Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
0002 /*
0003  * Copyright(c) 2015 - 2018 Intel Corporation.
0004  */
0005 
0006 #include <linux/spinlock.h>
0007 #include <linux/seqlock.h>
0008 #include <linux/netdevice.h>
0009 #include <linux/moduleparam.h>
0010 #include <linux/bitops.h>
0011 #include <linux/timer.h>
0012 #include <linux/vmalloc.h>
0013 #include <linux/highmem.h>
0014 
0015 #include "hfi.h"
0016 #include "common.h"
0017 #include "qp.h"
0018 #include "sdma.h"
0019 #include "iowait.h"
0020 #include "trace.h"
0021 
0022 /* must be a power of 2 >= 64 <= 32768 */
0023 #define SDMA_DESCQ_CNT 2048
0024 #define SDMA_DESC_INTR 64
0025 #define INVALID_TAIL 0xffff
0026 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
0027 
0028 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
0029 module_param(sdma_descq_cnt, uint, S_IRUGO);
0030 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
0031 
0032 static uint sdma_idle_cnt = 250;
0033 module_param(sdma_idle_cnt, uint, S_IRUGO);
0034 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
0035 
0036 uint mod_num_sdma;
0037 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
0038 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
0039 
0040 static uint sdma_desct_intr = SDMA_DESC_INTR;
0041 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
0042 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
0043 
0044 #define SDMA_WAIT_BATCH_SIZE 20
0045 /* max wait time for a SDMA engine to indicate it has halted */
0046 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
0047 /* all SDMA engine errors that cause a halt */
0048 
0049 #define SD(name) SEND_DMA_##name
0050 #define ALL_SDMA_ENG_HALT_ERRS \
0051     (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
0052     | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
0053     | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
0054     | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
0055     | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
0056     | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
0057     | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
0058     | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
0059     | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
0060     | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
0061     | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
0062     | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
0063     | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
0064     | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
0065     | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
0066     | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
0067     | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
0068     | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
0069 
0070 /* sdma_sendctrl operations */
0071 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
0072 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
0073 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
0074 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
0075 
0076 /* handle long defines */
0077 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
0078 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
0079 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
0080 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
0081 
0082 static const char * const sdma_state_names[] = {
0083     [sdma_state_s00_hw_down]                = "s00_HwDown",
0084     [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
0085     [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
0086     [sdma_state_s20_idle]                   = "s20_Idle",
0087     [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
0088     [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
0089     [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
0090     [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
0091     [sdma_state_s80_hw_freeze]      = "s80_HwFreeze",
0092     [sdma_state_s82_freeze_sw_clean]    = "s82_FreezeSwClean",
0093     [sdma_state_s99_running]                = "s99_Running",
0094 };
0095 
0096 #ifdef CONFIG_SDMA_VERBOSITY
0097 static const char * const sdma_event_names[] = {
0098     [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
0099     [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
0100     [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
0101     [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
0102     [sdma_event_e30_go_running]   = "e30_GoRunning",
0103     [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
0104     [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
0105     [sdma_event_e60_hw_halted]    = "e60_HwHalted",
0106     [sdma_event_e70_go_idle]      = "e70_GoIdle",
0107     [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
0108     [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
0109     [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
0110     [sdma_event_e85_link_down]    = "e85_LinkDown",
0111     [sdma_event_e90_sw_halted]    = "e90_SwHalted",
0112 };
0113 #endif
0114 
0115 static const struct sdma_set_state_action sdma_action_table[] = {
0116     [sdma_state_s00_hw_down] = {
0117         .go_s99_running_tofalse = 1,
0118         .op_enable = 0,
0119         .op_intenable = 0,
0120         .op_halt = 0,
0121         .op_cleanup = 0,
0122     },
0123     [sdma_state_s10_hw_start_up_halt_wait] = {
0124         .op_enable = 0,
0125         .op_intenable = 0,
0126         .op_halt = 1,
0127         .op_cleanup = 0,
0128     },
0129     [sdma_state_s15_hw_start_up_clean_wait] = {
0130         .op_enable = 0,
0131         .op_intenable = 1,
0132         .op_halt = 0,
0133         .op_cleanup = 1,
0134     },
0135     [sdma_state_s20_idle] = {
0136         .op_enable = 0,
0137         .op_intenable = 1,
0138         .op_halt = 0,
0139         .op_cleanup = 0,
0140     },
0141     [sdma_state_s30_sw_clean_up_wait] = {
0142         .op_enable = 0,
0143         .op_intenable = 0,
0144         .op_halt = 0,
0145         .op_cleanup = 0,
0146     },
0147     [sdma_state_s40_hw_clean_up_wait] = {
0148         .op_enable = 0,
0149         .op_intenable = 0,
0150         .op_halt = 0,
0151         .op_cleanup = 1,
0152     },
0153     [sdma_state_s50_hw_halt_wait] = {
0154         .op_enable = 0,
0155         .op_intenable = 0,
0156         .op_halt = 0,
0157         .op_cleanup = 0,
0158     },
0159     [sdma_state_s60_idle_halt_wait] = {
0160         .go_s99_running_tofalse = 1,
0161         .op_enable = 0,
0162         .op_intenable = 0,
0163         .op_halt = 1,
0164         .op_cleanup = 0,
0165     },
0166     [sdma_state_s80_hw_freeze] = {
0167         .op_enable = 0,
0168         .op_intenable = 0,
0169         .op_halt = 0,
0170         .op_cleanup = 0,
0171     },
0172     [sdma_state_s82_freeze_sw_clean] = {
0173         .op_enable = 0,
0174         .op_intenable = 0,
0175         .op_halt = 0,
0176         .op_cleanup = 0,
0177     },
0178     [sdma_state_s99_running] = {
0179         .op_enable = 1,
0180         .op_intenable = 1,
0181         .op_halt = 0,
0182         .op_cleanup = 0,
0183         .go_s99_running_totrue = 1,
0184     },
0185 };
0186 
0187 #define SDMA_TAIL_UPDATE_THRESH 0x1F
0188 
0189 /* declare all statics here rather than keep sorting */
0190 static void sdma_complete(struct kref *);
0191 static void sdma_finalput(struct sdma_state *);
0192 static void sdma_get(struct sdma_state *);
0193 static void sdma_hw_clean_up_task(struct tasklet_struct *);
0194 static void sdma_put(struct sdma_state *);
0195 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
0196 static void sdma_start_hw_clean_up(struct sdma_engine *);
0197 static void sdma_sw_clean_up_task(struct tasklet_struct *);
0198 static void sdma_sendctrl(struct sdma_engine *, unsigned);
0199 static void init_sdma_regs(struct sdma_engine *, u32, uint);
0200 static void sdma_process_event(
0201     struct sdma_engine *sde,
0202     enum sdma_events event);
0203 static void __sdma_process_event(
0204     struct sdma_engine *sde,
0205     enum sdma_events event);
0206 static void dump_sdma_state(struct sdma_engine *sde);
0207 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
0208 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
0209 static void sdma_flush_descq(struct sdma_engine *sde);
0210 
0211 /**
0212  * sdma_state_name() - return state string from enum
0213  * @state: state
0214  */
0215 static const char *sdma_state_name(enum sdma_states state)
0216 {
0217     return sdma_state_names[state];
0218 }
0219 
0220 static void sdma_get(struct sdma_state *ss)
0221 {
0222     kref_get(&ss->kref);
0223 }
0224 
0225 static void sdma_complete(struct kref *kref)
0226 {
0227     struct sdma_state *ss =
0228         container_of(kref, struct sdma_state, kref);
0229 
0230     complete(&ss->comp);
0231 }
0232 
0233 static void sdma_put(struct sdma_state *ss)
0234 {
0235     kref_put(&ss->kref, sdma_complete);
0236 }
0237 
0238 static void sdma_finalput(struct sdma_state *ss)
0239 {
0240     sdma_put(ss);
0241     wait_for_completion(&ss->comp);
0242 }
0243 
0244 static inline void write_sde_csr(
0245     struct sdma_engine *sde,
0246     u32 offset0,
0247     u64 value)
0248 {
0249     write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
0250 }
0251 
0252 static inline u64 read_sde_csr(
0253     struct sdma_engine *sde,
0254     u32 offset0)
0255 {
0256     return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
0257 }
0258 
0259 /*
0260  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
0261  * sdma engine 'sde' to drop to 0.
0262  */
0263 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
0264                     int pause)
0265 {
0266     u64 off = 8 * sde->this_idx;
0267     struct hfi1_devdata *dd = sde->dd;
0268     int lcnt = 0;
0269     u64 reg_prev;
0270     u64 reg = 0;
0271 
0272     while (1) {
0273         reg_prev = reg;
0274         reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
0275 
0276         reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
0277         reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
0278         if (reg == 0)
0279             break;
0280         /* counter is reest if accupancy count changes */
0281         if (reg != reg_prev)
0282             lcnt = 0;
0283         if (lcnt++ > 500) {
0284             /* timed out - bounce the link */
0285             dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
0286                    __func__, sde->this_idx, (u32)reg);
0287             queue_work(dd->pport->link_wq,
0288                    &dd->pport->link_bounce_work);
0289             break;
0290         }
0291         udelay(1);
0292     }
0293 }
0294 
0295 /*
0296  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
0297  * and pause for credit return.
