Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * RDMA Transport Layer
0004  *
0005  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
0006  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
0007  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
0008  */
0009 
0010 #undef pr_fmt
0011 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
0012 
0013 #include <linux/module.h>
0014 #include <linux/rculist.h>
0015 #include <linux/random.h>
0016 
0017 #include "rtrs-clt.h"
0018 #include "rtrs-log.h"
0019 
0020 #define RTRS_CONNECT_TIMEOUT_MS 30000
0021 /*
0022  * Wait a bit before trying to reconnect after a failure
0023  * in order to give server time to finish clean up which
0024  * leads to "false positives" failed reconnect attempts
0025  */
0026 #define RTRS_RECONNECT_BACKOFF 1000
0027 /*
0028  * Wait for additional random time between 0 and 8 seconds
0029  * before starting to reconnect to avoid clients reconnecting
0030  * all at once in case of a major network outage
0031  */
0032 #define RTRS_RECONNECT_SEED 8
0033 
0034 #define FIRST_CONN 0x01
0035 /* limit to 128 * 4k = 512k max IO */
0036 #define RTRS_MAX_SEGMENTS          128
0037 
0038 MODULE_DESCRIPTION("RDMA Transport Client");
0039 MODULE_LICENSE("GPL");
0040 
0041 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
0042 static struct rtrs_rdma_dev_pd dev_pd = {
0043     .ops = &dev_pd_ops
0044 };
0045 
0046 static struct workqueue_struct *rtrs_wq;
0047 static struct class *rtrs_clt_dev_class;
0048 
0049 static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
0050 {
0051     struct rtrs_clt_path *clt_path;
0052     bool connected = false;
0053 
0054     rcu_read_lock();
0055     list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
0056         connected |= READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED;
0057     rcu_read_unlock();
0058 
0059     return connected;
0060 }
0061 
0062 static struct rtrs_permit *
0063 __rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
0064 {
0065     size_t max_depth = clt->queue_depth;
0066     struct rtrs_permit *permit;
0067     int bit;
0068 
0069     /*
0070      * Adapted from null_blk get_tag(). Callers from different cpus may
0071      * grab the same bit, since find_first_zero_bit is not atomic.
0072      * But then the test_and_set_bit_lock will fail for all the
0073      * callers but one, so that they will loop again.
0074      * This way an explicit spinlock is not required.
0075      */
0076     do {
0077         bit = find_first_zero_bit(clt->permits_map, max_depth);
0078         if (bit >= max_depth)
0079             return NULL;
0080     } while (test_and_set_bit_lock(bit, clt->permits_map));
0081 
0082     permit = get_permit(clt, bit);
0083     WARN_ON(permit->mem_id != bit);
0084     permit->cpu_id = raw_smp_processor_id();
0085     permit->con_type = con_type;
0086 
0087     return permit;
0088 }
0089 
0090 static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
0091                       struct rtrs_permit *permit)
0092 {
0093     clear_bit_unlock(permit->mem_id, clt->permits_map);
0094 }
0095 
0096 /**
0097  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
0098  * @clt:    Current session
0099  * @con_type:   Type of connection to use with the permit
0100  * @can_wait:   Wait type
0101  *
0102  * Description:
0103  *    Allocates permit for the following RDMA operation.  Permit is used
0104  *    to preallocate all resources and to propagate memory pressure
0105  *    up earlier.
0106  *
0107  * Context:
0108  *    Can sleep if @wait == RTRS_PERMIT_WAIT
0109  */
0110 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
0111                       enum rtrs_clt_con_type con_type,
0112                       enum wait_type can_wait)
0113 {
0114     struct rtrs_permit *permit;
0115     DEFINE_WAIT(wait);
0116 
0117     permit = __rtrs_get_permit(clt, con_type);
0118     if (permit || !can_wait)
0119         return permit;
0120 
0121     do {
0122         prepare_to_wait(&clt->permits_wait, &wait,
0123                 TASK_UNINTERRUPTIBLE);
0124         permit = __rtrs_get_permit(clt, con_type);
0125         if (permit)
0126             break;
0127 
0128         io_schedule();
0129     } while (1);
0130 
0131     finish_wait(&clt->permits_wait, &wait);
0132 
0133     return permit;
0134 }
0135 EXPORT_SYMBOL(rtrs_clt_get_permit);
0136 
0137 /**
0138  * rtrs_clt_put_permit() - puts allocated permit
0139  * @clt:    Current session
0140  * @permit: Permit to be freed
0141  *
0142  * Context:
0143  *    Does not matter
0144  */
0145 void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
0146              struct rtrs_permit *permit)
0147 {
0148     if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
0149         return;
0150 
0151     __rtrs_put_permit(clt, permit);
0152 
0153     /*
0154      * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
0155      * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
0156      * it must have added itself to &clt->permits_wait before
0157      * __rtrs_put_permit() finished.
0158      * Hence it is safe to guard wake_up() with a waitqueue_active() test.
0159      */
0160     if (waitqueue_active(&clt->permits_wait))
0161         wake_up(&clt->permits_wait);
0162 }
0163 EXPORT_SYMBOL(rtrs_clt_put_permit);
0164 
0165 /**
0166  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
0167  * @clt_path: client path pointer
0168  * @permit: permit for the allocation of the RDMA buffer
0169  * Note:
0170  *     IO connection starts from 1.
0171  *     0 connection is for user messages.
0172  */
0173 static
0174 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
0175                         struct rtrs_permit *permit)
0176 {
0177     int id = 0;
0178 
0179     if (permit->con_type == RTRS_IO_CON)
0180         id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
0181 
0182     return to_clt_con(clt_path->s.con[id]);
0183 }
0184 
0185 /**
0186  * rtrs_clt_change_state() - change the session state through session state
0187  * machine.
0188  *
0189  * @clt_path: client path to change the state of.
0190  * @new_state: state to change to.
0191  *
0192  * returns true if sess's state is changed to new state, otherwise return false.
0193  *
0194  * Locks:
0195  * state_wq lock must be hold.
0196  */
0197 static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
0198                      enum rtrs_clt_state new_state)
0199 {
0200     enum rtrs_clt_state old_state;
0201     bool changed = false;
0202 
0203     lockdep_assert_held(&clt_path->state_wq.lock);
0204 
0205     old_state = clt_path->state;
0206     switch (new_state) {
0207     case RTRS_CLT_CONNECTING:
0208         switch (old_state) {
0209         case RTRS_CLT_RECONNECTING:
0210             changed = true;
0211             fallthrough;
0212         default:
0213             break;
0214         }
0215         break;
0216     case RTRS_CLT_RECONNECTING:
0217         switch (old_state) {
0218         case RTRS_CLT_CONNECTED:
0219         case RTRS_CLT_CONNECTING_ERR:
0220         case RTRS_CLT_CLOSED:
0221             changed = true;
0222             fallthrough;
0223         default:
0224             break;
0225         }
0226         break;
0227     case RTRS_CLT_CONNECTED:
0228         switch (old_state) {
0229         case RTRS_CLT_CONNECTING:
0230             changed = true;
0231             fallthrough;
0232         default:
0233             break;
0234         }
0235         break;
0236     case RTRS_CLT_CONNECTING_ERR:
0237         switch (old_state) {
0238         case RTRS_CLT_CONNECTING:
0239             changed = true;
0240             fallthrough;
0241         default:
0242             break;
0243         }
0244         break;
0245     case RTRS_CLT_CLOSING:
0246         switch (old_state) {
0247         case RTRS_CLT_CONNECTING:
0248         case RTRS_CLT_CONNECTING_ERR:
0249         case RTRS_CLT_RECONNECTING:
0250         case RTRS_CLT_CONNECTED:
0251             changed = true;
0252             fallthrough;
0253         default:
0254             break;
0255         }
0256         break;
0257     case RTRS_CLT_CLOSED:
0258         switch (old_state) {
0259         case RTRS_CLT_CLOSING:
0260             changed = true;
0261             fallthrough;
0262         default:
0263             break;
0264         }
0265         break;
0266     case RTRS_CLT_DEAD:
0267         switch (old_state) {
0268         case RTRS_CLT_CLOSED:
0269             changed = true;
0270             fallthrough;
0271         default:
0272             break;
0273         }
0274         break;
0275     default:
0276         break;
0277     }
0278     if (changed) {
0279         clt_path->state = new_state;
0280         wake_up_locked(&clt_path->state_wq);
0281     }
0282 
0283     return changed;
0284 }
0285 
0286 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
0287                        enum rtrs_clt_state old_state,
0288                        enum rtrs_clt_state new_state)
0289 {
0290     bool changed = false;
0291 
0292     spin_lock_irq(&clt_path->state_wq.lock);
0293     if (clt_path->state == old_state)
0294         changed = rtrs_clt_change_state(clt_path, new_state);
0295     spin_unlock_irq(&clt_path->state_wq.lock);
0296 
0297     return changed;
0298 }
0299 
0300 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
0301 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
0302 {
0303     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0304 
0305     if (rtrs_clt_change_state_from_to(clt_path,
0306                        RTRS_CLT_CONNECTED,
0307                        RTRS_CLT_RECONNECTING)) {
0308         queue_work(rtrs_wq, &clt_path->err_recovery_work);
0309     } else {
0310         /*
0311          * Error can happen just on establishing new connection,
0312          * so notify waiter with error state, waiter is responsible
0313          * for cleaning the rest and reconnect if needed.
0314          */
0315         rtrs_clt_change_state_from_to(clt_path,
0316                            RTRS_CLT_CONNECTING,
0317                            RTRS_CLT_CONNECTING_ERR);
0318     }
0319 }
0320 
0321 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
0322 {
0323     struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
0324 
0325     if (wc->status != IB_WC_SUCCESS) {
0326         rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
0327               ib_wc_status_msg(wc->status));
0328         rtrs_rdma_error_recovery(con);
0329     }
0330 }
0331 
0332 static struct ib_cqe fast_reg_cqe = {
0333     .done = rtrs_clt_fast_reg_done
0334 };
0335 
0336 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
0337                   bool notify, bool can_wait);
0338 
0339 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
0340 {
0341     struct rtrs_clt_io_req *req =
0342         container_of(wc->wr_cqe, typeof(*req), inv_cqe);
0343     struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
0344 
0345     if (wc->status != IB_WC_SUCCESS) {
0346         rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
0347               ib_wc_status_msg(wc->status));
0348         rtrs_rdma_error_recovery(con);
0349     }
0350     req->need_inv = false;
0351     if (req->need_inv_comp)
0352         complete(&req->inv_comp);
0353     else
0354         /* Complete request from INV callback */
0355         complete_rdma_req(req, req->inv_errno, true, false);
0356 }
0357 
0358 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
0359 {
0360     struct rtrs_clt_con *con = req->con;
0361     struct ib_send_wr wr = {
0362         .opcode         = IB_WR_LOCAL_INV,
0363         .wr_cqe         = &req->inv_cqe,
0364         .send_flags     = IB_SEND_SIGNALED,
0365         .ex.invalidate_rkey = req->mr->rkey,
0366     };
0367     req->inv_cqe.done = rtrs_clt_inv_rkey_done;
0368 
0369     return ib_post_send(con->c.qp, &wr, NULL);
0370 }
0371 
0372 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
0373                   bool notify, bool can_wait)
0374 {
0375     struct rtrs_clt_con *con = req->con;
0376     struct rtrs_clt_path *clt_path;
0377     int err;
0378 
0379     if (WARN_ON(!req->in_use))
0380         return;
0381     if (WARN_ON(!req->con))
0382         return;
0383     clt_path = to_clt_path(con->c.path);
0384 
0385     if (req->sg_cnt) {
0386         if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
0387             /*
0388              * We are here to invalidate read requests
0389              * ourselves.  In normal scenario server should
0390              * send INV for all read requests, but
0391              * we are here, thus two things could happen:
0392              *
0393              *    1.  this is failover, when errno != 0
0394              *        and can_wait == 1,
0395              *
0396              *    2.  something totally bad happened and
0397              *        server forgot to send INV, so we
0398              *        should do that ourselves.
0399              */
0400 
0401             if (can_wait) {
0402                 req->need_inv_comp = true;
0403             } else {
0404                 /* This should be IO path, so always notify */
0405                 WARN_ON(!notify);
0406                 /* Save errno for INV callback */
0407                 req->inv_errno = errno;
0408             }
0409 
0410             refcount_inc(&req->ref);
0411             err = rtrs_inv_rkey(req);
0412             if (err) {
0413                 rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
0414                       req->mr->rkey, err);
0415             } else if (can_wait) {
0416                 wait_for_completion(&req->inv_comp);
0417             } else {
0418                 /*
0419                  * Something went wrong, so request will be
0420                  * completed from INV callback.
