Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
0002 /*
0003  * Copyright(c) 2016 - 2020 Intel Corporation.
0004  */
0005 
0006 #include <linux/hash.h>
0007 #include <linux/bitops.h>
0008 #include <linux/lockdep.h>
0009 #include <linux/vmalloc.h>
0010 #include <linux/slab.h>
0011 #include <rdma/ib_verbs.h>
0012 #include <rdma/ib_hdrs.h>
0013 #include <rdma/opa_addr.h>
0014 #include <rdma/uverbs_ioctl.h>
0015 #include "qp.h"
0016 #include "vt.h"
0017 #include "trace.h"
0018 
0019 #define RVT_RWQ_COUNT_THRESHOLD 16
0020 
0021 static void rvt_rc_timeout(struct timer_list *t);
0022 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
0023              enum ib_qp_type type);
0024 
0025 /*
0026  * Convert the AETH RNR timeout code into the number of microseconds.
0027  */
0028 static const u32 ib_rvt_rnr_table[32] = {
0029     655360, /* 00: 655.36 */
0030     10,     /* 01:    .01 */
0031     20,     /* 02     .02 */
0032     30,     /* 03:    .03 */
0033     40,     /* 04:    .04 */
0034     60,     /* 05:    .06 */
0035     80,     /* 06:    .08 */
0036     120,    /* 07:    .12 */
0037     160,    /* 08:    .16 */
0038     240,    /* 09:    .24 */
0039     320,    /* 0A:    .32 */
0040     480,    /* 0B:    .48 */
0041     640,    /* 0C:    .64 */
0042     960,    /* 0D:    .96 */
0043     1280,   /* 0E:   1.28 */
0044     1920,   /* 0F:   1.92 */
0045     2560,   /* 10:   2.56 */
0046     3840,   /* 11:   3.84 */
0047     5120,   /* 12:   5.12 */
0048     7680,   /* 13:   7.68 */
0049     10240,  /* 14:  10.24 */
0050     15360,  /* 15:  15.36 */
0051     20480,  /* 16:  20.48 */
0052     30720,  /* 17:  30.72 */
0053     40960,  /* 18:  40.96 */
0054     61440,  /* 19:  61.44 */
0055     81920,  /* 1A:  81.92 */
0056     122880, /* 1B: 122.88 */
0057     163840, /* 1C: 163.84 */
0058     245760, /* 1D: 245.76 */
0059     327680, /* 1E: 327.68 */
0060     491520  /* 1F: 491.52 */
0061 };
0062 
0063 /*
0064  * Note that it is OK to post send work requests in the SQE and ERR
0065  * states; rvt_do_send() will process them and generate error
0066  * completions as per IB 1.2 C10-96.
0067  */
0068 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
0069     [IB_QPS_RESET] = 0,
0070     [IB_QPS_INIT] = RVT_POST_RECV_OK,
0071     [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
0072     [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
0073         RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
0074         RVT_PROCESS_NEXT_SEND_OK,
0075     [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
0076         RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
0077     [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
0078         RVT_POST_SEND_OK | RVT_FLUSH_SEND,
0079     [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
0080         RVT_POST_SEND_OK | RVT_FLUSH_SEND,
0081 };
0082 EXPORT_SYMBOL(ib_rvt_state_ops);
0083 
0084 /* platform specific: return the last level cache (llc) size, in KiB */
0085 static int rvt_wss_llc_size(void)
0086 {
0087     /* assume that the boot CPU value is universal for all CPUs */
0088     return boot_cpu_data.x86_cache_size;
0089 }
0090 
0091 /* platform specific: cacheless copy */
0092 static void cacheless_memcpy(void *dst, void *src, size_t n)
0093 {
0094     /*
0095      * Use the only available X64 cacheless copy.  Add a __user cast
0096      * to quiet sparse.  The src agument is already in the kernel so
0097      * there are no security issues.  The extra fault recovery machinery
0098      * is not invoked.
0099      */
0100     __copy_user_nocache(dst, (void __user *)src, n, 0);
0101 }
0102 
0103 void rvt_wss_exit(struct rvt_dev_info *rdi)
0104 {
0105     struct rvt_wss *wss = rdi->wss;
0106 
0107     if (!wss)
0108         return;
0109 
0110     /* coded to handle partially initialized and repeat callers */
0111     kfree(wss->entries);
0112     wss->entries = NULL;
0113     kfree(rdi->wss);
0114     rdi->wss = NULL;
0115 }
0116 
0117 /*
0118  * rvt_wss_init - Init wss data structures
0119  *
0120  * Return: 0 on success
0121  */
0122 int rvt_wss_init(struct rvt_dev_info *rdi)
0123 {
0124     unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
0125     unsigned int wss_threshold = rdi->dparms.wss_threshold;
0126     unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
0127     long llc_size;
0128     long llc_bits;
0129     long table_size;
0130     long table_bits;
0131     struct rvt_wss *wss;
0132     int node = rdi->dparms.node;
0133 
0134     if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
0135         rdi->wss = NULL;
0136         return 0;
0137     }
0138 
0139     rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
0140     if (!rdi->wss)
0141         return -ENOMEM;
0142     wss = rdi->wss;
0143 
0144     /* check for a valid percent range - default to 80 if none or invalid */
0145     if (wss_threshold < 1 || wss_threshold > 100)
0146         wss_threshold = 80;
0147 
0148     /* reject a wildly large period */
0149     if (wss_clean_period > 1000000)
0150         wss_clean_period = 256;
0151 
0152     /* reject a zero period */
0153     if (wss_clean_period == 0)
0154         wss_clean_period = 1;
0155 
0156     /*
0157      * Calculate the table size - the next power of 2 larger than the
0158      * LLC size.  LLC size is in KiB.
0159      */
0160     llc_size = rvt_wss_llc_size() * 1024;
0161     table_size = roundup_pow_of_two(llc_size);
0162 
0163     /* one bit per page in rounded up table */
0164     llc_bits = llc_size / PAGE_SIZE;
0165     table_bits = table_size / PAGE_SIZE;
0166     wss->pages_mask = table_bits - 1;
0167     wss->num_entries = table_bits / BITS_PER_LONG;
0168 
0169     wss->threshold = (llc_bits * wss_threshold) / 100;
0170     if (wss->threshold == 0)
0171         wss->threshold = 1;
0172 
0173     wss->clean_period = wss_clean_period;
0174     atomic_set(&wss->clean_counter, wss_clean_period);
0175 
0176     wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
0177                     GFP_KERNEL, node);
0178     if (!wss->entries) {
0179         rvt_wss_exit(rdi);
0180         return -ENOMEM;
0181     }
0182 
0183     return 0;
0184 }
0185 
0186 /*
0187  * Advance the clean counter.  When the clean period has expired,
0188  * clean an entry.
0189  *
0190  * This is implemented in atomics to avoid locking.  Because multiple
0191  * variables are involved, it can be racy which can lead to slightly
0192  * inaccurate information.  Since this is only a heuristic, this is
0193  * OK.  Any innaccuracies will clean themselves out as the counter
0194  * advances.  That said, it is unlikely the entry clean operation will
0195  * race - the next possible racer will not start until the next clean
0196  * period.
0197  *
0198  * The clean counter is implemented as a decrement to zero.  When zero
0199  * is reached an entry is cleaned.
0200  */
0201 static void wss_advance_clean_counter(struct rvt_wss *wss)
0202 {
0203     int entry;
0204     int weight;
0205     unsigned long bits;
0206 
0207     /* become the cleaner if we decrement the counter to zero */
0208     if (atomic_dec_and_test(&wss->clean_counter)) {
0209         /*
0210          * Set, not add, the clean period.  This avoids an issue
0211          * where the counter could decrement below the clean period.
0212          * Doing a set can result in lost decrements, slowing the
0213          * clean advance.  Since this a heuristic, this possible
0214          * slowdown is OK.
0215          *
0216          * An alternative is to loop, advancing the counter by a
0217          * clean period until the result is > 0. However, this could
0218          * lead to several threads keeping another in the clean loop.
0219          * This could be mitigated by limiting the number of times
0220          * we stay in the loop.
0221          */
0222         atomic_set(&wss->clean_counter, wss->clean_period);
0223 
0224         /*
0225          * Uniquely grab the entry to clean and move to next.
0226          * The current entry is always the lower bits of
0227          * wss.clean_entry.  The table size, wss.num_entries,
0228          * is always a power-of-2.
0229          */
0230         entry = (atomic_inc_return(&wss->clean_entry) - 1)
0231             & (wss->num_entries - 1);
0232 
0233         /* clear the entry and count the bits */
0234         bits = xchg(&wss->entries[entry], 0);
0235         weight = hweight64((u64)bits);
0236         /* only adjust the contended total count if needed */
0237         if (weight)
0238             atomic_sub(weight, &wss->total_count);
0239     }
0240 }
0241 
0242 /*
0243  * Insert the given address into the working set array.
0244  */
0245 static void wss_insert(struct rvt_wss *wss, void *address)
0246 {
0247     u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
0248     u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
0249     u32 nr = page & (BITS_PER_LONG - 1);
0250 
0251     if (!test_and_set_bit(nr, &wss->entries[entry]))
0252         atomic_inc(&wss->total_count);
0253 
0254     wss_advance_clean_counter(wss);
0255 }
0256 
0257 /*
0258  * Is the working set larger than the threshold?
0259  */
0260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
0261 {
0262     return atomic_read(&wss->total_count) >= wss->threshold;
0263 }
0264 
0265 static void get_map_page(struct rvt_qpn_table *qpt,
0266              struct rvt_qpn_map *map)
0267 {
0268     unsigned long page = get_zeroed_page(GFP_KERNEL);
0269 
0270     /*
0271      * Free the page if someone raced with us installing it.
0272      */
0273 
0274     spin_lock(&qpt->lock);
0275     if (map->page)
0276         free_page(page);
0277     else
0278         map->page = (void *)page;
0279     spin_unlock(&qpt->lock);
0280 }
0281 
0282 /**
0283  * init_qpn_table - initialize the QP number table for a device
0284  * @rdi: rvt dev struct
0285  * @qpt: the QPN table
0286  */
0287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
0288 {
0289     u32 offset, i;
0290     struct rvt_qpn_map *map;
0291     int ret = 0;
0292 
0293     if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
0294         return -EINVAL;
0295 
0296     spin_lock_init(&qpt->lock);
0297 
0298     qpt->last = rdi->dparms.qpn_start;
0299     qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
0300 
0301     /*
0302      * Drivers may want some QPs beyond what we need for verbs let them use
0303      * our qpn table. No need for two. Lets go ahead and mark the bitmaps
0304      * for those. The reserved range must be *after* the range which verbs
0305      * will pick from.
0306      */
0307 
0308     /* Figure out number of bit maps needed before reserved range */
0309     qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
0310 
0311     /* This should always be zero */
0312     offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
0313 
0314     /* Starting with the first reserved bit map */
0315     map = &qpt->map[qpt->nmaps];
0316 
0317     rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
0318             rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
0319     for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
0320         if (!map->page) {
0321             get_map_page(qpt, map);
0322             if (!map->page) {
0323                 ret = -ENOMEM;
0324                 break;
0325             }
0326         }
0327         set_bit(offset, map->page);
0328         offset++;
0329         if (offset == RVT_BITS_PER_PAGE) {
0330             /* next page */
0331             qpt->nmaps++;
0332             map++;
0333             offset = 0;
0334         }
0335     }
0336     return ret;
0337 }
0338 
0339 /**
0340  * free_qpn_table - free the QP number table for a device
0341  * @qpt: the QPN table
0342  */
0343 static void free_qpn_table(struct rvt_qpn_table *qpt)
0344 {
0345     int i;
0346 
0347     for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
0348         free_page((unsigned long)qpt->map[i].page);
0349 }
0350 
0351 /**
0352  * rvt_driver_qp_init - Init driver qp resources
0353  * @rdi: rvt dev strucutre
0354  *
0355  * Return: 0 on success
0356  */
0357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
0358 {
0359     int i;
0360     int ret = -ENOMEM;
0361 
0362     if (!rdi->dparms.qp_table_size)
0363         return -EINVAL;
0364 
0365     /*
0366      * If driver is not doing any QP allocation then make sure it is
0367      * providing the necessary QP functions.
0368      */
0369     if (!rdi->driver_f.free_all_qps ||
0370         !rdi->driver_f.qp_priv_alloc ||
0371         !rdi->driver_f.qp_priv_free ||
0372         !rdi->driver_f.notify_qp_reset ||
0373         !rdi->driver_f.notify_restart_rc)
0374         return -EINVAL;
0375 
0376     /* allocate parent object */
0377     rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
0378                    rdi->dparms.node);
0379     if (!rdi->qp_dev)
0380         return -ENOMEM;
0381 
0382     /* allocate hash table */
0383     rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
0384     rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
0385     rdi->qp_dev->qp_table =
0386         kmalloc_array_node(rdi->qp_dev->qp_table_size,
0387                  sizeof(*rdi->qp_dev->qp_table),
0388                  GFP_KERNEL, rdi->dparms.node);
0389     if (!rdi->qp_dev->qp_table)
0390         goto no_qp_table;
0391 
0392     for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
0393         RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
0394 
0395     spin_lock_init(&rdi->qp_dev->qpt_lock);
0396 
0397     /* initialize qpn map */
0398     if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
0399         goto fail_table;
0400 
0401     spin_lock_init(&rdi->n_qps_lock);
0402 
0403     return 0;
0404 
0405 fail_table:
0406     kfree(rdi->qp_dev->qp_table);
0407     free_qpn_table(&rdi->qp_dev->qpn_table);
0408 
0409 no_qp_table:
0410     kfree(rdi->qp_dev);
0411 
0412     return ret;
0413 }
0414 
0415 /**
0416  * rvt_free_qp_cb - callback function to reset a qp
0417  * @qp: the qp to reset
0418  * @v: a 64-bit value
0419  *
0420  * This function resets the qp and removes it from the
0421  * qp hash table.
