Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
0003  *
0004  * This software is available to you under a choice of one of two
0005  * licenses.  You may choose to be licensed under the terms of the GNU
0006  * General Public License (GPL) Version 2, available from the file
0007  * COPYING in the main directory of this source tree, or the
0008  * OpenIB.org BSD license below:
0009  *
0010  *     Redistribution and use in source and binary forms, with or
0011  *     without modification, are permitted provided that the following
0012  *     conditions are met:
0013  *
0014  *      - Redistributions of source code must retain the above
0015  *        copyright notice, this list of conditions and the following
0016  *        disclaimer.
0017  *
0018  *      - Redistributions in binary form must reproduce the above
0019  *        copyright notice, this list of conditions and the following
0020  *        disclaimer in the documentation and/or other materials
0021  *        provided with the distribution.
0022  *
0023  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0024  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0025  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0026  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0027  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0028  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0029  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0030  * SOFTWARE.
0031  */
0032 
0033 #include <rdma/ib_umem.h>
0034 #include <rdma/ib_umem_odp.h>
0035 #include <linux/kernel.h>
0036 #include <linux/dma-buf.h>
0037 #include <linux/dma-resv.h>
0038 
0039 #include "mlx5_ib.h"
0040 #include "cmd.h"
0041 #include "umr.h"
0042 #include "qp.h"
0043 
0044 #include <linux/mlx5/eq.h>
0045 
0046 /* Contains the details of a pagefault. */
0047 struct mlx5_pagefault {
0048     u32         bytes_committed;
0049     u32         token;
0050     u8          event_subtype;
0051     u8          type;
0052     union {
0053         /* Initiator or send message responder pagefault details. */
0054         struct {
0055             /* Received packet size, only valid for responders. */
0056             u32 packet_size;
0057             /*
0058              * Number of resource holding WQE, depends on type.
0059              */
0060             u32 wq_num;
0061             /*
0062              * WQE index. Refers to either the send queue or
0063              * receive queue, according to event_subtype.
0064              */
0065             u16 wqe_index;
0066         } wqe;
0067         /* RDMA responder pagefault details */
0068         struct {
0069             u32 r_key;
0070             /*
0071              * Received packet size, minimal size page fault
0072              * resolution required for forward progress.
0073              */
0074             u32 packet_size;
0075             u32 rdma_op_len;
0076             u64 rdma_va;
0077         } rdma;
0078     };
0079 
0080     struct mlx5_ib_pf_eq    *eq;
0081     struct work_struct  work;
0082 };
0083 
0084 #define MAX_PREFETCH_LEN (4*1024*1024U)
0085 
0086 /* Timeout in ms to wait for an active mmu notifier to complete when handling
0087  * a pagefault. */
0088 #define MMU_NOTIFIER_TIMEOUT 1000
0089 
0090 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
0091 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
0092 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
0093 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
0094 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
0095 
0096 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
0097 
0098 static u64 mlx5_imr_ksm_entries;
0099 
0100 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
0101             struct mlx5_ib_mr *imr, int flags)
0102 {
0103     struct mlx5_klm *end = pklm + nentries;
0104 
0105     if (flags & MLX5_IB_UPD_XLT_ZAP) {
0106         for (; pklm != end; pklm++, idx++) {
0107             pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
0108             pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
0109             pklm->va = 0;
0110         }
0111         return;
0112     }
0113 
0114     /*
0115      * The locking here is pretty subtle. Ideally the implicit_children
0116      * xarray would be protected by the umem_mutex, however that is not
0117      * possible. Instead this uses a weaker update-then-lock pattern:
0118      *
0119      *    xa_store()
0120      *    mutex_lock(umem_mutex)
0121      *     mlx5r_umr_update_xlt()
0122      *    mutex_unlock(umem_mutex)
0123      *    destroy lkey
0124      *
0125      * ie any change the xarray must be followed by the locked update_xlt
0126      * before destroying.
0127      *
0128      * The umem_mutex provides the acquire/release semantic needed to make
0129      * the xa_store() visible to a racing thread.
0130      */
0131     lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
0132 
0133     for (; pklm != end; pklm++, idx++) {
0134         struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
0135 
0136         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
0137         if (mtt) {
0138             pklm->key = cpu_to_be32(mtt->ibmr.lkey);
0139             pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
0140         } else {
0141             pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
0142             pklm->va = 0;
0143         }
0144     }
0145 }
0146 
0147 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
0148 {
0149     u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
0150 
0151     if (umem_dma & ODP_READ_ALLOWED_BIT)
0152         mtt_entry |= MLX5_IB_MTT_READ;
0153     if (umem_dma & ODP_WRITE_ALLOWED_BIT)
0154         mtt_entry |= MLX5_IB_MTT_WRITE;
0155 
0156     return mtt_entry;
0157 }
0158 
0159 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
0160              struct mlx5_ib_mr *mr, int flags)
0161 {
0162     struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
0163     dma_addr_t pa;
0164     size_t i;
0165 
0166     if (flags & MLX5_IB_UPD_XLT_ZAP)
0167         return;
0168 
0169     for (i = 0; i < nentries; i++) {
0170         pa = odp->dma_list[idx + i];
0171         pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
0172     }
0173 }
0174 
0175 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
0176                struct mlx5_ib_mr *mr, int flags)
0177 {
0178     if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
0179         populate_klm(xlt, idx, nentries, mr, flags);
0180     } else {
0181         populate_mtt(xlt, idx, nentries, mr, flags);
0182     }
0183 }
0184 
0185 /*
0186  * This must be called after the mr has been removed from implicit_children.
0187  * NOTE: The MR does not necessarily have to be
0188  * empty here, parallel page faults could have raced with the free process and
0189  * added pages to it.
0190  */
0191 static void free_implicit_child_mr_work(struct work_struct *work)
0192 {
0193     struct mlx5_ib_mr *mr =
0194         container_of(work, struct mlx5_ib_mr, odp_destroy.work);
0195     struct mlx5_ib_mr *imr = mr->parent;
0196     struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
0197     struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
0198 
0199     mlx5r_deref_wait_odp_mkey(&mr->mmkey);
0200 
0201     mutex_lock(&odp_imr->umem_mutex);
0202     mlx5r_umr_update_xlt(mr->parent,
0203                  ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
0204                  MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
0205     mutex_unlock(&odp_imr->umem_mutex);
0206     mlx5_ib_dereg_mr(&mr->ibmr, NULL);
0207 
0208     mlx5r_deref_odp_mkey(&imr->mmkey);
0209 }
0210 
0211 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
0212 {
0213     struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
0214     unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
0215     struct mlx5_ib_mr *imr = mr->parent;
0216 
0217     if (!refcount_inc_not_zero(&imr->mmkey.usecount))
0218         return;
0219 
0220     xa_erase(&imr->implicit_children, idx);
0221 
0222     /* Freeing a MR is a sleeping operation, so bounce to a work queue */
0223     INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
0224     queue_work(system_unbound_wq, &mr->odp_destroy.work);
0225 }
0226 
0227 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
0228                      const struct mmu_notifier_range *range,
0229                      unsigned long cur_seq)
0230 {
0231     struct ib_umem_odp *umem_odp =
0232         container_of(mni, struct ib_umem_odp, notifier);
0233     struct mlx5_ib_mr *mr;
0234     const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
0235                     sizeof(struct mlx5_mtt)) - 1;
0236     u64 idx = 0, blk_start_idx = 0;
0237     u64 invalidations = 0;
0238     unsigned long start;
0239     unsigned long end;
0240     int in_block = 0;
0241     u64 addr;
0242 
0243     if (!mmu_notifier_range_blockable(range))
0244         return false;
0245 
0246     mutex_lock(&umem_odp->umem_mutex);
0247     mmu_interval_set_seq(mni, cur_seq);
0248     /*
0249      * If npages is zero then umem_odp->private may not be setup yet. This
0250      * does not complete until after the first page is mapped for DMA.