0421                  */
0422                 WARN_ON_ONCE(1);
0423 
0424                 return;
0425             }
0426             if (!refcount_dec_and_test(&req->ref))
0427                 return;
0428         }
0429         ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
0430                 req->sg_cnt, req->dir);
0431     }
0432     if (!refcount_dec_and_test(&req->ref))
0433         return;
0434     if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
0435         atomic_dec(&clt_path->stats->inflight);
0436 
0437     req->in_use = false;
0438     req->con = NULL;
0439 
0440     if (errno) {
0441         rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
0442                 errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
0443                 clt_path->hca_port, notify);
0444     }
0445 
0446     if (notify)
0447         req->conf(req->priv, errno);
0448 }
0449 
0450 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
0451                 struct rtrs_clt_io_req *req,
0452                 struct rtrs_rbuf *rbuf, u32 off,
0453                 u32 imm, struct ib_send_wr *wr)
0454 {
0455     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0456     enum ib_send_flags flags;
0457     struct ib_sge sge;
0458 
0459     if (!req->sg_size) {
0460         rtrs_wrn(con->c.path,
0461              "Doing RDMA Write failed, no data supplied\n");
0462         return -EINVAL;
0463     }
0464 
0465     /* user data and user message in the first list element */
0466     sge.addr   = req->iu->dma_addr;
0467     sge.length = req->sg_size;
0468     sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
0469 
0470     /*
0471      * From time to time we have to post signalled sends,
0472      * or send queue will fill up and only QP reset can help.
0473      */
0474     flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
0475             0 : IB_SEND_SIGNALED;
0476 
0477     ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
0478                       req->iu->dma_addr,
0479                       req->sg_size, DMA_TO_DEVICE);
0480 
0481     return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
0482                         rbuf->rkey, rbuf->addr + off,
0483                         imm, flags, wr, NULL);
0484 }
0485 
0486 static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
0487                s16 errno, bool w_inval)
0488 {
0489     struct rtrs_clt_io_req *req;
0490 
0491     if (WARN_ON(msg_id >= clt_path->queue_depth))
0492         return;
0493 
0494     req = &clt_path->reqs[msg_id];
0495     /* Drop need_inv if server responded with send with invalidation */
0496     req->need_inv &= !w_inval;
0497     complete_rdma_req(req, errno, true, false);
0498 }
0499 
0500 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
0501 {
0502     struct rtrs_iu *iu;
0503     int err;
0504     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0505 
0506     WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
0507     iu = container_of(wc->wr_cqe, struct rtrs_iu,
0508               cqe);
0509     err = rtrs_iu_post_recv(&con->c, iu);
0510     if (err) {
0511         rtrs_err(con->c.path, "post iu failed %d\n", err);
0512         rtrs_rdma_error_recovery(con);
0513     }
0514 }
0515 
0516 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
0517 {
0518     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0519     struct rtrs_msg_rkey_rsp *msg;
0520     u32 imm_type, imm_payload;
0521     bool w_inval = false;
0522     struct rtrs_iu *iu;
0523     u32 buf_id;
0524     int err;
0525 
0526     WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
0527 
0528     iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
0529 
0530     if (wc->byte_len < sizeof(*msg)) {
0531         rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
0532               wc->byte_len);
0533         goto out;
0534     }
0535     ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
0536                    iu->size, DMA_FROM_DEVICE);
0537     msg = iu->buf;
0538     if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
0539         rtrs_err(clt_path->clt,
0540               "rkey response is malformed: type %d\n",
0541               le16_to_cpu(msg->type));
0542         goto out;
0543     }
0544     buf_id = le16_to_cpu(msg->buf_id);
0545     if (WARN_ON(buf_id >= clt_path->queue_depth))
0546         goto out;
0547 
0548     rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
0549     if (imm_type == RTRS_IO_RSP_IMM ||
0550         imm_type == RTRS_IO_RSP_W_INV_IMM) {
0551         u32 msg_id;
0552 
0553         w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
0554         rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
0555 
0556         if (WARN_ON(buf_id != msg_id))
0557             goto out;
0558         clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
0559         process_io_rsp(clt_path, msg_id, err, w_inval);
0560     }
0561     ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
0562                       iu->size, DMA_FROM_DEVICE);
0563     return rtrs_clt_recv_done(con, wc);
0564 out:
0565     rtrs_rdma_error_recovery(con);
0566 }
0567 
0568 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
0569 
0570 static struct ib_cqe io_comp_cqe = {
0571     .done = rtrs_clt_rdma_done
0572 };
0573 
0574 /*
0575  * Post x2 empty WRs: first is for this RDMA with IMM,
0576  * second is for RECV with INV, which happened earlier.
0577  */
0578 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
0579 {
0580     struct ib_recv_wr wr_arr[2], *wr;
0581     int i;
0582 
0583     memset(wr_arr, 0, sizeof(wr_arr));
0584     for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
0585         wr = &wr_arr[i];
0586         wr->wr_cqe  = cqe;
0587         if (i)
0588             /* Chain backwards */
0589             wr->next = &wr_arr[i - 1];
0590     }
0591 
0592     return ib_post_recv(con->qp, wr, NULL);
0593 }
0594 
0595 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
0596 {
0597     struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
0598     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0599     u32 imm_type, imm_payload;
0600     bool w_inval = false;
0601     int err;
0602 
0603     if (wc->status != IB_WC_SUCCESS) {
0604         if (wc->status != IB_WC_WR_FLUSH_ERR) {
0605             rtrs_err(clt_path->clt, "RDMA failed: %s\n",
0606                   ib_wc_status_msg(wc->status));
0607             rtrs_rdma_error_recovery(con);
0608         }
0609         return;
0610     }
0611     rtrs_clt_update_wc_stats(con);
0612 
0613     switch (wc->opcode) {
0614     case IB_WC_RECV_RDMA_WITH_IMM:
0615         /*
0616          * post_recv() RDMA write completions of IO reqs (read/write)
0617          * and hb
0618          */
0619         if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
0620             return;
0621         rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
0622                    &imm_type, &imm_payload);
0623         if (imm_type == RTRS_IO_RSP_IMM ||
0624             imm_type == RTRS_IO_RSP_W_INV_IMM) {
0625             u32 msg_id;
0626 
0627             w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
0628             rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
0629 
0630             process_io_rsp(clt_path, msg_id, err, w_inval);
0631         } else if (imm_type == RTRS_HB_MSG_IMM) {
0632             WARN_ON(con->c.cid);
0633             rtrs_send_hb_ack(&clt_path->s);
0634             if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
0635                 return  rtrs_clt_recv_done(con, wc);
0636         } else if (imm_type == RTRS_HB_ACK_IMM) {
0637             WARN_ON(con->c.cid);
0638             clt_path->s.hb_missed_cnt = 0;
0639             clt_path->s.hb_cur_latency =
0640                 ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
0641             if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
0642                 return  rtrs_clt_recv_done(con, wc);
0643         } else {
0644             rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
0645                   imm_type);
0646         }
0647         if (w_inval)
0648             /*
0649              * Post x2 empty WRs: first is for this RDMA with IMM,
0650              * second is for RECV with INV, which happened earlier.
0651              */
0652             err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
0653         else
0654             err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
0655         if (err) {
0656             rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
0657                   err);
0658             rtrs_rdma_error_recovery(con);
0659         }
0660         break;
0661     case IB_WC_RECV:
0662         /*
0663          * Key invalidations from server side
0664          */
0665         WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
0666               wc->wc_flags & IB_WC_WITH_IMM));
0667         WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
0668         if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
0669             if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
0670                 return  rtrs_clt_recv_done(con, wc);
0671 
0672             return  rtrs_clt_rkey_rsp_done(con, wc);
0673         }
0674         break;
0675     case IB_WC_RDMA_WRITE:
0676         /*
0677          * post_send() RDMA write completions of IO reqs (read/write)
0678          * and hb.
0679          */
0680         break;
0681 
0682     default:
0683         rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
0684         return;
0685     }
0686 }
0687 
0688 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
0689 {
0690     int err, i;
0691     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
0692 
0693     for (i = 0; i < q_size; i++) {
0694         if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
0695             struct rtrs_iu *iu = &con->rsp_ius[i];
0696 
0697             err = rtrs_iu_post_recv(&con->c, iu);
0698         } else {
0699             err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
0700         }
0701         if (err)
0702             return err;
0703     }
0704 
0705     return 0;
0706 }
0707 
0708 static int post_recv_path(struct rtrs_clt_path *clt_path)
0709 {
0710     size_t q_size = 0;
0711     int err, cid;
0712 
0713     for (cid = 0; cid < clt_path->s.con_num; cid++) {
0714         if (cid == 0)
0715             q_size = SERVICE_CON_QUEUE_DEPTH;
0716         else
0717             q_size = clt_path->queue_depth;
0718 
0719         /*
0720          * x2 for RDMA read responses + FR key invalidations,
0721          * RDMA writes do not require any FR registrations.
0722          */
0723         q_size *= 2;
0724 
0725         err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
0726         if (err) {
0727             rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
0728                  err);
0729             return err;
0730         }
0731     }
0732 
0733     return 0;
0734 }
0735 
0736 struct path_it {
0737     int i;
0738     struct list_head skip_list;
0739     struct rtrs_clt_sess *clt;
0740     struct rtrs_clt_path *(*next_path)(struct path_it *it);
0741 };
0742 
0743 /*
0744  * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
0745  * @head:   the head for the list.
0746  * @clt_path:   The element to take the next clt_path from.
0747  *
0748  * Next clt path returned in round-robin fashion, i.e. head will be skipped,
0749  * but if list is observed as empty, NULL will be returned.
0750  *
0751  * This function may safely run concurrently with the _rcu list-mutation
0752  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
0753  */
0754 static inline struct rtrs_clt_path *
0755 rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
0756 {
0757     return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
0758                      list_next_or_null_rcu(head,
0759                                READ_ONCE((&clt_path->s.entry)->next),
0760                                typeof(*clt_path), s.entry);
0761 }
0762 
0763 /**
0764  * get_next_path_rr() - Returns path in round-robin fashion.
0765  * @it: the path pointer
0766  *
0767  * Related to @MP_POLICY_RR
0768  *
0769  * Locks:
0770  *    rcu_read_lock() must be hold.
0771  */
0772 static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
0773 {
0774     struct rtrs_clt_path __rcu **ppcpu_path;
0775     struct rtrs_clt_path *path;
0776     struct rtrs_clt_sess *clt;
0777 
0778     clt = it->clt;
0779 
0780     /*
0781      * Here we use two RCU objects: @paths_list and @pcpu_path
0782      * pointer.  See rtrs_clt_remove_path_from_arr() for details
0783      * how that is handled.
0784      */
0785 
0786     ppcpu_path = this_cpu_ptr(clt->pcpu_path);
0787     path = rcu_dereference(*ppcpu_path);
0788     if (!path)
0789         path = list_first_or_null_rcu(&clt->paths_list,
0790                           typeof(*path), s.entry);
0791     else
0792         path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
0793 
0794     rcu_assign_pointer(*ppcpu_path, path);
0795 
0796     return path;
0797 }
0798 
0799 /**
0800  * get_next_path_min_inflight() - Returns path with minimal inflight count.
0801  * @it: the path pointer
0802  *
0803  * Related to @MP_POLICY_MIN_INFLIGHT
0804  *
0805  * Locks:
0806  *    rcu_read_lock() must be hold.
0807  */
0808 static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
0809 {
0810     struct rtrs_clt_path *min_path = NULL;
0811     struct rtrs_clt_sess *clt = it->clt;
0812     struct rtrs_clt_path *clt_path;
0813     int min_inflight = INT_MAX;
0814     int inflight;
0815 
0816     list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
0817         if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
0818             continue;
0819 
0820         if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
0821             continue;
0822 
0823         inflight = atomic_read(&clt_path->stats->inflight);
0824 
0825         if (inflight < min_inflight) {
0826             min_inflight = inflight;
0827             min_path = clt_path;
0828         }
0829     }
0830 
0831     /*
0832      * add the path to the skip list, so that next time we can get
0833      * a different one
0834      */
0835     if (min_path)
0836         list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
0837 
0838     return min_path;
0839 }
0840 
0841 /**
0842  * get_next_path_min_latency() - Returns path with minimal latency.