0422  */
0423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
0424 {
0425     unsigned int *qp_inuse = (unsigned int *)v;
0426     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
0427 
0428     /* Reset the qp and remove it from the qp hash list */
0429     rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
0430 
0431     /* Increment the qp_inuse count */
0432     (*qp_inuse)++;
0433 }
0434 
0435 /**
0436  * rvt_free_all_qps - check for QPs still in use
0437  * @rdi: rvt device info structure
0438  *
0439  * There should not be any QPs still in use.
0440  * Free memory for table.
0441  * Return the number of QPs still in use.
0442  */
0443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
0444 {
0445     unsigned int qp_inuse = 0;
0446 
0447     qp_inuse += rvt_mcast_tree_empty(rdi);
0448 
0449     rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
0450 
0451     return qp_inuse;
0452 }
0453 
0454 /**
0455  * rvt_qp_exit - clean up qps on device exit
0456  * @rdi: rvt dev structure
0457  *
0458  * Check for qp leaks and free resources.
0459  */
0460 void rvt_qp_exit(struct rvt_dev_info *rdi)
0461 {
0462     u32 qps_inuse = rvt_free_all_qps(rdi);
0463 
0464     if (qps_inuse)
0465         rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
0466                qps_inuse);
0467     if (!rdi->qp_dev)
0468         return;
0469 
0470     kfree(rdi->qp_dev->qp_table);
0471     free_qpn_table(&rdi->qp_dev->qpn_table);
0472     kfree(rdi->qp_dev);
0473 }
0474 
0475 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
0476                   struct rvt_qpn_map *map, unsigned off)
0477 {
0478     return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
0479 }
0480 
0481 /**
0482  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
0483  *         IB_QPT_SMI/IB_QPT_GSI
0484  * @rdi: rvt device info structure
0485  * @qpt: queue pair number table pointer
0486  * @type: the QP type
0487  * @port_num: IB port number, 1 based, comes from core
0488  * @exclude_prefix: prefix of special queue pair number being allocated
0489  *
0490  * Return: The queue pair number
0491  */
0492 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
0493              enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
0494 {
0495     u32 i, offset, max_scan, qpn;
0496     struct rvt_qpn_map *map;
0497     u32 ret;
0498     u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
0499         RVT_AIP_QPN_MAX : RVT_QPN_MAX;
0500 
0501     if (rdi->driver_f.alloc_qpn)
0502         return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
0503 
0504     if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
0505         unsigned n;
0506 
0507         ret = type == IB_QPT_GSI;
0508         n = 1 << (ret + 2 * (port_num - 1));
0509         spin_lock(&qpt->lock);
0510         if (qpt->flags & n)
0511             ret = -EINVAL;
0512         else
0513             qpt->flags |= n;
0514         spin_unlock(&qpt->lock);
0515         goto bail;
0516     }
0517 
0518     qpn = qpt->last + qpt->incr;
0519     if (qpn >= max_qpn)
0520         qpn = qpt->incr | ((qpt->last & 1) ^ 1);
0521     /* offset carries bit 0 */
0522     offset = qpn & RVT_BITS_PER_PAGE_MASK;
0523     map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
0524     max_scan = qpt->nmaps - !offset;
0525     for (i = 0;;) {
0526         if (unlikely(!map->page)) {
0527             get_map_page(qpt, map);
0528             if (unlikely(!map->page))
0529                 break;
0530         }
0531         do {
0532             if (!test_and_set_bit(offset, map->page)) {
0533                 qpt->last = qpn;
0534                 ret = qpn;
0535                 goto bail;
0536             }
0537             offset += qpt->incr;
0538             /*
0539              * This qpn might be bogus if offset >= BITS_PER_PAGE.
0540              * That is OK.   It gets re-assigned below
0541              */
0542             qpn = mk_qpn(qpt, map, offset);
0543         } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
0544         /*
0545          * In order to keep the number of pages allocated to a
0546          * minimum, we scan the all existing pages before increasing
0547          * the size of the bitmap table.
0548          */
0549         if (++i > max_scan) {
0550             if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
0551                 break;
0552             map = &qpt->map[qpt->nmaps++];
0553             /* start at incr with current bit 0 */
0554             offset = qpt->incr | (offset & 1);
0555         } else if (map < &qpt->map[qpt->nmaps]) {
0556             ++map;
0557             /* start at incr with current bit 0 */
0558             offset = qpt->incr | (offset & 1);
0559         } else {
0560             map = &qpt->map[0];
0561             /* wrap to first map page, invert bit 0 */
0562             offset = qpt->incr | ((offset & 1) ^ 1);
0563         }
0564         /* there can be no set bits in low-order QoS bits */
0565         WARN_ON(rdi->dparms.qos_shift > 1 &&
0566             offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
0567         qpn = mk_qpn(qpt, map, offset);
0568     }
0569 
0570     ret = -ENOMEM;
0571 
0572 bail:
0573     return ret;
0574 }
0575 
0576 /**
0577  * rvt_clear_mr_refs - Drop help mr refs
0578  * @qp: rvt qp data structure
0579  * @clr_sends: If shoudl clear send side or not
0580  */
0581 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
0582 {
0583     unsigned n;
0584     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
0585 
0586     if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
0587         rvt_put_ss(&qp->s_rdma_read_sge);
0588 
0589     rvt_put_ss(&qp->r_sge);
0590 
0591     if (clr_sends) {
0592         while (qp->s_last != qp->s_head) {
0593             struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
0594 
0595             rvt_put_qp_swqe(qp, wqe);
0596             if (++qp->s_last >= qp->s_size)
0597                 qp->s_last = 0;
0598             smp_wmb(); /* see qp_set_savail */
0599         }
0600         if (qp->s_rdma_mr) {
0601             rvt_put_mr(qp->s_rdma_mr);
0602             qp->s_rdma_mr = NULL;
0603         }
0604     }
0605 
0606     for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
0607         struct rvt_ack_entry *e = &qp->s_ack_queue[n];
0608 
0609         if (e->rdma_sge.mr) {
0610             rvt_put_mr(e->rdma_sge.mr);
0611             e->rdma_sge.mr = NULL;
0612         }
0613     }
0614 }
0615 
0616 /**
0617  * rvt_swqe_has_lkey - return true if lkey is used by swqe
0618  * @wqe: the send wqe
0619  * @lkey: the lkey
0620  *
0621  * Test the swqe for using lkey
0622  */
0623 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
0624 {
0625     int i;
0626 
0627     for (i = 0; i < wqe->wr.num_sge; i++) {
0628         struct rvt_sge *sge = &wqe->sg_list[i];
0629 
0630         if (rvt_mr_has_lkey(sge->mr, lkey))
0631             return true;
0632     }
0633     return false;
0634 }
0635 
0636 /**
0637  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
0638  * @qp: the rvt_qp
0639  * @lkey: the lkey
0640  */
0641 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
0642 {
0643     u32 s_last = qp->s_last;
0644 
0645     while (s_last != qp->s_head) {
0646         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
0647 
0648         if (rvt_swqe_has_lkey(wqe, lkey))
0649             return true;
0650 
0651         if (++s_last >= qp->s_size)
0652             s_last = 0;
0653     }
0654     if (qp->s_rdma_mr)
0655         if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
0656             return true;
0657     return false;
0658 }
0659 
0660 /**
0661  * rvt_qp_acks_has_lkey - return true if acks have lkey
0662  * @qp: the qp
0663  * @lkey: the lkey
0664  */
0665 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
0666 {
0667     int i;
0668     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
0669 
0670     for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
0671         struct rvt_ack_entry *e = &qp->s_ack_queue[i];
0672 
0673         if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
0674             return true;
0675     }
0676     return false;
0677 }
0678 
0679 /**
0680  * rvt_qp_mr_clean - clean up remote ops for lkey
0681  * @qp: the qp
0682  * @lkey: the lkey that is being de-registered
0683  *
0684  * This routine checks if the lkey is being used by
0685  * the qp.
0686  *
0687  * If so, the qp is put into an error state to elminate
0688  * any references from the qp.
0689  */
0690 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
0691 {
0692     bool lastwqe = false;
0693 
0694     if (qp->ibqp.qp_type == IB_QPT_SMI ||
0695         qp->ibqp.qp_type == IB_QPT_GSI)
0696         /* avoid special QPs */
0697         return;
0698     spin_lock_irq(&qp->r_lock);
0699     spin_lock(&qp->s_hlock);
0700     spin_lock(&qp->s_lock);
0701 
0702     if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
0703         goto check_lwqe;
0704 
0705     if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
0706         rvt_qp_sends_has_lkey(qp, lkey) ||
0707         rvt_qp_acks_has_lkey(qp, lkey))
0708         lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
0709 check_lwqe:
0710     spin_unlock(&qp->s_lock);
0711     spin_unlock(&qp->s_hlock);
0712     spin_unlock_irq(&qp->r_lock);
0713     if (lastwqe) {
0714         struct ib_event ev;
0715 
0716         ev.device = qp->ibqp.device;
0717         ev.element.qp = &qp->ibqp;
0718         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
0719         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
0720     }
0721 }
0722 
0723 /**
0724  * rvt_remove_qp - remove qp form table
0725  * @rdi: rvt dev struct
0726  * @qp: qp to remove
0727  *
0728  * Remove the QP from the table so it can't be found asynchronously by
0729  * the receive routine.
0730  */
0731 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
0732 {
0733     struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
0734     u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
0735     unsigned long flags;
0736     int removed = 1;
0737 
0738     spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
0739 
0740     if (rcu_dereference_protected(rvp->qp[0],
0741             lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
0742         RCU_INIT_POINTER(rvp->qp[0], NULL);
0743     } else if (rcu_dereference_protected(rvp->qp[1],
0744             lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
0745         RCU_INIT_POINTER(rvp->qp[1], NULL);
0746     } else {
0747         struct rvt_qp *q;
0748         struct rvt_qp __rcu **qpp;
0749 
0750         removed = 0;
0751         qpp = &rdi->qp_dev->qp_table[n];
0752         for (; (q = rcu_dereference_protected(*qpp,
0753             lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
0754             qpp = &q->next) {
0755             if (q == qp) {
0756                 RCU_INIT_POINTER(*qpp,
0757                      rcu_dereference_protected(qp->next,
0758                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
0759                 removed = 1;
0760                 trace_rvt_qpremove(qp, n);
0761                 break;
0762             }
0763         }
0764     }
0765 
0766     spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
0767     if (removed) {
0768         synchronize_rcu();
0769         rvt_put_qp(qp);
0770     }
0771 }
0772 
0773 /**
0774  * rvt_alloc_rq - allocate memory for user or kernel buffer
0775  * @rq: receive queue data structure
0776  * @size: number of request queue entries
0777  * @node: The NUMA node
0778  * @udata: True if user data is available or not false
0779  *
0780  * Return: If memory allocation failed, return -ENONEM
0781  * This function is used by both shared receive
0782  * queues and non-shared receive queues to allocate
0783  * memory.
0784  */
0785 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
0786          struct ib_udata *udata)
0787 {
0788     if (udata) {
0789         rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
0790         if (!rq->wq)
0791             goto bail;
0792         /* need kwq with no buffers */
0793         rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
0794         if (!rq->kwq)
0795             goto bail;
0796         rq->kwq->curr_wq = rq->wq->wq;
0797     } else {
0798         /* need kwq with buffers */
0799         rq->kwq =
0800             vzalloc_node(sizeof(struct rvt_krwq) + size, node);
0801         if (!rq->kwq)
0802             goto bail;
0803         rq->kwq->curr_wq = rq->kwq->wq;
0804     }
0805 
0806     spin_lock_init(&rq->kwq->p_lock);
0807     spin_lock_init(&rq->kwq->c_lock);
0808     return 0;
0809 bail:
0810     rvt_free_rq(rq);
0811     return -ENOMEM;
0812 }
0813 
0814 /**
0815  * rvt_init_qp - initialize the QP state to the reset state
0816  * @rdi: rvt dev struct
0817  * @qp: the QP to init or reinit
0818  * @type: the QP type
0819  *
0820  * This function is called from both rvt_create_qp() and
0821  * rvt_reset_qp().   The difference is that the reset
0822  * patch the necessary locks to protect against concurent
0823  * access.
