Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
0002 /*
0003  * Copyright(c) 2016 - 2018 Intel Corporation.
0004  */
0005 
0006 #include <linux/slab.h>
0007 #include <linux/vmalloc.h>
0008 #include "cq.h"
0009 #include "vt.h"
0010 #include "trace.h"
0011 
0012 static struct workqueue_struct *comp_vector_wq;
0013 
0014 /**
0015  * rvt_cq_enter - add a new entry to the completion queue
0016  * @cq: completion queue
0017  * @entry: work completion entry to add
0018  * @solicited: true if @entry is solicited
0019  *
0020  * This may be called with qp->s_lock held.
0021  *
0022  * Return: return true on success, else return
0023  * false if cq is full.
0024  */
0025 bool rvt_cq_enter(struct rvt_cq *cq, struct ib_wc *entry, bool solicited)
0026 {
0027     struct ib_uverbs_wc *uqueue = NULL;
0028     struct ib_wc *kqueue = NULL;
0029     struct rvt_cq_wc *u_wc = NULL;
0030     struct rvt_k_cq_wc *k_wc = NULL;
0031     unsigned long flags;
0032     u32 head;
0033     u32 next;
0034     u32 tail;
0035 
0036     spin_lock_irqsave(&cq->lock, flags);
0037 
0038     if (cq->ip) {
0039         u_wc = cq->queue;
0040         uqueue = &u_wc->uqueue[0];
0041         head = RDMA_READ_UAPI_ATOMIC(u_wc->head);
0042         tail = RDMA_READ_UAPI_ATOMIC(u_wc->tail);
0043     } else {
0044         k_wc = cq->kqueue;
0045         kqueue = &k_wc->kqueue[0];
0046         head = k_wc->head;
0047         tail = k_wc->tail;
0048     }
0049 
0050     /*
0051      * Note that the head pointer might be writable by
0052      * user processes.Take care to verify it is a sane value.
0053      */
0054     if (head >= (unsigned)cq->ibcq.cqe) {
0055         head = cq->ibcq.cqe;
0056         next = 0;
0057     } else {
0058         next = head + 1;
0059     }
0060 
0061     if (unlikely(next == tail || cq->cq_full)) {
0062         struct rvt_dev_info *rdi = cq->rdi;
0063 
0064         if (!cq->cq_full)
0065             rvt_pr_err_ratelimited(rdi, "CQ is full!\n");
0066         cq->cq_full = true;
0067         spin_unlock_irqrestore(&cq->lock, flags);
0068         if (cq->ibcq.event_handler) {
0069             struct ib_event ev;
0070 
0071             ev.device = cq->ibcq.device;
0072             ev.element.cq = &cq->ibcq;
0073             ev.event = IB_EVENT_CQ_ERR;
0074             cq->ibcq.event_handler(&ev, cq->ibcq.cq_context);
0075         }
0076         return false;
0077     }
0078     trace_rvt_cq_enter(cq, entry, head);
0079     if (uqueue) {
0080         uqueue[head].wr_id = entry->wr_id;
0081         uqueue[head].status = entry->status;
0082         uqueue[head].opcode = entry->opcode;
0083         uqueue[head].vendor_err = entry->vendor_err;
0084         uqueue[head].byte_len = entry->byte_len;
0085         uqueue[head].ex.imm_data = entry->ex.imm_data;
0086         uqueue[head].qp_num = entry->qp->qp_num;
0087         uqueue[head].src_qp = entry->src_qp;
0088         uqueue[head].wc_flags = entry->wc_flags;
0089         uqueue[head].pkey_index = entry->pkey_index;
0090         uqueue[head].slid = ib_lid_cpu16(entry->slid);
0091         uqueue[head].sl = entry->sl;
0092         uqueue[head].dlid_path_bits = entry->dlid_path_bits;
0093         uqueue[head].port_num = entry->port_num;
0094         /* Make sure entry is written before the head index. */
0095         RDMA_WRITE_UAPI_ATOMIC(u_wc->head, next);
0096     } else {
0097         kqueue[head] = *entry;
0098         k_wc->head = next;
0099     }
0100 
0101     if (cq->notify == IB_CQ_NEXT_COMP ||
0102         (cq->notify == IB_CQ_SOLICITED &&
0103          (solicited || entry->status != IB_WC_SUCCESS))) {
0104         /*
0105          * This will cause send_complete() to be called in
0106          * another thread.
