     return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3522 }
3523 
3524 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3525         const char *page, size_t count)
3526 {
3527     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3528     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3529     unsigned long val;
3530     int ret;
3531 
3532     ret = kstrtoul(page, 0, &val);
3533     if (ret < 0) {
3534         pr_err("kstrtoul() failed with ret: %d\n", ret);
3535         return -EINVAL;
3536     }
3537     if (val > MAX_SRPT_RSP_SIZE) {
3538         pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3539             MAX_SRPT_RSP_SIZE);
3540         return -EINVAL;
3541     }
3542     if (val < MIN_MAX_RSP_SIZE) {
3543         pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3544             MIN_MAX_RSP_SIZE);
3545         return -EINVAL;
3546     }
3547     sport->port_attrib.srp_max_rsp_size = val;
3548 
3549     return count;
3550 }
3551 
3552 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3553         char *page)
3554 {
3555     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3556     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3557 
3558     return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3559 }
3560 
3561 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3562         const char *page, size_t count)
3563 {
3564     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3565     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3566     unsigned long val;
3567     int ret;
3568 
3569     ret = kstrtoul(page, 0, &val);
3570     if (ret < 0) {
3571         pr_err("kstrtoul() failed with ret: %d\n", ret);
3572         return -EINVAL;
3573     }
3574     if (val > MAX_SRPT_SRQ_SIZE) {
3575         pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3576             MAX_SRPT_SRQ_SIZE);
3577         return -EINVAL;
3578     }
3579     if (val < MIN_SRPT_SRQ_SIZE) {
3580         pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3581             MIN_SRPT_SRQ_SIZE);
3582         return -EINVAL;
3583     }
3584     sport->port_attrib.srp_sq_size = val;
3585 
3586     return count;
3587 }
3588 
3589 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3590                         char *page)
3591 {
3592     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3593     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3594 
3595     return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3596 }
3597 
3598 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3599                          const char *page, size_t count)
3600 {
3601     struct se_portal_group *se_tpg = attrib_to_tpg(item);
3602     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3603     struct srpt_device *sdev = sport->sdev;
3604     unsigned long val;
3605     bool enabled;
3606     int ret;
3607 
3608     ret = kstrtoul(page, 0, &val);
3609     if (ret < 0)
3610         return ret;
3611     if (val != !!val)
3612         return -EINVAL;
3613 
3614     ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3615     if (ret < 0)
3616         return ret;
3617     ret = mutex_lock_interruptible(&sport->mutex);
3618     if (ret < 0)
3619         goto unlock_sdev;
3620     enabled = sport->enabled;
3621     /* Log out all initiator systems before changing 'use_srq'. */
3622     srpt_set_enabled(sport, false);
3623     sport->port_attrib.use_srq = val;
3624     srpt_use_srq(sdev, sport->port_attrib.use_srq);
3625     srpt_set_enabled(sport, enabled);
3626     ret = count;
3627     mutex_unlock(&sport->mutex);
3628 unlock_sdev:
3629     mutex_unlock(&sdev->sdev_mutex);
3630 
3631     return ret;
3632 }
3633 
3634 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3635 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3636 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3637 CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3638 
3639 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3640     &srpt_tpg_attrib_attr_srp_max_rdma_size,
3641     &srpt_tpg_attrib_attr_srp_max_rsp_size,
3642     &srpt_tpg_attrib_attr_srp_sq_size,
3643     &srpt_tpg_attrib_attr_use_srq,
3644     NULL,
3645 };
3646 
3647 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3648 {
3649     struct rdma_cm_id *rdma_cm_id;
3650     int ret;
3651 
3652     rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3653                     NULL, RDMA_PS_TCP, IB_QPT_RC);
3654     if (IS_ERR(rdma_cm_id)) {
3655         pr_err("RDMA/CM ID creation failed: %ld\n",
3656                PTR_ERR(rdma_cm_id));
3657         goto out;
3658     }
3659 
3660     ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3661     if (ret) {
3662         char addr_str[64];
3663 
3664         snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3665         pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3666                addr_str, ret);
3667         rdma_destroy_id(rdma_cm_id);
3668         rdma_cm_id = ERR_PTR(ret);