0824  */
0825 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
0826             enum ib_qp_type type)
0827 {
0828     qp->remote_qpn = 0;
0829     qp->qkey = 0;
0830     qp->qp_access_flags = 0;
0831     qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
0832     qp->s_hdrwords = 0;
0833     qp->s_wqe = NULL;
0834     qp->s_draining = 0;
0835     qp->s_next_psn = 0;
0836     qp->s_last_psn = 0;
0837     qp->s_sending_psn = 0;
0838     qp->s_sending_hpsn = 0;
0839     qp->s_psn = 0;
0840     qp->r_psn = 0;
0841     qp->r_msn = 0;
0842     if (type == IB_QPT_RC) {
0843         qp->s_state = IB_OPCODE_RC_SEND_LAST;
0844         qp->r_state = IB_OPCODE_RC_SEND_LAST;
0845     } else {
0846         qp->s_state = IB_OPCODE_UC_SEND_LAST;
0847         qp->r_state = IB_OPCODE_UC_SEND_LAST;
0848     }
0849     qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
0850     qp->r_nak_state = 0;
0851     qp->r_aflags = 0;
0852     qp->r_flags = 0;
0853     qp->s_head = 0;
0854     qp->s_tail = 0;
0855     qp->s_cur = 0;
0856     qp->s_acked = 0;
0857     qp->s_last = 0;
0858     qp->s_ssn = 1;
0859     qp->s_lsn = 0;
0860     qp->s_mig_state = IB_MIG_MIGRATED;
0861     qp->r_head_ack_queue = 0;
0862     qp->s_tail_ack_queue = 0;
0863     qp->s_acked_ack_queue = 0;
0864     qp->s_num_rd_atomic = 0;
0865     qp->r_sge.num_sge = 0;
0866     atomic_set(&qp->s_reserved_used, 0);
0867 }
0868 
0869 /**
0870  * _rvt_reset_qp - initialize the QP state to the reset state
0871  * @rdi: rvt dev struct
0872  * @qp: the QP to reset
0873  * @type: the QP type
0874  *
0875  * r_lock, s_hlock, and s_lock are required to be held by the caller
0876  */
0877 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
0878               enum ib_qp_type type)
0879     __must_hold(&qp->s_lock)
0880     __must_hold(&qp->s_hlock)
0881     __must_hold(&qp->r_lock)
0882 {
0883     lockdep_assert_held(&qp->r_lock);
0884     lockdep_assert_held(&qp->s_hlock);
0885     lockdep_assert_held(&qp->s_lock);
0886     if (qp->state != IB_QPS_RESET) {
0887         qp->state = IB_QPS_RESET;
0888 
0889         /* Let drivers flush their waitlist */
0890         rdi->driver_f.flush_qp_waiters(qp);
0891         rvt_stop_rc_timers(qp);
0892         qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
0893         spin_unlock(&qp->s_lock);
0894         spin_unlock(&qp->s_hlock);
0895         spin_unlock_irq(&qp->r_lock);
0896 
0897         /* Stop the send queue and the retry timer */
0898         rdi->driver_f.stop_send_queue(qp);
0899         rvt_del_timers_sync(qp);
0900         /* Wait for things to stop */
0901         rdi->driver_f.quiesce_qp(qp);
0902 
0903         /* take qp out the hash and wait for it to be unused */
0904         rvt_remove_qp(rdi, qp);
0905 
0906         /* grab the lock b/c it was locked at call time */
0907         spin_lock_irq(&qp->r_lock);
0908         spin_lock(&qp->s_hlock);
0909         spin_lock(&qp->s_lock);
0910 
0911         rvt_clear_mr_refs(qp, 1);
0912         /*
0913          * Let the driver do any tear down or re-init it needs to for
0914          * a qp that has been reset
0915          */
0916         rdi->driver_f.notify_qp_reset(qp);
0917     }
0918     rvt_init_qp(rdi, qp, type);
0919     lockdep_assert_held(&qp->r_lock);
0920     lockdep_assert_held(&qp->s_hlock);
0921     lockdep_assert_held(&qp->s_lock);
0922 }
0923 
0924 /**
0925  * rvt_reset_qp - initialize the QP state to the reset state
0926  * @rdi: the device info
0927  * @qp: the QP to reset
0928  * @type: the QP type
0929  *
0930  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
0931  * before calling _rvt_reset_qp().
0932  */
0933 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
0934              enum ib_qp_type type)
0935 {
0936     spin_lock_irq(&qp->r_lock);
0937     spin_lock(&qp->s_hlock);
0938     spin_lock(&qp->s_lock);
0939     _rvt_reset_qp(rdi, qp, type);
0940     spin_unlock(&qp->s_lock);
0941     spin_unlock(&qp->s_hlock);
0942     spin_unlock_irq(&qp->r_lock);
0943 }
0944 
0945 /**
0946  * rvt_free_qpn - Free a qpn from the bit map
0947  * @qpt: QP table
0948  * @qpn: queue pair number to free
0949  */
0950 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
0951 {
0952     struct rvt_qpn_map *map;
0953 
0954     if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
0955         qpn &= RVT_AIP_QP_SUFFIX;
0956 
0957     map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
0958     if (map->page)
0959         clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
0960 }
0961 
0962 /**
0963  * get_allowed_ops - Given a QP type return the appropriate allowed OP
0964  * @type: valid, supported, QP type
0965  */
0966 static u8 get_allowed_ops(enum ib_qp_type type)
0967 {
0968     return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
0969         IB_OPCODE_UC : IB_OPCODE_UD;
0970 }
0971 
0972 /**
0973  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
0974  * @qp: Valid QP with allowed_ops set
0975  *
0976  * The rvt_swqe data structure being used is a union, so this is
0977  * only valid for UD QPs.
0978  */
0979 static void free_ud_wq_attr(struct rvt_qp *qp)
0980 {
0981     struct rvt_swqe *wqe;
0982     int i;
0983 
0984     for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
0985         wqe = rvt_get_swqe_ptr(qp, i);
0986         kfree(wqe->ud_wr.attr);
0987         wqe->ud_wr.attr = NULL;
0988     }
0989 }
0990 
0991 /**
0992  * alloc_ud_wq_attr - AH attribute cache for UD QPs
0993  * @qp: Valid QP with allowed_ops set
0994  * @node: Numa node for allocation
0995  *
0996  * The rvt_swqe data structure being used is a union, so this is
0997  * only valid for UD QPs.
0998  */
0999 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1000 {
1001     struct rvt_swqe *wqe;
1002     int i;
1003 
1004     for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1005         wqe = rvt_get_swqe_ptr(qp, i);
1006         wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1007                            GFP_KERNEL, node);
1008         if (!wqe->ud_wr.attr) {
1009             free_ud_wq_attr(qp);
1010             return -ENOMEM;
1011         }
1012     }
1013 
1014     return 0;
1015 }
1016 
1017 /**
1018  * rvt_create_qp - create a queue pair for a device
1019  * @ibqp: the queue pair
1020  * @init_attr: the attributes of the queue pair
1021  * @udata: user data for libibverbs.so
1022  *
1023  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1024  * unique idea of what queue pair numbers mean. For instance there is a reserved
1025  * range for PSM.
1026  *
1027  * Return: 0 on success, otherwise returns an errno.
1028  *
1029  * Called by the ib_create_qp() core verbs function.
1030  */
1031 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1032           struct ib_udata *udata)
1033 {
1034     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1035     int ret = -ENOMEM;
1036     struct rvt_swqe *swq = NULL;
1037     size_t sz;
1038     size_t sg_list_sz = 0;
1039     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1040     void *priv = NULL;
1041     size_t sqsize;
1042     u8 exclude_prefix = 0;
1043 
1044     if (!rdi)
1045         return -EINVAL;
1046 
1047     if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1048         return -EOPNOTSUPP;
1049 
1050     if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1051         init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1052         return -EINVAL;
1053 
1054     /* Check receive queue parameters if no SRQ is specified. */
1055     if (!init_attr->srq) {
1056         if (init_attr->cap.max_recv_sge >
1057             rdi->dparms.props.max_recv_sge ||
1058             init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1059             return -EINVAL;
1060 
1061         if (init_attr->cap.max_send_sge +
1062             init_attr->cap.max_send_wr +
1063             init_attr->cap.max_recv_sge +
1064             init_attr->cap.max_recv_wr == 0)
1065             return -EINVAL;
1066     }
1067     sqsize =
1068         init_attr->cap.max_send_wr + 1 +
1069         rdi->dparms.reserved_operations;
1070     switch (init_attr->qp_type) {
1071     case IB_QPT_SMI:
1072     case IB_QPT_GSI:
1073         if (init_attr->port_num == 0 ||
1074             init_attr->port_num > ibqp->device->phys_port_cnt)
1075             return -EINVAL;
1076         fallthrough;
1077     case IB_QPT_UC:
1078     case IB_QPT_RC:
1079     case IB_QPT_UD:
1080         sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1081         swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1082         if (!swq)
1083             return -ENOMEM;
1084 
1085         if (init_attr->srq) {
1086             struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1087 
1088             if (srq->rq.max_sge > 1)
1089                 sg_list_sz = sizeof(*qp->r_sg_list) *
1090                     (srq->rq.max_sge - 1);
1091         } else if (init_attr->cap.max_recv_sge > 1)
1092             sg_list_sz = sizeof(*qp->r_sg_list) *
1093                 (init_attr->cap.max_recv_sge - 1);
1094         qp->r_sg_list =
1095             kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1096         if (!qp->r_sg_list)
1097             goto bail_qp;
1098         qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1099 
1100         RCU_INIT_POINTER(qp->next, NULL);
1101         if (init_attr->qp_type == IB_QPT_RC) {
1102             qp->s_ack_queue =
1103                 kcalloc_node(rvt_max_atomic(rdi),
1104                          sizeof(*qp->s_ack_queue),
1105                          GFP_KERNEL,
1106                          rdi->dparms.node);
1107             if (!qp->s_ack_queue)
1108                 goto bail_qp;
1109         }
1110         /* initialize timers needed for rc qp */
1111         timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1112         hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1113                  HRTIMER_MODE_REL);
1114         qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1115 
1116         /*
1117          * Driver needs to set up it's private QP structure and do any
1118          * initialization that is needed.
1119          */
1120         priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1121         if (IS_ERR(priv)) {
1122             ret = PTR_ERR(priv);
1123             goto bail_qp;
1124         }
1125         qp->priv = priv;
1126         qp->timeout_jiffies =
1127             usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1128                 1000UL);
1129         if (init_attr->srq) {
1130             sz = 0;
1131         } else {
1132             qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1133             qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1134             sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1135                 sizeof(struct rvt_rwqe);
1136             ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1137                        rdi->dparms.node, udata);
1138             if (ret)
1139                 goto bail_driver_priv;
1140         }
1141 
1142         /*
1143          * ib_create_qp() will initialize qp->ibqp
1144          * except for qp->ibqp.qp_num.
1145          */
1146         spin_lock_init(&qp->r_lock);
1147         spin_lock_init(&qp->s_hlock);
1148         spin_lock_init(&qp->s_lock);
1149         atomic_set(&qp->refcount, 0);
1150         atomic_set(&qp->local_ops_pending, 0);
1151         init_waitqueue_head(&qp->wait);
1152         INIT_LIST_HEAD(&qp->rspwait);
1153         qp->state = IB_QPS_RESET;
1154         qp->s_wq = swq;
1155         qp->s_size = sqsize;
1156         qp->s_avail = init_attr->cap.max_send_wr;
1157         qp->s_max_sge = init_attr->cap.max_send_sge;
1158         if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1159             qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1160         ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1161         if (ret)
1162             goto bail_rq_rvt;
1163 
1164         if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1165             exclude_prefix = RVT_AIP_QP_PREFIX;
1166 
1167         ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1168                 init_attr->qp_type,
1169                 init_attr->port_num,
1170                 exclude_prefix);
1171         if (ret < 0)
1172             goto bail_rq_wq;
1173 
1174         qp->ibqp.qp_num = ret;
1175         if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1176             qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1177         qp->port_num = init_attr->port_num;
1178         rvt_init_qp(rdi, qp, init_attr->qp_type);
1179         if (rdi->driver_f.qp_priv_init) {
1180             ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1181             if (ret)
1182                 goto bail_rq_wq;
1183         }
1184         break;
1185 
1186     default:
1187         /* Don't support raw QPs */
1188         return -EOPNOTSUPP;
1189     }
1190 
1191     init_attr->cap.max_inline_data = 0;
1192 
1193     /*
1194      * Return the address of the RWQ as the offset to mmap.
1195      * See rvt_mmap() for details.