0107          */
0108         cq->notify = RVT_CQ_NONE;
0109         cq->triggered++;
0110         queue_work_on(cq->comp_vector_cpu, comp_vector_wq,
0111                   &cq->comptask);
0112     }
0113 
0114     spin_unlock_irqrestore(&cq->lock, flags);
0115     return true;
0116 }
0117 EXPORT_SYMBOL(rvt_cq_enter);
0118 
0119 static void send_complete(struct work_struct *work)
0120 {
0121     struct rvt_cq *cq = container_of(work, struct rvt_cq, comptask);
0122 
0123     /*
0124      * The completion handler will most likely rearm the notification
0125      * and poll for all pending entries.  If a new completion entry
0126      * is added while we are in this routine, queue_work()
0127      * won't call us again until we return so we check triggered to
0128      * see if we need to call the handler again.
0129      */
0130     for (;;) {
0131         u8 triggered = cq->triggered;
0132 
0133         /*
0134          * IPoIB connected mode assumes the callback is from a
0135          * soft IRQ. We simulate this by blocking "bottom halves".
0136          * See the implementation for ipoib_cm_handle_tx_wc(),
0137          * netif_tx_lock_bh() and netif_tx_lock().
0138          */
0139         local_bh_disable();
0140         cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context);
0141         local_bh_enable();
0142 
0143         if (cq->triggered == triggered)
0144             return;
0145     }
0146 }
0147 
0148 /**
0149  * rvt_create_cq - create a completion queue
0150  * @ibcq: Allocated CQ
0151  * @attr: creation attributes
0152  * @udata: user data for libibverbs.so
0153  *
0154  * Called by ib_create_cq() in the generic verbs code.
0155  *
0156  * Return: 0 on success
0157  */
0158 int rvt_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr,
0159           struct ib_udata *udata)
0160 {
0161     struct ib_device *ibdev = ibcq->device;
0162     struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
0163     struct rvt_cq *cq = ibcq_to_rvtcq(ibcq);
0164     struct rvt_cq_wc *u_wc = NULL;
0165     struct rvt_k_cq_wc *k_wc = NULL;
0166     u32 sz;
0167     unsigned int entries = attr->cqe;
0168     int comp_vector = attr->comp_vector;
0169     int err;
0170 
0171     if (attr->flags)
0172         return -EOPNOTSUPP;
0173 
0174     if (entries < 1 || entries > rdi->dparms.props.max_cqe)
0175         return -EINVAL;
0176 
0177     if (comp_vector < 0)
0178         comp_vector = 0;
0179 
0180     comp_vector = comp_vector % rdi->ibdev.num_comp_vectors;
0181 
0182     /*
0183      * Allocate the completion queue entries and head/tail pointers.
0184      * This is allocated separately so that it can be resized and
0185      * also mapped into user space.
0186      * We need to use vmalloc() in order to support mmap and large
0187      * numbers of entries.
0188      */
0189     if (udata && udata->outlen >= sizeof(__u64)) {
0190         sz = sizeof(struct ib_uverbs_wc) * (entries + 1);
0191         sz += sizeof(*u_wc);
0192         u_wc = vmalloc_user(sz);
0193         if (!u_wc)
0194             return -ENOMEM;
0195     } else {
0196         sz = sizeof(struct ib_wc) * (entries + 1);
0197         sz += sizeof(*k_wc);
0198         k_wc = vzalloc_node(sz, rdi->dparms.node);
0199         if (!k_wc)
0200             return -ENOMEM;
0201     }
0202 
0203     /*
0204      * Return the address of the WC as the offset to mmap.
0205      * See rvt_mmap() for details.