0298  */
0299 void sdma_wait(struct hfi1_devdata *dd)
0300 {
0301     int i;
0302 
0303     for (i = 0; i < dd->num_sdma; i++) {
0304         struct sdma_engine *sde = &dd->per_sdma[i];
0305 
0306         sdma_wait_for_packet_egress(sde, 0);
0307     }
0308 }
0309 
0310 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
0311 {
0312     u64 reg;
0313 
0314     if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
0315         return;
0316     reg = cnt;
0317     reg &= SD(DESC_CNT_CNT_MASK);
0318     reg <<= SD(DESC_CNT_CNT_SHIFT);
0319     write_sde_csr(sde, SD(DESC_CNT), reg);
0320 }
0321 
0322 static inline void complete_tx(struct sdma_engine *sde,
0323                    struct sdma_txreq *tx,
0324                    int res)
0325 {
0326     /* protect against complete modifying */
0327     struct iowait *wait = tx->wait;
0328     callback_t complete = tx->complete;
0329 
0330 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
0331     trace_hfi1_sdma_out_sn(sde, tx->sn);
0332     if (WARN_ON_ONCE(sde->head_sn != tx->sn))
0333         dd_dev_err(sde->dd, "expected %llu got %llu\n",
0334                sde->head_sn, tx->sn);
0335     sde->head_sn++;
0336 #endif
0337     __sdma_txclean(sde->dd, tx);
0338     if (complete)
0339         (*complete)(tx, res);
0340     if (iowait_sdma_dec(wait))
0341         iowait_drain_wakeup(wait);
0342 }
0343 
0344 /*
0345  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
0346  *
0347  * Depending on timing there can be txreqs in two places:
0348  * - in the descq ring
0349  * - in the flush list
0350  *
0351  * To avoid ordering issues the descq ring needs to be flushed
0352  * first followed by the flush list.
0353  *
0354  * This routine is called from two places
0355  * - From a work queue item
0356  * - Directly from the state machine just before setting the
0357  *   state to running
0358  *
0359  * Must be called with head_lock held
0360  *
0361  */
0362 static void sdma_flush(struct sdma_engine *sde)
0363 {
0364     struct sdma_txreq *txp, *txp_next;
0365     LIST_HEAD(flushlist);
0366     unsigned long flags;
0367     uint seq;
0368 
0369     /* flush from head to tail */
0370     sdma_flush_descq(sde);
0371     spin_lock_irqsave(&sde->flushlist_lock, flags);
0372     /* copy flush list */
0373     list_splice_init(&sde->flushlist, &flushlist);
0374     spin_unlock_irqrestore(&sde->flushlist_lock, flags);
0375     /* flush from flush list */
0376     list_for_each_entry_safe(txp, txp_next, &flushlist, list)
0377         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
0378     /* wakeup QPs orphaned on the dmawait list */
0379     do {
0380         struct iowait *w, *nw;
0381 
0382         seq = read_seqbegin(&sde->waitlock);
0383         if (!list_empty(&sde->dmawait)) {
0384             write_seqlock(&sde->waitlock);
0385             list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
0386                 if (w->wakeup) {
0387                     w->wakeup(w, SDMA_AVAIL_REASON);
0388                     list_del_init(&w->list);
0389                 }
0390             }
0391             write_sequnlock(&sde->waitlock);
0392         }
0393     } while (read_seqretry(&sde->waitlock, seq));
0394 }
0395 
0396 /*
0397  * Fields a work request for flushing the descq ring
0398  * and the flush list
0399  *
0400  * If the engine has been brought to running during
0401  * the scheduling delay, the flush is ignored, assuming
0402  * that the process of bringing the engine to running
0403  * would have done this flush prior to going to running.
0404  *
0405  */
0406 static void sdma_field_flush(struct work_struct *work)
0407 {
0408     unsigned long flags;
0409     struct sdma_engine *sde =
0410         container_of(work, struct sdma_engine, flush_worker);
0411 
0412     write_seqlock_irqsave(&sde->head_lock, flags);
0413     if (!__sdma_running(sde))
0414         sdma_flush(sde);
0415     write_sequnlock_irqrestore(&sde->head_lock, flags);
0416 }
0417 
0418 static void sdma_err_halt_wait(struct work_struct *work)
0419 {
0420     struct sdma_engine *sde = container_of(work, struct sdma_engine,
0421                         err_halt_worker);
0422     u64 statuscsr;
0423     unsigned long timeout;
0424 
0425     timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
0426     while (1) {
0427         statuscsr = read_sde_csr(sde, SD(STATUS));
0428         statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
0429         if (statuscsr)
0430             break;
0431         if (time_after(jiffies, timeout)) {
0432             dd_dev_err(sde->dd,
0433                    "SDMA engine %d - timeout waiting for engine to halt\n",
0434                    sde->this_idx);
0435             /*
0436              * Continue anyway.  This could happen if there was
0437              * an uncorrectable error in the wrong spot.
0438              */
0439             break;
0440         }
0441         usleep_range(80, 120);
0442     }
0443 
0444     sdma_process_event(sde, sdma_event_e15_hw_halt_done);
0445 }
0446 
0447 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
0448 {
0449     if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
0450         unsigned index;
0451         struct hfi1_devdata *dd = sde->dd;
0452 
0453         for (index = 0; index < dd->num_sdma; index++) {
0454             struct sdma_engine *curr_sdma = &dd->per_sdma[index];
0455 
0456             if (curr_sdma != sde)
0457                 curr_sdma->progress_check_head =
0458                             curr_sdma->descq_head;
0459         }
0460         dd_dev_err(sde->dd,
0461                "SDMA engine %d - check scheduled\n",
0462                 sde->this_idx);
0463         mod_timer(&sde->err_progress_check_timer, jiffies + 10);
0464     }
0465 }
0466 
0467 static void sdma_err_progress_check(struct timer_list *t)
0468 {
0469     unsigned index;
0470     struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
0471 
0472     dd_dev_err(sde->dd, "SDE progress check event\n");
0473     for (index = 0; index < sde->dd->num_sdma; index++) {
0474         struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
0475         unsigned long flags;
0476 
0477         /* check progress on each engine except the current one */
0478         if (curr_sde == sde)
0479             continue;
0480         /*
0481          * We must lock interrupts when acquiring sde->lock,
0482          * to avoid a deadlock if interrupt triggers and spins on
0483          * the same lock on same CPU
0484          */
0485         spin_lock_irqsave(&curr_sde->tail_lock, flags);
0486         write_seqlock(&curr_sde->head_lock);
0487 
0488         /* skip non-running queues */
0489         if (curr_sde->state.current_state != sdma_state_s99_running) {
0490             write_sequnlock(&curr_sde->head_lock);
0491             spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
0492             continue;
0493         }
0494 
0495         if ((curr_sde->descq_head != curr_sde->descq_tail) &&
0496             (curr_sde->descq_head ==
0497                 curr_sde->progress_check_head))
0498             __sdma_process_event(curr_sde,
0499                          sdma_event_e90_sw_halted);
0500         write_sequnlock(&curr_sde->head_lock);
0501         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
0502     }
0503     schedule_work(&sde->err_halt_worker);
0504 }
0505 
0506 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
0507 {
0508     struct sdma_engine *sde = from_tasklet(sde, t,
0509                            sdma_hw_clean_up_task);
0510     u64 statuscsr;
0511 
0512     while (1) {
0513 #ifdef CONFIG_SDMA_VERBOSITY
0514         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
0515                sde->this_idx, slashstrip(__FILE__), __LINE__,
0516             __func__);
0517 #endif
0518         statuscsr = read_sde_csr(sde, SD(STATUS));
0519         statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
0520         if (statuscsr)
0521             break;
0522         udelay(10);
0523     }
0524 
0525     sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
0526 }
0527 
0528 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
0529 {
0530     return sde->tx_ring[sde->tx_head & sde->sdma_mask];
0531 }
0532 
0533 /*
0534  * flush ring for recovery
0535  */
0536 static void sdma_flush_descq(struct sdma_engine *sde)
0537 {
0538     u16 head, tail;
0539     int progress = 0;
0540     struct sdma_txreq *txp = get_txhead(sde);
0541 
0542     /* The reason for some of the complexity of this code is that
0543      * not all descriptors have corresponding txps.  So, we have to
0544      * be able to skip over descs until we wander into the range of
0545      * the next txp on the list.
0546      */
0547     head = sde->descq_head & sde->sdma_mask;
0548     tail = sde->descq_tail & sde->sdma_mask;
0549     while (head != tail) {
0550         /* advance head, wrap if needed */
0551         head = ++sde->descq_head & sde->sdma_mask;
0552         /* if now past this txp's descs, do the callback */
0553         if (txp && txp->next_descq_idx == head) {
0554             /* remove from list */
0555             sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
0556             complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
0557             trace_hfi1_sdma_progress(sde, head, tail, txp);
0558             txp = get_txhead(sde);
0559         }
0560         progress++;
0561     }
0562     if (progress)
0563         sdma_desc_avail(sde, sdma_descq_freecnt(sde));
0564 }
0565 
0566 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
0567 {
0568     struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
0569     unsigned long flags;
0570 
0571     spin_lock_irqsave(&sde->tail_lock, flags);
0572     write_seqlock(&sde->head_lock);
0573 
0574     /*
0575      * At this point, the following should always be true:
0576      * - We are halted, so no more descriptors are getting retired.
0577      * - We are not running, so no one is submitting new work.
0578      * - Only we can send the e40_sw_cleaned, so we can't start
0579      *   running again until we say so.  So, the active list and
0580      *   descq are ours to play with.
0581      */
0582 
0583     /*
0584      * In the error clean up sequence, software clean must be called
0585      * before the hardware clean so we can use the hardware head in
0586      * the progress routine.  A hardware clean or SPC unfreeze will
0587      * reset the hardware head.