1196      */
1197     if (udata && udata->outlen >= sizeof(__u64)) {
1198         if (!qp->r_rq.wq) {
1199             __u64 offset = 0;
1200 
1201             ret = ib_copy_to_udata(udata, &offset,
1202                            sizeof(offset));
1203             if (ret)
1204                 goto bail_qpn;
1205         } else {
1206             u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1207 
1208             qp->ip = rvt_create_mmap_info(rdi, s, udata,
1209                               qp->r_rq.wq);
1210             if (IS_ERR(qp->ip)) {
1211                 ret = PTR_ERR(qp->ip);
1212                 goto bail_qpn;
1213             }
1214 
1215             ret = ib_copy_to_udata(udata, &qp->ip->offset,
1216                            sizeof(qp->ip->offset));
1217             if (ret)
1218                 goto bail_ip;
1219         }
1220         qp->pid = current->pid;
1221     }
1222 
1223     spin_lock(&rdi->n_qps_lock);
1224     if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1225         spin_unlock(&rdi->n_qps_lock);
1226         ret = -ENOMEM;
1227         goto bail_ip;
1228     }
1229 
1230     rdi->n_qps_allocated++;
1231     /*
1232      * Maintain a busy_jiffies variable that will be added to the timeout
1233      * period in mod_retry_timer and add_retry_timer. This busy jiffies
1234      * is scaled by the number of rc qps created for the device to reduce
1235      * the number of timeouts occurring when there is a large number of
1236      * qps. busy_jiffies is incremented every rc qp scaling interval.
1237      * The scaling interval is selected based on extensive performance
1238      * evaluation of targeted workloads.
1239      */
1240     if (init_attr->qp_type == IB_QPT_RC) {
1241         rdi->n_rc_qps++;
1242         rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1243     }
1244     spin_unlock(&rdi->n_qps_lock);
1245 
1246     if (qp->ip) {
1247         spin_lock_irq(&rdi->pending_lock);
1248         list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1249         spin_unlock_irq(&rdi->pending_lock);
1250     }
1251 
1252     return 0;
1253 
1254 bail_ip:
1255     if (qp->ip)
1256         kref_put(&qp->ip->ref, rvt_release_mmap_info);
1257 
1258 bail_qpn:
1259     rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1260 
1261 bail_rq_wq:
1262     free_ud_wq_attr(qp);
1263 
1264 bail_rq_rvt:
1265     rvt_free_rq(&qp->r_rq);
1266 
1267 bail_driver_priv:
1268     rdi->driver_f.qp_priv_free(rdi, qp);
1269 
1270 bail_qp:
1271     kfree(qp->s_ack_queue);
1272     kfree(qp->r_sg_list);
1273     vfree(swq);
1274     return ret;
1275 }
1276 
1277 /**
1278  * rvt_error_qp - put a QP into the error state
1279  * @qp: the QP to put into the error state
1280  * @err: the receive completion error to signal if a RWQE is active
1281  *
1282  * Flushes both send and receive work queues.
1283  *
1284  * Return: true if last WQE event should be generated.
1285  * The QP r_lock and s_lock should be held and interrupts disabled.
1286  * If we are already in error state, just return.
1287  */
1288 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1289 {
1290     struct ib_wc wc;
1291     int ret = 0;
1292     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1293 
1294     lockdep_assert_held(&qp->r_lock);
1295     lockdep_assert_held(&qp->s_lock);
1296     if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1297         goto bail;
1298 
1299     qp->state = IB_QPS_ERR;
1300 
1301     if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1302         qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1303         del_timer(&qp->s_timer);
1304     }
1305 
1306     if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1307         qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1308 
1309     rdi->driver_f.notify_error_qp(qp);
1310 
1311     /* Schedule the sending tasklet to drain the send work queue. */
1312     if (READ_ONCE(qp->s_last) != qp->s_head)
1313         rdi->driver_f.schedule_send(qp);
1314 
1315     rvt_clear_mr_refs(qp, 0);
1316 
1317     memset(&wc, 0, sizeof(wc));
1318     wc.qp = &qp->ibqp;
1319     wc.opcode = IB_WC_RECV;
1320 
1321     if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1322         wc.wr_id = qp->r_wr_id;
1323         wc.status = err;
1324         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1325     }
1326     wc.status = IB_WC_WR_FLUSH_ERR;
1327 
1328     if (qp->r_rq.kwq) {
1329         u32 head;
1330         u32 tail;
1331         struct rvt_rwq *wq = NULL;
1332         struct rvt_krwq *kwq = NULL;
1333 
1334         spin_lock(&qp->r_rq.kwq->c_lock);
1335         /* qp->ip used to validate if there is a  user buffer mmaped */
1336         if (qp->ip) {
1337             wq = qp->r_rq.wq;
1338             head = RDMA_READ_UAPI_ATOMIC(wq->head);
1339             tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1340         } else {
1341             kwq = qp->r_rq.kwq;
1342             head = kwq->head;
1343             tail = kwq->tail;
1344         }
1345         /* sanity check pointers before trusting them */
1346         if (head >= qp->r_rq.size)
1347             head = 0;
1348         if (tail >= qp->r_rq.size)
1349             tail = 0;
1350         while (tail != head) {
1351             wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1352             if (++tail >= qp->r_rq.size)
1353                 tail = 0;
1354             rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1355         }
1356         if (qp->ip)
1357             RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1358         else
1359             kwq->tail = tail;
1360         spin_unlock(&qp->r_rq.kwq->c_lock);
1361     } else if (qp->ibqp.event_handler) {
1362         ret = 1;
1363     }
1364 
1365 bail:
1366     return ret;
1367 }
1368 EXPORT_SYMBOL(rvt_error_qp);
1369 
1370 /*
1371  * Put the QP into the hash table.
1372  * The hash table holds a reference to the QP.
1373  */
1374 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1375 {
1376     struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1377     unsigned long flags;
1378 
1379     rvt_get_qp(qp);
1380     spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1381 
1382     if (qp->ibqp.qp_num <= 1) {
1383         rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1384     } else {
1385         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1386 
1387         qp->next = rdi->qp_dev->qp_table[n];
1388         rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1389         trace_rvt_qpinsert(qp, n);
1390     }
1391 
1392     spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1393 }
1394 
1395 /**
1396  * rvt_modify_qp - modify the attributes of a queue pair
1397  * @ibqp: the queue pair who's attributes we're modifying
1398  * @attr: the new attributes
1399  * @attr_mask: the mask of attributes to modify
1400  * @udata: user data for libibverbs.so
1401  *
1402  * Return: 0 on success, otherwise returns an errno.
1403  */
1404 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1405           int attr_mask, struct ib_udata *udata)
1406 {
1407     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1408     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1409     enum ib_qp_state cur_state, new_state;
1410     struct ib_event ev;
1411     int lastwqe = 0;
1412     int mig = 0;
1413     int pmtu = 0; /* for gcc warning only */
1414     int opa_ah;
1415 
1416     if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1417         return -EOPNOTSUPP;
1418 
1419     spin_lock_irq(&qp->r_lock);
1420     spin_lock(&qp->s_hlock);
1421     spin_lock(&qp->s_lock);
1422 
1423     cur_state = attr_mask & IB_QP_CUR_STATE ?
1424         attr->cur_qp_state : qp->state;
1425     new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1426     opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1427 
1428     if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1429                 attr_mask))
1430         goto inval;
1431 
1432     if (rdi->driver_f.check_modify_qp &&
1433         rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1434         goto inval;
1435 
1436     if (attr_mask & IB_QP_AV) {
1437         if (opa_ah) {
1438             if (rdma_ah_get_dlid(&attr->ah_attr) >=
1439                 opa_get_mcast_base(OPA_MCAST_NR))
1440                 goto inval;
1441         } else {
1442             if (rdma_ah_get_dlid(&attr->ah_attr) >=
1443                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1444                 goto inval;
1445         }
1446 
1447         if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1448             goto inval;
1449     }
1450 
1451     if (attr_mask & IB_QP_ALT_PATH) {
1452         if (opa_ah) {
1453             if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1454                 opa_get_mcast_base(OPA_MCAST_NR))
1455                 goto inval;
1456         } else {
1457             if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1458                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1459                 goto inval;
1460         }
1461 
1462         if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1463             goto inval;
1464         if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1465             goto inval;
1466     }
1467 
1468     if (attr_mask & IB_QP_PKEY_INDEX)
1469         if (attr->pkey_index >= rvt_get_npkeys(rdi))
1470             goto inval;
1471 
1472     if (attr_mask & IB_QP_MIN_RNR_TIMER)
1473         if (attr->min_rnr_timer > 31)
1474             goto inval;
1475 
1476     if (attr_mask & IB_QP_PORT)
1477         if (qp->ibqp.qp_type == IB_QPT_SMI ||
1478             qp->ibqp.qp_type == IB_QPT_GSI ||
1479             attr->port_num == 0 ||
1480             attr->port_num > ibqp->device->phys_port_cnt)
1481             goto inval;
1482 
1483     if (attr_mask & IB_QP_DEST_QPN)
1484         if (attr->dest_qp_num > RVT_QPN_MASK)
1485             goto inval;
1486 
1487     if (attr_mask & IB_QP_RETRY_CNT)
1488         if (attr->retry_cnt > 7)
1489             goto inval;
1490 
1491     if (attr_mask & IB_QP_RNR_RETRY)
1492         if (attr->rnr_retry > 7)
1493             goto inval;
1494 
1495     /*
1496      * Don't allow invalid path_mtu values.  OK to set greater
1497      * than the active mtu (or even the max_cap, if we have tuned
1498      * that to a small mtu.  We'll set qp->path_mtu
1499      * to the lesser of requested attribute mtu and active,
1500      * for packetizing messages.
1501      * Note that the QP port has to be set in INIT and MTU in RTR.
1502      */
1503     if (attr_mask & IB_QP_PATH_MTU) {
1504         pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1505         if (pmtu < 0)
1506             goto inval;
1507     }
1508 
1509     if (attr_mask & IB_QP_PATH_MIG_STATE) {
1510         if (attr->path_mig_state == IB_MIG_REARM) {
1511             if (qp->s_mig_state == IB_MIG_ARMED)
1512                 goto inval;
1513             if (new_state != IB_QPS_RTS)
1514                 goto inval;
1515         } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1516             if (qp->s_mig_state == IB_MIG_REARM)
1517                 goto inval;
1518             if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1519                 goto inval;
1520             if (qp->s_mig_state == IB_MIG_ARMED)
1521                 mig = 1;
1522         } else {
1523             goto inval;
1524         }
1525     }
1526 
1527     if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1528         if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1529             goto inval;
1530 
1531     switch (new_state) {
1532     case IB_QPS_RESET:
1533         if (qp->state != IB_QPS_RESET)
1534             _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1535         break;
1536 
1537     case IB_QPS_RTR:
1538         /* Allow event to re-trigger if QP set to RTR more than once */
1539         qp->r_flags &= ~RVT_R_COMM_EST;
1540         qp->state = new_state;
1541         break;
1542 
1543     case IB_QPS_SQD:
1544         qp->s_draining = qp->s_last != qp->s_cur;
1545         qp->state = new_state;
1546         break;
1547 
1548     case IB_QPS_SQE:
1549         if (qp->ibqp.qp_type == IB_QPT_RC)
1550             goto inval;
1551         qp->state = new_state;
1552         break;
1553 
1554     case IB_QPS_ERR:
1555         lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1556         break;
1557 
1558     default:
1559         qp->state = new_state;
1560         break;
1561     }
1562 
1563     if (attr_mask & IB_QP_PKEY_INDEX)
1564         qp->s_pkey_index = attr->pkey_index;
1565 
1566     if (attr_mask & IB_QP_PORT)
1567         qp->port_num = attr->port_num;
1568 
1569     if (attr_mask & IB_QP_DEST_QPN)
1570         qp->remote_qpn = attr->dest_qp_num;
1571 
1572     if (attr_mask & IB_QP_SQ_PSN) {
1573         qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1574         qp->s_psn = qp->s_next_psn;
1575         qp->s_sending_psn = qp->s_next_psn;
1576         qp->s_last_psn = qp->s_next_psn - 1;
1577         qp->s_sending_hpsn = qp->s_last_psn;
1578     }
1579 
1580     if (attr_mask & IB_QP_RQ_PSN)
1581         qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1582 
1583     if (attr_mask & IB_QP_ACCESS_FLAGS)
1584         qp->qp_access_flags = attr->qp_access_flags;
1585 
1586     if (attr_mask & IB_QP_AV) {
1587         rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1588         qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1589         qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1590     }
1591 
1592     if (attr_mask & IB_QP_ALT_PATH) {
1593         rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1594         qp->s_alt_pkey_index = attr->alt_pkey_index;
1595     }
1596 
1597     if (attr_mask & IB_QP_PATH_MIG_STATE) {
1598         qp->s_mig_state = attr->path_mig_state;
1599         if (mig) {
1600             qp->remote_ah_attr = qp->alt_ah_attr;
1601             qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1602             qp->s_pkey_index = qp->s_alt_pkey_index;
1603         }
1604     }
1605 
1606     if (attr_mask & IB_QP_PATH_MTU) {
1607         qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1608         qp->log_pmtu = ilog2(qp->pmtu);
1609     }
1610 
1611     if (attr_mask & IB_QP_RETRY_CNT) {
1612         qp->s_retry_cnt = attr->retry_cnt;
1613         qp->s_retry = attr->retry_cnt;
1614     }
1615 
1616     if (attr_mask & IB_QP_RNR_RETRY) {
1617         qp->s_rnr_retry_cnt = attr->rnr_retry;
1618         qp->s_rnr_retry = attr->rnr_retry;
1619     }
1620 
1621     if (attr_mask & IB_QP_MIN_RNR_TIMER)
1622         qp->r_min_rnr_timer = attr->min_rnr_timer;
1623 
1624     if (attr_mask & IB_QP_TIMEOUT) {
1625         qp->timeout = attr->timeout;
1626         qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1627     }
1628 
1629     if (attr_mask & IB_QP_QKEY)
1630         qp->qkey = attr->qkey;
1631 
1632     if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1633         qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1634 
1635     if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1636         qp->s_max_rd_atomic = attr->max_rd_atomic;
1637 
1638     if (rdi->driver_f.modify_qp)
1639         rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1640 
1641     spin_unlock(&qp->s_lock);
1642     spin_unlock(&qp->s_hlock);
1643     spin_unlock_irq(&qp->r_lock);
1644 
1645     if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1646         rvt_insert_qp(rdi, qp);
1647 
1648     if (lastwqe) {
1649         ev.device = qp->ibqp.device;
1650         ev.element.qp = &qp->ibqp;
1651         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1652         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1653     }
1654     if (mig) {
1655         ev.device = qp->ibqp.device;
1656         ev.element.qp = &qp->ibqp;
1657         ev.event = IB_EVENT_PATH_MIG;
1658         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1659     }
1660     return 0;
1661 
1662 inval:
1663     spin_unlock(&qp->s_lock);
1664     spin_unlock(&qp->s_hlock);
1665     spin_unlock_irq(&qp->r_lock);
1666     return -EINVAL;
1667 }
1668 
1669 /**
1670  * rvt_destroy_qp - destroy a queue pair
1671  * @ibqp: the queue pair to destroy
1672  * @udata: unused by the driver
1673  *
1674  * Note that this can be called while the QP is actively sending or
1675  * receiving!