0251      */
0252     if (!umem_odp->npages)
0253         goto out;
0254     mr = umem_odp->private;
0255 
0256     start = max_t(u64, ib_umem_start(umem_odp), range->start);
0257     end = min_t(u64, ib_umem_end(umem_odp), range->end);
0258 
0259     /*
0260      * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
0261      * while we are doing the invalidation, no page fault will attempt to
0262      * overwrite the same MTTs.  Concurent invalidations might race us,
0263      * but they will write 0s as well, so no difference in the end result.
0264      */
0265     for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
0266         idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
0267         /*
0268          * Strive to write the MTTs in chunks, but avoid overwriting
0269          * non-existing MTTs. The huristic here can be improved to
0270          * estimate the cost of another UMR vs. the cost of bigger
0271          * UMR.
0272          */
0273         if (umem_odp->dma_list[idx] &
0274             (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
0275             if (!in_block) {
0276                 blk_start_idx = idx;
0277                 in_block = 1;
0278             }
0279 
0280             /* Count page invalidations */
0281             invalidations += idx - blk_start_idx + 1;
0282         } else {
0283             u64 umr_offset = idx & umr_block_mask;
0284 
0285             if (in_block && umr_offset == 0) {
0286                 mlx5r_umr_update_xlt(mr, blk_start_idx,
0287                              idx - blk_start_idx, 0,
0288                              MLX5_IB_UPD_XLT_ZAP |
0289                              MLX5_IB_UPD_XLT_ATOMIC);
0290                 in_block = 0;
0291             }
0292         }
0293     }
0294     if (in_block)
0295         mlx5r_umr_update_xlt(mr, blk_start_idx,
0296                      idx - blk_start_idx + 1, 0,
0297                      MLX5_IB_UPD_XLT_ZAP |
0298                      MLX5_IB_UPD_XLT_ATOMIC);
0299 
0300     mlx5_update_odp_stats(mr, invalidations, invalidations);
0301 
0302     /*
0303      * We are now sure that the device will not access the
0304      * memory. We can safely unmap it, and mark it as dirty if
0305      * needed.
0306      */
0307 
0308     ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
0309 
0310     if (unlikely(!umem_odp->npages && mr->parent))
0311         destroy_unused_implicit_child_mr(mr);
0312 out:
0313     mutex_unlock(&umem_odp->umem_mutex);
0314     return true;
0315 }
0316 
0317 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
0318     .invalidate = mlx5_ib_invalidate_range,
0319 };
0320 
0321 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
0322 {
0323     struct ib_odp_caps *caps = &dev->odp_caps;
0324 
0325     memset(caps, 0, sizeof(*caps));
0326 
0327     if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
0328         return;
0329 
0330     caps->general_caps = IB_ODP_SUPPORT;
0331 
0332     if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
0333         dev->odp_max_size = U64_MAX;
0334     else
0335         dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
0336 
0337     if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
0338         caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
0339 
0340     if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
0341         caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
0342 
0343     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
0344         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
0345 
0346     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
0347         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
0348 
0349     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
0350         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
0351 
0352     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
0353         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
0354 
0355     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
0356         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
0357 
0358     if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
0359         caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
0360 
0361     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
0362         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
0363 
0364     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
0365         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
0366 
0367     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
0368         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
0369 
0370     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
0371         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
0372 
0373     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
0374         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
0375 
0376     if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
0377         caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
0378 
0379     if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
0380         MLX5_CAP_GEN(dev->mdev, null_mkey) &&
0381         MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
0382         !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
0383         caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
0384 }
0385 
0386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
0387                       struct mlx5_pagefault *pfault,
0388                       int error)
0389 {
0390     int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
0391              pfault->wqe.wq_num : pfault->token;
0392     u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
0393     int err;
0394 
0395     MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
0396     MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
0397     MLX5_SET(page_fault_resume_in, in, token, pfault->token);
0398     MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
0399     MLX5_SET(page_fault_resume_in, in, error, !!error);
0400 
0401     err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
0402     if (err)
0403         mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
0404                 wq_num, err);
0405 }
0406 
0407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
0408                         unsigned long idx)
0409 {
0410     struct mlx5_ib_dev *dev = mr_to_mdev(imr);
0411     struct ib_umem_odp *odp;
0412     struct mlx5_ib_mr *mr;
0413     struct mlx5_ib_mr *ret;
0414     int err;
0415 
0416     odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
0417                       idx * MLX5_IMR_MTT_SIZE,
0418                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
0419     if (IS_ERR(odp))
0420         return ERR_CAST(odp);
0421 
0422     mr = mlx5_mr_cache_alloc(dev, &dev->cache.ent[MLX5_IMR_MTT_CACHE_ENTRY],
0423                  imr->access_flags);
0424     if (IS_ERR(mr)) {
0425         ib_umem_odp_release(odp);
0426         return mr;
0427     }
0428 
0429     mr->access_flags = imr->access_flags;
0430     mr->ibmr.pd = imr->ibmr.pd;
0431     mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
0432     mr->umem = &odp->umem;
0433     mr->ibmr.lkey = mr->mmkey.key;
0434     mr->ibmr.rkey = mr->mmkey.key;
0435     mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
0436     mr->parent = imr;
0437     odp->private = mr;
0438 
0439     /*
0440      * First refcount is owned by the xarray and second refconut
0441      * is returned to the caller.