0843  * @it: the path pointer
0844  *
0845  * Return: a path with the lowest latency or NULL if all paths are tried
0846  *
0847  * Locks:
0848  *    rcu_read_lock() must be hold.
0849  *
0850  * Related to @MP_POLICY_MIN_LATENCY
0851  *
0852  * This DOES skip an already-tried path.
0853  * There is a skip-list to skip a path if the path has tried but failed.
0854  * It will try the minimum latency path and then the second minimum latency
0855  * path and so on. Finally it will return NULL if all paths are tried.
0856  * Therefore the caller MUST check the returned
0857  * path is NULL and trigger the IO error.
0858  */
0859 static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
0860 {
0861     struct rtrs_clt_path *min_path = NULL;
0862     struct rtrs_clt_sess *clt = it->clt;
0863     struct rtrs_clt_path *clt_path;
0864     ktime_t min_latency = KTIME_MAX;
0865     ktime_t latency;
0866 
0867     list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
0868         if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
0869             continue;
0870 
0871         if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
0872             continue;
0873 
0874         latency = clt_path->s.hb_cur_latency;
0875 
0876         if (latency < min_latency) {
0877             min_latency = latency;
0878             min_path = clt_path;
0879         }
0880     }
0881 
0882     /*
0883      * add the path to the skip list, so that next time we can get
0884      * a different one
0885      */
0886     if (min_path)
0887         list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
0888 
0889     return min_path;
0890 }
0891 
0892 static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
0893 {
0894     INIT_LIST_HEAD(&it->skip_list);
0895     it->clt = clt;
0896     it->i = 0;
0897 
0898     if (clt->mp_policy == MP_POLICY_RR)
0899         it->next_path = get_next_path_rr;
0900     else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
0901         it->next_path = get_next_path_min_inflight;
0902     else
0903         it->next_path = get_next_path_min_latency;
0904 }
0905 
0906 static inline void path_it_deinit(struct path_it *it)
0907 {
0908     struct list_head *skip, *tmp;
0909     /*
0910      * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
0911      * We need to remove paths from it, so that next IO can insert
0912      * paths (->mp_skip_entry) into a skip_list again.
0913      */
0914     list_for_each_safe(skip, tmp, &it->skip_list)
0915         list_del_init(skip);
0916 }
0917 
0918 /**
0919  * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
0920  * about an inflight IO.
0921  * The user buffer holding user control message (not data) is copied into
0922  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
0923  * also hold the control message of rtrs.
0924  * @req: an io request holding information about IO.
0925  * @clt_path: client path
0926  * @conf: conformation callback function to notify upper layer.
0927  * @permit: permit for allocation of RDMA remote buffer
0928  * @priv: private pointer
0929  * @vec: kernel vector containing control message
0930  * @usr_len: length of the user message
0931  * @sg: scater list for IO data
0932  * @sg_cnt: number of scater list entries
0933  * @data_len: length of the IO data
0934  * @dir: direction of the IO.
0935  */
0936 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
0937                   struct rtrs_clt_path *clt_path,
0938                   void (*conf)(void *priv, int errno),
0939                   struct rtrs_permit *permit, void *priv,
0940                   const struct kvec *vec, size_t usr_len,
0941                   struct scatterlist *sg, size_t sg_cnt,
0942                   size_t data_len, int dir)
0943 {
0944     struct iov_iter iter;
0945     size_t len;
0946 
0947     req->permit = permit;
0948     req->in_use = true;
0949     req->usr_len = usr_len;
0950     req->data_len = data_len;
0951     req->sglist = sg;
0952     req->sg_cnt = sg_cnt;
0953     req->priv = priv;
0954     req->dir = dir;
0955     req->con = rtrs_permit_to_clt_con(clt_path, permit);
0956     req->conf = conf;
0957     req->need_inv = false;
0958     req->need_inv_comp = false;
0959     req->inv_errno = 0;
0960     refcount_set(&req->ref, 1);
0961     req->mp_policy = clt_path->clt->mp_policy;
0962 
0963     iov_iter_kvec(&iter, READ, vec, 1, usr_len);
0964     len = _copy_from_iter(req->iu->buf, usr_len, &iter);
0965     WARN_ON(len != usr_len);
0966 
0967     reinit_completion(&req->inv_comp);
0968 }
0969 
0970 static struct rtrs_clt_io_req *
0971 rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
0972          void (*conf)(void *priv, int errno),
0973          struct rtrs_permit *permit, void *priv,
0974          const struct kvec *vec, size_t usr_len,
0975          struct scatterlist *sg, size_t sg_cnt,
0976          size_t data_len, int dir)
0977 {
0978     struct rtrs_clt_io_req *req;
0979 
0980     req = &clt_path->reqs[permit->mem_id];
0981     rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
0982                sg, sg_cnt, data_len, dir);
0983     return req;
0984 }
0985 
0986 static struct rtrs_clt_io_req *
0987 rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
0988                struct rtrs_clt_io_req *fail_req)
0989 {
0990     struct rtrs_clt_io_req *req;
0991     struct kvec vec = {
0992         .iov_base = fail_req->iu->buf,
0993         .iov_len  = fail_req->usr_len
0994     };
0995 
0996     req = &alive_path->reqs[fail_req->permit->mem_id];
0997     rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
0998                fail_req->priv, &vec, fail_req->usr_len,
0999                fail_req->sglist, fail_req->sg_cnt,
1000                fail_req->data_len, fail_req->dir);
1001     return req;
1002 }
1003 
1004 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1005                    struct rtrs_clt_io_req *req,
1006                    struct rtrs_rbuf *rbuf, bool fr_en,
1007                    u32 count, u32 size, u32 imm,
1008                    struct ib_send_wr *wr,
1009                    struct ib_send_wr *tail)
1010 {
1011     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1012     struct ib_sge *sge = req->sge;
1013     enum ib_send_flags flags;
1014     struct scatterlist *sg;
1015     size_t num_sge;
1016     int i;
1017     struct ib_send_wr *ptail = NULL;
1018 
1019     if (fr_en) {
1020         i = 0;
1021         sge[i].addr   = req->mr->iova;
1022         sge[i].length = req->mr->length;
1023         sge[i].lkey   = req->mr->lkey;
1024         i++;
1025         num_sge = 2;
1026         ptail = tail;
1027     } else {
1028         for_each_sg(req->sglist, sg, count, i) {
1029             sge[i].addr   = sg_dma_address(sg);
1030             sge[i].length = sg_dma_len(sg);
1031             sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1032         }
1033         num_sge = 1 + count;
1034     }
1035     sge[i].addr   = req->iu->dma_addr;
1036     sge[i].length = size;
1037     sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1038 
1039     /*
1040      * From time to time we have to post signalled sends,
1041      * or send queue will fill up and only QP reset can help.
1042      */
1043     flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1044             0 : IB_SEND_SIGNALED;
1045 
1046     ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1047                       req->iu->dma_addr,
1048                       size, DMA_TO_DEVICE);
1049 
1050     return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1051                         rbuf->rkey, rbuf->addr, imm,
1052                         flags, wr, ptail);
1053 }
1054 
1055 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1056 {
1057     int nr;
1058 
1059     /* Align the MR to a 4K page size to match the block virt boundary */
1060     nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1061     if (nr < 0)
1062         return nr;
1063     if (nr < req->sg_cnt)
1064         return -EINVAL;
1065     ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1066 
1067     return nr;
1068 }
1069 
1070 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1071 {
1072     struct rtrs_clt_con *con = req->con;
1073     struct rtrs_path *s = con->c.path;
1074     struct rtrs_clt_path *clt_path = to_clt_path(s);
1075     struct rtrs_msg_rdma_write *msg;
1076 
1077     struct rtrs_rbuf *rbuf;
1078     int ret, count = 0;
1079     u32 imm, buf_id;
1080     struct ib_reg_wr rwr;
1081     struct ib_send_wr inv_wr;
1082     struct ib_send_wr *wr = NULL;
1083     bool fr_en = false;
1084 
1085     const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1086 
1087     if (tsize > clt_path->chunk_size) {
1088         rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1089               tsize, clt_path->chunk_size);
1090         return -EMSGSIZE;
1091     }
1092     if (req->sg_cnt) {
1093         count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1094                       req->sg_cnt, req->dir);
1095         if (!count) {
1096             rtrs_wrn(s, "Write request failed, map failed\n");
1097             return -EINVAL;
1098         }
1099     }
1100     /* put rtrs msg after sg and user message */
1101     msg = req->iu->buf + req->usr_len;
1102     msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1103     msg->usr_len = cpu_to_le16(req->usr_len);
1104 
1105     /* rtrs message on server side will be after user data and message */
1106     imm = req->permit->mem_off + req->data_len + req->usr_len;
1107     imm = rtrs_to_io_req_imm(imm);
1108     buf_id = req->permit->mem_id;
1109     req->sg_size = tsize;
1110     rbuf = &clt_path->rbufs[buf_id];
1111 
1112     if (count) {
1113         ret = rtrs_map_sg_fr(req, count);
1114         if (ret < 0) {
1115             rtrs_err_rl(s,
1116                     "Write request failed, failed to map fast reg. data, err: %d\n",
1117                     ret);
1118             ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1119                     req->sg_cnt, req->dir);
1120             return ret;
1121         }
1122         inv_wr = (struct ib_send_wr) {
1123             .opcode         = IB_WR_LOCAL_INV,
1124             .wr_cqe         = &req->inv_cqe,
1125             .send_flags     = IB_SEND_SIGNALED,
1126             .ex.invalidate_rkey = req->mr->rkey,
1127         };
1128         req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1129         rwr = (struct ib_reg_wr) {
1130             .wr.opcode = IB_WR_REG_MR,
1131             .wr.wr_cqe = &fast_reg_cqe,
1132             .mr = req->mr,
1133             .key = req->mr->rkey,
1134             .access = (IB_ACCESS_LOCAL_WRITE),
1135         };
1136         wr = &rwr.wr;
1137         fr_en = true;
1138         refcount_inc(&req->ref);
1139     }
1140     /*
1141      * Update stats now, after request is successfully sent it is not
1142      * safe anymore to touch it.
1143      */
1144     rtrs_clt_update_all_stats(req, WRITE);
1145 
1146     ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1147                       req->usr_len + sizeof(*msg),
1148                       imm, wr, &inv_wr);
1149     if (ret) {
1150         rtrs_err_rl(s,
1151                 "Write request failed: error=%d path=%s [%s:%u]\n",
1152                 ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1153                 clt_path->hca_port);
1154         if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1155             atomic_dec(&clt_path->stats->inflight);
1156         if (req->sg_cnt)
1157             ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1158                     req->sg_cnt, req->dir);
1159     }
1160 
1161     return ret;
1162 }
1163 
1164 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1165 {
1166     struct rtrs_clt_con *con = req->con;
1167     struct rtrs_path *s = con->c.path;
1168     struct rtrs_clt_path *clt_path = to_clt_path(s);
1169     struct rtrs_msg_rdma_read *msg;
1170     struct rtrs_ib_dev *dev = clt_path->s.dev;
1171 
1172     struct ib_reg_wr rwr;
1173     struct ib_send_wr *wr = NULL;
1174 
1175     int ret, count = 0;
1176     u32 imm, buf_id;
1177 
1178     const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1179 
1180     if (tsize > clt_path->chunk_size) {
1181         rtrs_wrn(s,
1182               "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1183               tsize, clt_path->chunk_size);
1184         return -EMSGSIZE;
1185     }
1186 
1187     if (req->sg_cnt) {
1188         count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1189                       req->dir);
1190         if (!count) {
1191             rtrs_wrn(s,
1192                   "Read request failed, dma map failed\n");
1193             return -EINVAL;
1194         }
1195     }
1196     /* put our message into req->buf after user message*/
1197     msg = req->iu->buf + req->usr_len;
1198     msg->type = cpu_to_le16(RTRS_MSG_READ);
1199     msg->usr_len = cpu_to_le16(req->usr_len);
1200 
1201     if (count) {
1202         ret = rtrs_map_sg_fr(req, count);
1203         if (ret < 0) {
1204             rtrs_err_rl(s,
1205                      "Read request failed, failed to map  fast reg. data, err: %d\n",
1206                      ret);
1207             ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1208                     req->dir);
1209             return ret;
1210         }
1211         rwr = (struct ib_reg_wr) {
1212             .wr.opcode = IB_WR_REG_MR,
1213             .wr.wr_cqe = &fast_reg_cqe,
1214             .mr = req->mr,
1215             .key = req->mr->rkey,
1216             .access = (IB_ACCESS_LOCAL_WRITE |
1217                    IB_ACCESS_REMOTE_WRITE),
1218         };
1219         wr = &rwr.wr;
1220 
1221         msg->sg_cnt = cpu_to_le16(1);
1222         msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1223 
1224         msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1225         msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1226         msg->desc[0].len = cpu_to_le32(req->mr->length);
1227 
1228         /* Further invalidation is required */
1229         req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1230 
1231     } else {
1232         msg->sg_cnt = 0;
1233         msg->flags = 0;
1234     }
1235     /*
1236      * rtrs message will be after the space reserved for disk data and
1237      * user message
1238      */
1239     imm = req->permit->mem_off + req->data_len + req->usr_len;
1240     imm = rtrs_to_io_req_imm(imm);
1241     buf_id = req->permit->mem_id;
1242 
1243     req->sg_size  = sizeof(*msg);
1244     req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1245     req->sg_size += req->usr_len;
1246 
1247     /*
1248      * Update stats now, after request is successfully sent it is not
1249      * safe anymore to touch it.