1676  *
1677  * Return: 0 on success.
1678  */
1679 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1680 {
1681     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1682     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1683 
1684     rvt_reset_qp(rdi, qp, ibqp->qp_type);
1685 
1686     wait_event(qp->wait, !atomic_read(&qp->refcount));
1687     /* qpn is now available for use again */
1688     rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1689 
1690     spin_lock(&rdi->n_qps_lock);
1691     rdi->n_qps_allocated--;
1692     if (qp->ibqp.qp_type == IB_QPT_RC) {
1693         rdi->n_rc_qps--;
1694         rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1695     }
1696     spin_unlock(&rdi->n_qps_lock);
1697 
1698     if (qp->ip)
1699         kref_put(&qp->ip->ref, rvt_release_mmap_info);
1700     kvfree(qp->r_rq.kwq);
1701     rdi->driver_f.qp_priv_free(rdi, qp);
1702     kfree(qp->s_ack_queue);
1703     kfree(qp->r_sg_list);
1704     rdma_destroy_ah_attr(&qp->remote_ah_attr);
1705     rdma_destroy_ah_attr(&qp->alt_ah_attr);
1706     free_ud_wq_attr(qp);
1707     vfree(qp->s_wq);
1708     return 0;
1709 }
1710 
1711 /**
1712  * rvt_query_qp - query an ipbq
1713  * @ibqp: IB qp to query
1714  * @attr: attr struct to fill in
1715  * @attr_mask: attr mask ignored
1716  * @init_attr: struct to fill in
1717  *
1718  * Return: always 0
1719  */
1720 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1721          int attr_mask, struct ib_qp_init_attr *init_attr)
1722 {
1723     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1724     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1725 
1726     attr->qp_state = qp->state;
1727     attr->cur_qp_state = attr->qp_state;
1728     attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1729     attr->path_mig_state = qp->s_mig_state;
1730     attr->qkey = qp->qkey;
1731     attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1732     attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1733     attr->dest_qp_num = qp->remote_qpn;
1734     attr->qp_access_flags = qp->qp_access_flags;
1735     attr->cap.max_send_wr = qp->s_size - 1 -
1736         rdi->dparms.reserved_operations;
1737     attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1738     attr->cap.max_send_sge = qp->s_max_sge;
1739     attr->cap.max_recv_sge = qp->r_rq.max_sge;
1740     attr->cap.max_inline_data = 0;
1741     attr->ah_attr = qp->remote_ah_attr;
1742     attr->alt_ah_attr = qp->alt_ah_attr;
1743     attr->pkey_index = qp->s_pkey_index;
1744     attr->alt_pkey_index = qp->s_alt_pkey_index;
1745     attr->en_sqd_async_notify = 0;
1746     attr->sq_draining = qp->s_draining;
1747     attr->max_rd_atomic = qp->s_max_rd_atomic;
1748     attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1749     attr->min_rnr_timer = qp->r_min_rnr_timer;
1750     attr->port_num = qp->port_num;
1751     attr->timeout = qp->timeout;
1752     attr->retry_cnt = qp->s_retry_cnt;
1753     attr->rnr_retry = qp->s_rnr_retry_cnt;
1754     attr->alt_port_num =
1755         rdma_ah_get_port_num(&qp->alt_ah_attr);
1756     attr->alt_timeout = qp->alt_timeout;
1757 
1758     init_attr->event_handler = qp->ibqp.event_handler;
1759     init_attr->qp_context = qp->ibqp.qp_context;
1760     init_attr->send_cq = qp->ibqp.send_cq;
1761     init_attr->recv_cq = qp->ibqp.recv_cq;
1762     init_attr->srq = qp->ibqp.srq;
1763     init_attr->cap = attr->cap;
1764     if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1765         init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1766     else
1767         init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1768     init_attr->qp_type = qp->ibqp.qp_type;
1769     init_attr->port_num = qp->port_num;
1770     return 0;
1771 }
1772 
1773 /**
1774  * rvt_post_recv - post a receive on a QP
1775  * @ibqp: the QP to post the receive on
1776  * @wr: the WR to post
1777  * @bad_wr: the first bad WR is put here
1778  *
1779  * This may be called from interrupt context.
1780  *
1781  * Return: 0 on success otherwise errno
1782  */
1783 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1784           const struct ib_recv_wr **bad_wr)
1785 {
1786     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1787     struct rvt_krwq *wq = qp->r_rq.kwq;
1788     unsigned long flags;
1789     int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1790                 !qp->ibqp.srq;
1791 
1792     /* Check that state is OK to post receive. */
1793     if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1794         *bad_wr = wr;
1795         return -EINVAL;
1796     }
1797 
1798     for (; wr; wr = wr->next) {
1799         struct rvt_rwqe *wqe;
1800         u32 next;
1801         int i;
1802 
1803         if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1804             *bad_wr = wr;
1805             return -EINVAL;
1806         }
1807 
1808         spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1809         next = wq->head + 1;
1810         if (next >= qp->r_rq.size)
1811             next = 0;
1812         if (next == READ_ONCE(wq->tail)) {
1813             spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1814             *bad_wr = wr;
1815             return -ENOMEM;
1816         }
1817         if (unlikely(qp_err_flush)) {
1818             struct ib_wc wc;
1819 
1820             memset(&wc, 0, sizeof(wc));
1821             wc.qp = &qp->ibqp;
1822             wc.opcode = IB_WC_RECV;
1823             wc.wr_id = wr->wr_id;
1824             wc.status = IB_WC_WR_FLUSH_ERR;
1825             rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1826         } else {
1827             wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1828             wqe->wr_id = wr->wr_id;
1829             wqe->num_sge = wr->num_sge;
1830             for (i = 0; i < wr->num_sge; i++) {
1831                 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1832                 wqe->sg_list[i].length = wr->sg_list[i].length;
1833                 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1834             }
1835             /*
1836              * Make sure queue entry is written
1837              * before the head index.
1838              */
1839             smp_store_release(&wq->head, next);
1840         }
1841         spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1842     }
1843     return 0;
1844 }
1845 
1846 /**
1847  * rvt_qp_valid_operation - validate post send wr request
1848  * @qp: the qp
1849  * @post_parms: the post send table for the driver
1850  * @wr: the work request
1851  *
1852  * The routine validates the operation based on the
1853  * validation table an returns the length of the operation
1854  * which can extend beyond the ib_send_bw.  Operation
1855  * dependent flags key atomic operation validation.
1856  *
1857  * There is an exception for UD qps that validates the pd and
1858  * overrides the length to include the additional UD specific
1859  * length.
1860  *
1861  * Returns a negative error or the length of the work request
1862  * for building the swqe.
1863  */
1864 static inline int rvt_qp_valid_operation(
1865     struct rvt_qp *qp,
1866     const struct rvt_operation_params *post_parms,
1867     const struct ib_send_wr *wr)
1868 {
1869     int len;
1870 
1871     if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1872         return -EINVAL;
1873     if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1874         return -EINVAL;
1875     if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1876         ibpd_to_rvtpd(qp->ibqp.pd)->user)
1877         return -EINVAL;
1878     if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1879         (wr->num_sge == 0 ||
1880          wr->sg_list[0].length < sizeof(u64) ||
1881          wr->sg_list[0].addr & (sizeof(u64) - 1)))
1882         return -EINVAL;
1883     if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1884         !qp->s_max_rd_atomic)
1885         return -EINVAL;
1886     len = post_parms[wr->opcode].length;
1887     /* UD specific */
1888     if (qp->ibqp.qp_type != IB_QPT_UC &&
1889         qp->ibqp.qp_type != IB_QPT_RC) {
1890         if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1891             return -EINVAL;
1892         len = sizeof(struct ib_ud_wr);
1893     }
1894     return len;
1895 }
1896 
1897 /**
1898  * rvt_qp_is_avail - determine queue capacity
1899  * @qp: the qp
1900  * @rdi: the rdmavt device
1901  * @reserved_op: is reserved operation
1902  *
1903  * This assumes the s_hlock is held but the s_last
1904  * qp variable is uncontrolled.
1905  *
1906  * For non reserved operations, the qp->s_avail
1907  * may be changed.
1908  *
1909  * The return value is zero or a -ENOMEM.
1910  */
1911 static inline int rvt_qp_is_avail(
1912     struct rvt_qp *qp,
1913     struct rvt_dev_info *rdi,
1914     bool reserved_op)
1915 {
1916     u32 slast;
1917     u32 avail;
1918     u32 reserved_used;
1919 
1920     /* see rvt_qp_wqe_unreserve() */
1921     smp_mb__before_atomic();
1922     if (unlikely(reserved_op)) {
1923         /* see rvt_qp_wqe_unreserve() */
1924         reserved_used = atomic_read(&qp->s_reserved_used);
1925         if (reserved_used >= rdi->dparms.reserved_operations)
1926             return -ENOMEM;
1927         return 0;
1928     }
1929     /* non-reserved operations */
1930     if (likely(qp->s_avail))
1931         return 0;
1932     /* See rvt_qp_complete_swqe() */
1933     slast = smp_load_acquire(&qp->s_last);
1934     if (qp->s_head >= slast)
1935         avail = qp->s_size - (qp->s_head - slast);
1936     else
1937         avail = slast - qp->s_head;
1938 
1939     reserved_used = atomic_read(&qp->s_reserved_used);
1940     avail =  avail - 1 -
1941         (rdi->dparms.reserved_operations - reserved_used);
1942     /* insure we don't assign a negative s_avail */
1943     if ((s32)avail <= 0)
1944         return -ENOMEM;
1945     qp->s_avail = avail;
1946     if (WARN_ON(qp->s_avail >
1947             (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1948         rvt_pr_err(rdi,
1949                "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1950                qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1951                qp->s_head, qp->s_tail, qp->s_cur,
1952                qp->s_acked, qp->s_last);
1953     return 0;
1954 }
1955 
1956 /**
1957  * rvt_post_one_wr - post one RC, UC, or UD send work request
1958  * @qp: the QP to post on
1959  * @wr: the work request to send
1960  * @call_send: kick the send engine into gear
1961  */
1962 static int rvt_post_one_wr(struct rvt_qp *qp,
1963                const struct ib_send_wr *wr,
1964                bool *call_send)
1965 {
1966     struct rvt_swqe *wqe;
1967     u32 next;
1968     int i;
1969     int j;
1970     int acc;
1971     struct rvt_lkey_table *rkt;
1972     struct rvt_pd *pd;
1973     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1974     u8 log_pmtu;
1975     int ret;
1976     size_t cplen;
1977     bool reserved_op;
1978     int local_ops_delayed = 0;
1979 
1980     BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1981 
1982     /* IB spec says that num_sge == 0 is OK. */
1983     if (unlikely(wr->num_sge > qp->s_max_sge))
1984         return -EINVAL;
1985 
1986     ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1987     if (ret < 0)
1988         return ret;
1989     cplen = ret;
1990 
1991     /*
1992      * Local operations include fast register and local invalidate.
1993      * Fast register needs to be processed immediately because the
1994      * registered lkey may be used by following work requests and the
1995      * lkey needs to be valid at the time those requests are posted.
1996      * Local invalidate can be processed immediately if fencing is
1997      * not required and no previous local invalidate ops are pending.
1998      * Signaled local operations that have been processed immediately
1999      * need to have requests with "completion only" flags set posted
2000      * to the send queue in order to generate completions.