0588      *
0589      * Process all retired requests. The progress routine will use the
0590      * latest physical hardware head - we are not running so speed does
0591      * not matter.
0592      */
0593     sdma_make_progress(sde, 0);
0594 
0595     sdma_flush(sde);
0596 
0597     /*
0598      * Reset our notion of head and tail.
0599      * Note that the HW registers have been reset via an earlier
0600      * clean up.
0601      */
0602     sde->descq_tail = 0;
0603     sde->descq_head = 0;
0604     sde->desc_avail = sdma_descq_freecnt(sde);
0605     *sde->head_dma = 0;
0606 
0607     __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
0608 
0609     write_sequnlock(&sde->head_lock);
0610     spin_unlock_irqrestore(&sde->tail_lock, flags);
0611 }
0612 
0613 static void sdma_sw_tear_down(struct sdma_engine *sde)
0614 {
0615     struct sdma_state *ss = &sde->state;
0616 
0617     /* Releasing this reference means the state machine has stopped. */
0618     sdma_put(ss);
0619 
0620     /* stop waiting for all unfreeze events to complete */
0621     atomic_set(&sde->dd->sdma_unfreeze_count, -1);
0622     wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
0623 }
0624 
0625 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
0626 {
0627     tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
0628 }
0629 
0630 static void sdma_set_state(struct sdma_engine *sde,
0631                enum sdma_states next_state)
0632 {
0633     struct sdma_state *ss = &sde->state;
0634     const struct sdma_set_state_action *action = sdma_action_table;
0635     unsigned op = 0;
0636 
0637     trace_hfi1_sdma_state(
0638         sde,
0639         sdma_state_names[ss->current_state],
0640         sdma_state_names[next_state]);
0641 
0642     /* debugging bookkeeping */
0643     ss->previous_state = ss->current_state;
0644     ss->previous_op = ss->current_op;
0645     ss->current_state = next_state;
0646 
0647     if (ss->previous_state != sdma_state_s99_running &&
0648         next_state == sdma_state_s99_running)
0649         sdma_flush(sde);
0650 
0651     if (action[next_state].op_enable)
0652         op |= SDMA_SENDCTRL_OP_ENABLE;
0653 
0654     if (action[next_state].op_intenable)
0655         op |= SDMA_SENDCTRL_OP_INTENABLE;
0656 
0657     if (action[next_state].op_halt)
0658         op |= SDMA_SENDCTRL_OP_HALT;
0659 
0660     if (action[next_state].op_cleanup)
0661         op |= SDMA_SENDCTRL_OP_CLEANUP;
0662 
0663     if (action[next_state].go_s99_running_tofalse)
0664         ss->go_s99_running = 0;
0665 
0666     if (action[next_state].go_s99_running_totrue)
0667         ss->go_s99_running = 1;
0668 
0669     ss->current_op = op;
0670     sdma_sendctrl(sde, ss->current_op);
0671 }
0672 
0673 /**
0674  * sdma_get_descq_cnt() - called when device probed
0675  *
0676  * Return a validated descq count.
0677  *
0678  * This is currently only used in the verbs initialization to build the tx
0679  * list.
0680  *
0681  * This will probably be deleted in favor of a more scalable approach to
0682  * alloc tx's.
0683  *
0684  */
0685 u16 sdma_get_descq_cnt(void)
0686 {
0687     u16 count = sdma_descq_cnt;
0688 
0689     if (!count)
0690         return SDMA_DESCQ_CNT;
0691     /* count must be a power of 2 greater than 64 and less than
0692      * 32768.   Otherwise return default.
0693      */
0694     if (!is_power_of_2(count))
0695         return SDMA_DESCQ_CNT;
0696     if (count < 64 || count > 32768)
0697         return SDMA_DESCQ_CNT;
0698     return count;
0699 }
0700 
0701 /**
0702  * sdma_engine_get_vl() - return vl for a given sdma engine
0703  * @sde: sdma engine
0704  *
0705  * This function returns the vl mapped to a given engine, or an error if
0706  * the mapping can't be found. The mapping fields are protected by RCU.
0707  */
0708 int sdma_engine_get_vl(struct sdma_engine *sde)
0709 {
0710     struct hfi1_devdata *dd = sde->dd;
0711     struct sdma_vl_map *m;
0712     u8 vl;
0713 
0714     if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
0715         return -EINVAL;
0716 
0717     rcu_read_lock();
0718     m = rcu_dereference(dd->sdma_map);
0719     if (unlikely(!m)) {
0720         rcu_read_unlock();
0721         return -EINVAL;
0722     }
0723     vl = m->engine_to_vl[sde->this_idx];
0724     rcu_read_unlock();
0725 
0726     return vl;
0727 }
0728 
0729 /**
0730  * sdma_select_engine_vl() - select sdma engine
0731  * @dd: devdata
0732  * @selector: a spreading factor
0733  * @vl: this vl
0734  *
0735  *
0736  * This function returns an engine based on the selector and a vl.  The
0737  * mapping fields are protected by RCU.
0738  */
0739 struct sdma_engine *sdma_select_engine_vl(
0740     struct hfi1_devdata *dd,
0741     u32 selector,
0742     u8 vl)
0743 {
0744     struct sdma_vl_map *m;
0745     struct sdma_map_elem *e;
0746     struct sdma_engine *rval;
0747 
0748     /* NOTE This should only happen if SC->VL changed after the initial
0749      *      checks on the QP/AH
0750      *      Default will return engine 0 below
0751      */
0752     if (vl >= num_vls) {
0753         rval = NULL;
0754         goto done;
0755     }
0756 
0757     rcu_read_lock();
0758     m = rcu_dereference(dd->sdma_map);
0759     if (unlikely(!m)) {
0760         rcu_read_unlock();
0761         return &dd->per_sdma[0];
0762     }
0763     e = m->map[vl & m->mask];
0764     rval = e->sde[selector & e->mask];
0765     rcu_read_unlock();
0766 
0767 done:
0768     rval =  !rval ? &dd->per_sdma[0] : rval;
0769     trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
0770     return rval;
0771 }
0772 
0773 /**
0774  * sdma_select_engine_sc() - select sdma engine
0775  * @dd: devdata
0776  * @selector: a spreading factor
0777  * @sc5: the 5 bit sc
0778  *
0779  *
0780  * This function returns an engine based on the selector and an sc.
0781  */
0782 struct sdma_engine *sdma_select_engine_sc(
0783     struct hfi1_devdata *dd,
0784     u32 selector,
0785     u8 sc5)
0786 {
0787     u8 vl = sc_to_vlt(dd, sc5);
0788 
0789     return sdma_select_engine_vl(dd, selector, vl);
0790 }
0791 
0792 struct sdma_rht_map_elem {
0793     u32 mask;
0794     u8 ctr;
0795     struct sdma_engine *sde[];
0796 };
0797 
0798 struct sdma_rht_node {
0799     unsigned long cpu_id;
0800     struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
0801     struct rhash_head node;
0802 };
0803 
0804 #define NR_CPUS_HINT 192
0805 
0806 static const struct rhashtable_params sdma_rht_params = {
0807     .nelem_hint = NR_CPUS_HINT,
0808     .head_offset = offsetof(struct sdma_rht_node, node),
0809     .key_offset = offsetof(struct sdma_rht_node, cpu_id),
0810     .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
0811     .max_size = NR_CPUS,
0812     .min_size = 8,
0813     .automatic_shrinking = true,
0814 };
0815 
0816 /*
0817  * sdma_select_user_engine() - select sdma engine based on user setup
0818  * @dd: devdata
0819  * @selector: a spreading factor
0820  * @vl: this vl
0821  *
0822  * This function returns an sdma engine for a user sdma request.
0823  * User defined sdma engine affinity setting is honored when applicable,
0824  * otherwise system default sdma engine mapping is used. To ensure correct
0825  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
0826  */
0827 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
0828                         u32 selector, u8 vl)
0829 {
0830     struct sdma_rht_node *rht_node;
0831     struct sdma_engine *sde = NULL;
0832     unsigned long cpu_id;
0833 
0834     /*
0835      * To ensure that always the same sdma engine(s) will be
0836      * selected make sure the process is pinned to this CPU only.