1250      */
1251     rtrs_clt_update_all_stats(req, READ);
1252 
1253     ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1254                    req->data_len, imm, wr);
1255     if (ret) {
1256         rtrs_err_rl(s,
1257                 "Read request failed: error=%d path=%s [%s:%u]\n",
1258                 ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1259                 clt_path->hca_port);
1260         if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1261             atomic_dec(&clt_path->stats->inflight);
1262         req->need_inv = false;
1263         if (req->sg_cnt)
1264             ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1265                     req->sg_cnt, req->dir);
1266     }
1267 
1268     return ret;
1269 }
1270 
1271 /**
1272  * rtrs_clt_failover_req() - Try to find an active path for a failed request
1273  * @clt: clt context
1274  * @fail_req: a failed io request.
1275  */
1276 static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1277                  struct rtrs_clt_io_req *fail_req)
1278 {
1279     struct rtrs_clt_path *alive_path;
1280     struct rtrs_clt_io_req *req;
1281     int err = -ECONNABORTED;
1282     struct path_it it;
1283 
1284     rcu_read_lock();
1285     for (path_it_init(&it, clt);
1286          (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1287          it.i++) {
1288         if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1289             continue;
1290         req = rtrs_clt_get_copy_req(alive_path, fail_req);
1291         if (req->dir == DMA_TO_DEVICE)
1292             err = rtrs_clt_write_req(req);
1293         else
1294             err = rtrs_clt_read_req(req);
1295         if (err) {
1296             req->in_use = false;
1297             continue;
1298         }
1299         /* Success path */
1300         rtrs_clt_inc_failover_cnt(alive_path->stats);
1301         break;
1302     }
1303     path_it_deinit(&it);
1304     rcu_read_unlock();
1305 
1306     return err;
1307 }
1308 
1309 static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1310 {
1311     struct rtrs_clt_sess *clt = clt_path->clt;
1312     struct rtrs_clt_io_req *req;
1313     int i, err;
1314 
1315     if (!clt_path->reqs)
1316         return;
1317     for (i = 0; i < clt_path->queue_depth; ++i) {
1318         req = &clt_path->reqs[i];
1319         if (!req->in_use)
1320             continue;
1321 
1322         /*
1323          * Safely (without notification) complete failed request.
1324          * After completion this request is still useble and can
1325          * be failovered to another path.
1326          */
1327         complete_rdma_req(req, -ECONNABORTED, false, true);
1328 
1329         err = rtrs_clt_failover_req(clt, req);
1330         if (err)
1331             /* Failover failed, notify anyway */
1332             req->conf(req->priv, err);
1333     }
1334 }
1335 
1336 static void free_path_reqs(struct rtrs_clt_path *clt_path)
1337 {
1338     struct rtrs_clt_io_req *req;
1339     int i;
1340 
1341     if (!clt_path->reqs)
1342         return;
1343     for (i = 0; i < clt_path->queue_depth; ++i) {
1344         req = &clt_path->reqs[i];
1345         if (req->mr)
1346             ib_dereg_mr(req->mr);
1347         kfree(req->sge);
1348         rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1349     }
1350     kfree(clt_path->reqs);
1351     clt_path->reqs = NULL;
1352 }
1353 
1354 static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1355 {
1356     struct rtrs_clt_io_req *req;
1357     int i, err = -ENOMEM;
1358 
1359     clt_path->reqs = kcalloc(clt_path->queue_depth,
1360                  sizeof(*clt_path->reqs),
1361                  GFP_KERNEL);
1362     if (!clt_path->reqs)
1363         return -ENOMEM;
1364 
1365     for (i = 0; i < clt_path->queue_depth; ++i) {
1366         req = &clt_path->reqs[i];
1367         req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1368                      clt_path->s.dev->ib_dev,
1369                      DMA_TO_DEVICE,
1370                      rtrs_clt_rdma_done);
1371         if (!req->iu)
1372             goto out;
1373 
1374         req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1375         if (!req->sge)
1376             goto out;
1377 
1378         req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1379                       IB_MR_TYPE_MEM_REG,
1380                       clt_path->max_pages_per_mr);
1381         if (IS_ERR(req->mr)) {
1382             err = PTR_ERR(req->mr);
1383             req->mr = NULL;
1384             pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n",
1385                    clt_path->max_pages_per_mr);
1386             goto out;
1387         }
1388 
1389         init_completion(&req->inv_comp);
1390     }
1391 
1392     return 0;
1393 
1394 out:
1395     free_path_reqs(clt_path);
1396 
1397     return err;
1398 }
1399 
1400 static int alloc_permits(struct rtrs_clt_sess *clt)
1401 {
1402     unsigned int chunk_bits;
1403     int err, i;
1404 
1405     clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1406     if (!clt->permits_map) {
1407         err = -ENOMEM;
1408         goto out_err;
1409     }
1410     clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1411     if (!clt->permits) {
1412         err = -ENOMEM;
1413         goto err_map;
1414     }
1415     chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1416     for (i = 0; i < clt->queue_depth; i++) {
1417         struct rtrs_permit *permit;
1418 
1419         permit = get_permit(clt, i);
1420         permit->mem_id = i;
1421         permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1422     }
1423 
1424     return 0;
1425 
1426 err_map:
1427     bitmap_free(clt->permits_map);
1428     clt->permits_map = NULL;
1429 out_err:
1430     return err;
1431 }
1432 
1433 static void free_permits(struct rtrs_clt_sess *clt)
1434 {
1435     if (clt->permits_map)
1436         wait_event(clt->permits_wait,
1437                bitmap_empty(clt->permits_map, clt->queue_depth));
1438 
1439     bitmap_free(clt->permits_map);
1440     clt->permits_map = NULL;
1441     kfree(clt->permits);
1442     clt->permits = NULL;
1443 }
1444 
1445 static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1446 {
1447     struct ib_device *ib_dev;
1448     u64 max_pages_per_mr;
1449     int mr_page_shift;
1450 
1451     ib_dev = clt_path->s.dev->ib_dev;
1452 
1453     /*
1454      * Use the smallest page size supported by the HCA, down to a
1455      * minimum of 4096 bytes. We're unlikely to build large sglists
1456      * out of smaller entries.
1457      */
1458     mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1459     max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1460     do_div(max_pages_per_mr, (1ull << mr_page_shift));
1461     clt_path->max_pages_per_mr =
1462         min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1463              ib_dev->attrs.max_fast_reg_page_list_len);
1464     clt_path->clt->max_segments =
1465         min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1466 }
1467 
1468 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1469                        enum rtrs_clt_state new_state,
1470                        enum rtrs_clt_state *old_state)
1471 {
1472     bool changed;
1473 
1474     spin_lock_irq(&clt_path->state_wq.lock);
1475     if (old_state)
1476         *old_state = clt_path->state;
1477     changed = rtrs_clt_change_state(clt_path, new_state);
1478     spin_unlock_irq(&clt_path->state_wq.lock);
1479 
1480     return changed;
1481 }
1482 
1483 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1484 {
1485     struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1486 
1487     rtrs_rdma_error_recovery(con);
1488 }
1489 
1490 static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1491 {
1492     rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1493               RTRS_HB_INTERVAL_MS,
1494               RTRS_HB_MISSED_MAX,
1495               rtrs_clt_hb_err_handler,
1496               rtrs_wq);
1497 }
1498 
1499 static void rtrs_clt_reconnect_work(struct work_struct *work);
1500 static void rtrs_clt_close_work(struct work_struct *work);
1501 
1502 static void rtrs_clt_err_recovery_work(struct work_struct *work)
1503 {
1504     struct rtrs_clt_path *clt_path;
1505     struct rtrs_clt_sess *clt;
1506     int delay_ms;
1507 
1508     clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1509     clt = clt_path->clt;
1510     delay_ms = clt->reconnect_delay_sec * 1000;
1511     rtrs_clt_stop_and_destroy_conns(clt_path);
1512     queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1513                msecs_to_jiffies(delay_ms +
1514                         prandom_u32() %
1515                         RTRS_RECONNECT_SEED));
1516 }
1517 
1518 static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1519                     const struct rtrs_addr *path,
1520                     size_t con_num, u32 nr_poll_queues)
1521 {
1522     struct rtrs_clt_path *clt_path;
1523     int err = -ENOMEM;
1524     int cpu;
1525     size_t total_con;
1526 
1527     clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1528     if (!clt_path)
1529         goto err;
1530 
1531     /*
1532      * irqmode and poll
1533      * +1: Extra connection for user messages
1534      */
1535     total_con = con_num + nr_poll_queues + 1;
1536     clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1537                   GFP_KERNEL);
1538     if (!clt_path->s.con)
1539         goto err_free_path;
1540 
1541     clt_path->s.con_num = total_con;
1542     clt_path->s.irq_con_num = con_num + 1;
1543 
1544     clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1545     if (!clt_path->stats)
1546         goto err_free_con;
1547 
1548     mutex_init(&clt_path->init_mutex);
1549     uuid_gen(&clt_path->s.uuid);
1550     memcpy(&clt_path->s.dst_addr, path->dst,
1551            rdma_addr_size((struct sockaddr *)path->dst));
1552 
1553     /*
1554      * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1555      * checks the sa_family to be non-zero. If user passed src_addr=NULL
1556      * the sess->src_addr will contain only zeros, which is then fine.
1557      */
1558     if (path->src)
1559         memcpy(&clt_path->s.src_addr, path->src,
1560                rdma_addr_size((struct sockaddr *)path->src));
1561     strscpy(clt_path->s.sessname, clt->sessname,
1562         sizeof(clt_path->s.sessname));
1563     clt_path->clt = clt;
1564     clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1565     init_waitqueue_head(&clt_path->state_wq);
1566     clt_path->state = RTRS_CLT_CONNECTING;
1567     atomic_set(&clt_path->connected_cnt, 0);
1568     INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1569     INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1570     INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1571     rtrs_clt_init_hb(clt_path);
1572 
1573     clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1574     if (!clt_path->mp_skip_entry)
1575         goto err_free_stats;
1576 
1577     for_each_possible_cpu(cpu)
1578         INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1579 
1580     err = rtrs_clt_init_stats(clt_path->stats);
1581     if (err)
1582         goto err_free_percpu;
1583 
1584     return clt_path;
1585 
1586 err_free_percpu:
1587     free_percpu(clt_path->mp_skip_entry);
1588 err_free_stats:
1589     kfree(clt_path->stats);
1590 err_free_con:
1591     kfree(clt_path->s.con);
1592 err_free_path:
1593     kfree(clt_path);
1594 err:
1595     return ERR_PTR(err);
1596 }
1597 
1598 void free_path(struct rtrs_clt_path *clt_path)
1599 {
1600     free_percpu(clt_path->mp_skip_entry);
1601     mutex_destroy(&clt_path->init_mutex);
1602     kfree(clt_path->s.con);
1603     kfree(clt_path->rbufs);
1604     kfree(clt_path);
1605 }
1606 
1607 static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1608 {
1609     struct rtrs_clt_con *con;
1610 
1611     con = kzalloc(sizeof(*con), GFP_KERNEL);
1612     if (!con)
1613         return -ENOMEM;
1614 
1615     /* Map first two connections to the first CPU */
1616     con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1617     con->c.cid = cid;
1618     con->c.path = &clt_path->s;
1619     /* Align with srv, init as 1 */
1620     atomic_set(&con->c.wr_cnt, 1);
1621     mutex_init(&con->con_mutex);
1622 
1623     clt_path->s.con[cid] = &con->c;
1624 
1625     return 0;
1626 }
1627 
1628 static void destroy_con(struct rtrs_clt_con *con)
1629 {
1630     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1631 
1632     clt_path->s.con[con->c.cid] = NULL;
1633     mutex_destroy(&con->con_mutex);
1634     kfree(con);
1635 }
1636 
1637 static int create_con_cq_qp(struct rtrs_clt_con *con)
1638 {
1639     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1640     u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1641     int err, cq_vector;
1642     struct rtrs_msg_rkey_rsp *rsp;
1643 
1644     lockdep_assert_held(&con->con_mutex);
1645     if (con->c.cid == 0) {
1646         max_send_sge = 1;
1647         /* We must be the first here */
1648         if (WARN_ON(clt_path->s.dev))
1649             return -EINVAL;
1650 
1651         /*
1652          * The whole session uses device from user connection.