2001      */
2002     if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2003         switch (wr->opcode) {
2004         case IB_WR_REG_MR:
2005             ret = rvt_fast_reg_mr(qp,
2006                           reg_wr(wr)->mr,
2007                           reg_wr(wr)->key,
2008                           reg_wr(wr)->access);
2009             if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2010                 return ret;
2011             break;
2012         case IB_WR_LOCAL_INV:
2013             if ((wr->send_flags & IB_SEND_FENCE) ||
2014                 atomic_read(&qp->local_ops_pending)) {
2015                 local_ops_delayed = 1;
2016             } else {
2017                 ret = rvt_invalidate_rkey(
2018                     qp, wr->ex.invalidate_rkey);
2019                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2020                     return ret;
2021             }
2022             break;
2023         default:
2024             return -EINVAL;
2025         }
2026     }
2027 
2028     reserved_op = rdi->post_parms[wr->opcode].flags &
2029             RVT_OPERATION_USE_RESERVE;
2030     /* check for avail */
2031     ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2032     if (ret)
2033         return ret;
2034     next = qp->s_head + 1;
2035     if (next >= qp->s_size)
2036         next = 0;
2037 
2038     rkt = &rdi->lkey_table;
2039     pd = ibpd_to_rvtpd(qp->ibqp.pd);
2040     wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2041 
2042     /* cplen has length from above */
2043     memcpy(&wqe->wr, wr, cplen);
2044 
2045     wqe->length = 0;
2046     j = 0;
2047     if (wr->num_sge) {
2048         struct rvt_sge *last_sge = NULL;
2049 
2050         acc = wr->opcode >= IB_WR_RDMA_READ ?
2051             IB_ACCESS_LOCAL_WRITE : 0;
2052         for (i = 0; i < wr->num_sge; i++) {
2053             u32 length = wr->sg_list[i].length;
2054 
2055             if (length == 0)
2056                 continue;
2057             ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2058                       &wr->sg_list[i], acc);
2059             if (unlikely(ret < 0))
2060                 goto bail_inval_free;
2061             wqe->length += length;
2062             if (ret)
2063                 last_sge = &wqe->sg_list[j];
2064             j += ret;
2065         }
2066         wqe->wr.num_sge = j;
2067     }
2068 
2069     /*
2070      * Calculate and set SWQE PSN values prior to handing it off
2071      * to the driver's check routine. This give the driver the
2072      * opportunity to adjust PSN values based on internal checks.
2073      */
2074     log_pmtu = qp->log_pmtu;
2075     if (qp->allowed_ops == IB_OPCODE_UD) {
2076         struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2077 
2078         log_pmtu = ah->log_pmtu;
2079         rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2080     }
2081 
2082     if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2083         if (local_ops_delayed)
2084             atomic_inc(&qp->local_ops_pending);
2085         else
2086             wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2087         wqe->ssn = 0;
2088         wqe->psn = 0;
2089         wqe->lpsn = 0;
2090     } else {
2091         wqe->ssn = qp->s_ssn++;
2092         wqe->psn = qp->s_next_psn;
2093         wqe->lpsn = wqe->psn +
2094                 (wqe->length ?
2095                     ((wqe->length - 1) >> log_pmtu) :
2096                     0);
2097     }
2098 
2099     /* general part of wqe valid - allow for driver checks */
2100     if (rdi->driver_f.setup_wqe) {
2101         ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2102         if (ret < 0)
2103             goto bail_inval_free_ref;
2104     }
2105 
2106     if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2107         qp->s_next_psn = wqe->lpsn + 1;
2108 
2109     if (unlikely(reserved_op)) {
2110         wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2111         rvt_qp_wqe_reserve(qp, wqe);
2112     } else {
2113         wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2114         qp->s_avail--;
2115     }
2116     trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2117     smp_wmb(); /* see request builders */
2118     qp->s_head = next;
2119 
2120     return 0;
2121 
2122 bail_inval_free_ref:
2123     if (qp->allowed_ops == IB_OPCODE_UD)
2124         rdma_destroy_ah_attr(wqe->ud_wr.attr);
2125 bail_inval_free:
2126     /* release mr holds */
2127     while (j) {
2128         struct rvt_sge *sge = &wqe->sg_list[--j];
2129 
2130         rvt_put_mr(sge->mr);
2131     }
2132     return ret;
2133 }
2134 
2135 /**
2136  * rvt_post_send - post a send on a QP
2137  * @ibqp: the QP to post the send on
2138  * @wr: the list of work requests to post
2139  * @bad_wr: the first bad WR is put here
2140  *
2141  * This may be called from interrupt context.
2142  *
2143  * Return: 0 on success else errno
2144  */
2145 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2146           const struct ib_send_wr **bad_wr)
2147 {
2148     struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2149     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2150     unsigned long flags = 0;
2151     bool call_send;
2152     unsigned nreq = 0;
2153     int err = 0;
2154 
2155     spin_lock_irqsave(&qp->s_hlock, flags);
2156 
2157     /*
2158      * Ensure QP state is such that we can send. If not bail out early,
2159      * there is no need to do this every time we post a send.
2160      */
2161     if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2162         spin_unlock_irqrestore(&qp->s_hlock, flags);
2163         return -EINVAL;
2164     }
2165 
2166     /*
2167      * If the send queue is empty, and we only have a single WR then just go
2168      * ahead and kick the send engine into gear. Otherwise we will always
2169      * just schedule the send to happen later.
2170      */
2171     call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2172 
2173     for (; wr; wr = wr->next) {
2174         err = rvt_post_one_wr(qp, wr, &call_send);
2175         if (unlikely(err)) {
2176             *bad_wr = wr;
2177             goto bail;
2178         }
2179         nreq++;
2180     }
2181 bail:
2182     spin_unlock_irqrestore(&qp->s_hlock, flags);
2183     if (nreq) {
2184         /*
2185          * Only call do_send if there is exactly one packet, and the
2186          * driver said it was ok.
2187          */
2188         if (nreq == 1 && call_send)
2189             rdi->driver_f.do_send(qp);
2190         else
2191             rdi->driver_f.schedule_send_no_lock(qp);
2192     }
2193     return err;
2194 }
2195 
2196 /**
2197  * rvt_post_srq_recv - post a receive on a shared receive queue
2198  * @ibsrq: the SRQ to post the receive on
2199  * @wr: the list of work requests to post
2200  * @bad_wr: A pointer to the first WR to cause a problem is put here
2201  *
2202  * This may be called from interrupt context.
2203  *
2204  * Return: 0 on success else errno
2205  */
2206 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2207               const struct ib_recv_wr **bad_wr)
2208 {
2209     struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2210     struct rvt_krwq *wq;
2211     unsigned long flags;
2212 
2213     for (; wr; wr = wr->next) {
2214         struct rvt_rwqe *wqe;
2215         u32 next;
2216         int i;
2217 
2218         if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2219             *bad_wr = wr;
2220             return -EINVAL;
2221         }
2222 
2223         spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2224         wq = srq->rq.kwq;
2225         next = wq->head + 1;
2226         if (next >= srq->rq.size)
2227             next = 0;
2228         if (next == READ_ONCE(wq->tail)) {
2229             spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2230             *bad_wr = wr;
2231             return -ENOMEM;
2232         }
2233 
2234         wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2235         wqe->wr_id = wr->wr_id;
2236         wqe->num_sge = wr->num_sge;
2237         for (i = 0; i < wr->num_sge; i++) {
2238             wqe->sg_list[i].addr = wr->sg_list[i].addr;
2239             wqe->sg_list[i].length = wr->sg_list[i].length;
2240             wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2241         }
2242         /* Make sure queue entry is written before the head index. */
2243         smp_store_release(&wq->head, next);
2244         spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2245     }
2246     return 0;
2247 }
2248 
2249 /*
2250  * rvt used the internal kernel struct as part of its ABI, for now make sure
2251  * the kernel struct does not change layout. FIXME: rvt should never cast the
2252  * user struct to a kernel struct.
2253  */
2254 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2255 {
2256     BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2257              offsetof(struct rvt_wqe_sge, addr));
2258     BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2259              offsetof(struct rvt_wqe_sge, length));
2260     BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2261              offsetof(struct rvt_wqe_sge, lkey));
2262     return (struct ib_sge *)sge;
2263 }
2264 
2265 /*
2266  * Validate a RWQE and fill in the SGE state.
2267  * Return 1 if OK.
2268  */
2269 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2270 {
2271     int i, j, ret;
2272     struct ib_wc wc;
2273     struct rvt_lkey_table *rkt;
2274     struct rvt_pd *pd;
2275     struct rvt_sge_state *ss;
2276     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2277 
2278     rkt = &rdi->lkey_table;
2279     pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2280     ss = &qp->r_sge;
2281     ss->sg_list = qp->r_sg_list;
2282     qp->r_len = 0;
2283     for (i = j = 0; i < wqe->num_sge; i++) {
2284         if (wqe->sg_list[i].length == 0)
2285             continue;
2286         /* Check LKEY */
2287         ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2288                   NULL, rvt_cast_sge(&wqe->sg_list[i]),
2289                   IB_ACCESS_LOCAL_WRITE);
2290         if (unlikely(ret <= 0))
2291             goto bad_lkey;
2292         qp->r_len += wqe->sg_list[i].length;
2293         j++;
2294     }
2295     ss->num_sge = j;
2296     ss->total_len = qp->r_len;
2297     return 1;
2298 
2299 bad_lkey:
2300     while (j) {
2301         struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2302 
2303         rvt_put_mr(sge->mr);
2304     }
2305     ss->num_sge = 0;
2306     memset(&wc, 0, sizeof(wc));
2307     wc.wr_id = wqe->wr_id;
2308     wc.status = IB_WC_LOC_PROT_ERR;
2309     wc.opcode = IB_WC_RECV;
2310     wc.qp = &qp->ibqp;
2311     /* Signal solicited completion event. */
2312     rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2313     return 0;
2314 }
2315 
2316 /**
2317  * get_rvt_head - get head indices of the circular buffer
2318  * @rq: data structure for request queue entry
2319  * @ip: the QP
2320  *
2321  * Return - head index value
2322  */
2323 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2324 {
2325     u32 head;
2326 
2327     if (ip)
2328         head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2329     else
2330         head = rq->kwq->head;
2331 
2332     return head;
2333 }
2334 
2335 /**
2336  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2337  * @qp: the QP
2338  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2339  *
2340  * Return -1 if there is a local error, 0 if no RWQE is available,
2341  * otherwise return 1.
2342  *
2343  * Can be called from interrupt level.
2344  */
2345 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2346 {
2347     unsigned long flags;
2348     struct rvt_rq *rq;
2349     struct rvt_krwq *kwq = NULL;
2350     struct rvt_rwq *wq;
2351     struct rvt_srq *srq;
2352     struct rvt_rwqe *wqe;
2353     void (*handler)(struct ib_event *, void *);
2354     u32 tail;
2355     u32 head;
2356     int ret;
2357     void *ip = NULL;
2358 
2359     if (qp->ibqp.srq) {
2360         srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2361         handler = srq->ibsrq.event_handler;
2362         rq = &srq->rq;
2363         ip = srq->ip;
2364     } else {
2365         srq = NULL;
2366         handler = NULL;
2367         rq = &qp->r_rq;
2368         ip = qp->ip;
2369     }
2370 
2371     spin_lock_irqsave(&rq->kwq->c_lock, flags);
2372     if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2373         ret = 0;
2374         goto unlock;
2375     }
2376     kwq = rq->kwq;
2377     if (ip) {
2378         wq = rq->wq;
2379         tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2380     } else {
2381         tail = kwq->tail;
2382     }
2383 
2384     /* Validate tail before using it since it is user writable. */
2385     if (tail >= rq->size)
2386         tail = 0;
2387 
2388     if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2389         head = get_rvt_head(rq, ip);
2390         kwq->count = rvt_get_rq_count(rq, head, tail);
2391     }
2392     if (unlikely(kwq->count == 0)) {
2393         ret = 0;
2394         goto unlock;
2395     }
2396     /* Make sure entry is read after the count is read. */
2397     smp_rmb();
2398     wqe = rvt_get_rwqe_ptr(rq, tail);
2399     /*
2400      * Even though we update the tail index in memory, the verbs
2401      * consumer is not supposed to post more entries until a
2402      * completion is generated.
2403      */
2404     if (++tail >= rq->size)
2405         tail = 0;
2406     if (ip)
2407         RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2408     else
2409         kwq->tail = tail;
2410     if (!wr_id_only && !init_sge(qp, wqe)) {
2411         ret = -1;
2412         goto unlock;
2413     }
2414     qp->r_wr_id = wqe->wr_id;
2415 
2416     kwq->count--;
2417     ret = 1;
2418     set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2419     if (handler) {
2420         /*
2421          * Validate head pointer value and compute
2422          * the number of remaining WQEs.