0837      */
0838     if (current->nr_cpus_allowed != 1)
0839         goto out;
0840 
0841     rcu_read_lock();
0842     cpu_id = smp_processor_id();
0843     rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
0844                      sdma_rht_params);
0845 
0846     if (rht_node && rht_node->map[vl]) {
0847         struct sdma_rht_map_elem *map = rht_node->map[vl];
0848 
0849         sde = map->sde[selector & map->mask];
0850     }
0851     rcu_read_unlock();
0852 
0853     if (sde)
0854         return sde;
0855 
0856 out:
0857     return sdma_select_engine_vl(dd, selector, vl);
0858 }
0859 
0860 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
0861 {
0862     int i;
0863 
0864     for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
0865         map->sde[map->ctr + i] = map->sde[i];
0866 }
0867 
0868 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
0869                  struct sdma_engine *sde)
0870 {
0871     unsigned int i, pow;
0872 
0873     /* only need to check the first ctr entries for a match */
0874     for (i = 0; i < map->ctr; i++) {
0875         if (map->sde[i] == sde) {
0876             memmove(&map->sde[i], &map->sde[i + 1],
0877                 (map->ctr - i - 1) * sizeof(map->sde[0]));
0878             map->ctr--;
0879             pow = roundup_pow_of_two(map->ctr ? : 1);
0880             map->mask = pow - 1;
0881             sdma_populate_sde_map(map);
0882             break;
0883         }
0884     }
0885 }
0886 
0887 /*
0888  * Prevents concurrent reads and writes of the sdma engine cpu_mask
0889  */
0890 static DEFINE_MUTEX(process_to_sde_mutex);
0891 
0892 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
0893                 size_t count)
0894 {
0895     struct hfi1_devdata *dd = sde->dd;
0896     cpumask_var_t mask, new_mask;
0897     unsigned long cpu;
0898     int ret, vl, sz;
0899     struct sdma_rht_node *rht_node;
0900 
0901     vl = sdma_engine_get_vl(sde);
0902     if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
0903         return -EINVAL;
0904 
0905     ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
0906     if (!ret)
0907         return -ENOMEM;
0908 
0909     ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
0910     if (!ret) {
0911         free_cpumask_var(mask);
0912         return -ENOMEM;
0913     }
0914     ret = cpulist_parse(buf, mask);
0915     if (ret)
0916         goto out_free;
0917 
0918     if (!cpumask_subset(mask, cpu_online_mask)) {
0919         dd_dev_warn(sde->dd, "Invalid CPU mask\n");
0920         ret = -EINVAL;
0921         goto out_free;
0922     }
0923 
0924     sz = sizeof(struct sdma_rht_map_elem) +
0925             (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
0926 
0927     mutex_lock(&process_to_sde_mutex);
0928 
0929     for_each_cpu(cpu, mask) {
0930         /* Check if we have this already mapped */
0931         if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
0932             cpumask_set_cpu(cpu, new_mask);
0933             continue;
0934         }
0935 
0936         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
0937                           sdma_rht_params);
0938         if (!rht_node) {
0939             rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
0940             if (!rht_node) {
0941                 ret = -ENOMEM;
0942                 goto out;
0943             }
0944 
0945             rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
0946             if (!rht_node->map[vl]) {
0947                 kfree(rht_node);
0948                 ret = -ENOMEM;
0949                 goto out;
0950             }
0951             rht_node->cpu_id = cpu;
0952             rht_node->map[vl]->mask = 0;
0953             rht_node->map[vl]->ctr = 1;
0954             rht_node->map[vl]->sde[0] = sde;
0955 
0956             ret = rhashtable_insert_fast(dd->sdma_rht,
0957                              &rht_node->node,
0958                              sdma_rht_params);
0959             if (ret) {
0960                 kfree(rht_node->map[vl]);
0961                 kfree(rht_node);
0962                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
0963                        cpu);
0964                 goto out;
0965             }
0966 
0967         } else {
0968             int ctr, pow;
0969 
0970             /* Add new user mappings */
0971             if (!rht_node->map[vl])
0972                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
0973 
0974             if (!rht_node->map[vl]) {
0975                 ret = -ENOMEM;
0976                 goto out;
0977             }
0978 
0979             rht_node->map[vl]->ctr++;
0980             ctr = rht_node->map[vl]->ctr;
0981             rht_node->map[vl]->sde[ctr - 1] = sde;
0982             pow = roundup_pow_of_two(ctr);
0983             rht_node->map[vl]->mask = pow - 1;
0984 
0985             /* Populate the sde map table */
0986             sdma_populate_sde_map(rht_node->map[vl]);
0987         }
0988         cpumask_set_cpu(cpu, new_mask);
0989     }
0990 
0991     /* Clean up old mappings */
0992     for_each_cpu(cpu, cpu_online_mask) {
0993         struct sdma_rht_node *rht_node;
0994 
0995         /* Don't cleanup sdes that are set in the new mask */
0996         if (cpumask_test_cpu(cpu, mask))
0997             continue;
0998 
0999         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1000                           sdma_rht_params);
1001         if (rht_node) {
1002             bool empty = true;
1003             int i;
1004 
1005             /* Remove mappings for old sde */
1006             for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007                 if (rht_node->map[i])
1008                     sdma_cleanup_sde_map(rht_node->map[i],
1009                                  sde);
1010 
1011             /* Free empty hash table entries */
1012             for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013                 if (!rht_node->map[i])
1014                     continue;
1015 
1016                 if (rht_node->map[i]->ctr) {
1017                     empty = false;
1018                     break;
1019                 }
1020             }
1021 
1022             if (empty) {
1023                 ret = rhashtable_remove_fast(dd->sdma_rht,
1024                                  &rht_node->node,
1025                                  sdma_rht_params);
1026                 WARN_ON(ret);
1027 
1028                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029                     kfree(rht_node->map[i]);
1030 
1031                 kfree(rht_node);
1032             }
1033         }
1034     }
1035 
1036     cpumask_copy(&sde->cpu_mask, new_mask);
1037 out:
1038     mutex_unlock(&process_to_sde_mutex);
1039 out_free:
1040     free_cpumask_var(mask);
1041     free_cpumask_var(new_mask);
1042     return ret ? : strnlen(buf, PAGE_SIZE);
1043 }
1044 
1045 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1046 {
1047     mutex_lock(&process_to_sde_mutex);
1048     if (cpumask_empty(&sde->cpu_mask))
1049         snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1050     else
1051         cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052     mutex_unlock(&process_to_sde_mutex);
1053     return strnlen(buf, PAGE_SIZE);
1054 }
1055 
1056 static void sdma_rht_free(void *ptr, void *arg)
1057 {
1058     struct sdma_rht_node *rht_node = ptr;
1059     int i;
1060 
1061     for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062         kfree(rht_node->map[i]);
1063 
1064     kfree(rht_node);
1065 }
1066 
1067 /**
1068  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1069  * @s: seq file
1070  * @dd: hfi1_devdata
1071  * @cpuid: cpu id
1072  *
1073  * This routine dumps the process to sde mappings per cpu
1074  */
1075 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076                 struct hfi1_devdata *dd,
1077                 unsigned long cpuid)
1078 {
1079     struct sdma_rht_node *rht_node;
1080     int i, j;
1081 
1082     rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1083                       sdma_rht_params);
1084     if (!rht_node)
1085         return;
1086 
1087     seq_printf(s, "cpu%3lu: ", cpuid);
1088     for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089         if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1090             continue;
1091 
1092         seq_printf(s, " vl%d: [", i);
1093 
1094         for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095             if (!rht_node->map[i]->sde[j])
1096                 continue;
1097 
1098             if (j > 0)
1099                 seq_puts(s, ",");
1100 
1101             seq_printf(s, " sdma%2d",
1102                    rht_node->map[i]->sde[j]->this_idx);
1103         }
1104         seq_puts(s, " ]");
1105     }
1106 
1107     seq_puts(s, "\n");
1108 }
1109 
1110 /*
1111  * Free the indicated map struct
1112  */
1113 static void sdma_map_free(struct sdma_vl_map *m)
1114 {
1115     int i;
1116 
1117     for (i = 0; m && i < m->actual_vls; i++)
1118         kfree(m->map[i]);
1119     kfree(m);
1120 }
1121 
1122 /*
1123  * Handle RCU callback
1124  */
1125 static void sdma_map_rcu_callback(struct rcu_head *list)
1126 {
1127     struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1128 
1129     sdma_map_free(m);
1130 }
1131 
1132 /**
1133  * sdma_map_init - called when # vls change
1134  * @dd: hfi1_devdata
1135  * @port: port number
1136  * @num_vls: number of vls
1137  * @vl_engines: per vl engine mapping (optional)
1138  *
1139  * This routine changes the mapping based on the number of vls.
1140  *
1141  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142  * implies auto computing the loading and giving each VLs a uniform
1143  * distribution of engines per VL.
1144  *
1145  * The auto algorithm computes the sde_per_vl and the number of extra
1146  * engines.  Any extra engines are added from the last VL on down.
1147  *
1148  * rcu locking is used here to control access to the mapping fields.
1149  *
1150  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152  * up to the next highest power of 2 and the first entry is reused
1153  * in a round robin fashion.
1154  *
1155  * If an error occurs the map change is not done and the mapping is
1156  * not changed.