0206      */
0207     if (udata && udata->outlen >= sizeof(__u64)) {
0208         cq->ip = rvt_create_mmap_info(rdi, sz, udata, u_wc);
0209         if (IS_ERR(cq->ip)) {
0210             err = PTR_ERR(cq->ip);
0211             goto bail_wc;
0212         }
0213 
0214         err = ib_copy_to_udata(udata, &cq->ip->offset,
0215                        sizeof(cq->ip->offset));
0216         if (err)
0217             goto bail_ip;
0218     }
0219 
0220     spin_lock_irq(&rdi->n_cqs_lock);
0221     if (rdi->n_cqs_allocated == rdi->dparms.props.max_cq) {
0222         spin_unlock_irq(&rdi->n_cqs_lock);
0223         err = -ENOMEM;
0224         goto bail_ip;
0225     }
0226 
0227     rdi->n_cqs_allocated++;
0228     spin_unlock_irq(&rdi->n_cqs_lock);
0229 
0230     if (cq->ip) {
0231         spin_lock_irq(&rdi->pending_lock);
0232         list_add(&cq->ip->pending_mmaps, &rdi->pending_mmaps);
0233         spin_unlock_irq(&rdi->pending_lock);
0234     }
0235 
0236     /*
0237      * ib_create_cq() will initialize cq->ibcq except for cq->ibcq.cqe.
0238      * The number of entries should be >= the number requested or return
0239      * an error.
0240      */
0241     cq->rdi = rdi;
0242     if (rdi->driver_f.comp_vect_cpu_lookup)
0243         cq->comp_vector_cpu =
0244             rdi->driver_f.comp_vect_cpu_lookup(rdi, comp_vector);
0245     else
0246         cq->comp_vector_cpu =
0247             cpumask_first(cpumask_of_node(rdi->dparms.node));
0248 
0249     cq->ibcq.cqe = entries;
0250     cq->notify = RVT_CQ_NONE;
0251     spin_lock_init(&cq->lock);
0252     INIT_WORK(&cq->comptask, send_complete);
0253     if (u_wc)
0254         cq->queue = u_wc;
0255     else
0256         cq->kqueue = k_wc;
0257 
0258     trace_rvt_create_cq(cq, attr);
0259     return 0;
0260 
0261 bail_ip:
0262     kfree(cq->ip);
0263 bail_wc:
0264     vfree(u_wc);
0265     vfree(k_wc);
0266     return err;
0267 }
0268 
0269 /**
0270  * rvt_destroy_cq - destroy a completion queue
0271  * @ibcq: the completion queue to destroy.
0272  * @udata: user data or NULL for kernel object
0273  *
0274  * Called by ib_destroy_cq() in the generic verbs code.
0275  */
0276 int rvt_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata)
0277 {
0278     struct rvt_cq *cq = ibcq_to_rvtcq(ibcq);
0279     struct rvt_dev_info *rdi = cq->rdi;
0280 
0281     flush_work(&cq->comptask);
0282     spin_lock_irq(&rdi->n_cqs_lock);
0283     rdi->n_cqs_allocated--;
0284     spin_unlock_irq(&rdi->n_cqs_lock);
0285     if (cq->ip)
0286         kref_put(&cq->ip->ref, rvt_release_mmap_info);
0287     else
0288         vfree(cq->kqueue);
0289     return 0;
0290 }
0291 
0292 /**
0293  * rvt_req_notify_cq - change the notification type for a completion queue
0294  * @ibcq: the completion queue
0295  * @notify_flags: the type of notification to request
0296  *
0297  * This may be called from interrupt context.  Also called by
0298  * ib_req_notify_cq() in the generic verbs code.
0299  *
0300  * Return: 0 for success.
0301  */
0302 int rvt_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags)
0303 {
0304     struct rvt_cq *cq = ibcq_to_rvtcq(ibcq);
0305     unsigned long flags;
0306     int ret = 0;
0307 
0308     spin_lock_irqsave(&cq->lock, flags);
0309     /*
0310      * Don't change IB_CQ_NEXT_COMP to IB_CQ_SOLICITED but allow
0311      * any other transitions (see C11-31 and C11-32 in ch. 11.4.2.2).