2423          */
2424         if (kwq->count < srq->limit) {
2425             kwq->count =
2426                 rvt_get_rq_count(rq,
2427                          get_rvt_head(rq, ip), tail);
2428             if (kwq->count < srq->limit) {
2429                 struct ib_event ev;
2430 
2431                 srq->limit = 0;
2432                 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2433                 ev.device = qp->ibqp.device;
2434                 ev.element.srq = qp->ibqp.srq;
2435                 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2436                 handler(&ev, srq->ibsrq.srq_context);
2437                 goto bail;
2438             }
2439         }
2440     }
2441 unlock:
2442     spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2443 bail:
2444     return ret;
2445 }
2446 EXPORT_SYMBOL(rvt_get_rwqe);
2447 
2448 /**
2449  * rvt_comm_est - handle trap with QP established
2450  * @qp: the QP
2451  */
2452 void rvt_comm_est(struct rvt_qp *qp)
2453 {
2454     qp->r_flags |= RVT_R_COMM_EST;
2455     if (qp->ibqp.event_handler) {
2456         struct ib_event ev;
2457 
2458         ev.device = qp->ibqp.device;
2459         ev.element.qp = &qp->ibqp;
2460         ev.event = IB_EVENT_COMM_EST;
2461         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2462     }
2463 }
2464 EXPORT_SYMBOL(rvt_comm_est);
2465 
2466 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2467 {
2468     unsigned long flags;
2469     int lastwqe;
2470 
2471     spin_lock_irqsave(&qp->s_lock, flags);
2472     lastwqe = rvt_error_qp(qp, err);
2473     spin_unlock_irqrestore(&qp->s_lock, flags);
2474 
2475     if (lastwqe) {
2476         struct ib_event ev;
2477 
2478         ev.device = qp->ibqp.device;
2479         ev.element.qp = &qp->ibqp;
2480         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2481         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2482     }
2483 }
2484 EXPORT_SYMBOL(rvt_rc_error);
2485 
2486 /*
2487  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2488  *  @index - the index
2489  *  return usec from an index into ib_rvt_rnr_table
2490  */
2491 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2492 {
2493     return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2494 }
2495 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2496 
2497 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2498 {
2499     return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2500                   IB_AETH_CREDIT_MASK];
2501 }
2502 
2503 /*
2504  *  rvt_add_retry_timer_ext - add/start a retry timer
2505  *  @qp - the QP
2506  *  @shift - timeout shift to wait for multiple packets
2507  *  add a retry timer on the QP
2508  */
2509 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2510 {
2511     struct ib_qp *ibqp = &qp->ibqp;
2512     struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2513 
2514     lockdep_assert_held(&qp->s_lock);
2515     qp->s_flags |= RVT_S_TIMER;
2516        /* 4.096 usec. * (1 << qp->timeout) */
2517     qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2518                   (qp->timeout_jiffies << shift);
2519     add_timer(&qp->s_timer);
2520 }
2521 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2522 
2523 /**
2524  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2525  * @qp: the QP
2526  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2527  */
2528 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2529 {
2530     u32 to;
2531 
2532     lockdep_assert_held(&qp->s_lock);
2533     qp->s_flags |= RVT_S_WAIT_RNR;
2534     to = rvt_aeth_to_usec(aeth);
2535     trace_rvt_rnrnak_add(qp, to);
2536     hrtimer_start(&qp->s_rnr_timer,
2537               ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2538 }
2539 EXPORT_SYMBOL(rvt_add_rnr_timer);
2540 
2541 /**
2542  * rvt_stop_rc_timers - stop all timers
2543  * @qp: the QP
2544  * stop any pending timers
2545  */
2546 void rvt_stop_rc_timers(struct rvt_qp *qp)
2547 {
2548     lockdep_assert_held(&qp->s_lock);
2549     /* Remove QP from all timers */
2550     if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2551         qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2552         del_timer(&qp->s_timer);
2553         hrtimer_try_to_cancel(&qp->s_rnr_timer);
2554     }
2555 }
2556 EXPORT_SYMBOL(rvt_stop_rc_timers);
2557 
2558 /**
2559  * rvt_stop_rnr_timer - stop an rnr timer
2560  * @qp: the QP
2561  *
2562  * stop an rnr timer and return if the timer
2563  * had been pending.
2564  */
2565 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2566 {
2567     lockdep_assert_held(&qp->s_lock);
2568     /* Remove QP from rnr timer */
2569     if (qp->s_flags & RVT_S_WAIT_RNR) {
2570         qp->s_flags &= ~RVT_S_WAIT_RNR;
2571         trace_rvt_rnrnak_stop(qp, 0);
2572     }
2573 }
2574 
2575 /**
2576  * rvt_del_timers_sync - wait for any timeout routines to exit
2577  * @qp: the QP
2578  */
2579 void rvt_del_timers_sync(struct rvt_qp *qp)
2580 {
2581     del_timer_sync(&qp->s_timer);
2582     hrtimer_cancel(&qp->s_rnr_timer);
2583 }
2584 EXPORT_SYMBOL(rvt_del_timers_sync);
2585 
2586 /*
2587  * This is called from s_timer for missing responses.
2588  */
2589 static void rvt_rc_timeout(struct timer_list *t)
2590 {
2591     struct rvt_qp *qp = from_timer(qp, t, s_timer);
2592     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2593     unsigned long flags;
2594 
2595     spin_lock_irqsave(&qp->r_lock, flags);
2596     spin_lock(&qp->s_lock);
2597     if (qp->s_flags & RVT_S_TIMER) {
2598         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2599 
2600         qp->s_flags &= ~RVT_S_TIMER;
2601         rvp->n_rc_timeouts++;
2602         del_timer(&qp->s_timer);
2603         trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2604         if (rdi->driver_f.notify_restart_rc)
2605             rdi->driver_f.notify_restart_rc(qp,
2606                             qp->s_last_psn + 1,
2607                             1);
2608         rdi->driver_f.schedule_send(qp);
2609     }
2610     spin_unlock(&qp->s_lock);
2611     spin_unlock_irqrestore(&qp->r_lock, flags);
2612 }
2613 
2614 /*
2615  * This is called from s_timer for RNR timeouts.
2616  */
2617 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2618 {
2619     struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2620     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2621     unsigned long flags;
2622 
2623     spin_lock_irqsave(&qp->s_lock, flags);
2624     rvt_stop_rnr_timer(qp);
2625     trace_rvt_rnrnak_timeout(qp, 0);
2626     rdi->driver_f.schedule_send(qp);
2627     spin_unlock_irqrestore(&qp->s_lock, flags);
2628     return HRTIMER_NORESTART;
2629 }
2630 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2631 
2632 /**
2633  * rvt_qp_iter_init - initial for QP iteration
2634  * @rdi: rvt devinfo
2635  * @v: u64 value
2636  * @cb: user-defined callback
2637  *
2638  * This returns an iterator suitable for iterating QPs
2639  * in the system.
2640  *
2641  * The @cb is a user-defined callback and @v is a 64-bit
2642  * value passed to and relevant for processing in the
2643  * @cb.  An example use case would be to alter QP processing
2644  * based on criteria not part of the rvt_qp.
2645  *
2646  * Use cases that require memory allocation to succeed
2647  * must preallocate appropriately.
2648  *
2649  * Return: a pointer to an rvt_qp_iter or NULL
2650  */
2651 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2652                      u64 v,
2653                      void (*cb)(struct rvt_qp *qp, u64 v))
2654 {
2655     struct rvt_qp_iter *i;
2656 
2657     i = kzalloc(sizeof(*i), GFP_KERNEL);
2658     if (!i)
2659         return NULL;
2660 
2661     i->rdi = rdi;
2662     /* number of special QPs (SMI/GSI) for device */
2663     i->specials = rdi->ibdev.phys_port_cnt * 2;
2664     i->v = v;
2665     i->cb = cb;
2666 
2667     return i;
2668 }
2669 EXPORT_SYMBOL(rvt_qp_iter_init);
2670 
2671 /**
2672  * rvt_qp_iter_next - return the next QP in iter
2673  * @iter: the iterator
2674  *
2675  * Fine grained QP iterator suitable for use
2676  * with debugfs seq_file mechanisms.
2677  *
2678  * Updates iter->qp with the current QP when the return
2679  * value is 0.
2680  *
2681  * Return: 0 - iter->qp is valid 1 - no more QPs
2682  */
2683 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2684     __must_hold(RCU)
2685 {
2686     int n = iter->n;
2687     int ret = 1;
2688     struct rvt_qp *pqp = iter->qp;
2689     struct rvt_qp *qp;
2690     struct rvt_dev_info *rdi = iter->rdi;
2691 
2692     /*
2693      * The approach is to consider the special qps
2694      * as additional table entries before the
2695      * real hash table.  Since the qp code sets
2696      * the qp->next hash link to NULL, this works just fine.
2697      *
2698      * iter->specials is 2 * # ports
2699      *
2700      * n = 0..iter->specials is the special qp indices
2701      *
2702      * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2703      * the potential hash bucket entries
2704      *
2705      */
2706     for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2707         if (pqp) {
2708             qp = rcu_dereference(pqp->next);
2709         } else {
2710             if (n < iter->specials) {
2711                 struct rvt_ibport *rvp;
2712                 int pidx;
2713 
2714                 pidx = n % rdi->ibdev.phys_port_cnt;
2715                 rvp = rdi->ports[pidx];
2716                 qp = rcu_dereference(rvp->qp[n & 1]);
2717             } else {
2718                 qp = rcu_dereference(
2719                     rdi->qp_dev->qp_table[
2720                         (n - iter->specials)]);
2721             }
2722         }
2723         pqp = qp;
2724         if (qp) {
2725             iter->qp = qp;
2726             iter->n = n;
2727             return 0;
2728         }
2729     }
2730     return ret;
2731 }
2732 EXPORT_SYMBOL(rvt_qp_iter_next);
2733 
2734 /**
2735  * rvt_qp_iter - iterate all QPs
2736  * @rdi: rvt devinfo
2737  * @v: a 64-bit value
2738  * @cb: a callback
2739  *
2740  * This provides a way for iterating all QPs.
2741  *
2742  * The @cb is a user-defined callback and @v is a 64-bit
2743  * value passed to and relevant for processing in the
2744  * cb.  An example use case would be to alter QP processing
2745  * based on criteria not part of the rvt_qp.
2746  *
2747  * The code has an internal iterator to simplify
2748  * non seq_file use cases.
2749  */
2750 void rvt_qp_iter(struct rvt_dev_info *rdi,
2751          u64 v,
2752          void (*cb)(struct rvt_qp *qp, u64 v))
2753 {
2754     int ret;
2755     struct rvt_qp_iter i = {
2756         .rdi = rdi,
2757         .specials = rdi->ibdev.phys_port_cnt * 2,
2758         .v = v,
2759         .cb = cb
2760     };
2761 
2762     rcu_read_lock();
2763     do {
2764         ret = rvt_qp_iter_next(&i);
2765         if (!ret) {
2766             rvt_get_qp(i.qp);
2767             rcu_read_unlock();
2768             i.cb(i.qp, i.v);
2769             rcu_read_lock();
2770             rvt_put_qp(i.qp);
2771         }
2772     } while (!ret);
2773     rcu_read_unlock();
2774 }
2775 EXPORT_SYMBOL(rvt_qp_iter);
2776 
2777 /*
2778  * This should be called with s_lock and r_lock held.
2779  */
2780 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2781                enum ib_wc_status status)
2782 {
2783     u32 old_last, last;
2784     struct rvt_dev_info *rdi;
2785 
2786     if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2787         return;
2788     rdi = ib_to_rvt(qp->ibqp.device);
2789 
2790     old_last = qp->s_last;
2791     trace_rvt_qp_send_completion(qp, wqe, old_last);
2792     last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2793                     status);
2794     if (qp->s_acked == old_last)
2795         qp->s_acked = last;
2796     if (qp->s_cur == old_last)
2797         qp->s_cur = last;
2798     if (qp->s_tail == old_last)
2799         qp->s_tail = last;
2800     if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2801         qp->s_draining = 0;
2802 }
2803 EXPORT_SYMBOL(rvt_send_complete);
2804 
2805 /**
2806  * rvt_copy_sge - copy data to SGE memory
2807  * @qp: associated QP
2808  * @ss: the SGE state
2809  * @data: the data to copy
2810  * @length: the length of the data
2811  * @release: boolean to release MR
2812  * @copy_last: do a separate copy of the last 8 bytes
2813  */
2814 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2815           void *data, u32 length,
2816           bool release, bool copy_last)
2817 {
2818     struct rvt_sge *sge = &ss->sge;
2819     int i;
2820     bool in_last = false;
2821     bool cacheless_copy = false;
2822     struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2823     struct rvt_wss *wss = rdi->wss;
2824     unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2825 
2826     if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2827         cacheless_copy = length >= PAGE_SIZE;
2828     } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2829         if (length >= PAGE_SIZE) {
2830             /*
2831              * NOTE: this *assumes*:
2832              * o The first vaddr is the dest.
2833              * o If multiple pages, then vaddr is sequential.