1653          * Be careful not to close user connection before ib dev
1654          * is gracefully put.
1655          */
1656         clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1657                                &dev_pd);
1658         if (!clt_path->s.dev) {
1659             rtrs_wrn(clt_path->clt,
1660                   "rtrs_ib_dev_find_get_or_add(): no memory\n");
1661             return -ENOMEM;
1662         }
1663         clt_path->s.dev_ref = 1;
1664         query_fast_reg_mode(clt_path);
1665         wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1666         /*
1667          * Two (request + registration) completion for send
1668          * Two for recv if always_invalidate is set on server
1669          * or one for recv.
1670          * + 2 for drain and heartbeat
1671          * in case qp gets into error state.
1672          */
1673         max_send_wr =
1674             min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1675         max_recv_wr = max_send_wr;
1676     } else {
1677         /*
1678          * Here we assume that session members are correctly set.
1679          * This is always true if user connection (cid == 0) is
1680          * established first.
1681          */
1682         if (WARN_ON(!clt_path->s.dev))
1683             return -EINVAL;
1684         if (WARN_ON(!clt_path->queue_depth))
1685             return -EINVAL;
1686 
1687         wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1688         /* Shared between connections */
1689         clt_path->s.dev_ref++;
1690         max_send_wr = min_t(int, wr_limit,
1691                   /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1692                   clt_path->queue_depth * 3 + 1);
1693         max_recv_wr = min_t(int, wr_limit,
1694                   clt_path->queue_depth * 3 + 1);
1695         max_send_sge = 2;
1696     }
1697     atomic_set(&con->c.sq_wr_avail, max_send_wr);
1698     cq_num = max_send_wr + max_recv_wr;
1699     /* alloc iu to recv new rkey reply when server reports flags set */
1700     if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1701         con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1702                           GFP_KERNEL,
1703                           clt_path->s.dev->ib_dev,
1704                           DMA_FROM_DEVICE,
1705                           rtrs_clt_rdma_done);
1706         if (!con->rsp_ius)
1707             return -ENOMEM;
1708         con->queue_num = cq_num;
1709     }
1710     cq_num = max_send_wr + max_recv_wr;
1711     cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1712     if (con->c.cid >= clt_path->s.irq_con_num)
1713         err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1714                     cq_vector, cq_num, max_send_wr,
1715                     max_recv_wr, IB_POLL_DIRECT);
1716     else
1717         err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1718                     cq_vector, cq_num, max_send_wr,
1719                     max_recv_wr, IB_POLL_SOFTIRQ);
1720     /*
1721      * In case of error we do not bother to clean previous allocations,
1722      * since destroy_con_cq_qp() must be called.
1723      */
1724     return err;
1725 }
1726 
1727 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1728 {
1729     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1730 
1731     /*
1732      * Be careful here: destroy_con_cq_qp() can be called even
1733      * create_con_cq_qp() failed, see comments there.
1734      */
1735     lockdep_assert_held(&con->con_mutex);
1736     rtrs_cq_qp_destroy(&con->c);
1737     if (con->rsp_ius) {
1738         rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1739                  con->queue_num);
1740         con->rsp_ius = NULL;
1741         con->queue_num = 0;
1742     }
1743     if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1744         rtrs_ib_dev_put(clt_path->s.dev);
1745         clt_path->s.dev = NULL;
1746     }
1747 }
1748 
1749 static void stop_cm(struct rtrs_clt_con *con)
1750 {
1751     rdma_disconnect(con->c.cm_id);
1752     if (con->c.qp)
1753         ib_drain_qp(con->c.qp);
1754 }
1755 
1756 static void destroy_cm(struct rtrs_clt_con *con)
1757 {
1758     rdma_destroy_id(con->c.cm_id);
1759     con->c.cm_id = NULL;
1760 }
1761 
1762 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1763 {
1764     struct rtrs_path *s = con->c.path;
1765     int err;
1766 
1767     mutex_lock(&con->con_mutex);
1768     err = create_con_cq_qp(con);
1769     mutex_unlock(&con->con_mutex);
1770     if (err) {
1771         rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1772         return err;
1773     }
1774     err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1775     if (err)
1776         rtrs_err(s, "Resolving route failed, err: %d\n", err);
1777 
1778     return err;
1779 }
1780 
1781 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1782 {
1783     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1784     struct rtrs_clt_sess *clt = clt_path->clt;
1785     struct rtrs_msg_conn_req msg;
1786     struct rdma_conn_param param;
1787 
1788     int err;
1789 
1790     param = (struct rdma_conn_param) {
1791         .retry_count = 7,
1792         .rnr_retry_count = 7,
1793         .private_data = &msg,
1794         .private_data_len = sizeof(msg),
1795     };
1796 
1797     msg = (struct rtrs_msg_conn_req) {
1798         .magic = cpu_to_le16(RTRS_MAGIC),
1799         .version = cpu_to_le16(RTRS_PROTO_VER),
1800         .cid = cpu_to_le16(con->c.cid),
1801         .cid_num = cpu_to_le16(clt_path->s.con_num),
1802         .recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1803     };
1804     msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1805     uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1806     uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1807 
1808     err = rdma_connect_locked(con->c.cm_id, &param);
1809     if (err)
1810         rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1811 
1812     return err;
1813 }
1814 
1815 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1816                        struct rdma_cm_event *ev)
1817 {
1818     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1819     struct rtrs_clt_sess *clt = clt_path->clt;
1820     const struct rtrs_msg_conn_rsp *msg;
1821     u16 version, queue_depth;
1822     int errno;
1823     u8 len;
1824 
1825     msg = ev->param.conn.private_data;
1826     len = ev->param.conn.private_data_len;
1827     if (len < sizeof(*msg)) {
1828         rtrs_err(clt, "Invalid RTRS connection response\n");
1829         return -ECONNRESET;
1830     }
1831     if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1832         rtrs_err(clt, "Invalid RTRS magic\n");
1833         return -ECONNRESET;
1834     }
1835     version = le16_to_cpu(msg->version);
1836     if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1837         rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1838               version >> 8, RTRS_PROTO_VER_MAJOR);
1839         return -ECONNRESET;
1840     }
1841     errno = le16_to_cpu(msg->errno);
1842     if (errno) {
1843         rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1844               errno);
1845         return -ECONNRESET;
1846     }
1847     if (con->c.cid == 0) {
1848         queue_depth = le16_to_cpu(msg->queue_depth);
1849 
1850         if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1851             rtrs_err(clt, "Error: queue depth changed\n");
1852 
1853             /*
1854              * Stop any more reconnection attempts
1855              */
1856             clt_path->reconnect_attempts = -1;
1857             rtrs_err(clt,
1858                 "Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1859             return -ECONNRESET;
1860         }
1861 
1862         if (!clt_path->rbufs) {
1863             clt_path->rbufs = kcalloc(queue_depth,
1864                           sizeof(*clt_path->rbufs),
1865                           GFP_KERNEL);
1866             if (!clt_path->rbufs)
1867                 return -ENOMEM;
1868         }
1869         clt_path->queue_depth = queue_depth;
1870         clt_path->s.signal_interval = min_not_zero(queue_depth,
1871                         (unsigned short) SERVICE_CON_QUEUE_DEPTH);
1872         clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1873         clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1874         clt_path->flags = le32_to_cpu(msg->flags);
1875         clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1876 
1877         /*
1878          * Global IO size is always a minimum.
1879          * If while a reconnection server sends us a value a bit
1880          * higher - client does not care and uses cached minimum.
1881          *
1882          * Since we can have several sessions (paths) restablishing
1883          * connections in parallel, use lock.
1884          */
1885         mutex_lock(&clt->paths_mutex);
1886         clt->queue_depth = clt_path->queue_depth;
1887         clt->max_io_size = min_not_zero(clt_path->max_io_size,
1888                         clt->max_io_size);
1889         mutex_unlock(&clt->paths_mutex);
1890 
1891         /*
1892          * Cache the hca_port and hca_name for sysfs
1893          */
1894         clt_path->hca_port = con->c.cm_id->port_num;
1895         scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1896               clt_path->s.dev->ib_dev->name);
1897         clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1898         /* set for_new_clt, to allow future reconnect on any path */
1899         clt_path->for_new_clt = 1;
1900     }
1901 
1902     return 0;
1903 }
1904 
1905 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1906 {
1907     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1908 
1909     atomic_inc(&clt_path->connected_cnt);
1910     con->cm_err = 1;
1911 }
1912 
1913 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1914                     struct rdma_cm_event *ev)
1915 {
1916     struct rtrs_path *s = con->c.path;
1917     const struct rtrs_msg_conn_rsp *msg;
1918     const char *rej_msg;
1919     int status, errno;
1920     u8 data_len;
1921 
1922     status = ev->status;
1923     rej_msg = rdma_reject_msg(con->c.cm_id, status);
1924     msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1925 
1926     if (msg && data_len >= sizeof(*msg)) {
1927         errno = (int16_t)le16_to_cpu(msg->errno);
1928         if (errno == -EBUSY)
1929             rtrs_err(s,
1930                   "Previous session is still exists on the server, please reconnect later\n");
1931         else
1932             rtrs_err(s,
1933                   "Connect rejected: status %d (%s), rtrs errno %d\n",
1934                   status, rej_msg, errno);
1935     } else {
1936         rtrs_err(s,
1937               "Connect rejected but with malformed message: status %d (%s)\n",
1938               status, rej_msg);
1939     }
1940 
1941     return -ECONNRESET;
1942 }
1943 
1944 void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1945 {
1946     if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1947         queue_work(rtrs_wq, &clt_path->close_work);
1948     if (wait)
1949         flush_work(&clt_path->close_work);
1950 }
1951 
1952 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1953 {
1954     if (con->cm_err == 1) {
1955         struct rtrs_clt_path *clt_path;
1956 
1957         clt_path = to_clt_path(con->c.path);
1958         if (atomic_dec_and_test(&clt_path->connected_cnt))
1959 
1960             wake_up(&clt_path->state_wq);
1961     }
1962     con->cm_err = cm_err;
1963 }
1964 
1965 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1966                      struct rdma_cm_event *ev)
1967 {
1968     struct rtrs_clt_con *con = cm_id->context;
1969     struct rtrs_path *s = con->c.path;
1970     struct rtrs_clt_path *clt_path = to_clt_path(s);
1971     int cm_err = 0;
1972 
1973     switch (ev->event) {
1974     case RDMA_CM_EVENT_ADDR_RESOLVED:
1975         cm_err = rtrs_rdma_addr_resolved(con);
1976         break;
1977     case RDMA_CM_EVENT_ROUTE_RESOLVED:
1978         cm_err = rtrs_rdma_route_resolved(con);
1979         break;
1980     case RDMA_CM_EVENT_ESTABLISHED:
1981         cm_err = rtrs_rdma_conn_established(con, ev);
1982         if (!cm_err) {
1983             /*
1984              * Report success and wake up. Here we abuse state_wq,
1985              * i.e. wake up without state change, but we set cm_err.