0312      */
0313     if (cq->notify != IB_CQ_NEXT_COMP)
0314         cq->notify = notify_flags & IB_CQ_SOLICITED_MASK;
0315 
0316     if (notify_flags & IB_CQ_REPORT_MISSED_EVENTS) {
0317         if (cq->queue) {
0318             if (RDMA_READ_UAPI_ATOMIC(cq->queue->head) !=
0319                 RDMA_READ_UAPI_ATOMIC(cq->queue->tail))
0320                 ret = 1;
0321         } else {
0322             if (cq->kqueue->head != cq->kqueue->tail)
0323                 ret = 1;
0324         }
0325     }
0326 
0327     spin_unlock_irqrestore(&cq->lock, flags);
0328 
0329     return ret;
0330 }
0331 
0332 /*
0333  * rvt_resize_cq - change the size of the CQ
0334  * @ibcq: the completion queue
0335  *
0336  * Return: 0 for success.
0337  */
0338 int rvt_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata)
0339 {
0340     struct rvt_cq *cq = ibcq_to_rvtcq(ibcq);
0341     u32 head, tail, n;
0342     int ret;
0343     u32 sz;
0344     struct rvt_dev_info *rdi = cq->rdi;
0345     struct rvt_cq_wc *u_wc = NULL;
0346     struct rvt_cq_wc *old_u_wc = NULL;
0347     struct rvt_k_cq_wc *k_wc = NULL;
0348     struct rvt_k_cq_wc *old_k_wc = NULL;
0349 
0350     if (cqe < 1 || cqe > rdi->dparms.props.max_cqe)
0351         return -EINVAL;
0352 
0353     /*
0354      * Need to use vmalloc() if we want to support large #s of entries.
0355      */
0356     if (udata && udata->outlen >= sizeof(__u64)) {
0357         sz = sizeof(struct ib_uverbs_wc) * (cqe + 1);
0358         sz += sizeof(*u_wc);
0359         u_wc = vmalloc_user(sz);
0360         if (!u_wc)
0361             return -ENOMEM;
0362     } else {
0363         sz = sizeof(struct ib_wc) * (cqe + 1);
0364         sz += sizeof(*k_wc);
0365         k_wc = vzalloc_node(sz, rdi->dparms.node);
0366         if (!k_wc)
0367             return -ENOMEM;
0368     }
0369     /* Check that we can write the offset to mmap. */
0370     if (udata && udata->outlen >= sizeof(__u64)) {
0371         __u64 offset = 0;
0372 
0373         ret = ib_copy_to_udata(udata, &offset, sizeof(offset));
0374         if (ret)
0375             goto bail_free;
0376     }
0377 
0378     spin_lock_irq(&cq->lock);
0379     /*
0380      * Make sure head and tail are sane since they
0381      * might be user writable.
0382      */
0383     if (u_wc) {
0384         old_u_wc = cq->queue;
0385         head = RDMA_READ_UAPI_ATOMIC(old_u_wc->head);
0386         tail = RDMA_READ_UAPI_ATOMIC(old_u_wc->tail);
0387     } else {
0388         old_k_wc = cq->kqueue;
0389         head = old_k_wc->head;
0390         tail = old_k_wc->tail;
0391     }
0392 
0393     if (head > (u32)cq->ibcq.cqe)
0394         head = (u32)cq->ibcq.cqe;
0395     if (tail > (u32)cq->ibcq.cqe)
0396         tail = (u32)cq->ibcq.cqe;
0397     if (head < tail)
0398         n = cq->ibcq.cqe + 1 + head - tail;
0399     else
0400         n = head - tail;
0401     if (unlikely((u32)cqe < n)) {
0402         ret = -EINVAL;
0403         goto bail_unlock;
0404     }
0405     for (n = 0; tail != head; n++) {
0406         if (u_wc)
0407             u_wc->uqueue[n] = old_u_wc->uqueue[tail];
0408         else
0409             k_wc->kqueue[n] = old_k_wc->kqueue[tail];
0410         if (tail == (u32)cq->ibcq.cqe)
0411             tail = 0;
0412         else
0413             tail++;
0414     }
0415     cq->ibcq.cqe = cqe;
0416     if (u_wc) {
0417         RDMA_WRITE_UAPI_ATOMIC(u_wc->head, n);
0418         RDMA_WRITE_UAPI_ATOMIC(u_wc->tail, 0);
0419         cq->queue = u_wc;
0420     } else {
0421         k_wc->head = n;
0422         k_wc->tail = 0;
0423         cq->kqueue = k_wc;
0424     }
0425     spin_unlock_irq(&cq->lock);
0426 
0427     if (u_wc)
0428         vfree(old_u_wc);
0429     else
0430         vfree(old_k_wc);
0431 
0432     if (cq->ip) {
0433         struct rvt_mmap_info *ip = cq->ip;
0434 
0435         rvt_update_mmap_info(rdi, ip, sz, u_wc);
0436 
0437         /*
0438          * Return the offset to mmap.