0442      */
0443     refcount_set(&mr->mmkey.usecount, 2);
0444 
0445     err = mlx5r_umr_update_xlt(mr, 0,
0446                    MLX5_IMR_MTT_ENTRIES,
0447                    PAGE_SHIFT,
0448                    MLX5_IB_UPD_XLT_ZAP |
0449                    MLX5_IB_UPD_XLT_ENABLE);
0450     if (err) {
0451         ret = ERR_PTR(err);
0452         goto out_mr;
0453     }
0454 
0455     xa_lock(&imr->implicit_children);
0456     ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
0457                GFP_KERNEL);
0458     if (unlikely(ret)) {
0459         if (xa_is_err(ret)) {
0460             ret = ERR_PTR(xa_err(ret));
0461             goto out_lock;
0462         }
0463         /*
0464          * Another thread beat us to creating the child mr, use
0465          * theirs.
0466          */
0467         refcount_inc(&ret->mmkey.usecount);
0468         goto out_lock;
0469     }
0470     xa_unlock(&imr->implicit_children);
0471 
0472     mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
0473     return mr;
0474 
0475 out_lock:
0476     xa_unlock(&imr->implicit_children);
0477 out_mr:
0478     mlx5_ib_dereg_mr(&mr->ibmr, NULL);
0479     return ret;
0480 }
0481 
0482 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
0483                          int access_flags)
0484 {
0485     struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
0486     struct ib_umem_odp *umem_odp;
0487     struct mlx5_ib_mr *imr;
0488     int err;
0489 
0490     if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
0491         return ERR_PTR(-EOPNOTSUPP);
0492 
0493     umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
0494     if (IS_ERR(umem_odp))
0495         return ERR_CAST(umem_odp);
0496 
0497     imr = mlx5_mr_cache_alloc(dev,
0498                   &dev->cache.ent[MLX5_IMR_KSM_CACHE_ENTRY],
0499                   access_flags);
0500     if (IS_ERR(imr)) {
0501         ib_umem_odp_release(umem_odp);
0502         return imr;
0503     }
0504 
0505     imr->access_flags = access_flags;
0506     imr->ibmr.pd = &pd->ibpd;
0507     imr->ibmr.iova = 0;
0508     imr->umem = &umem_odp->umem;
0509     imr->ibmr.lkey = imr->mmkey.key;
0510     imr->ibmr.rkey = imr->mmkey.key;
0511     imr->ibmr.device = &dev->ib_dev;
0512     imr->is_odp_implicit = true;
0513     xa_init(&imr->implicit_children);
0514 
0515     err = mlx5r_umr_update_xlt(imr, 0,
0516                    mlx5_imr_ksm_entries,
0517                    MLX5_KSM_PAGE_SHIFT,
0518                    MLX5_IB_UPD_XLT_INDIRECT |
0519                    MLX5_IB_UPD_XLT_ZAP |
0520                    MLX5_IB_UPD_XLT_ENABLE);
0521     if (err)
0522         goto out_mr;
0523 
0524     err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
0525     if (err)
0526         goto out_mr;
0527 
0528     mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
0529     return imr;
0530 out_mr:
0531     mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
0532     mlx5_ib_dereg_mr(&imr->ibmr, NULL);
0533     return ERR_PTR(err);
0534 }
0535 
0536 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
0537 {
0538     struct mlx5_ib_mr *mtt;
0539     unsigned long idx;
0540 
0541     /*
0542      * If this is an implicit MR it is already invalidated so we can just
0543      * delete the children mkeys.
0544      */
0545     xa_for_each(&mr->implicit_children, idx, mtt) {
0546         xa_erase(&mr->implicit_children, idx);
0547         mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
0548     }
0549 }
0550 
0551 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
0552 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
0553 #define MLX5_PF_FLAGS_ENABLE BIT(3)
0554 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
0555                  u64 user_va, size_t bcnt, u32 *bytes_mapped,
0556                  u32 flags)
0557 {
0558     int page_shift, ret, np;
0559     bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
0560     u64 access_mask;
0561     u64 start_idx;
0562     bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
0563     u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
0564 
0565     if (flags & MLX5_PF_FLAGS_ENABLE)
0566         xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
0567 
0568     page_shift = odp->page_shift;
0569     start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
0570     access_mask = ODP_READ_ALLOWED_BIT;
0571 
0572     if (odp->umem.writable && !downgrade)
0573         access_mask |= ODP_WRITE_ALLOWED_BIT;
0574 
0575     np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
0576     if (np < 0)
0577         return np;
0578 
0579     /*
0580      * No need to check whether the MTTs really belong to this MR, since
0581      * ib_umem_odp_map_dma_and_lock already checks this.
0582      */
0583     ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
0584     mutex_unlock(&odp->umem_mutex);
0585 
0586     if (ret < 0) {
0587         if (ret != -EAGAIN)
0588             mlx5_ib_err(mr_to_mdev(mr),
0589                     "Failed to update mkey page tables\n");
0590         goto out;
0591     }
0592 
0593     if (bytes_mapped) {
0594         u32 new_mappings = (np << page_shift) -
0595             (user_va - round_down(user_va, 1 << page_shift));
0596 
0597         *bytes_mapped += min_t(u32, new_mappings, bcnt);
0598     }
0599 
0600     return np << (page_shift - PAGE_SHIFT);
0601 
0602 out:
0603     return ret;
0604 }
0605 
0606 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
0607                  struct ib_umem_odp *odp_imr, u64 user_va,
0608                  size_t bcnt, u32 *bytes_mapped, u32 flags)
0609 {
0610     unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
0611     unsigned long upd_start_idx = end_idx + 1;
0612     unsigned long upd_len = 0;
0613     unsigned long npages = 0;
0614     int err;
0615     int ret;
0616 
0617     if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
0618              mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
0619         return -EFAULT;
0620 
0621     /* Fault each child mr that intersects with our interval. */
0622     while (bcnt) {
0623         unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
0624         struct ib_umem_odp *umem_odp;
0625         struct mlx5_ib_mr *mtt;
0626         u64 len;
0627 
0628         xa_lock(&imr->implicit_children);
0629         mtt = xa_load(&imr->implicit_children, idx);
0630         if (unlikely(!mtt)) {
0631             xa_unlock(&imr->implicit_children);
0632             mtt = implicit_get_child_mr(imr, idx);
0633             if (IS_ERR(mtt)) {
0634                 ret = PTR_ERR(mtt);
0635                 goto out;
0636             }
0637             upd_start_idx = min(upd_start_idx, idx);
0638             upd_len = idx - upd_start_idx + 1;
0639         } else {
0640             refcount_inc(&mtt->mmkey.usecount);
0641             xa_unlock(&imr->implicit_children);
0642         }
0643 
0644         umem_odp = to_ib_umem_odp(mtt->umem);
0645         len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
0646               user_va;
0647 
0648         ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
0649                     bytes_mapped, flags);
0650 
0651         mlx5r_deref_odp_mkey(&mtt->mmkey);
0652 
0653         if (ret < 0)
0654             goto out;
0655         user_va += len;
0656         bcnt -= len;
0657         npages += ret;
0658     }
0659 
0660     ret = npages;
0661 
0662     /*
0663      * Any time the implicit_children are changed we must perform an
0664      * update of the xlt before exiting to ensure the HW and the
0665      * implicit_children remains synchronized.