2834              */
2835             wss_insert(wss, sge->vaddr);
2836             if (length >= (2 * PAGE_SIZE))
2837                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2838 
2839             cacheless_copy = wss_exceeds_threshold(wss);
2840         } else {
2841             wss_advance_clean_counter(wss);
2842         }
2843     }
2844 
2845     if (copy_last) {
2846         if (length > 8) {
2847             length -= 8;
2848         } else {
2849             copy_last = false;
2850             in_last = true;
2851         }
2852     }
2853 
2854 again:
2855     while (length) {
2856         u32 len = rvt_get_sge_length(sge, length);
2857 
2858         WARN_ON_ONCE(len == 0);
2859         if (unlikely(in_last)) {
2860             /* enforce byte transfer ordering */
2861             for (i = 0; i < len; i++)
2862                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2863         } else if (cacheless_copy) {
2864             cacheless_memcpy(sge->vaddr, data, len);
2865         } else {
2866             memcpy(sge->vaddr, data, len);
2867         }
2868         rvt_update_sge(ss, len, release);
2869         data += len;
2870         length -= len;
2871     }
2872 
2873     if (copy_last) {
2874         copy_last = false;
2875         in_last = true;
2876         length = 8;
2877         goto again;
2878     }
2879 }
2880 EXPORT_SYMBOL(rvt_copy_sge);
2881 
2882 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2883                       struct rvt_qp *sqp)
2884 {
2885     rvp->n_pkt_drops++;
2886     /*
2887      * For RC, the requester would timeout and retry so
2888      * shortcut the timeouts and just signal too many retries.
2889      */
2890     return sqp->ibqp.qp_type == IB_QPT_RC ?
2891         IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2892 }
2893 
2894 /**
2895  * rvt_ruc_loopback - handle UC and RC loopback requests
2896  * @sqp: the sending QP
2897  *
2898  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2899  * Note that although we are single threaded due to the send engine, we still
2900  * have to protect against post_send().  We don't have to worry about
2901  * receive interrupts since this is a connected protocol and all packets
2902  * will pass through here.
2903  */
2904 void rvt_ruc_loopback(struct rvt_qp *sqp)
2905 {
2906     struct rvt_ibport *rvp =  NULL;
2907     struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2908     struct rvt_qp *qp;
2909     struct rvt_swqe *wqe;
2910     struct rvt_sge *sge;
2911     unsigned long flags;
2912     struct ib_wc wc;
2913     u64 sdata;
2914     atomic64_t *maddr;
2915     enum ib_wc_status send_status;
2916     bool release;
2917     int ret;
2918     bool copy_last = false;
2919     int local_ops = 0;
2920 
2921     rcu_read_lock();
2922     rvp = rdi->ports[sqp->port_num - 1];
2923 
2924     /*
2925      * Note that we check the responder QP state after
2926      * checking the requester's state.
2927      */
2928 
2929     qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2930                 sqp->remote_qpn);
2931 
2932     spin_lock_irqsave(&sqp->s_lock, flags);
2933 
2934     /* Return if we are already busy processing a work request. */
2935     if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2936         !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2937         goto unlock;
2938 
2939     sqp->s_flags |= RVT_S_BUSY;
2940 
2941 again:
2942     if (sqp->s_last == READ_ONCE(sqp->s_head))
2943         goto clr_busy;
2944     wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2945 
2946     /* Return if it is not OK to start a new work request. */
2947     if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2948         if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2949             goto clr_busy;
2950         /* We are in the error state, flush the work request. */
2951         send_status = IB_WC_WR_FLUSH_ERR;
2952         goto flush_send;
2953     }
2954 
2955     /*
2956      * We can rely on the entry not changing without the s_lock
2957      * being held until we update s_last.
2958      * We increment s_cur to indicate s_last is in progress.
2959      */
2960     if (sqp->s_last == sqp->s_cur) {
2961         if (++sqp->s_cur >= sqp->s_size)
2962             sqp->s_cur = 0;
2963     }
2964     spin_unlock_irqrestore(&sqp->s_lock, flags);
2965 
2966     if (!qp) {
2967         send_status = loopback_qp_drop(rvp, sqp);
2968         goto serr_no_r_lock;
2969     }
2970     spin_lock_irqsave(&qp->r_lock, flags);
2971     if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2972         qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2973         send_status = loopback_qp_drop(rvp, sqp);
2974         goto serr;
2975     }
2976 
2977     memset(&wc, 0, sizeof(wc));
2978     send_status = IB_WC_SUCCESS;
2979 
2980     release = true;
2981     sqp->s_sge.sge = wqe->sg_list[0];
2982     sqp->s_sge.sg_list = wqe->sg_list + 1;
2983     sqp->s_sge.num_sge = wqe->wr.num_sge;
2984     sqp->s_len = wqe->length;
2985     switch (wqe->wr.opcode) {
2986     case IB_WR_REG_MR:
2987         goto send_comp;
2988 
2989     case IB_WR_LOCAL_INV:
2990         if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2991             if (rvt_invalidate_rkey(sqp,
2992                         wqe->wr.ex.invalidate_rkey))
2993                 send_status = IB_WC_LOC_PROT_ERR;
2994             local_ops = 1;
2995         }
2996         goto send_comp;
2997 
2998     case IB_WR_SEND_WITH_INV:
2999     case IB_WR_SEND_WITH_IMM:
3000     case IB_WR_SEND:
3001         ret = rvt_get_rwqe(qp, false);
3002         if (ret < 0)
3003             goto op_err;
3004         if (!ret)
3005             goto rnr_nak;
3006         if (wqe->length > qp->r_len)
3007             goto inv_err;
3008         switch (wqe->wr.opcode) {
3009         case IB_WR_SEND_WITH_INV:
3010             if (!rvt_invalidate_rkey(qp,
3011                          wqe->wr.ex.invalidate_rkey)) {
3012                 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3013                 wc.ex.invalidate_rkey =
3014                     wqe->wr.ex.invalidate_rkey;
3015             }
3016             break;
3017         case IB_WR_SEND_WITH_IMM:
3018             wc.wc_flags = IB_WC_WITH_IMM;
3019             wc.ex.imm_data = wqe->wr.ex.imm_data;
3020             break;
3021         default:
3022             break;
3023         }
3024         break;
3025 
3026     case IB_WR_RDMA_WRITE_WITH_IMM:
3027         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3028             goto inv_err;
3029         wc.wc_flags = IB_WC_WITH_IMM;
3030         wc.ex.imm_data = wqe->wr.ex.imm_data;
3031         ret = rvt_get_rwqe(qp, true);
3032         if (ret < 0)
3033             goto op_err;
3034         if (!ret)
3035             goto rnr_nak;
3036         /* skip copy_last set and qp_access_flags recheck */
3037         goto do_write;
3038     case IB_WR_RDMA_WRITE:
3039         copy_last = rvt_is_user_qp(qp);
3040         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3041             goto inv_err;
3042 do_write:
3043         if (wqe->length == 0)
3044             break;
3045         if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3046                       wqe->rdma_wr.remote_addr,
3047                       wqe->rdma_wr.rkey,
3048                       IB_ACCESS_REMOTE_WRITE)))
3049             goto acc_err;
3050         qp->r_sge.sg_list = NULL;
3051         qp->r_sge.num_sge = 1;
3052         qp->r_sge.total_len = wqe->length;
3053         break;
3054 
3055     case IB_WR_RDMA_READ:
3056         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3057             goto inv_err;
3058         if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3059                       wqe->rdma_wr.remote_addr,
3060                       wqe->rdma_wr.rkey,
3061                       IB_ACCESS_REMOTE_READ)))
3062             goto acc_err;
3063         release = false;
3064         sqp->s_sge.sg_list = NULL;
3065         sqp->s_sge.num_sge = 1;
3066         qp->r_sge.sge = wqe->sg_list[0];
3067         qp->r_sge.sg_list = wqe->sg_list + 1;
3068         qp->r_sge.num_sge = wqe->wr.num_sge;
3069         qp->r_sge.total_len = wqe->length;
3070         break;
3071 
3072     case IB_WR_ATOMIC_CMP_AND_SWP:
3073     case IB_WR_ATOMIC_FETCH_AND_ADD:
3074         if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3075             goto inv_err;
3076         if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3077             goto inv_err;
3078         if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3079                       wqe->atomic_wr.remote_addr,
3080                       wqe->atomic_wr.rkey,
3081                       IB_ACCESS_REMOTE_ATOMIC)))
3082             goto acc_err;
3083         /* Perform atomic OP and save result. */
3084         maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3085         sdata = wqe->atomic_wr.compare_add;
3086         *(u64 *)sqp->s_sge.sge.vaddr =
3087             (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3088             (u64)atomic64_add_return(sdata, maddr) - sdata :
3089             (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3090                       sdata, wqe->atomic_wr.swap);
3091         rvt_put_mr(qp->r_sge.sge.mr);
3092         qp->r_sge.num_sge = 0;
3093         goto send_comp;
3094 
3095     default:
3096         send_status = IB_WC_LOC_QP_OP_ERR;
3097         goto serr;
3098     }
3099 
3100     sge = &sqp->s_sge.sge;
3101     while (sqp->s_len) {
3102         u32 len = rvt_get_sge_length(sge, sqp->s_len);
3103 
3104         WARN_ON_ONCE(len == 0);
3105         rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3106                  len, release, copy_last);
3107         rvt_update_sge(&sqp->s_sge, len, !release);
3108         sqp->s_len -= len;
3109     }
3110     if (release)
3111         rvt_put_ss(&qp->r_sge);
3112 
3113     if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3114         goto send_comp;
3115 
3116     if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3117         wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3118     else
3119         wc.opcode = IB_WC_RECV;
3120     wc.wr_id = qp->r_wr_id;
3121     wc.status = IB_WC_SUCCESS;
3122     wc.byte_len = wqe->length;
3123     wc.qp = &qp->ibqp;
3124     wc.src_qp = qp->remote_qpn;
3125     wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3126     wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3127     wc.port_num = 1;
3128     /* Signal completion event if the solicited bit is set. */
3129     rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3130 
3131 send_comp:
3132     spin_unlock_irqrestore(&qp->r_lock, flags);
3133     spin_lock_irqsave(&sqp->s_lock, flags);
3134     rvp->n_loop_pkts++;
3135 flush_send:
3136     sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3137     spin_lock(&sqp->r_lock);
3138     rvt_send_complete(sqp, wqe, send_status);
3139     spin_unlock(&sqp->r_lock);
3140     if (local_ops) {
3141         atomic_dec(&sqp->local_ops_pending);
3142         local_ops = 0;
3143     }
3144     goto again;
3145 
3146 rnr_nak:
3147     /* Handle RNR NAK */
3148     if (qp->ibqp.qp_type == IB_QPT_UC)
3149         goto send_comp;
3150     rvp->n_rnr_naks++;
3151     /*
3152      * Note: we don't need the s_lock held since the BUSY flag
3153      * makes this single threaded.
3154      */
3155     if (sqp->s_rnr_retry == 0) {
3156         send_status = IB_WC_RNR_RETRY_EXC_ERR;
3157         goto serr;
3158     }
3159     if (sqp->s_rnr_retry_cnt < 7)
3160         sqp->s_rnr_retry--;
3161     spin_unlock_irqrestore(&qp->r_lock, flags);
3162     spin_lock_irqsave(&sqp->s_lock, flags);
3163     if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3164         goto clr_busy;
3165     rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3166                 IB_AETH_CREDIT_SHIFT);
3167     goto clr_busy;
3168 
3169 op_err:
3170     send_status = IB_WC_REM_OP_ERR;
3171     wc.status = IB_WC_LOC_QP_OP_ERR;
3172     goto err;
3173 
3174 inv_err:
3175     send_status =
3176         sqp->ibqp.qp_type == IB_QPT_RC ?
3177             IB_WC_REM_INV_REQ_ERR :
3178             IB_WC_SUCCESS;
3179     wc.status = IB_WC_LOC_QP_OP_ERR;
3180     goto err;
3181 
3182 acc_err:
3183     send_status = IB_WC_REM_ACCESS_ERR;
3184     wc.status = IB_WC_LOC_PROT_ERR;
3185 err:
3186     /* responder goes to error state */
3187     rvt_rc_error(qp, wc.status);
3188 
3189 serr:
3190     spin_unlock_irqrestore(&qp->r_lock, flags);
3191 serr_no_r_lock:
3192     spin_lock_irqsave(&sqp->s_lock, flags);
3193     spin_lock(&sqp->r_lock);
3194     rvt_send_complete(sqp, wqe, send_status);
3195     spin_unlock(&sqp->r_lock);
3196     if (sqp->ibqp.qp_type == IB_QPT_RC) {
3197         int lastwqe;
3198 
3199         spin_lock(&sqp->r_lock);
3200         lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3201         spin_unlock(&sqp->r_lock);
3202 
3203         sqp->s_flags &= ~RVT_S_BUSY;
3204         spin_unlock_irqrestore(&sqp->s_lock, flags);
3205         if (lastwqe) {
3206             struct ib_event ev;
3207 
3208             ev.device = sqp->ibqp.device;
3209             ev.element.qp = &sqp->ibqp;
3210             ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3211             sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3212         }
3213         goto done;
3214     }
3215 clr_busy:
3216     sqp->s_flags &= ~RVT_S_BUSY;
3217 unlock:
3218     spin_unlock_irqrestore(&sqp->s_lock, flags);
3219 done:
3220     rcu_read_unlock();
3221 }
3222 EXPORT_SYMBOL(rvt_ruc_loopback);