1986              */
1987             flag_success_on_conn(con);
1988             wake_up(&clt_path->state_wq);
1989             return 0;
1990         }
1991         break;
1992     case RDMA_CM_EVENT_REJECTED:
1993         cm_err = rtrs_rdma_conn_rejected(con, ev);
1994         break;
1995     case RDMA_CM_EVENT_DISCONNECTED:
1996         /* No message for disconnecting */
1997         cm_err = -ECONNRESET;
1998         break;
1999     case RDMA_CM_EVENT_CONNECT_ERROR:
2000     case RDMA_CM_EVENT_UNREACHABLE:
2001     case RDMA_CM_EVENT_ADDR_CHANGE:
2002     case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2003         rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2004              rdma_event_msg(ev->event), ev->status);
2005         cm_err = -ECONNRESET;
2006         break;
2007     case RDMA_CM_EVENT_ADDR_ERROR:
2008     case RDMA_CM_EVENT_ROUTE_ERROR:
2009         rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2010              rdma_event_msg(ev->event), ev->status);
2011         cm_err = -EHOSTUNREACH;
2012         break;
2013     case RDMA_CM_EVENT_DEVICE_REMOVAL:
2014         /*
2015          * Device removal is a special case.  Queue close and return 0.
2016          */
2017         rtrs_clt_close_conns(clt_path, false);
2018         return 0;
2019     default:
2020         rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2021              rdma_event_msg(ev->event), ev->status);
2022         cm_err = -ECONNRESET;
2023         break;
2024     }
2025 
2026     if (cm_err) {
2027         /*
2028          * cm error makes sense only on connection establishing,
2029          * in other cases we rely on normal procedure of reconnecting.
2030          */
2031         flag_error_on_conn(con, cm_err);
2032         rtrs_rdma_error_recovery(con);
2033     }
2034 
2035     return 0;
2036 }
2037 
2038 static int create_cm(struct rtrs_clt_con *con)
2039 {
2040     struct rtrs_path *s = con->c.path;
2041     struct rtrs_clt_path *clt_path = to_clt_path(s);
2042     struct rdma_cm_id *cm_id;
2043     int err;
2044 
2045     cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2046                    clt_path->s.dst_addr.ss_family == AF_IB ?
2047                    RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2048     if (IS_ERR(cm_id)) {
2049         err = PTR_ERR(cm_id);
2050         rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
2051 
2052         return err;
2053     }
2054     con->c.cm_id = cm_id;
2055     con->cm_err = 0;
2056     /* allow the port to be reused */
2057     err = rdma_set_reuseaddr(cm_id, 1);
2058     if (err != 0) {
2059         rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2060         goto destroy_cm;
2061     }
2062     err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2063                 (struct sockaddr *)&clt_path->s.dst_addr,
2064                 RTRS_CONNECT_TIMEOUT_MS);
2065     if (err) {
2066         rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2067         goto destroy_cm;
2068     }
2069     /*
2070      * Combine connection status and session events. This is needed
2071      * for waiting two possible cases: cm_err has something meaningful
2072      * or session state was really changed to error by device removal.
2073      */
2074     err = wait_event_interruptible_timeout(
2075             clt_path->state_wq,
2076             con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2077             msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2078     if (err == 0 || err == -ERESTARTSYS) {
2079         if (err == 0)
2080             err = -ETIMEDOUT;
2081         /* Timedout or interrupted */
2082         goto errr;
2083     }
2084     if (con->cm_err < 0) {
2085         err = con->cm_err;
2086         goto errr;
2087     }
2088     if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING) {
2089         /* Device removal */
2090         err = -ECONNABORTED;
2091         goto errr;
2092     }
2093 
2094     return 0;
2095 
2096 errr:
2097     stop_cm(con);
2098     mutex_lock(&con->con_mutex);
2099     destroy_con_cq_qp(con);
2100     mutex_unlock(&con->con_mutex);
2101 destroy_cm:
2102     destroy_cm(con);
2103 
2104     return err;
2105 }
2106 
2107 static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2108 {
2109     struct rtrs_clt_sess *clt = clt_path->clt;
2110     int up;
2111 
2112     /*
2113      * We can fire RECONNECTED event only when all paths were
2114      * connected on rtrs_clt_open(), then each was disconnected
2115      * and the first one connected again.  That's why this nasty
2116      * game with counter value.
2117      */
2118 
2119     mutex_lock(&clt->paths_ev_mutex);
2120     up = ++clt->paths_up;
2121     /*
2122      * Here it is safe to access paths num directly since up counter
2123      * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2124      * in progress, thus paths removals are impossible.
2125      */
2126     if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2127         clt->paths_up = clt->paths_num;
2128     else if (up == 1)
2129         clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2130     mutex_unlock(&clt->paths_ev_mutex);
2131 
2132     /* Mark session as established */
2133     clt_path->established = true;
2134     clt_path->reconnect_attempts = 0;
2135     clt_path->stats->reconnects.successful_cnt++;
2136 }
2137 
2138 static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2139 {
2140     struct rtrs_clt_sess *clt = clt_path->clt;
2141 
2142     if (!clt_path->established)
2143         return;
2144 
2145     clt_path->established = false;
2146     mutex_lock(&clt->paths_ev_mutex);
2147     WARN_ON(!clt->paths_up);
2148     if (--clt->paths_up == 0)
2149         clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2150     mutex_unlock(&clt->paths_ev_mutex);
2151 }
2152 
2153 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2154 {
2155     struct rtrs_clt_con *con;
2156     unsigned int cid;
2157 
2158     WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2159 
2160     /*
2161      * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2162      * exactly in between.  Start destroying after it finishes.
2163      */
2164     mutex_lock(&clt_path->init_mutex);
2165     mutex_unlock(&clt_path->init_mutex);
2166 
2167     /*
2168      * All IO paths must observe !CONNECTED state before we
2169      * free everything.
2170      */
2171     synchronize_rcu();
2172 
2173     rtrs_stop_hb(&clt_path->s);
2174 
2175     /*
2176      * The order it utterly crucial: firstly disconnect and complete all
2177      * rdma requests with error (thus set in_use=false for requests),
2178      * then fail outstanding requests checking in_use for each, and
2179      * eventually notify upper layer about session disconnection.
2180      */
2181 
2182     for (cid = 0; cid < clt_path->s.con_num; cid++) {
2183         if (!clt_path->s.con[cid])
2184             break;
2185         con = to_clt_con(clt_path->s.con[cid]);
2186         stop_cm(con);
2187     }
2188     fail_all_outstanding_reqs(clt_path);
2189     free_path_reqs(clt_path);
2190     rtrs_clt_path_down(clt_path);
2191 
2192     /*
2193      * Wait for graceful shutdown, namely when peer side invokes
2194      * rdma_disconnect(). 'connected_cnt' is decremented only on
2195      * CM events, thus if other side had crashed and hb has detected
2196      * something is wrong, here we will stuck for exactly timeout ms,
2197      * since CM does not fire anything.  That is fine, we are not in
2198      * hurry.
2199      */
2200     wait_event_timeout(clt_path->state_wq,
2201                !atomic_read(&clt_path->connected_cnt),
2202                msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2203 
2204     for (cid = 0; cid < clt_path->s.con_num; cid++) {
2205         if (!clt_path->s.con[cid])
2206             break;
2207         con = to_clt_con(clt_path->s.con[cid]);
2208         mutex_lock(&con->con_mutex);
2209         destroy_con_cq_qp(con);
2210         mutex_unlock(&con->con_mutex);
2211         destroy_cm(con);
2212         destroy_con(con);
2213     }
2214 }
2215 
2216 static inline bool xchg_paths(struct rtrs_clt_path __rcu **rcu_ppcpu_path,
2217                   struct rtrs_clt_path *clt_path,
2218                   struct rtrs_clt_path *next)
2219 {
2220     struct rtrs_clt_path **ppcpu_path;
2221 
2222     /* Call cmpxchg() without sparse warnings */
2223     ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2224     return clt_path == cmpxchg(ppcpu_path, clt_path, next);
2225 }
2226 
2227 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2228 {
2229     struct rtrs_clt_sess *clt = clt_path->clt;
2230     struct rtrs_clt_path *next;
2231     bool wait_for_grace = false;
2232     int cpu;
2233 
2234     mutex_lock(&clt->paths_mutex);
2235     list_del_rcu(&clt_path->s.entry);
2236 
2237     /* Make sure everybody observes path removal. */
2238     synchronize_rcu();
2239 
2240     /*
2241      * At this point nobody sees @sess in the list, but still we have
2242      * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2243      * nobody can observe @sess in the list, we guarantee that IO path
2244      * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2245      * to @sess, but can never again become @sess.
2246      */
2247 
2248     /*
2249      * Decrement paths number only after grace period, because
2250      * caller of do_each_path() must firstly observe list without
2251      * path and only then decremented paths number.
2252      *
2253      * Otherwise there can be the following situation:
2254      *    o Two paths exist and IO is coming.
2255      *    o One path is removed:
2256      *      CPU#0                          CPU#1
2257      *      do_each_path():                rtrs_clt_remove_path_from_arr():
2258      *          path = get_next_path()
2259      *          ^^^                            list_del_rcu(path)
2260      *          [!CONNECTED path]              clt->paths_num--
2261      *                                              ^^^^^^^^^
2262      *          load clt->paths_num                 from 2 to 1
2263      *                    ^^^^^^^^^
2264      *                    sees 1
2265      *
2266      *      path is observed as !CONNECTED, but do_each_path() loop
2267      *      ends, because expression i < clt->paths_num is false.
2268      */
2269     clt->paths_num--;
2270 
2271     /*
2272      * Get @next connection from current @sess which is going to be
2273      * removed.  If @sess is the last element, then @next is NULL.
2274      */
2275     rcu_read_lock();
2276     next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2277     rcu_read_unlock();
2278 
2279     /*
2280      * @pcpu paths can still point to the path which is going to be
2281      * removed, so change the pointer manually.
2282      */
2283     for_each_possible_cpu(cpu) {
2284         struct rtrs_clt_path __rcu **ppcpu_path;
2285 
2286         ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2287         if (rcu_dereference_protected(*ppcpu_path,
2288             lockdep_is_held(&clt->paths_mutex)) != clt_path)
2289             /*
2290              * synchronize_rcu() was called just after deleting
2291              * entry from the list, thus IO code path cannot
2292              * change pointer back to the pointer which is going
2293              * to be removed, we are safe here.
2294              */
2295             continue;
2296 
2297         /*
2298          * We race with IO code path, which also changes pointer,
2299          * thus we have to be careful not to overwrite it.
2300          */
2301         if (xchg_paths(ppcpu_path, clt_path, next))
2302             /*
2303              * @ppcpu_path was successfully replaced with @next,
2304              * that means that someone could also pick up the
2305              * @sess and dereferencing it right now, so wait for
2306              * a grace period is required.
2307              */
2308             wait_for_grace = true;
2309     }
2310     if (wait_for_grace)
2311         synchronize_rcu();
2312 
2313     mutex_unlock(&clt->paths_mutex);
2314 }
2315 
2316 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2317 {
2318     struct rtrs_clt_sess *clt = clt_path->clt;
2319 
2320     mutex_lock(&clt->paths_mutex);
2321     clt->paths_num++;
2322 
2323     list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2324     mutex_unlock(&clt->paths_mutex);
2325 }
2326 
2327 static void rtrs_clt_close_work(struct work_struct *work)
2328 {
2329     struct rtrs_clt_path *clt_path;
2330 
2331     clt_path = container_of(work, struct rtrs_clt_path, close_work);
2332 
2333     cancel_work_sync(&clt_path->err_recovery_work);
2334     cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2335     rtrs_clt_stop_and_destroy_conns(clt_path);
2336     rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2337 }
2338 
2339 static int init_conns(struct rtrs_clt_path *clt_path)
2340 {
2341     unsigned int cid;
2342     int err;
2343 
2344     /*
2345      * On every new session connections increase reconnect counter
2346      * to avoid clashes with previous sessions not yet closed
2347      * sessions on a server side.
2348      */
2349     clt_path->s.recon_cnt++;
2350 
2351     /* Establish all RDMA connections  */
2352     for (cid = 0; cid < clt_path->s.con_num; cid++) {
2353         err = create_con(clt_path, cid);
2354         if (err)
2355             goto destroy;
2356 
2357         err = create_cm(to_clt_con(clt_path->s.con[cid]));
2358         if (err) {
2359             destroy_con(to_clt_con(clt_path->s.con[cid]));
2360             goto destroy;
2361         }
2362     }
2363     err = alloc_path_reqs(clt_path);
2364     if (err)
2365         goto destroy;
2366 
2367     rtrs_start_hb(&clt_path->s);
2368 
2369     return 0;
2370 
2371 destroy:
2372     while (cid--) {
2373         struct rtrs_clt_con *con = to_clt_con(clt_path->s.con[cid]);
2374 
2375         stop_cm(con);
2376 
2377         mutex_lock(&con->con_mutex);
2378         destroy_con_cq_qp(con);
2379         mutex_unlock(&con->con_mutex);
2380         destroy_cm(con);
2381         destroy_con(con);
2382     }
2383     /*
2384      * If we've never taken async path and got an error, say,
2385      * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2386      * manually to keep reconnecting.