0666      */
0667 out:
0668     if (likely(!upd_len))
0669         return ret;
0670 
0671     /*
0672      * Notice this is not strictly ordered right, the KSM is updated after
0673      * the implicit_children is updated, so a parallel page fault could
0674      * see a MR that is not yet visible in the KSM.  This is similar to a
0675      * parallel page fault seeing a MR that is being concurrently removed
0676      * from the KSM. Both of these improbable situations are resolved
0677      * safely by resuming the HW and then taking another page fault. The
0678      * next pagefault handler will see the new information.
0679      */
0680     mutex_lock(&odp_imr->umem_mutex);
0681     err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
0682                    MLX5_IB_UPD_XLT_INDIRECT |
0683                       MLX5_IB_UPD_XLT_ATOMIC);
0684     mutex_unlock(&odp_imr->umem_mutex);
0685     if (err) {
0686         mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
0687         return err;
0688     }
0689     return ret;
0690 }
0691 
0692 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
0693                    u32 *bytes_mapped, u32 flags)
0694 {
0695     struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
0696     u32 xlt_flags = 0;
0697     int err;
0698     unsigned int page_size;
0699 
0700     if (flags & MLX5_PF_FLAGS_ENABLE)
0701         xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
0702 
0703     dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
0704     err = ib_umem_dmabuf_map_pages(umem_dmabuf);
0705     if (err) {
0706         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
0707         return err;
0708     }
0709 
0710     page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
0711                          log_page_size, 0,
0712                          umem_dmabuf->umem.iova);
0713     if (unlikely(page_size < PAGE_SIZE)) {
0714         ib_umem_dmabuf_unmap_pages(umem_dmabuf);
0715         err = -EINVAL;
0716     } else {
0717         err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
0718     }
0719     dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
0720 
0721     if (err)
0722         return err;
0723 
0724     if (bytes_mapped)
0725         *bytes_mapped += bcnt;
0726 
0727     return ib_umem_num_pages(mr->umem);
0728 }
0729 
0730 /*
0731  * Returns:
0732  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
0733  *           not accessible, or the MR is no longer valid.
0734  *  -EAGAIN/-ENOMEM: The operation should be retried
0735  *
0736  *  -EINVAL/others: General internal malfunction
0737  *  >0: Number of pages mapped
0738  */
0739 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
0740             u32 *bytes_mapped, u32 flags)
0741 {
0742     struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
0743 
0744     if (unlikely(io_virt < mr->ibmr.iova))
0745         return -EFAULT;
0746 
0747     if (mr->umem->is_dmabuf)
0748         return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
0749 
0750     if (!odp->is_implicit_odp) {
0751         u64 user_va;
0752 
0753         if (check_add_overflow(io_virt - mr->ibmr.iova,
0754                        (u64)odp->umem.address, &user_va))
0755             return -EFAULT;
0756         if (unlikely(user_va >= ib_umem_end(odp) ||
0757                  ib_umem_end(odp) - user_va < bcnt))
0758             return -EFAULT;
0759         return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
0760                      flags);
0761     }
0762     return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
0763                      flags);
0764 }
0765 
0766 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
0767 {
0768     int ret;
0769 
0770     ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
0771                 mr->umem->length, NULL,
0772                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
0773     return ret >= 0 ? 0 : ret;
0774 }
0775 
0776 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
0777 {
0778     int ret;
0779 
0780     ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
0781                   MLX5_PF_FLAGS_ENABLE);
0782 
0783     return ret >= 0 ? 0 : ret;
0784 }
0785 
0786 struct pf_frame {
0787     struct pf_frame *next;
0788     u32 key;
0789     u64 io_virt;
0790     size_t bcnt;
0791     int depth;
0792 };
0793 
0794 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
0795 {
0796     if (!mmkey)
0797         return false;
0798     if (mmkey->type == MLX5_MKEY_MW)
0799         return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
0800     return mmkey->key == key;
0801 }
0802 
0803 /*
0804  * Handle a single data segment in a page-fault WQE or RDMA region.
0805  *
0806  * Returns number of OS pages retrieved on success. The caller may continue to
0807  * the next data segment.
0808  * Can return the following error codes:
0809  * -EAGAIN to designate a temporary error. The caller will abort handling the
0810  *  page fault and resolve it.
0811  * -EFAULT when there's an error mapping the requested pages. The caller will
0812  *  abort the page fault handling.
0813  */
0814 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
0815                      struct ib_pd *pd, u32 key,
0816                      u64 io_virt, size_t bcnt,
0817                      u32 *bytes_committed,
0818                      u32 *bytes_mapped)
0819 {
0820     int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
0821     struct pf_frame *head = NULL, *frame;
0822     struct mlx5_ib_mkey *mmkey;
0823     struct mlx5_ib_mr *mr;
0824     struct mlx5_klm *pklm;
0825     u32 *out = NULL;
0826     size_t offset;
0827 
0828     io_virt += *bytes_committed;
0829     bcnt -= *bytes_committed;
0830 
0831 next_mr:
0832     xa_lock(&dev->odp_mkeys);
0833     mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
0834     if (!mmkey) {
0835         xa_unlock(&dev->odp_mkeys);
0836         mlx5_ib_dbg(
0837             dev,
0838             "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
0839             key);
0840         if (bytes_mapped)
0841             *bytes_mapped += bcnt;
0842         /*
0843          * The user could specify a SGL with multiple lkeys and only
0844          * some of them are ODP. Treat the non-ODP ones as fully
0845          * faulted.