1157  *
1158  */
1159 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1160 {
1161     int i, j;
1162     int extra, sde_per_vl;
1163     int engine = 0;
1164     u8 lvl_engines[OPA_MAX_VLS];
1165     struct sdma_vl_map *oldmap, *newmap;
1166 
1167     if (!(dd->flags & HFI1_HAS_SEND_DMA))
1168         return 0;
1169 
1170     if (!vl_engines) {
1171         /* truncate divide */
1172         sde_per_vl = dd->num_sdma / num_vls;
1173         /* extras */
1174         extra = dd->num_sdma % num_vls;
1175         vl_engines = lvl_engines;
1176         /* add extras from last vl down */
1177         for (i = num_vls - 1; i >= 0; i--, extra--)
1178             vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1179     }
1180     /* build new map */
1181     newmap = kzalloc(
1182         sizeof(struct sdma_vl_map) +
1183             roundup_pow_of_two(num_vls) *
1184             sizeof(struct sdma_map_elem *),
1185         GFP_KERNEL);
1186     if (!newmap)
1187         goto bail;
1188     newmap->actual_vls = num_vls;
1189     newmap->vls = roundup_pow_of_two(num_vls);
1190     newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191     /* initialize back-map */
1192     for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193         newmap->engine_to_vl[i] = -1;
1194     for (i = 0; i < newmap->vls; i++) {
1195         /* save for wrap around */
1196         int first_engine = engine;
1197 
1198         if (i < newmap->actual_vls) {
1199             int sz = roundup_pow_of_two(vl_engines[i]);
1200 
1201             /* only allocate once */
1202             newmap->map[i] = kzalloc(
1203                 sizeof(struct sdma_map_elem) +
1204                     sz * sizeof(struct sdma_engine *),
1205                 GFP_KERNEL);
1206             if (!newmap->map[i])
1207                 goto bail;
1208             newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209             /* assign engines */
1210             for (j = 0; j < sz; j++) {
1211                 newmap->map[i]->sde[j] =
1212                     &dd->per_sdma[engine];
1213                 if (++engine >= first_engine + vl_engines[i])
1214                     /* wrap back to first engine */
1215                     engine = first_engine;
1216             }
1217             /* assign back-map */
1218             for (j = 0; j < vl_engines[i]; j++)
1219                 newmap->engine_to_vl[first_engine + j] = i;
1220         } else {
1221             /* just re-use entry without allocating */
1222             newmap->map[i] = newmap->map[i % num_vls];
1223         }
1224         engine = first_engine + vl_engines[i];
1225     }
1226     /* newmap in hand, save old map */
1227     spin_lock_irq(&dd->sde_map_lock);
1228     oldmap = rcu_dereference_protected(dd->sdma_map,
1229                        lockdep_is_held(&dd->sde_map_lock));
1230 
1231     /* publish newmap */
1232     rcu_assign_pointer(dd->sdma_map, newmap);
1233 
1234     spin_unlock_irq(&dd->sde_map_lock);
1235     /* success, free any old map after grace period */
1236     if (oldmap)
1237         call_rcu(&oldmap->list, sdma_map_rcu_callback);
1238     return 0;
1239 bail:
1240     /* free any partial allocation */
1241     sdma_map_free(newmap);
1242     return -ENOMEM;
1243 }
1244 
1245 /**
1246  * sdma_clean - Clean up allocated memory
1247  * @dd:          struct hfi1_devdata
1248  * @num_engines: num sdma engines
1249  *
1250  * This routine can be called regardless of the success of
1251  * sdma_init()
1252  */
1253 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1254 {
1255     size_t i;
1256     struct sdma_engine *sde;
1257 
1258     if (dd->sdma_pad_dma) {
1259         dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260                   (void *)dd->sdma_pad_dma,
1261                   dd->sdma_pad_phys);
1262         dd->sdma_pad_dma = NULL;
1263         dd->sdma_pad_phys = 0;
1264     }
1265     if (dd->sdma_heads_dma) {
1266         dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267                   (void *)dd->sdma_heads_dma,
1268                   dd->sdma_heads_phys);
1269         dd->sdma_heads_dma = NULL;
1270         dd->sdma_heads_phys = 0;
1271     }
1272     for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273         sde = &dd->per_sdma[i];
1274 
1275         sde->head_dma = NULL;
1276         sde->head_phys = 0;
1277 
1278         if (sde->descq) {
1279             dma_free_coherent(
1280                 &dd->pcidev->dev,
1281                 sde->descq_cnt * sizeof(u64[2]),
1282                 sde->descq,
1283                 sde->descq_phys
1284             );
1285             sde->descq = NULL;
1286             sde->descq_phys = 0;
1287         }
1288         kvfree(sde->tx_ring);
1289         sde->tx_ring = NULL;
1290     }
1291     if (rcu_access_pointer(dd->sdma_map)) {
1292         spin_lock_irq(&dd->sde_map_lock);
1293         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1294         RCU_INIT_POINTER(dd->sdma_map, NULL);
1295         spin_unlock_irq(&dd->sde_map_lock);
1296         synchronize_rcu();
1297     }
1298     kfree(dd->per_sdma);
1299     dd->per_sdma = NULL;
1300 
1301     if (dd->sdma_rht) {
1302         rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1303         kfree(dd->sdma_rht);
1304         dd->sdma_rht = NULL;
1305     }
1306 }
1307 
1308 /**
1309  * sdma_init() - called when device probed
1310  * @dd: hfi1_devdata
1311  * @port: port number (currently only zero)
1312  *
1313  * Initializes each sde and its csrs.
1314  * Interrupts are not required to be enabled.
1315  *
1316  * Returns:
1317  * 0 - success, -errno on failure
1318  */
1319 int sdma_init(struct hfi1_devdata *dd, u8 port)
1320 {
1321     unsigned this_idx;
1322     struct sdma_engine *sde;
1323     struct rhashtable *tmp_sdma_rht;
1324     u16 descq_cnt;
1325     void *curr_head;
1326     struct hfi1_pportdata *ppd = dd->pport + port;
1327     u32 per_sdma_credits;
1328     uint idle_cnt = sdma_idle_cnt;
1329     size_t num_engines = chip_sdma_engines(dd);
1330     int ret = -ENOMEM;
1331 
1332     if (!HFI1_CAP_IS_KSET(SDMA)) {
1333         HFI1_CAP_CLEAR(SDMA_AHG);
1334         return 0;
1335     }
1336     if (mod_num_sdma &&
1337         /* can't exceed chip support */
1338         mod_num_sdma <= chip_sdma_engines(dd) &&
1339         /* count must be >= vls */
1340         mod_num_sdma >= num_vls)
1341         num_engines = mod_num_sdma;
1342 
1343     dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1344     dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1345     dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1346             chip_sdma_mem_size(dd));
1347 
1348     per_sdma_credits =
1349         chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1350 
1351     /* set up freeze waitqueue */
1352     init_waitqueue_head(&dd->sdma_unfreeze_wq);
1353     atomic_set(&dd->sdma_unfreeze_count, 0);
1354 
1355     descq_cnt = sdma_get_descq_cnt();
1356     dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1357             num_engines, descq_cnt);
1358 
1359     /* alloc memory for array of send engines */
1360     dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1361                     GFP_KERNEL, dd->node);
1362     if (!dd->per_sdma)
1363         return ret;
1364 
1365     idle_cnt = ns_to_cclock(dd, idle_cnt);
1366     if (idle_cnt)
1367         dd->default_desc1 =
1368             SDMA_DESC1_HEAD_TO_HOST_FLAG;
1369     else
1370         dd->default_desc1 =
1371             SDMA_DESC1_INT_REQ_FLAG;
1372 
1373     if (!sdma_desct_intr)
1374         sdma_desct_intr = SDMA_DESC_INTR;
1375 
1376     /* Allocate memory for SendDMA descriptor FIFOs */
1377     for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1378         sde = &dd->per_sdma[this_idx];
1379         sde->dd = dd;
1380         sde->ppd = ppd;
1381         sde->this_idx = this_idx;
1382         sde->descq_cnt = descq_cnt;
1383         sde->desc_avail = sdma_descq_freecnt(sde);
1384         sde->sdma_shift = ilog2(descq_cnt);
1385         sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1386 
1387         /* Create a mask specifically for each interrupt source */
1388         sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1389                        this_idx);
1390         sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1391                         this_idx);
1392         sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1393                         this_idx);
1394         /* Create a combined mask to cover all 3 interrupt sources */
1395         sde->imask = sde->int_mask | sde->progress_mask |
1396                  sde->idle_mask;
1397 
1398         spin_lock_init(&sde->tail_lock);
1399         seqlock_init(&sde->head_lock);
1400         spin_lock_init(&sde->senddmactrl_lock);
1401         spin_lock_init(&sde->flushlist_lock);
1402         seqlock_init(&sde->waitlock);
1403         /* insure there is always a zero bit */
1404         sde->ahg_bits = 0xfffffffe00000000ULL;
1405 
1406         sdma_set_state(sde, sdma_state_s00_hw_down);
1407 
1408         /* set up reference counting */
1409         kref_init(&sde->state.kref);
1410         init_completion(&sde->state.comp);
1411 
1412         INIT_LIST_HEAD(&sde->flushlist);
1413         INIT_LIST_HEAD(&sde->dmawait);
1414 
1415         sde->tail_csr =
1416             get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1417 
1418         tasklet_setup(&sde->sdma_hw_clean_up_task,
1419                   sdma_hw_clean_up_task);
1420         tasklet_setup(&sde->sdma_sw_clean_up_task,
1421                   sdma_sw_clean_up_task);
1422         INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1423         INIT_WORK(&sde->flush_worker, sdma_field_flush);
1424 
1425         sde->progress_check_head = 0;
1426 
1427         timer_setup(&sde->err_progress_check_timer,
1428                 sdma_err_progress_check, 0);
1429 
1430         sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1431                         descq_cnt * sizeof(u64[2]),
1432                         &sde->descq_phys, GFP_KERNEL);
1433         if (!sde->descq)
1434             goto bail;
1435         sde->tx_ring =
1436             kvzalloc_node(array_size(descq_cnt,
1437                          sizeof(struct sdma_txreq *)),
1438                       GFP_KERNEL, dd->node);
1439         if (!sde->tx_ring)
1440             goto bail;
1441     }
1442 
1443     dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1444     /* Allocate memory for DMA of head registers to memory */
1445     dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1446                         dd->sdma_heads_size,
1447                         &dd->sdma_heads_phys,
1448                         GFP_KERNEL);
1449     if (!dd->sdma_heads_dma) {
1450         dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1451         goto bail;
1452     }
1453 
1454     /* Allocate memory for pad */
1455     dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1456                           &dd->sdma_pad_phys, GFP_KERNEL);
1457     if (!dd->sdma_pad_dma) {
1458         dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1459         goto bail;
1460     }
1461 
1462     /* assign each engine to different cacheline and init registers */
1463     curr_head = (void *)dd->sdma_heads_dma;
1464     for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1465         unsigned long phys_offset;
1466 
1467         sde = &dd->per_sdma[this_idx];
1468 
1469         sde->head_dma = curr_head;
1470         curr_head += L1_CACHE_BYTES;
1471         phys_offset = (unsigned long)sde->head_dma -
1472                   (unsigned long)dd->sdma_heads_dma;
1473         sde->head_phys = dd->sdma_heads_phys + phys_offset;
1474         init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1475     }
1476     dd->flags |= HFI1_HAS_SEND_DMA;
1477     dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1478     dd->num_sdma = num_engines;
1479     ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1480     if (ret < 0)
1481         goto bail;
1482 
1483     tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1484     if (!tmp_sdma_rht) {
1485         ret = -ENOMEM;
1486         goto bail;
1487     }
1488 
1489     ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1490     if (ret < 0) {
1491         kfree(tmp_sdma_rht);
1492         goto bail;
1493     }
1494 
1495     dd->sdma_rht = tmp_sdma_rht;
1496 
1497     dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1498     return 0;
1499 
1500 bail:
1501     sdma_clean(dd, num_engines);
1502     return ret;
1503 }
1504 
1505 /**
1506  * sdma_all_running() - called when the link goes up
1507  * @dd: hfi1_devdata
1508  *
1509  * This routine moves all engines to the running state.