3669         goto out;
3670     }
3671 
3672     ret = rdma_listen(rdma_cm_id, 128);
3673     if (ret) {
3674         pr_err("rdma_listen() failed: %d\n", ret);
3675         rdma_destroy_id(rdma_cm_id);
3676         rdma_cm_id = ERR_PTR(ret);
3677     }
3678 
3679 out:
3680     return rdma_cm_id;
3681 }
3682 
3683 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3684 {
3685     return sysfs_emit(page, "%d\n", rdma_cm_port);
3686 }
3687 
3688 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3689                        const char *page, size_t count)
3690 {
3691     struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3692     struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3693     struct rdma_cm_id *new_id = NULL;
3694     u16 val;
3695     int ret;
3696 
3697     ret = kstrtou16(page, 0, &val);
3698     if (ret < 0)
3699         return ret;
3700     ret = count;
3701     if (rdma_cm_port == val)
3702         goto out;
3703 
3704     if (val) {
3705         addr6.sin6_port = cpu_to_be16(val);
3706         new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3707         if (IS_ERR(new_id)) {
3708             addr4.sin_port = cpu_to_be16(val);
3709             new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3710             if (IS_ERR(new_id)) {
3711                 ret = PTR_ERR(new_id);
3712                 goto out;
3713             }
3714         }
3715     }
3716 
3717     mutex_lock(&rdma_cm_mutex);
3718     rdma_cm_port = val;
3719     swap(rdma_cm_id, new_id);
3720     mutex_unlock(&rdma_cm_mutex);
3721 
3722     if (new_id)
3723         rdma_destroy_id(new_id);
3724     ret = count;
3725 out:
3726     return ret;
3727 }
3728 
3729 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3730 
3731 static struct configfs_attribute *srpt_da_attrs[] = {
3732     &srpt_attr_rdma_cm_port,
3733     NULL,
3734 };
3735 
3736 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3737 {
3738     struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3739 
3740     mutex_lock(&sport->mutex);
3741     srpt_set_enabled(sport, enable);
3742     mutex_unlock(&sport->mutex);
3743 
3744     return 0;
3745 }
3746 
3747 /**
3748  * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3749  * @wwn: Corresponds to $driver/$port.
3750  * @name: $tpg.
3751  */
3752 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3753                          const char *name)
3754 {
3755     struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3756     struct srpt_tpg *stpg;
3757     int res = -ENOMEM;
3758 
3759     stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3760     if (!stpg)
3761         return ERR_PTR(res);
3762     stpg->sport_id = sport_id;
3763     res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3764     if (res) {
3765         kfree(stpg);
3766         return ERR_PTR(res);
3767     }
3768 
3769     mutex_lock(&sport_id->mutex);
3770     list_add_tail(&stpg->entry, &sport_id->tpg_list);
3771     mutex_unlock(&sport_id->mutex);
3772 
3773     return &stpg->tpg;
3774 }
3775 
3776 /**
3777  * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3778  * @tpg: Target portal group to deregister.
3779  */
3780 static void srpt_drop_tpg(struct se_portal_group *tpg)
3781 {
3782     struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3783     struct srpt_port_id *sport_id = stpg->sport_id;
3784     struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3785 
3786     mutex_lock(&sport_id->mutex);
3787     list_del(&stpg->entry);
3788     mutex_unlock(&sport_id->mutex);
3789 
3790     sport->enabled = false;
3791     core_tpg_deregister(tpg);
3792     kfree(stpg);
3793 }
3794 
3795 /**
3796  * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3797  * @tf: Not used.
3798  * @group: Not used.
3799  * @name: $port.
3800  */
3801 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3802                       struct config_group *group,
3803                       const char *name)
3804 {
3805     struct port_and_port_id papi = srpt_lookup_port(name);
3806     struct srpt_port *sport = papi.sport;
3807     struct srpt_port_id *port_id;
3808 
3809     if (!papi.port_id)
3810         return ERR_PTR(-EINVAL);
3811     if (*papi.port_id) {
3812         /* Attempt to create a directory that already exists. */
3813         WARN_ON_ONCE(true);
3814         return &(*papi.port_id)->wwn;
3815     }
3816     port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3817     if (!port_id) {
3818         srpt_sdev_put(sport->sdev);
3819         return ERR_PTR(-ENOMEM);
3820     }
3821     mutex_init(&port_id->mutex);
3822     INIT_LIST_HEAD(&port_id->tpg_list);
3823     port_id->wwn.priv = sport;
3824     memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3825            sport->gid_name, ARRAY_SIZE(port_id->name));
3826 
3827     *papi.port_id = port_id;
3828 
3829     return &port_id->wwn;
3830 }
3831 
3832 /**
3833  * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3834  * @wwn: $port.