0846          */
0847         ret = 0;
0848         goto end;
0849     }
0850     refcount_inc(&mmkey->usecount);
0851     xa_unlock(&dev->odp_mkeys);
0852 
0853     if (!mkey_is_eq(mmkey, key)) {
0854         mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
0855         ret = -EFAULT;
0856         goto end;
0857     }
0858 
0859     switch (mmkey->type) {
0860     case MLX5_MKEY_MR:
0861         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
0862 
0863         ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
0864         if (ret < 0)
0865             goto end;
0866 
0867         mlx5_update_odp_stats(mr, faults, ret);
0868 
0869         npages += ret;
0870         ret = 0;
0871         break;
0872 
0873     case MLX5_MKEY_MW:
0874     case MLX5_MKEY_INDIRECT_DEVX:
0875         if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
0876             mlx5_ib_dbg(dev, "indirection level exceeded\n");
0877             ret = -EFAULT;
0878             goto end;
0879         }
0880 
0881         outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
0882             sizeof(*pklm) * (mmkey->ndescs - 2);
0883 
0884         if (outlen > cur_outlen) {
0885             kfree(out);
0886             out = kzalloc(outlen, GFP_KERNEL);
0887             if (!out) {
0888                 ret = -ENOMEM;
0889                 goto end;
0890             }
0891             cur_outlen = outlen;
0892         }
0893 
0894         pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
0895                                bsf0_klm0_pas_mtt0_1);
0896 
0897         ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
0898         if (ret)
0899             goto end;
0900 
0901         offset = io_virt - MLX5_GET64(query_mkey_out, out,
0902                           memory_key_mkey_entry.start_addr);
0903 
0904         for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
0905             if (offset >= be32_to_cpu(pklm->bcount)) {
0906                 offset -= be32_to_cpu(pklm->bcount);
0907                 continue;
0908             }
0909 
0910             frame = kzalloc(sizeof(*frame), GFP_KERNEL);
0911             if (!frame) {
0912                 ret = -ENOMEM;
0913                 goto end;
0914             }
0915 
0916             frame->key = be32_to_cpu(pklm->key);
0917             frame->io_virt = be64_to_cpu(pklm->va) + offset;
0918             frame->bcnt = min_t(size_t, bcnt,
0919                         be32_to_cpu(pklm->bcount) - offset);
0920             frame->depth = depth + 1;
0921             frame->next = head;
0922             head = frame;
0923 
0924             bcnt -= frame->bcnt;
0925             offset = 0;
0926         }
0927         break;
0928 
0929     default:
0930         mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
0931         ret = -EFAULT;
0932         goto end;
0933     }
0934 
0935     if (head) {
0936         frame = head;
0937         head = frame->next;
0938 
0939         key = frame->key;
0940         io_virt = frame->io_virt;
0941         bcnt = frame->bcnt;
0942         depth = frame->depth;
0943         kfree(frame);
0944 
0945         mlx5r_deref_odp_mkey(mmkey);
0946         goto next_mr;
0947     }
0948 
0949 end:
0950     if (mmkey)
0951         mlx5r_deref_odp_mkey(mmkey);
0952     while (head) {
0953         frame = head;
0954         head = frame->next;
0955         kfree(frame);
0956     }
0957     kfree(out);
0958 
0959     *bytes_committed = 0;
0960     return ret ? ret : npages;
0961 }
0962 
0963 /*
0964  * Parse a series of data segments for page fault handling.
0965  *
0966  * @dev:  Pointer to mlx5 IB device
0967  * @pfault: contains page fault information.
0968  * @wqe: points at the first data segment in the WQE.
0969  * @wqe_end: points after the end of the WQE.
0970  * @bytes_mapped: receives the number of bytes that the function was able to
0971  *                map. This allows the caller to decide intelligently whether
0972  *                enough memory was mapped to resolve the page fault
0973  *                successfully (e.g. enough for the next MTU, or the entire
0974  *                WQE).
0975  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
0976  *                   the committed bytes).
0977  * @receive_queue: receive WQE end of sg list
0978  *
0979  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
0980  * negative error code.
0981  */
0982 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
0983                    struct mlx5_pagefault *pfault,
0984                    void *wqe,
0985                    void *wqe_end, u32 *bytes_mapped,
0986                    u32 *total_wqe_bytes, bool receive_queue)
0987 {
0988     int ret = 0, npages = 0;
0989     u64 io_virt;
0990     u32 key;
0991     u32 byte_count;
0992     size_t bcnt;
0993     int inline_segment;
0994 
0995     if (bytes_mapped)
0996         *bytes_mapped = 0;
0997     if (total_wqe_bytes)
0998         *total_wqe_bytes = 0;
0999 
1000     while (wqe < wqe_end) {
1001         struct mlx5_wqe_data_seg *dseg = wqe;
1002 
1003         io_virt = be64_to_cpu(dseg->addr);
1004         key = be32_to_cpu(dseg->lkey);
1005         byte_count = be32_to_cpu(dseg->byte_count);
1006         inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1007         bcnt           = byte_count & ~MLX5_INLINE_SEG;
1008 
1009         if (inline_segment) {
1010             bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1011             wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1012                      16);
1013         } else {
1014             wqe += sizeof(*dseg);
1015         }
1016 
1017         /* receive WQE end of sg list. */
1018         if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1019             io_virt == 0)
1020             break;
1021 
1022         if (!inline_segment && total_wqe_bytes) {
1023             *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1024                     pfault->bytes_committed);
1025         }
1026 
1027         /* A zero length data segment designates a length of 2GB. */
1028         if (bcnt == 0)
1029             bcnt = 1U << 31;
1030 
1031         if (inline_segment || bcnt <= pfault->bytes_committed) {
1032             pfault->bytes_committed -=
1033                 min_t(size_t, bcnt,
1034                       pfault->bytes_committed);
1035             continue;
1036         }
1037 
1038         ret = pagefault_single_data_segment(dev, NULL, key,
1039                             io_virt, bcnt,
1040                             &pfault->bytes_committed,
1041                             bytes_mapped);
1042         if (ret < 0)
1043             break;
1044         npages += ret;
1045     }
1046 
1047     return ret < 0 ? ret : npages;
1048 }
1049 
1050 /*
1051  * Parse initiator WQE. Advances the wqe pointer to point at the
1052  * scatter-gather list, and set wqe_end to the end of the WQE.
1053  */
1054 static int mlx5_ib_mr_initiator_pfault_handler(
1055     struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1056     struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1057 {
1058     struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1059     u16 wqe_index = pfault->wqe.wqe_index;
1060     struct mlx5_base_av *av;
1061     unsigned ds, opcode;
1062     u32 qpn = qp->trans_qp.base.mqp.qpn;
1063 
1064     ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1065     if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1066         mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1067                 ds, wqe_length);
1068         return -EFAULT;
1069     }
1070 
1071     if (ds == 0) {
1072         mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1073                 wqe_index, qpn);
1074         return -EFAULT;
1075     }
1076 
1077     *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1078     *wqe += sizeof(*ctrl);
1079 
1080     opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1081          MLX5_WQE_CTRL_OPCODE_MASK;
1082 
1083     if (qp->type == IB_QPT_XRC_INI)
1084         *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1085 
1086     if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1087         av = *wqe;
1088         if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1089             *wqe += sizeof(struct mlx5_av);
1090         else
1091             *wqe += sizeof(struct mlx5_base_av);
1092     }
1093 
1094     switch (opcode) {
1095     case MLX5_OPCODE_RDMA_WRITE:
1096     case MLX5_OPCODE_RDMA_WRITE_IMM:
1097     case MLX5_OPCODE_RDMA_READ:
1098         *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1099         break;
1100     case MLX5_OPCODE_ATOMIC_CS:
1101     case MLX5_OPCODE_ATOMIC_FA:
1102         *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1103         *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1104         break;
1105     }
1106 
1107     return 0;
1108 }
1109 
1110 /*
1111  * Parse responder WQE and set wqe_end to the end of the WQE.