1510  */
1511 void sdma_all_running(struct hfi1_devdata *dd)
1512 {
1513     struct sdma_engine *sde;
1514     unsigned int i;
1515 
1516     /* move all engines to running */
1517     for (i = 0; i < dd->num_sdma; ++i) {
1518         sde = &dd->per_sdma[i];
1519         sdma_process_event(sde, sdma_event_e30_go_running);
1520     }
1521 }
1522 
1523 /**
1524  * sdma_all_idle() - called when the link goes down
1525  * @dd: hfi1_devdata
1526  *
1527  * This routine moves all engines to the idle state.
1528  */
1529 void sdma_all_idle(struct hfi1_devdata *dd)
1530 {
1531     struct sdma_engine *sde;
1532     unsigned int i;
1533 
1534     /* idle all engines */
1535     for (i = 0; i < dd->num_sdma; ++i) {
1536         sde = &dd->per_sdma[i];
1537         sdma_process_event(sde, sdma_event_e70_go_idle);
1538     }
1539 }
1540 
1541 /**
1542  * sdma_start() - called to kick off state processing for all engines
1543  * @dd: hfi1_devdata
1544  *
1545  * This routine is for kicking off the state processing for all required
1546  * sdma engines.  Interrupts need to be working at this point.
1547  *
1548  */
1549 void sdma_start(struct hfi1_devdata *dd)
1550 {
1551     unsigned i;
1552     struct sdma_engine *sde;
1553 
1554     /* kick off the engines state processing */
1555     for (i = 0; i < dd->num_sdma; ++i) {
1556         sde = &dd->per_sdma[i];
1557         sdma_process_event(sde, sdma_event_e10_go_hw_start);
1558     }
1559 }
1560 
1561 /**
1562  * sdma_exit() - used when module is removed
1563  * @dd: hfi1_devdata
1564  */
1565 void sdma_exit(struct hfi1_devdata *dd)
1566 {
1567     unsigned this_idx;
1568     struct sdma_engine *sde;
1569 
1570     for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1571             ++this_idx) {
1572         sde = &dd->per_sdma[this_idx];
1573         if (!list_empty(&sde->dmawait))
1574             dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1575                    sde->this_idx);
1576         sdma_process_event(sde, sdma_event_e00_go_hw_down);
1577 
1578         del_timer_sync(&sde->err_progress_check_timer);
1579 
1580         /*
1581          * This waits for the state machine to exit so it is not
1582          * necessary to kill the sdma_sw_clean_up_task to make sure
1583          * it is not running.
1584          */
1585         sdma_finalput(&sde->state);
1586     }
1587 }
1588 
1589 /*
1590  * unmap the indicated descriptor
1591  */
1592 static inline void sdma_unmap_desc(
1593     struct hfi1_devdata *dd,
1594     struct sdma_desc *descp)
1595 {
1596     switch (sdma_mapping_type(descp)) {
1597     case SDMA_MAP_SINGLE:
1598         dma_unmap_single(
1599             &dd->pcidev->dev,
1600             sdma_mapping_addr(descp),
1601             sdma_mapping_len(descp),
1602             DMA_TO_DEVICE);
1603         break;
1604     case SDMA_MAP_PAGE:
1605         dma_unmap_page(
1606             &dd->pcidev->dev,
1607             sdma_mapping_addr(descp),
1608             sdma_mapping_len(descp),
1609             DMA_TO_DEVICE);
1610         break;
1611     }
1612 }
1613 
1614 /*
1615  * return the mode as indicated by the first
1616  * descriptor in the tx.
1617  */
1618 static inline u8 ahg_mode(struct sdma_txreq *tx)
1619 {
1620     return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1621         >> SDMA_DESC1_HEADER_MODE_SHIFT;
1622 }
1623 
1624 /**
1625  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1626  * @dd: hfi1_devdata for unmapping
1627  * @tx: tx request to clean
1628  *
1629  * This is used in the progress routine to clean the tx or
1630  * by the ULP to toss an in-process tx build.
1631  *
1632  * The code can be called multiple times without issue.
1633  *
1634  */
1635 void __sdma_txclean(
1636     struct hfi1_devdata *dd,
1637     struct sdma_txreq *tx)
1638 {
1639     u16 i;
1640 
1641     if (tx->num_desc) {
1642         u8 skip = 0, mode = ahg_mode(tx);
1643 
1644         /* unmap first */
1645         sdma_unmap_desc(dd, &tx->descp[0]);
1646         /* determine number of AHG descriptors to skip */
1647         if (mode > SDMA_AHG_APPLY_UPDATE1)
1648             skip = mode >> 1;
1649         for (i = 1 + skip; i < tx->num_desc; i++)
1650             sdma_unmap_desc(dd, &tx->descp[i]);
1651         tx->num_desc = 0;
1652     }
1653     kfree(tx->coalesce_buf);
1654     tx->coalesce_buf = NULL;
1655     /* kmalloc'ed descp */
1656     if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1657         tx->desc_limit = ARRAY_SIZE(tx->descs);
1658         kfree(tx->descp);
1659     }
1660 }
1661 
1662 static inline u16 sdma_gethead(struct sdma_engine *sde)
1663 {
1664     struct hfi1_devdata *dd = sde->dd;
1665     int use_dmahead;
1666     u16 hwhead;
1667 
1668 #ifdef CONFIG_SDMA_VERBOSITY
1669     dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1670            sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1671 #endif
1672 
1673 retry:
1674     use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1675                     (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1676     hwhead = use_dmahead ?
1677         (u16)le64_to_cpu(*sde->head_dma) :
1678         (u16)read_sde_csr(sde, SD(HEAD));
1679 
1680     if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1681         u16 cnt;
1682         u16 swtail;
1683         u16 swhead;
1684         int sane;
1685 
1686         swhead = sde->descq_head & sde->sdma_mask;
1687         /* this code is really bad for cache line trading */
1688         swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1689         cnt = sde->descq_cnt;
1690 
1691         if (swhead < swtail)
1692             /* not wrapped */
1693             sane = (hwhead >= swhead) & (hwhead <= swtail);
1694         else if (swhead > swtail)
1695             /* wrapped around */
1696             sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1697                 (hwhead <= swtail);
1698         else
1699             /* empty */
1700             sane = (hwhead == swhead);
1701 
1702         if (unlikely(!sane)) {
1703             dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1704                    sde->this_idx,
1705                    use_dmahead ? "dma" : "kreg",
1706                    hwhead, swhead, swtail, cnt);
1707             if (use_dmahead) {
1708                 /* try one more time, using csr */
1709                 use_dmahead = 0;
1710                 goto retry;
1711             }
1712             /* proceed as if no progress */
1713             hwhead = swhead;
1714         }
1715     }
1716     return hwhead;
1717 }
1718 
1719 /*
1720  * This is called when there are send DMA descriptors that might be
1721  * available.
1722  *
1723  * This is called with head_lock held.
1724  */
1725 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1726 {
1727     struct iowait *wait, *nw, *twait;
1728     struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1729     uint i, n = 0, seq, tidx = 0;
1730 
1731 #ifdef CONFIG_SDMA_VERBOSITY
1732     dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1733            slashstrip(__FILE__), __LINE__, __func__);
1734     dd_dev_err(sde->dd, "avail: %u\n", avail);
1735 #endif
1736 
1737     do {
1738         seq = read_seqbegin(&sde->waitlock);
1739         if (!list_empty(&sde->dmawait)) {
1740             /* at least one item */
1741             write_seqlock(&sde->waitlock);
1742             /* Harvest waiters wanting DMA descriptors */
1743             list_for_each_entry_safe(
1744                     wait,
1745                     nw,
1746                     &sde->dmawait,
1747                     list) {
1748                 u32 num_desc;
1749 
1750                 if (!wait->wakeup)
1751                     continue;
1752                 if (n == ARRAY_SIZE(waits))
1753                     break;
1754                 iowait_init_priority(wait);
1755                 num_desc = iowait_get_all_desc(wait);
1756                 if (num_desc > avail)
1757                     break;
1758                 avail -= num_desc;
1759                 /* Find the top-priority wait memeber */
1760                 if (n) {
1761                     twait = waits[tidx];
1762                     tidx =
1763                         iowait_priority_update_top(wait,
1764                                        twait,
1765                                        n,
1766                                        tidx);
1767                 }
1768                 list_del_init(&wait->list);
1769                 waits[n++] = wait;
1770             }
1771             write_sequnlock(&sde->waitlock);
1772             break;
1773         }
1774     } while (read_seqretry(&sde->waitlock, seq));
1775 
1776     /* Schedule the top-priority entry first */
1777     if (n)
1778         waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1779 
1780     for (i = 0; i < n; i++)
1781         if (i != tidx)
1782             waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1783 }
1784 
1785 /* head_lock must be held */
1786 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1787 {
1788     struct sdma_txreq *txp = NULL;
1789     int progress = 0;
1790     u16 hwhead, swhead;
1791     int idle_check_done = 0;
1792 
1793     hwhead = sdma_gethead(sde);
1794 
1795     /* The reason for some of the complexity of this code is that
1796      * not all descriptors have corresponding txps.  So, we have to
1797      * be able to skip over descs until we wander into the range of
1798      * the next txp on the list.