2387      */
2388     rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2389 
2390     return err;
2391 }
2392 
2393 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2394 {
2395     struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2396     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2397     struct rtrs_iu *iu;
2398 
2399     iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2400     rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2401 
2402     if (wc->status != IB_WC_SUCCESS) {
2403         rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2404               ib_wc_status_msg(wc->status));
2405         rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2406         return;
2407     }
2408 
2409     rtrs_clt_update_wc_stats(con);
2410 }
2411 
2412 static int process_info_rsp(struct rtrs_clt_path *clt_path,
2413                 const struct rtrs_msg_info_rsp *msg)
2414 {
2415     unsigned int sg_cnt, total_len;
2416     int i, sgi;
2417 
2418     sg_cnt = le16_to_cpu(msg->sg_cnt);
2419     if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2420         rtrs_err(clt_path->clt,
2421               "Incorrect sg_cnt %d, is not multiple\n",
2422               sg_cnt);
2423         return -EINVAL;
2424     }
2425 
2426     /*
2427      * Check if IB immediate data size is enough to hold the mem_id and
2428      * the offset inside the memory chunk.
2429      */
2430     if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2431         MAX_IMM_PAYL_BITS) {
2432         rtrs_err(clt_path->clt,
2433               "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2434               MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2435         return -EINVAL;
2436     }
2437     total_len = 0;
2438     for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2439         const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2440         u32 len, rkey;
2441         u64 addr;
2442 
2443         addr = le64_to_cpu(desc->addr);
2444         rkey = le32_to_cpu(desc->key);
2445         len  = le32_to_cpu(desc->len);
2446 
2447         total_len += len;
2448 
2449         if (!len || (len % clt_path->chunk_size)) {
2450             rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2451                   sgi,
2452                   len);
2453             return -EINVAL;
2454         }
2455         for ( ; len && i < clt_path->queue_depth; i++) {
2456             clt_path->rbufs[i].addr = addr;
2457             clt_path->rbufs[i].rkey = rkey;
2458 
2459             len  -= clt_path->chunk_size;
2460             addr += clt_path->chunk_size;
2461         }
2462     }
2463     /* Sanity check */
2464     if (sgi != sg_cnt || i != clt_path->queue_depth) {
2465         rtrs_err(clt_path->clt,
2466              "Incorrect sg vector, not fully mapped\n");
2467         return -EINVAL;
2468     }
2469     if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2470         rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2471         return -EINVAL;
2472     }
2473 
2474     return 0;
2475 }
2476 
2477 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2478 {
2479     struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2480     struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2481     struct rtrs_msg_info_rsp *msg;
2482     enum rtrs_clt_state state;
2483     struct rtrs_iu *iu;
2484     size_t rx_sz;
2485     int err;
2486 
2487     state = RTRS_CLT_CONNECTING_ERR;
2488 
2489     WARN_ON(con->c.cid);
2490     iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2491     if (wc->status != IB_WC_SUCCESS) {
2492         rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2493               ib_wc_status_msg(wc->status));
2494         goto out;
2495     }
2496     WARN_ON(wc->opcode != IB_WC_RECV);
2497 
2498     if (wc->byte_len < sizeof(*msg)) {
2499         rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2500               wc->byte_len);
2501         goto out;
2502     }
2503     ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2504                    iu->size, DMA_FROM_DEVICE);
2505     msg = iu->buf;
2506     if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2507         rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2508               le16_to_cpu(msg->type));
2509         goto out;
2510     }
2511     rx_sz  = sizeof(*msg);
2512     rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2513     if (wc->byte_len < rx_sz) {
2514         rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2515               wc->byte_len);
2516         goto out;
2517     }
2518     err = process_info_rsp(clt_path, msg);
2519     if (err)
2520         goto out;
2521 
2522     err = post_recv_path(clt_path);
2523     if (err)
2524         goto out;
2525 
2526     state = RTRS_CLT_CONNECTED;
2527 
2528 out:
2529     rtrs_clt_update_wc_stats(con);
2530     rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2531     rtrs_clt_change_state_get_old(clt_path, state, NULL);
2532 }
2533 
2534 static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2535 {
2536     struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2537     struct rtrs_msg_info_req *msg;
2538     struct rtrs_iu *tx_iu, *rx_iu;
2539     size_t rx_sz;
2540     int err;
2541 
2542     rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2543     rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2544 
2545     tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2546                    clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2547                    rtrs_clt_info_req_done);
2548     rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2549                    DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2550     if (!tx_iu || !rx_iu) {
2551         err = -ENOMEM;
2552         goto out;
2553     }
2554     /* Prepare for getting info response */
2555     err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2556     if (err) {
2557         rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2558         goto out;
2559     }
2560     rx_iu = NULL;
2561 
2562     msg = tx_iu->buf;
2563     msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2564     memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2565 
2566     ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2567                       tx_iu->dma_addr,
2568                       tx_iu->size, DMA_TO_DEVICE);
2569 
2570     /* Send info request */
2571     err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2572     if (err) {
2573         rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2574         goto out;
2575     }
2576     tx_iu = NULL;
2577 
2578     /* Wait for state change */
2579     wait_event_interruptible_timeout(clt_path->state_wq,
2580                      clt_path->state != RTRS_CLT_CONNECTING,
2581                      msecs_to_jiffies(
2582                          RTRS_CONNECT_TIMEOUT_MS));
2583     if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2584         if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2585             err = -ECONNRESET;
2586         else
2587             err = -ETIMEDOUT;
2588     }
2589 
2590 out:
2591     if (tx_iu)
2592         rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2593     if (rx_iu)
2594         rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2595     if (err)
2596         /* If we've never taken async path because of malloc problems */
2597         rtrs_clt_change_state_get_old(clt_path,
2598                           RTRS_CLT_CONNECTING_ERR, NULL);
2599 
2600     return err;
2601 }
2602 
2603 /**
2604  * init_path() - establishes all path connections and does handshake
2605  * @clt_path: client path.
2606  * In case of error full close or reconnect procedure should be taken,
2607  * because reconnect or close async works can be started.
2608  */
2609 static int init_path(struct rtrs_clt_path *clt_path)
2610 {
2611     int err;
2612     char str[NAME_MAX];
2613     struct rtrs_addr path = {
2614         .src = &clt_path->s.src_addr,
2615         .dst = &clt_path->s.dst_addr,
2616     };
2617 
2618     rtrs_addr_to_str(&path, str, sizeof(str));
2619 
2620     mutex_lock(&clt_path->init_mutex);
2621     err = init_conns(clt_path);
2622     if (err) {
2623         rtrs_err(clt_path->clt,
2624              "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2625              str, clt_path->hca_name, clt_path->hca_port);
2626         goto out;
2627     }
2628     err = rtrs_send_path_info(clt_path);
2629     if (err) {
2630         rtrs_err(clt_path->clt,
2631              "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2632              err, str, clt_path->hca_name, clt_path->hca_port);
2633         goto out;
2634     }
2635     rtrs_clt_path_up(clt_path);
2636 out:
2637     mutex_unlock(&clt_path->init_mutex);
2638 
2639     return err;
2640 }
2641 
2642 static void rtrs_clt_reconnect_work(struct work_struct *work)
2643 {
2644     struct rtrs_clt_path *clt_path;
2645     struct rtrs_clt_sess *clt;
2646     int err;
2647 
2648     clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2649                 reconnect_dwork);
2650     clt = clt_path->clt;
2651 
2652     if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2653         return;
2654 
2655     if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2656         /* Close a path completely if max attempts is reached */
2657         rtrs_clt_close_conns(clt_path, false);
2658         return;
2659     }
2660     clt_path->reconnect_attempts++;
2661 
2662     msleep(RTRS_RECONNECT_BACKOFF);
2663     if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2664         err = init_path(clt_path);
2665         if (err)
2666             goto reconnect_again;
2667     }
2668 
2669     return;
2670 
2671 reconnect_again:
2672     if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2673         clt_path->stats->reconnects.fail_cnt++;
2674         queue_work(rtrs_wq, &clt_path->err_recovery_work);
2675     }
2676 }
2677 
2678 static void rtrs_clt_dev_release(struct device *dev)
2679 {
2680     struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2681                          dev);
2682 
2683     mutex_destroy(&clt->paths_ev_mutex);
2684     mutex_destroy(&clt->paths_mutex);
2685     kfree(clt);
2686 }
2687 
2688 static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2689                   u16 port, size_t pdu_sz, void *priv,
2690                   void  (*link_ev)(void *priv,
2691                            enum rtrs_clt_link_ev ev),
2692                   unsigned int reconnect_delay_sec,
2693                   unsigned int max_reconnect_attempts)
2694 {
2695     struct rtrs_clt_sess *clt;
2696     int err;
2697 
2698     if (!paths_num || paths_num > MAX_PATHS_NUM)
2699         return ERR_PTR(-EINVAL);
2700 
2701     if (strlen(sessname) >= sizeof(clt->sessname))
2702         return ERR_PTR(-EINVAL);
2703 
2704     clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2705     if (!clt)
2706         return ERR_PTR(-ENOMEM);
2707 
2708     clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2709     if (!clt->pcpu_path) {
2710         kfree(clt);
2711         return ERR_PTR(-ENOMEM);
2712     }
2713 
2714     clt->dev.class = rtrs_clt_dev_class;
2715     clt->dev.release = rtrs_clt_dev_release;
2716     uuid_gen(&clt->paths_uuid);
2717     INIT_LIST_HEAD_RCU(&clt->paths_list);
2718     clt->paths_num = paths_num;
2719     clt->paths_up = MAX_PATHS_NUM;
2720     clt->port = port;
2721     clt->pdu_sz = pdu_sz;
2722     clt->max_segments = RTRS_MAX_SEGMENTS;
2723     clt->reconnect_delay_sec = reconnect_delay_sec;
2724     clt->max_reconnect_attempts = max_reconnect_attempts;
2725     clt->priv = priv;
2726     clt->link_ev = link_ev;
2727     clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2728     strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2729     init_waitqueue_head(&clt->permits_wait);
2730     mutex_init(&clt->paths_ev_mutex);
2731     mutex_init(&clt->paths_mutex);
2732     device_initialize(&clt->dev);
2733 
2734     err = dev_set_name(&clt->dev, "%s", sessname);
2735     if (err)
2736         goto err_put;
2737 
2738     /*
2739      * Suppress user space notification until
2740      * sysfs files are created
2741      */
2742     dev_set_uevent_suppress(&clt->dev, true);
2743     err = device_add(&clt->dev);
2744     if (err)
2745         goto err_put;
2746 
2747     clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2748     if (!clt->kobj_paths) {
2749         err = -ENOMEM;
2750         goto err_del;
2751     }
2752     err = rtrs_clt_create_sysfs_root_files(clt);
2753     if (err) {
2754         kobject_del(clt->kobj_paths);
2755         kobject_put(clt->kobj_paths);
2756         goto err_del;
2757     }
2758     dev_set_uevent_suppress(&clt->dev, false);
2759     kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2760 
2761     return clt;
2762 err_del:
2763     device_del(&clt->dev);
2764 err_put:
2765     free_percpu(clt->pcpu_path);
2766     put_device(&clt->dev);
2767     return ERR_PTR(err);
2768 }
2769 
2770 static void free_clt(struct rtrs_clt_sess *clt)
2771 {
2772     free_percpu(clt->pcpu_path);
2773 
2774     /*
2775      * release callback will free clt and destroy mutexes in last put
2776      */
2777     device_unregister(&clt->dev);
2778 }
2779 
2780 /**
2781  * rtrs_clt_open() - Open a path to an RTRS server
2782  * @ops: holds the link event callback and the private pointer.
2783  * @pathname: name of the path to an RTRS server
2784  * @paths: Paths to be established defined by their src and dst addresses
2785  * @paths_num: Number of elements in the @paths array
2786  * @port: port to be used by the RTRS session
2787  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2788  * @reconnect_delay_sec: time between reconnect tries
2789  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2790  *              up, 0 for * disabled, -1 for forever
2791  * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2792  *
2793  * Starts session establishment with the rtrs_server. The function can block
2794  * up to ~2000ms before it returns.
2795  *
2796  * Return a valid pointer on success otherwise PTR_ERR.