1112  */
1113 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1114                            struct mlx5_ib_srq *srq,
1115                            void **wqe, void **wqe_end,
1116                            int wqe_length)
1117 {
1118     int wqe_size = 1 << srq->msrq.wqe_shift;
1119 
1120     if (wqe_size > wqe_length) {
1121         mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1122         return -EFAULT;
1123     }
1124 
1125     *wqe_end = *wqe + wqe_size;
1126     *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1127 
1128     return 0;
1129 }
1130 
1131 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1132                           struct mlx5_ib_qp *qp,
1133                           void *wqe, void **wqe_end,
1134                           int wqe_length)
1135 {
1136     struct mlx5_ib_wq *wq = &qp->rq;
1137     int wqe_size = 1 << wq->wqe_shift;
1138 
1139     if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1140         mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1141         return -EFAULT;
1142     }
1143 
1144     if (wqe_size > wqe_length) {
1145         mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1146         return -EFAULT;
1147     }
1148 
1149     *wqe_end = wqe + wqe_size;
1150 
1151     return 0;
1152 }
1153 
1154 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1155                                u32 wq_num, int pf_type)
1156 {
1157     struct mlx5_core_rsc_common *common = NULL;
1158     struct mlx5_core_srq *srq;
1159 
1160     switch (pf_type) {
1161     case MLX5_WQE_PF_TYPE_RMP:
1162         srq = mlx5_cmd_get_srq(dev, wq_num);
1163         if (srq)
1164             common = &srq->common;
1165         break;
1166     case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1167     case MLX5_WQE_PF_TYPE_RESP:
1168     case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1169         common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1170         break;
1171     default:
1172         break;
1173     }
1174 
1175     return common;
1176 }
1177 
1178 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1179 {
1180     struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1181 
1182     return to_mibqp(mqp);
1183 }
1184 
1185 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1186 {
1187     struct mlx5_core_srq *msrq =
1188         container_of(res, struct mlx5_core_srq, common);
1189 
1190     return to_mibsrq(msrq);
1191 }
1192 
1193 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1194                       struct mlx5_pagefault *pfault)
1195 {
1196     bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1197     u16 wqe_index = pfault->wqe.wqe_index;
1198     void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1199     u32 bytes_mapped, total_wqe_bytes;
1200     struct mlx5_core_rsc_common *res;
1201     int resume_with_error = 1;
1202     struct mlx5_ib_qp *qp;
1203     size_t bytes_copied;
1204     int ret = 0;
1205 
1206     res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1207     if (!res) {
1208         mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1209         return;
1210     }
1211 
1212     if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1213         res->res != MLX5_RES_XSRQ) {
1214         mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1215                 pfault->type);
1216         goto resolve_page_fault;
1217     }
1218 
1219     wqe_start = (void *)__get_free_page(GFP_KERNEL);
1220     if (!wqe_start) {
1221         mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1222         goto resolve_page_fault;
1223     }
1224 
1225     wqe = wqe_start;
1226     qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1227     if (qp && sq) {
1228         ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1229                       &bytes_copied);
1230         if (ret)
1231             goto read_user;
1232         ret = mlx5_ib_mr_initiator_pfault_handler(
1233             dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1234     } else if (qp && !sq) {
1235         ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1236                       &bytes_copied);
1237         if (ret)
1238             goto read_user;
1239         ret = mlx5_ib_mr_responder_pfault_handler_rq(
1240             dev, qp, wqe, &wqe_end, bytes_copied);
1241     } else if (!qp) {
1242         struct mlx5_ib_srq *srq = res_to_srq(res);
1243 
1244         ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1245                        &bytes_copied);
1246         if (ret)
1247             goto read_user;
1248         ret = mlx5_ib_mr_responder_pfault_handler_srq(
1249             dev, srq, &wqe, &wqe_end, bytes_copied);
1250     }
1251 
1252     if (ret < 0 || wqe >= wqe_end)
1253         goto resolve_page_fault;
1254 
1255     ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1256                       &total_wqe_bytes, !sq);
1257     if (ret == -EAGAIN)
1258         goto out;
1259 
1260     if (ret < 0 || total_wqe_bytes > bytes_mapped)
1261         goto resolve_page_fault;
1262 
1263 out:
1264     ret = 0;
1265     resume_with_error = 0;
1266 
1267 read_user:
1268     if (ret)
1269         mlx5_ib_err(
1270             dev,
1271             "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1272             ret, wqe_index, pfault->token);
1273 
1274 resolve_page_fault:
1275     mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1276     mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1277             pfault->wqe.wq_num, resume_with_error,
1278             pfault->type);
1279     mlx5_core_res_put(res);
1280     free_page((unsigned long)wqe_start);
1281 }
1282 
1283 static int pages_in_range(u64 address, u32 length)
1284 {
1285     return (ALIGN(address + length, PAGE_SIZE) -
1286         (address & PAGE_MASK)) >> PAGE_SHIFT;
1287 }
1288 
1289 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1290                        struct mlx5_pagefault *pfault)
1291 {
1292     u64 address;
1293     u32 length;
1294     u32 prefetch_len = pfault->bytes_committed;
1295     int prefetch_activated = 0;
1296     u32 rkey = pfault->rdma.r_key;
1297     int ret;
1298 
1299     /* The RDMA responder handler handles the page fault in two parts.