1799      */
1800 
1801 retry:
1802     txp = get_txhead(sde);
1803     swhead = sde->descq_head & sde->sdma_mask;
1804     trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1805     while (swhead != hwhead) {
1806         /* advance head, wrap if needed */
1807         swhead = ++sde->descq_head & sde->sdma_mask;
1808 
1809         /* if now past this txp's descs, do the callback */
1810         if (txp && txp->next_descq_idx == swhead) {
1811             /* remove from list */
1812             sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1813             complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1814             /* see if there is another txp */
1815             txp = get_txhead(sde);
1816         }
1817         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1818         progress++;
1819     }
1820 
1821     /*
1822      * The SDMA idle interrupt is not guaranteed to be ordered with respect
1823      * to updates to the dma_head location in host memory. The head
1824      * value read might not be fully up to date. If there are pending
1825      * descriptors and the SDMA idle interrupt fired then read from the
1826      * CSR SDMA head instead to get the latest value from the hardware.
1827      * The hardware SDMA head should be read at most once in this invocation
1828      * of sdma_make_progress(..) which is ensured by idle_check_done flag
1829      */
1830     if ((status & sde->idle_mask) && !idle_check_done) {
1831         u16 swtail;
1832 
1833         swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1834         if (swtail != hwhead) {
1835             hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1836             idle_check_done = 1;
1837             goto retry;
1838         }
1839     }
1840 
1841     sde->last_status = status;
1842     if (progress)
1843         sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1844 }
1845 
1846 /*
1847  * sdma_engine_interrupt() - interrupt handler for engine
1848  * @sde: sdma engine
1849  * @status: sdma interrupt reason
1850  *
1851  * Status is a mask of the 3 possible interrupts for this engine.  It will
1852  * contain bits _only_ for this SDMA engine.  It will contain at least one
1853  * bit, it may contain more.
1854  */
1855 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1856 {
1857     trace_hfi1_sdma_engine_interrupt(sde, status);
1858     write_seqlock(&sde->head_lock);
1859     sdma_set_desc_cnt(sde, sdma_desct_intr);
1860     if (status & sde->idle_mask)
1861         sde->idle_int_cnt++;
1862     else if (status & sde->progress_mask)
1863         sde->progress_int_cnt++;
1864     else if (status & sde->int_mask)
1865         sde->sdma_int_cnt++;
1866     sdma_make_progress(sde, status);
1867     write_sequnlock(&sde->head_lock);
1868 }
1869 
1870 /**
1871  * sdma_engine_error() - error handler for engine
1872  * @sde: sdma engine
1873  * @status: sdma interrupt reason
1874  */
1875 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1876 {
1877     unsigned long flags;
1878 
1879 #ifdef CONFIG_SDMA_VERBOSITY
1880     dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1881            sde->this_idx,
1882            (unsigned long long)status,
1883            sdma_state_names[sde->state.current_state]);
1884 #endif
1885     spin_lock_irqsave(&sde->tail_lock, flags);
1886     write_seqlock(&sde->head_lock);
1887     if (status & ALL_SDMA_ENG_HALT_ERRS)
1888         __sdma_process_event(sde, sdma_event_e60_hw_halted);
1889     if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1890         dd_dev_err(sde->dd,
1891                "SDMA (%u) engine error: 0x%llx state %s\n",
1892                sde->this_idx,
1893                (unsigned long long)status,
1894                sdma_state_names[sde->state.current_state]);
1895         dump_sdma_state(sde);
1896     }
1897     write_sequnlock(&sde->head_lock);
1898     spin_unlock_irqrestore(&sde->tail_lock, flags);
1899 }
1900 
1901 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1902 {
1903     u64 set_senddmactrl = 0;
1904     u64 clr_senddmactrl = 0;
1905     unsigned long flags;
1906 
1907 #ifdef CONFIG_SDMA_VERBOSITY
1908     dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1909            sde->this_idx,
1910            (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1911            (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1912            (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1913            (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1914 #endif
1915 
1916     if (op & SDMA_SENDCTRL_OP_ENABLE)
1917         set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1918     else
1919         clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1920 
1921     if (op & SDMA_SENDCTRL_OP_INTENABLE)
1922         set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1923     else
1924         clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1925 
1926     if (op & SDMA_SENDCTRL_OP_HALT)
1927         set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1928     else
1929         clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1930 
1931     spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1932 
1933     sde->p_senddmactrl |= set_senddmactrl;
1934     sde->p_senddmactrl &= ~clr_senddmactrl;
1935 
1936     if (op & SDMA_SENDCTRL_OP_CLEANUP)
1937         write_sde_csr(sde, SD(CTRL),
1938                   sde->p_senddmactrl |
1939                   SD(CTRL_SDMA_CLEANUP_SMASK));
1940     else
1941         write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1942 
1943     spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1944 
1945 #ifdef CONFIG_SDMA_VERBOSITY
1946     sdma_dumpstate(sde);
1947 #endif
1948 }
1949 
1950 static void sdma_setlengen(struct sdma_engine *sde)
1951 {
1952 #ifdef CONFIG_SDMA_VERBOSITY
1953     dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1954            sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1955 #endif
1956 
1957     /*
1958      * Set SendDmaLenGen and clear-then-set the MSB of the generation
1959      * count to enable generation checking and load the internal
1960      * generation counter.
1961      */
1962     write_sde_csr(sde, SD(LEN_GEN),
1963               (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1964     write_sde_csr(sde, SD(LEN_GEN),
1965               ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1966               (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1967 }
1968 
1969 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1970 {
1971     /* Commit writes to memory and advance the tail on the chip */
1972     smp_wmb(); /* see get_txhead() */
1973     writeq(tail, sde->tail_csr);
1974 }
1975 
1976 /*
1977  * This is called when changing to state s10_hw_start_up_halt_wait as
1978  * a result of send buffer errors or send DMA descriptor errors.