2797  */
2798 struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2799                  const char *pathname,
2800                  const struct rtrs_addr *paths,
2801                  size_t paths_num, u16 port,
2802                  size_t pdu_sz, u8 reconnect_delay_sec,
2803                  s16 max_reconnect_attempts, u32 nr_poll_queues)
2804 {
2805     struct rtrs_clt_path *clt_path, *tmp;
2806     struct rtrs_clt_sess *clt;
2807     int err, i;
2808 
2809     if (strchr(pathname, '/') || strchr(pathname, '.')) {
2810         pr_err("pathname cannot contain / and .\n");
2811         err = -EINVAL;
2812         goto out;
2813     }
2814 
2815     clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2816             ops->link_ev,
2817             reconnect_delay_sec,
2818             max_reconnect_attempts);
2819     if (IS_ERR(clt)) {
2820         err = PTR_ERR(clt);
2821         goto out;
2822     }
2823     for (i = 0; i < paths_num; i++) {
2824         struct rtrs_clt_path *clt_path;
2825 
2826         clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2827                   nr_poll_queues);
2828         if (IS_ERR(clt_path)) {
2829             err = PTR_ERR(clt_path);
2830             goto close_all_path;
2831         }
2832         if (!i)
2833             clt_path->for_new_clt = 1;
2834         list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2835 
2836         err = init_path(clt_path);
2837         if (err) {
2838             list_del_rcu(&clt_path->s.entry);
2839             rtrs_clt_close_conns(clt_path, true);
2840             free_percpu(clt_path->stats->pcpu_stats);
2841             kfree(clt_path->stats);
2842             free_path(clt_path);
2843             goto close_all_path;
2844         }
2845 
2846         err = rtrs_clt_create_path_files(clt_path);
2847         if (err) {
2848             list_del_rcu(&clt_path->s.entry);
2849             rtrs_clt_close_conns(clt_path, true);
2850             free_percpu(clt_path->stats->pcpu_stats);
2851             kfree(clt_path->stats);
2852             free_path(clt_path);
2853             goto close_all_path;
2854         }
2855     }
2856     err = alloc_permits(clt);
2857     if (err)
2858         goto close_all_path;
2859 
2860     return clt;
2861 
2862 close_all_path:
2863     list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2864         rtrs_clt_destroy_path_files(clt_path, NULL);
2865         rtrs_clt_close_conns(clt_path, true);
2866         kobject_put(&clt_path->kobj);
2867     }
2868     rtrs_clt_destroy_sysfs_root(clt);
2869     free_clt(clt);
2870 
2871 out:
2872     return ERR_PTR(err);
2873 }
2874 EXPORT_SYMBOL(rtrs_clt_open);
2875 
2876 /**
2877  * rtrs_clt_close() - Close a path
2878  * @clt: Session handle. Session is freed upon return.
2879  */
2880 void rtrs_clt_close(struct rtrs_clt_sess *clt)
2881 {
2882     struct rtrs_clt_path *clt_path, *tmp;
2883 
2884     /* Firstly forbid sysfs access */
2885     rtrs_clt_destroy_sysfs_root(clt);
2886 
2887     /* Now it is safe to iterate over all paths without locks */
2888     list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2889         rtrs_clt_close_conns(clt_path, true);
2890         rtrs_clt_destroy_path_files(clt_path, NULL);
2891         kobject_put(&clt_path->kobj);
2892     }
2893     free_permits(clt);
2894     free_clt(clt);
2895 }
2896 EXPORT_SYMBOL(rtrs_clt_close);
2897 
2898 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2899 {
2900     enum rtrs_clt_state old_state;
2901     int err = -EBUSY;
2902     bool changed;
2903 
2904     changed = rtrs_clt_change_state_get_old(clt_path,
2905                          RTRS_CLT_RECONNECTING,
2906                          &old_state);
2907     if (changed) {
2908         clt_path->reconnect_attempts = 0;
2909         rtrs_clt_stop_and_destroy_conns(clt_path);
2910         queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2911     }
2912     if (changed || old_state == RTRS_CLT_RECONNECTING) {
2913         /*
2914          * flush_delayed_work() queues pending work for immediate
2915          * execution, so do the flush if we have queued something
2916          * right now or work is pending.
2917          */
2918         flush_delayed_work(&clt_path->reconnect_dwork);
2919         err = (READ_ONCE(clt_path->state) ==
2920                RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2921     }
2922 
2923     return err;
2924 }
2925 
2926 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2927                      const struct attribute *sysfs_self)
2928 {
2929     enum rtrs_clt_state old_state;
2930     bool changed;
2931 
2932     /*
2933      * Continue stopping path till state was changed to DEAD or
2934      * state was observed as DEAD:
2935      * 1. State was changed to DEAD - we were fast and nobody
2936      *    invoked rtrs_clt_reconnect(), which can again start
2937      *    reconnecting.
2938      * 2. State was observed as DEAD - we have someone in parallel
2939      *    removing the path.
2940      */
2941     do {
2942         rtrs_clt_close_conns(clt_path, true);
2943         changed = rtrs_clt_change_state_get_old(clt_path,
2944                             RTRS_CLT_DEAD,
2945                             &old_state);
2946     } while (!changed && old_state != RTRS_CLT_DEAD);
2947 
2948     if (changed) {
2949         rtrs_clt_remove_path_from_arr(clt_path);
2950         rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2951         kobject_put(&clt_path->kobj);
2952     }
2953 
2954     return 0;
2955 }
2956 
2957 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2958 {
2959     clt->max_reconnect_attempts = (unsigned int)value;
2960 }
2961 
2962 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2963 {
2964     return (int)clt->max_reconnect_attempts;
2965 }
2966 
2967 /**
2968  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2969  *
2970  * @dir:    READ/WRITE
2971  * @ops:    callback function to be called as confirmation, and the pointer.
2972  * @clt:    Session
2973  * @permit: Preallocated permit
2974  * @vec:    Message that is sent to server together with the request.
2975  *      Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2976  *      Since the msg is copied internally it can be allocated on stack.
2977  * @nr:     Number of elements in @vec.
2978  * @data_len:   length of data sent to/from server
2979  * @sg:     Pages to be sent/received to/from server.
2980  * @sg_cnt: Number of elements in the @sg
2981  *
2982  * Return:
2983  * 0:       Success
2984  * <0:      Error
2985  *
2986  * On dir=READ rtrs client will request a data transfer from Server to client.
2987  * The data that the server will respond with will be stored in @sg when
2988  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2989  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2990  */
2991 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2992              struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2993              const struct kvec *vec, size_t nr, size_t data_len,
2994              struct scatterlist *sg, unsigned int sg_cnt)
2995 {
2996     struct rtrs_clt_io_req *req;
2997     struct rtrs_clt_path *clt_path;
2998 
2999     enum dma_data_direction dma_dir;
3000     int err = -ECONNABORTED, i;
3001     size_t usr_len, hdr_len;
3002     struct path_it it;
3003 
3004     /* Get kvec length */
3005     for (i = 0, usr_len = 0; i < nr; i++)
3006         usr_len += vec[i].iov_len;
3007 
3008     if (dir == READ) {
3009         hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3010               sg_cnt * sizeof(struct rtrs_sg_desc);
3011         dma_dir = DMA_FROM_DEVICE;
3012     } else {
3013         hdr_len = sizeof(struct rtrs_msg_rdma_write);
3014         dma_dir = DMA_TO_DEVICE;
3015     }
3016 
3017     rcu_read_lock();
3018     for (path_it_init(&it, clt);
3019          (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3020         if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3021             continue;
3022 
3023         if (usr_len + hdr_len > clt_path->max_hdr_size) {
3024             rtrs_wrn_rl(clt_path->clt,
3025                      "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3026                      dir == READ ? "Read" : "Write",
3027                      usr_len, hdr_len, clt_path->max_hdr_size);
3028             err = -EMSGSIZE;
3029             break;
3030         }
3031         req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3032                        vec, usr_len, sg, sg_cnt, data_len,
3033                        dma_dir);
3034         if (dir == READ)
3035             err = rtrs_clt_read_req(req);
3036         else
3037             err = rtrs_clt_write_req(req);
3038         if (err) {
3039             req->in_use = false;
3040             continue;
3041         }
3042         /* Success path */
3043         break;
3044     }
3045     path_it_deinit(&it);
3046     rcu_read_unlock();
3047 
3048     return err;
3049 }
3050 EXPORT_SYMBOL(rtrs_clt_request);
3051 
3052 int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3053 {
3054     /* If no path, return -1 for block layer not to try again */
3055     int cnt = -1;
3056     struct rtrs_con *con;
3057     struct rtrs_clt_path *clt_path;
3058     struct path_it it;
3059 
3060     rcu_read_lock();
3061     for (path_it_init(&it, clt);
3062          (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3063         if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3064             continue;
3065 
3066         con = clt_path->s.con[index + 1];
3067         cnt = ib_process_cq_direct(con->cq, -1);
3068         if (cnt)
3069             break;
3070     }
3071     path_it_deinit(&it);
3072     rcu_read_unlock();
3073 
3074     return cnt;
3075 }
3076 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3077 
3078 /**
3079  * rtrs_clt_query() - queries RTRS session attributes
3080  *@clt: session pointer
3081  *@attr: query results for session attributes.
3082  * Returns:
3083  *    0 on success
3084  *    -ECOMM        no connection to the server
3085  */
3086 int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3087 {
3088     if (!rtrs_clt_is_connected(clt))
3089         return -ECOMM;
3090 
3091     attr->queue_depth      = clt->queue_depth;
3092     attr->max_segments     = clt->max_segments;
3093     /* Cap max_io_size to min of remote buffer size and the fr pages */
3094     attr->max_io_size = min_t(int, clt->max_io_size,
3095                   clt->max_segments * SZ_4K);
3096 
3097     return 0;
3098 }
3099 EXPORT_SYMBOL(rtrs_clt_query);
3100 
3101 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3102                      struct rtrs_addr *addr)
3103 {
3104     struct rtrs_clt_path *clt_path;
3105     int err;
3106 
3107     clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3108     if (IS_ERR(clt_path))
3109         return PTR_ERR(clt_path);
3110 
3111     mutex_lock(&clt->paths_mutex);
3112     if (clt->paths_num == 0) {
3113         /*
3114          * When all the paths are removed for a session,
3115          * the addition of the first path is like a new session for
3116          * the storage server
3117          */
3118         clt_path->for_new_clt = 1;
3119     }
3120 
3121     mutex_unlock(&clt->paths_mutex);
3122 
3123     /*
3124      * It is totally safe to add path in CONNECTING state: coming
3125      * IO will never grab it.  Also it is very important to add
3126      * path before init, since init fires LINK_CONNECTED event.
3127      */
3128     rtrs_clt_add_path_to_arr(clt_path);
3129 
3130     err = init_path(clt_path);
3131     if (err)
3132         goto close_path;
3133 
3134     err = rtrs_clt_create_path_files(clt_path);
3135     if (err)
3136         goto close_path;
3137 
3138     return 0;
3139 
3140 close_path:
3141     rtrs_clt_remove_path_from_arr(clt_path);
3142     rtrs_clt_close_conns(clt_path, true);
3143     free_percpu(clt_path->stats->pcpu_stats);
3144     kfree(clt_path->stats);
3145     free_path(clt_path);
3146 
3147     return err;
3148 }
3149 
3150 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3151 {
3152     if (!(dev->ib_dev->attrs.device_cap_flags &
3153           IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3154         pr_err("Memory registrations not supported.\n");
3155         return -ENOTSUPP;
3156     }
3157 
3158     return 0;
3159 }
3160 
3161 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3162     .init = rtrs_clt_ib_dev_init
3163 };
3164 
3165 static int __init rtrs_client_init(void)
3166 {
3167     rtrs_rdma_dev_pd_init(0, &dev_pd);
3168 
3169     rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3170     if (IS_ERR(rtrs_clt_dev_class)) {
3171         pr_err("Failed to create rtrs-client dev class\n");
3172         return PTR_ERR(rtrs_clt_dev_class);
3173     }
3174     rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3175     if (!rtrs_wq) {
3176         class_destroy(rtrs_clt_dev_class);
3177         return -ENOMEM;
3178     }
3179 
3180     return 0;
3181 }
3182 
3183 static void __exit rtrs_client_exit(void)
3184 {
3185     destroy_workqueue(rtrs_wq);
3186     class_destroy(rtrs_clt_dev_class);
3187     rtrs_rdma_dev_pd_deinit(&dev_pd);
3188 }
3189 
3190 module_init(rtrs_client_init);
3191 module_exit(rtrs_client_exit);