1300      * First it brings the necessary pages for the current packet
1301      * (and uses the pfault context), and then (after resuming the QP)
1302      * prefetches more pages. The second operation cannot use the pfault
1303      * context and therefore uses the dummy_pfault context allocated on
1304      * the stack */
1305     pfault->rdma.rdma_va += pfault->bytes_committed;
1306     pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1307                      pfault->rdma.rdma_op_len);
1308     pfault->bytes_committed = 0;
1309 
1310     address = pfault->rdma.rdma_va;
1311     length  = pfault->rdma.rdma_op_len;
1312 
1313     /* For some operations, the hardware cannot tell the exact message
1314      * length, and in those cases it reports zero. Use prefetch
1315      * logic. */
1316     if (length == 0) {
1317         prefetch_activated = 1;
1318         length = pfault->rdma.packet_size;
1319         prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1320     }
1321 
1322     ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1323                         &pfault->bytes_committed, NULL);
1324     if (ret == -EAGAIN) {
1325         /* We're racing with an invalidation, don't prefetch */
1326         prefetch_activated = 0;
1327     } else if (ret < 0 || pages_in_range(address, length) > ret) {
1328         mlx5_ib_page_fault_resume(dev, pfault, 1);
1329         if (ret != -ENOENT)
1330             mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1331                     ret, pfault->token, pfault->type);
1332         return;
1333     }
1334 
1335     mlx5_ib_page_fault_resume(dev, pfault, 0);
1336     mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1337             pfault->token, pfault->type,
1338             prefetch_activated);
1339 
1340     /* At this point, there might be a new pagefault already arriving in
1341      * the eq, switch to the dummy pagefault for the rest of the
1342      * processing. We're still OK with the objects being alive as the
1343      * work-queue is being fenced. */
1344 
1345     if (prefetch_activated) {
1346         u32 bytes_committed = 0;
1347 
1348         ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1349                             prefetch_len,
1350                             &bytes_committed, NULL);
1351         if (ret < 0 && ret != -EAGAIN) {
1352             mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1353                     ret, pfault->token, address, prefetch_len);
1354         }
1355     }
1356 }
1357 
1358 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1359 {
1360     u8 event_subtype = pfault->event_subtype;
1361 
1362     switch (event_subtype) {
1363     case MLX5_PFAULT_SUBTYPE_WQE:
1364         mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1365         break;
1366     case MLX5_PFAULT_SUBTYPE_RDMA:
1367         mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1368         break;
1369     default:
1370         mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1371                 event_subtype);
1372         mlx5_ib_page_fault_resume(dev, pfault, 1);
1373     }
1374 }
1375 
1376 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1377 {
1378     struct mlx5_pagefault *pfault = container_of(work,
1379                              struct mlx5_pagefault,
1380                              work);
1381     struct mlx5_ib_pf_eq *eq = pfault->eq;
1382 
1383     mlx5_ib_pfault(eq->dev, pfault);
1384     mempool_free(pfault, eq->pool);
1385 }
1386 
1387 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1388 {
1389     struct mlx5_eqe_page_fault *pf_eqe;
1390     struct mlx5_pagefault *pfault;
1391     struct mlx5_eqe *eqe;
1392     int cc = 0;
1393 
1394     while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1395         pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1396         if (!pfault) {
1397             schedule_work(&eq->work);
1398             break;
1399         }
1400 
1401         pf_eqe = &eqe->data.page_fault;
1402         pfault->event_subtype = eqe->sub_type;
1403         pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1404 
1405         mlx5_ib_dbg(eq->dev,
1406                 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1407                 eqe->sub_type, pfault->bytes_committed);
1408 
1409         switch (eqe->sub_type) {
1410         case MLX5_PFAULT_SUBTYPE_RDMA:
1411             /* RDMA based event */
1412             pfault->type =
1413                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1414             pfault->token =
1415                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1416                 MLX5_24BIT_MASK;
1417             pfault->rdma.r_key =
1418                 be32_to_cpu(pf_eqe->rdma.r_key);
1419             pfault->rdma.packet_size =
1420                 be16_to_cpu(pf_eqe->rdma.packet_length);
1421             pfault->rdma.rdma_op_len =
1422                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1423             pfault->rdma.rdma_va =
1424                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1425             mlx5_ib_dbg(eq->dev,
1426                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1427                     pfault->type, pfault->token,
1428                     pfault->rdma.r_key);
1429             mlx5_ib_dbg(eq->dev,
1430                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1431                     pfault->rdma.rdma_op_len,
1432                     pfault->rdma.rdma_va);
1433             break;
1434 
1435         case MLX5_PFAULT_SUBTYPE_WQE:
1436             /* WQE based event */
1437             pfault->type =
1438                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1439             pfault->token =
1440                 be32_to_cpu(pf_eqe->wqe.token);
1441             pfault->wqe.wq_num =
1442                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1443                 MLX5_24BIT_MASK;
1444             pfault->wqe.wqe_index =
1445                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1446             pfault->wqe.packet_size =
1447                 be16_to_cpu(pf_eqe->wqe.packet_length);
1448             mlx5_ib_dbg(eq->dev,
1449                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1450                     pfault->type, pfault->token,
1451                     pfault->wqe.wq_num,
1452                     pfault->wqe.wqe_index);
1453             break;
1454 
1455         default:
1456             mlx5_ib_warn(eq->dev,
1457                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1458                      eqe->sub_type);
1459             /* Unsupported page faults should still be
1460              * resolved by the page fault handler
1461              */
1462         }
1463 
1464         pfault->eq = eq;
1465         INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1466         queue_work(eq->wq, &pfault->work);
1467 
1468         cc = mlx5_eq_update_cc(eq->core, ++cc);
1469     }
1470 
1471     mlx5_eq_update_ci(eq->core, cc, 1);
1472 }
1473 
1474 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1475                  void *data)
1476 {
1477     struct mlx5_ib_pf_eq *eq =
1478         container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1479     unsigned long flags;
1480 
1481     if (spin_trylock_irqsave(&eq->lock, flags)) {
1482         mlx5_ib_eq_pf_process(eq);
1483         spin_unlock_irqrestore(&eq->lock, flags);
1484     } else {
1485         schedule_work(&eq->work);
1486     }
1487 
1488     return IRQ_HANDLED;
1489 }
1490 
1491 /* mempool_refill() was proposed but unfortunately wasn't accepted
1492  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1493  * Cheap workaround.
1494  */
1495 static void mempool_refill(mempool_t *pool)
1496 {
1497     while (pool->curr_nr < pool->min_nr)
1498         mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1499 }
1500 
1501 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1502 {
1503     struct mlx5_ib_pf_eq *eq =
1504         container_of(work, struct mlx5_ib_pf_eq, work);
1505 
1506     mempool_refill(eq->pool);
1507 
1508     spin_lock_irq(&eq->lock);
1509     mlx5_ib_eq_pf_process(eq);
1510     spin_unlock_irq(&eq->lock);
1511 }
1512 
1513 enum {
1514     MLX5_IB_NUM_PF_EQE  = 0x1000,
1515     MLX5_IB_NUM_PF_DRAIN    = 64,
1516 };
1517 
1518 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1519 {
1520     struct mlx5_eq_param param = {};
1521     int err = 0;
1522 
1523     mutex_lock(&dev->odp_eq_mutex);
1524     if (eq->core)
1525         goto unlock;
1526     INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1527     spin_lock_init(&eq->lock);
1528     eq->dev = dev;
1529 
1530     eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1531                            sizeof(struct mlx5_pagefault));