3835  */
3836 static void srpt_drop_tport(struct se_wwn *wwn)
3837 {
3838     struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3839     struct srpt_port *sport = wwn->priv;
3840 
3841     if (sport->guid_id == port_id)
3842         sport->guid_id = NULL;
3843     else if (sport->gid_id == port_id)
3844         sport->gid_id = NULL;
3845     else
3846         WARN_ON_ONCE(true);
3847 
3848     srpt_sdev_put(sport->sdev);
3849     kfree(port_id);
3850 }
3851 
3852 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3853 {
3854     return sysfs_emit(buf, "\n");
3855 }
3856 
3857 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3858 
3859 static struct configfs_attribute *srpt_wwn_attrs[] = {
3860     &srpt_wwn_attr_version,
3861     NULL,
3862 };
3863 
3864 static const struct target_core_fabric_ops srpt_template = {
3865     .module             = THIS_MODULE,
3866     .fabric_name            = "srpt",
3867     .tpg_get_wwn            = srpt_get_fabric_wwn,
3868     .tpg_get_tag            = srpt_get_tag,
3869     .tpg_check_demo_mode        = srpt_check_false,
3870     .tpg_check_demo_mode_cache  = srpt_check_true,
3871     .tpg_check_demo_mode_write_protect = srpt_check_true,
3872     .tpg_check_prod_mode_write_protect = srpt_check_false,
3873     .tpg_get_inst_index     = srpt_tpg_get_inst_index,
3874     .release_cmd            = srpt_release_cmd,
3875     .check_stop_free        = srpt_check_stop_free,
3876     .close_session          = srpt_close_session,
3877     .sess_get_index         = srpt_sess_get_index,
3878     .sess_get_initiator_sid     = NULL,
3879     .write_pending          = srpt_write_pending,
3880     .set_default_node_attributes    = srpt_set_default_node_attrs,
3881     .get_cmd_state          = srpt_get_tcm_cmd_state,
3882     .queue_data_in          = srpt_queue_data_in,
3883     .queue_status           = srpt_queue_status,
3884     .queue_tm_rsp           = srpt_queue_tm_rsp,
3885     .aborted_task           = srpt_aborted_task,
3886     /*
3887      * Setup function pointers for generic logic in
3888      * target_core_fabric_configfs.c
3889      */
3890     .fabric_make_wwn        = srpt_make_tport,
3891     .fabric_drop_wwn        = srpt_drop_tport,
3892     .fabric_make_tpg        = srpt_make_tpg,
3893     .fabric_enable_tpg      = srpt_enable_tpg,
3894     .fabric_drop_tpg        = srpt_drop_tpg,
3895     .fabric_init_nodeacl        = srpt_init_nodeacl,
3896 
3897     .tfc_discovery_attrs        = srpt_da_attrs,
3898     .tfc_wwn_attrs          = srpt_wwn_attrs,
3899     .tfc_tpg_attrib_attrs       = srpt_tpg_attrib_attrs,
3900 };
3901 
3902 /**
3903  * srpt_init_module - kernel module initialization
3904  *
3905  * Note: Since ib_register_client() registers callback functions, and since at
3906  * least one of these callback functions (srpt_add_one()) calls target core
3907  * functions, this driver must be registered with the target core before
3908  * ib_register_client() is called.
3909  */
3910 static int __init srpt_init_module(void)
3911 {
3912     int ret;
3913 
3914     ret = -EINVAL;
3915     if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3916         pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3917                srp_max_req_size, MIN_MAX_REQ_SIZE);
3918         goto out;
3919     }
3920 
3921     if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3922         || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3923         pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3924                srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3925         goto out;
3926     }
3927 
3928     ret = target_register_template(&srpt_template);
3929     if (ret)
3930         goto out;
3931 
3932     ret = ib_register_client(&srpt_client);
3933     if (ret) {
3934         pr_err("couldn't register IB client\n");
3935         goto out_unregister_target;
3936     }
3937 
3938     return 0;
3939 
3940 out_unregister_target:
3941     target_unregister_template(&srpt_template);
3942 out:
3943     return ret;
3944 }
3945 
3946 static void __exit srpt_cleanup_module(void)
3947 {
3948     if (rdma_cm_id)
3949         rdma_destroy_id(rdma_cm_id);
3950     ib_unregister_client(&srpt_client);
3951     target_unregister_template(&srpt_template);
3952 }
3953 
3954 module_init(srpt_init_module);
3955 module_exit(srpt_cleanup_module);