0439          * See rvt_mmap() for details.
0440          */
0441         if (udata && udata->outlen >= sizeof(__u64)) {
0442             ret = ib_copy_to_udata(udata, &ip->offset,
0443                            sizeof(ip->offset));
0444             if (ret)
0445                 return ret;
0446         }
0447 
0448         spin_lock_irq(&rdi->pending_lock);
0449         if (list_empty(&ip->pending_mmaps))
0450             list_add(&ip->pending_mmaps, &rdi->pending_mmaps);
0451         spin_unlock_irq(&rdi->pending_lock);
0452     }
0453 
0454     return 0;
0455 
0456 bail_unlock:
0457     spin_unlock_irq(&cq->lock);
0458 bail_free:
0459     vfree(u_wc);
0460     vfree(k_wc);
0461 
0462     return ret;
0463 }
0464 
0465 /**
0466  * rvt_poll_cq - poll for work completion entries
0467  * @ibcq: the completion queue to poll
0468  * @num_entries: the maximum number of entries to return
0469  * @entry: pointer to array where work completions are placed
0470  *
0471  * This may be called from interrupt context.  Also called by ib_poll_cq()
0472  * in the generic verbs code.
0473  *
0474  * Return: the number of completion entries polled.
0475  */
0476 int rvt_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry)
0477 {
0478     struct rvt_cq *cq = ibcq_to_rvtcq(ibcq);
0479     struct rvt_k_cq_wc *wc;
0480     unsigned long flags;
0481     int npolled;
0482     u32 tail;
0483 
0484     /* The kernel can only poll a kernel completion queue */
0485     if (cq->ip)
0486         return -EINVAL;
0487 
0488     spin_lock_irqsave(&cq->lock, flags);
0489 
0490     wc = cq->kqueue;
0491     tail = wc->tail;
0492     if (tail > (u32)cq->ibcq.cqe)
0493         tail = (u32)cq->ibcq.cqe;
0494     for (npolled = 0; npolled < num_entries; ++npolled, ++entry) {
0495         if (tail == wc->head)
0496             break;
0497         /* The kernel doesn't need a RMB since it has the lock. */
0498         trace_rvt_cq_poll(cq, &wc->kqueue[tail], npolled);
0499         *entry = wc->kqueue[tail];
0500         if (tail >= cq->ibcq.cqe)
0501             tail = 0;
0502         else
0503             tail++;
0504     }
0505     wc->tail = tail;
0506 
0507     spin_unlock_irqrestore(&cq->lock, flags);
0508 
0509     return npolled;
0510 }
0511 
0512 /**
0513  * rvt_driver_cq_init - Init cq resources on behalf of driver
0514  *
0515  * Return: 0 on success
0516  */
0517 int rvt_driver_cq_init(void)
0518 {
0519     comp_vector_wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_CPU_INTENSIVE,
0520                      0, "rdmavt_cq");
0521     if (!comp_vector_wq)
0522         return -ENOMEM;
0523 
0524     return 0;
0525 }
0526 
0527 /**
0528  * rvt_cq_exit - tear down cq reources
0529  */
0530 void rvt_cq_exit(void)
0531 {
0532     destroy_workqueue(comp_vector_wq);
0533     comp_vector_wq = NULL;
0534 }