1532     if (!eq->pool) {
1533         err = -ENOMEM;
1534         goto unlock;
1535     }
1536 
1537     eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1538                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1539                  MLX5_NUM_CMD_EQE);
1540     if (!eq->wq) {
1541         err = -ENOMEM;
1542         goto err_mempool;
1543     }
1544 
1545     eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1546     param = (struct mlx5_eq_param) {
1547         .nent = MLX5_IB_NUM_PF_EQE,
1548     };
1549     param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1550     eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1551     if (IS_ERR(eq->core)) {
1552         err = PTR_ERR(eq->core);
1553         goto err_wq;
1554     }
1555     err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1556     if (err) {
1557         mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1558         goto err_eq;
1559     }
1560 
1561     mutex_unlock(&dev->odp_eq_mutex);
1562     return 0;
1563 err_eq:
1564     mlx5_eq_destroy_generic(dev->mdev, eq->core);
1565 err_wq:
1566     eq->core = NULL;
1567     destroy_workqueue(eq->wq);
1568 err_mempool:
1569     mempool_destroy(eq->pool);
1570 unlock:
1571     mutex_unlock(&dev->odp_eq_mutex);
1572     return err;
1573 }
1574 
1575 static int
1576 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1577 {
1578     int err;
1579 
1580     if (!eq->core)
1581         return 0;
1582     mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1583     err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1584     cancel_work_sync(&eq->work);
1585     destroy_workqueue(eq->wq);
1586     mempool_destroy(eq->pool);
1587 
1588     return err;
1589 }
1590 
1591 void mlx5_odp_init_mkey_cache_entry(struct mlx5_cache_ent *ent)
1592 {
1593     if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1594         return;
1595 
1596     switch (ent->order - 2) {
1597     case MLX5_IMR_MTT_CACHE_ENTRY:
1598         ent->page = PAGE_SHIFT;
1599         ent->ndescs = MLX5_IMR_MTT_ENTRIES;
1600         ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1601         ent->limit = 0;
1602         break;
1603 
1604     case MLX5_IMR_KSM_CACHE_ENTRY:
1605         ent->page = MLX5_KSM_PAGE_SHIFT;
1606         ent->ndescs = mlx5_imr_ksm_entries;
1607         ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1608         ent->limit = 0;
1609         break;
1610     }
1611 }
1612 
1613 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1614     .advise_mr = mlx5_ib_advise_mr,
1615 };
1616 
1617 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1618 {
1619     int ret = 0;
1620 
1621     internal_fill_odp_caps(dev);
1622 
1623     if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1624         return ret;
1625 
1626     ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1627 
1628     if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1629         ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1630         if (ret) {
1631             mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1632             return ret;
1633         }
1634     }
1635 
1636     mutex_init(&dev->odp_eq_mutex);
1637     return ret;
1638 }
1639 
1640 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1641 {
1642     if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1643         return;
1644 
1645     mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1646 }
1647 
1648 int mlx5_ib_odp_init(void)
1649 {
1650     mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1651                        MLX5_IMR_MTT_BITS);
1652 
1653     return 0;
1654 }
1655 
1656 struct prefetch_mr_work {
1657     struct work_struct work;
1658     u32 pf_flags;
1659     u32 num_sge;
1660     struct {
1661         u64 io_virt;
1662         struct mlx5_ib_mr *mr;
1663         size_t length;
1664     } frags[];
1665 };
1666 
1667 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1668 {
1669     u32 i;
1670 
1671     for (i = 0; i < work->num_sge; ++i)
1672         mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1673 
1674     kvfree(work);
1675 }
1676 
1677 static struct mlx5_ib_mr *
1678 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1679             u32 lkey)
1680 {
1681     struct mlx5_ib_dev *dev = to_mdev(pd->device);
1682     struct mlx5_ib_mr *mr = NULL;
1683     struct mlx5_ib_mkey *mmkey;
1684 
1685     xa_lock(&dev->odp_mkeys);
1686     mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1687     if (!mmkey || mmkey->key != lkey) {
1688         mr = ERR_PTR(-ENOENT);
1689         goto end;
1690     }
1691     if (mmkey->type != MLX5_MKEY_MR) {
1692         mr = ERR_PTR(-EINVAL);
1693         goto end;
1694     }
1695 
1696     mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1697 
1698     if (mr->ibmr.pd != pd) {
1699         mr = ERR_PTR(-EPERM);
1700         goto end;
1701     }
1702 
1703     /* prefetch with write-access must be supported by the MR */
1704     if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1705         !mr->umem->writable) {
1706         mr = ERR_PTR(-EPERM);
1707         goto end;
1708     }
1709 
1710     refcount_inc(&mmkey->usecount);
1711 end:
1712     xa_unlock(&dev->odp_mkeys);
1713     return mr;
1714 }
1715 
1716 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1717 {
1718     struct prefetch_mr_work *work =
1719         container_of(w, struct prefetch_mr_work, work);
1720     u32 bytes_mapped = 0;
1721     int ret;
1722     u32 i;
1723 
1724     /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1725     WARN_ON(!work->num_sge);
1726     for (i = 0; i < work->num_sge; ++i) {
1727         ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1728                    work->frags[i].length, &bytes_mapped,
1729                    work->pf_flags);
1730         if (ret <= 0)
1731             continue;
1732         mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1733     }
1734 
1735     destroy_prefetch_work(work);
1736 }
1737 
1738 static int init_prefetch_work(struct ib_pd *pd,
1739                    enum ib_uverbs_advise_mr_advice advice,
1740                    u32 pf_flags, struct prefetch_mr_work *work,
1741                    struct ib_sge *sg_list, u32 num_sge)
1742 {
1743     u32 i;
1744 
1745     INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1746     work->pf_flags = pf_flags;
1747 
1748     for (i = 0; i < num_sge; ++i) {
1749         struct mlx5_ib_mr *mr;
1750 
1751         mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1752         if (IS_ERR(mr)) {
1753             work->num_sge = i;
1754             return PTR_ERR(mr);
1755         }
1756         work->frags[i].io_virt = sg_list[i].addr;
1757         work->frags[i].length = sg_list[i].length;
1758         work->frags[i].mr = mr;
1759     }
1760     work->num_sge = num_sge;
1761     return 0;
1762 }
1763 
1764 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1765                     enum ib_uverbs_advise_mr_advice advice,
1766                     u32 pf_flags, struct ib_sge *sg_list,
1767                     u32 num_sge)
1768 {
1769     u32 bytes_mapped = 0;
1770     int ret = 0;
1771     u32 i;
1772 
1773     for (i = 0; i < num_sge; ++i) {
1774         struct mlx5_ib_mr *mr;
1775 
1776         mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1777         if (IS_ERR(mr))
1778             return PTR_ERR(mr);
1779         ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1780                    &bytes_mapped, pf_flags);
1781         if (ret < 0) {
1782             mlx5r_deref_odp_mkey(&mr->mmkey);
1783             return ret;
1784         }
1785         mlx5_update_odp_stats(mr, prefetch, ret);
1786         mlx5r_deref_odp_mkey(&mr->mmkey);
1787     }
1788 
1789     return 0;
1790 }
1791 
1792 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1793                    enum ib_uverbs_advise_mr_advice advice,
1794                    u32 flags, struct ib_sge *sg_list, u32 num_sge)
1795 {
1796     u32 pf_flags = 0;
1797     struct prefetch_mr_work *work;
1798     int rc;
1799 
1800     if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1801         pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1802 
1803     if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1804         pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1805 
1806     if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1807         return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1808                         num_sge);
1809 
1810     work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1811     if (!work)
1812         return -ENOMEM;
1813 
1814     rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
1815     if (rc) {
1816         destroy_prefetch_work(work);
1817         return rc;
1818     }
1819     queue_work(system_unbound_wq, &work->work);
1820     return 0;
1821 }