1979  */
1980 static void sdma_hw_start_up(struct sdma_engine *sde)
1981 {
1982     u64 reg;
1983 
1984 #ifdef CONFIG_SDMA_VERBOSITY
1985     dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1986            sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1987 #endif
1988 
1989     sdma_setlengen(sde);
1990     sdma_update_tail(sde, 0); /* Set SendDmaTail */
1991     *sde->head_dma = 0;
1992 
1993     reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1994           SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1995     write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1996 }
1997 
1998 /*
1999  * set_sdma_integrity
2000  *
2001  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2002  */
2003 static void set_sdma_integrity(struct sdma_engine *sde)
2004 {
2005     struct hfi1_devdata *dd = sde->dd;
2006 
2007     write_sde_csr(sde, SD(CHECK_ENABLE),
2008               hfi1_pkt_base_sdma_integrity(dd));
2009 }
2010 
2011 static void init_sdma_regs(
2012     struct sdma_engine *sde,
2013     u32 credits,
2014     uint idle_cnt)
2015 {
2016     u8 opval, opmask;
2017 #ifdef CONFIG_SDMA_VERBOSITY
2018     struct hfi1_devdata *dd = sde->dd;
2019 
2020     dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2021            sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2022 #endif
2023 
2024     write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2025     sdma_setlengen(sde);
2026     sdma_update_tail(sde, 0); /* Set SendDmaTail */
2027     write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2028     write_sde_csr(sde, SD(DESC_CNT), 0);
2029     write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2030     write_sde_csr(sde, SD(MEMORY),
2031               ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2032               ((u64)(credits * sde->this_idx) <<
2033                SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2034     write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2035     set_sdma_integrity(sde);
2036     opmask = OPCODE_CHECK_MASK_DISABLED;
2037     opval = OPCODE_CHECK_VAL_DISABLED;
2038     write_sde_csr(sde, SD(CHECK_OPCODE),
2039               (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2040               (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2041 }
2042 
2043 #ifdef CONFIG_SDMA_VERBOSITY
2044 
2045 #define sdma_dumpstate_helper0(reg) do { \
2046         csr = read_csr(sde->dd, reg); \
2047         dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2048     } while (0)
2049 
2050 #define sdma_dumpstate_helper(reg) do { \
2051         csr = read_sde_csr(sde, reg); \
2052         dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2053             #reg, sde->this_idx, csr); \
2054     } while (0)
2055 
2056 #define sdma_dumpstate_helper2(reg) do { \
2057         csr = read_csr(sde->dd, reg + (8 * i)); \
2058         dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2059                 #reg, i, csr); \
2060     } while (0)
2061 
2062 void sdma_dumpstate(struct sdma_engine *sde)
2063 {
2064     u64 csr;
2065     unsigned i;
2066 
2067     sdma_dumpstate_helper(SD(CTRL));
2068     sdma_dumpstate_helper(SD(STATUS));
2069     sdma_dumpstate_helper0(SD(ERR_STATUS));
2070     sdma_dumpstate_helper0(SD(ERR_MASK));
2071     sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2072     sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2073 
2074     for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2075         sdma_dumpstate_helper2(CCE_INT_STATUS);
2076         sdma_dumpstate_helper2(CCE_INT_MASK);
2077         sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2078     }
2079 
2080     sdma_dumpstate_helper(SD(TAIL));
2081     sdma_dumpstate_helper(SD(HEAD));
2082     sdma_dumpstate_helper(SD(PRIORITY_THLD));
2083     sdma_dumpstate_helper(SD(IDLE_CNT));
2084     sdma_dumpstate_helper(SD(RELOAD_CNT));
2085     sdma_dumpstate_helper(SD(DESC_CNT));
2086     sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2087     sdma_dumpstate_helper(SD(MEMORY));
2088     sdma_dumpstate_helper0(SD(ENGINES));
2089     sdma_dumpstate_helper0(SD(MEM_SIZE));
2090     /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2091     sdma_dumpstate_helper(SD(BASE_ADDR));
2092     sdma_dumpstate_helper(SD(LEN_GEN));
2093     sdma_dumpstate_helper(SD(HEAD_ADDR));
2094     sdma_dumpstate_helper(SD(CHECK_ENABLE));
2095     sdma_dumpstate_helper(SD(CHECK_VL));
2096     sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2097     sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2098     sdma_dumpstate_helper(SD(CHECK_SLID));
2099     sdma_dumpstate_helper(SD(CHECK_OPCODE));
2100 }
2101 #endif
2102 
2103 static void dump_sdma_state(struct sdma_engine *sde)
2104 {
2105     struct hw_sdma_desc *descqp;
2106     u64 desc[2];
2107     u64 addr;
2108     u8 gen;
2109     u16 len;
2110     u16 head, tail, cnt;
2111 
2112     head = sde->descq_head & sde->sdma_mask;
2113     tail = sde->descq_tail & sde->sdma_mask;
2114     cnt = sdma_descq_freecnt(sde);
2115 
2116     dd_dev_err(sde->dd,
2117            "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2118            sde->this_idx, head, tail, cnt,
2119            !list_empty(&sde->flushlist));
2120 
2121     /* print info for each entry in the descriptor queue */
2122     while (head != tail) {
2123         char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2124 
2125         descqp = &sde->descq[head];
2126         desc[0] = le64_to_cpu(descqp->qw[0]);
2127         desc[1] = le64_to_cpu(descqp->qw[1]);
2128         flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2129         flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2130                 'H' : '-';
2131         flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2132         flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2133         addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2134             & SDMA_DESC0_PHY_ADDR_MASK;
2135         gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2136             & SDMA_DESC1_GENERATION_MASK;
2137         len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2138             & SDMA_DESC0_BYTE_COUNT_MASK;
2139         dd_dev_err(sde->dd,
2140                "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2141                head, flags, addr, gen, len);
2142         dd_dev_err(sde->dd,
2143                "\tdesc0:0x%016llx desc1 0x%016llx\n",
2144                desc[0], desc[1]);
2145         if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2146             dd_dev_err(sde->dd,
2147                    "\taidx: %u amode: %u alen: %u\n",
2148                    (u8)((desc[1] &
2149                      SDMA_DESC1_HEADER_INDEX_SMASK) >>
2150                     SDMA_DESC1_HEADER_INDEX_SHIFT),
2151                    (u8)((desc[1] &
2152                      SDMA_DESC1_HEADER_MODE_SMASK) >>
2153                     SDMA_DESC1_HEADER_MODE_SHIFT),
2154                    (u8)((desc[1] &
2155                      SDMA_DESC1_HEADER_DWS_SMASK) >>
2156                     SDMA_DESC1_HEADER_DWS_SHIFT));
2157         head++;
2158         head &= sde->sdma_mask;
2159     }
2160 }
2161 
2162 #define SDE_FMT \
2163     "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2164 /**
2165  * sdma_seqfile_dump_sde() - debugfs dump of sde
2166  * @s: seq file
2167  * @sde: send dma engine to dump
2168  *
2169  * This routine dumps the sde to the indicated seq file.
2170  */
2171 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2172 {
2173     u16 head, tail;
2174     struct hw_sdma_desc *descqp;
2175     u64 desc[2];
2176     u64 addr;
2177     u8 gen;
2178     u16 len;
2179 
2180     head = sde->descq_head & sde->sdma_mask;
2181     tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2182     seq_printf(s, SDE_FMT, sde->this_idx,
2183            sde->cpu,
2184            sdma_state_name(sde->state.current_state),
2185            (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2186            (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2187            (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2188            (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2189            (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2190            (unsigned long long)le64_to_cpu(*sde->head_dma),
2191            (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2192            (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2193            (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2194            (unsigned long long)sde->last_status,
2195            (unsigned long long)sde->ahg_bits,
2196            sde->tx_tail,
2197            sde->tx_head,
2198            sde->descq_tail,
2199            sde->descq_head,
2200            !list_empty(&sde->flushlist),
2201            sde->descq_full_count,
2202            (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2203 
2204     /* print info for each entry in the descriptor queue */
2205     while (head != tail) {
2206         char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2207 
2208         descqp = &sde->descq[head];
2209         desc[0] = le64_to_cpu(descqp->qw[0]);
2210         desc[1] = le64_to_cpu(descqp->qw[1]);
2211         flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2212         flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2213                 'H' : '-';
2214         flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2215         flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2216         addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2217             & SDMA_DESC0_PHY_ADDR_MASK;
2218         gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2219             & SDMA_DESC1_GENERATION_MASK;
2220         len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2221             & SDMA_DESC0_BYTE_COUNT_MASK;
2222         seq_printf(s,
2223                "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2224                head, flags, addr, gen, len);
2225         if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2226             seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2227                    (u8)((desc[1] &
2228                      SDMA_DESC1_HEADER_INDEX_SMASK) >>
2229                     SDMA_DESC1_HEADER_INDEX_SHIFT),
2230                    (u8)((desc[1] &
2231                      SDMA_DESC1_HEADER_MODE_SMASK) >>
2232                     SDMA_DESC1_HEADER_MODE_SHIFT));
2233         head = (head + 1) & sde->sdma_mask;
2234     }
2235 }
2236 
2237 /*
2238  * add the generation number into
2239  * the qw1 and return
2240  */
2241 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2242 {
2243     u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2244 
2245     qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2246     qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2247             << SDMA_DESC1_GENERATION_SHIFT;
2248     return qw1;
2249 }
2250 
2251 /*
2252  * This routine submits the indicated tx
2253  *
2254  * Space has already been guaranteed and
2255  * tail side of ring is locked.
2256  *
2257  * The hardware tail update is done
2258  * in the caller and that is facilitated
2259  * by returning the new tail.
2260  *
2261  * There is special case logic for ahg
2262  * to not add the generation number for
2263  * up to 2 descriptors that follow the
2264  * first descriptor.
2265  *
2266  */
2267 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2268 {
2269     int i;
2270     u16 tail;
2271     struct sdma_desc *descp = tx->descp;
2272     u8 skip = 0, mode = ahg_mode(tx);
2273 
2274     tail = sde->descq_tail & sde->sdma_mask;
2275     sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2276     sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2277     trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2278                    tail, &sde->descq[tail]);
2279     tail = ++sde->descq_tail & sde->sdma_mask;
2280     descp++;
2281     if (mode > SDMA_AHG_APPLY_UPDATE1)
2282         skip = mode >> 1;
2283     for (i = 1; i < tx->num_desc; i++, descp++) {
2284         u64 qw1;
2285 
2286         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2287         if (skip) {
2288             /* edits don't have generation */
2289             qw1 = descp->qw[1];
2290             skip--;
2291         } else {
2292             /* replace generation with real one for non-edits */
2293             qw1 = add_gen(sde, descp->qw[1]);
2294         }
2295         sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2296         trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2297                        tail, &sde->descq[tail]);
2298         tail = ++sde->descq_tail & sde->sdma_mask;
2299     }
2300     tx->next_descq_idx = tail;
2301 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2302     tx->sn = sde->tail_sn++;
2303     trace_hfi1_sdma_in_sn(sde, tx->sn);
2304     WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2305 #endif
2306     sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2307     sde->desc_avail -= tx->num_desc;
2308     return tail;
2309 }
2310 
2311 /*
2312  * Check for progress
2313  */
2314 static int sdma_check_progress(
2315     struct sdma_engine *sde,
2316     struct iowait_work *wait,
2317     struct sdma_txreq *tx,
2318     bool pkts_sent)
2319 {
2320     int ret;
2321 
2322     sde->desc_avail = sdma_descq_freecnt(sde);
2323     if (tx->num_desc <= sde->desc_avail)
2324         return -EAGAIN;
2325     /* pulse the head_lock */
2326     if (wait && iowait_ioww_to_iow(wait)->sleep) {
2327         unsigned seq;
2328 
2329         seq = raw_seqcount_begin(
2330             (const seqcount_t *)&sde->head_lock.seqcount);
2331         ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2332         if (ret == -EAGAIN)
2333             sde->desc_avail = sdma_descq_freecnt(sde);
2334     } else {
2335         ret = -EBUSY;
2336     }
2337     return ret;
2338 }
2339 
2340 /**
2341  * sdma_send_txreq() - submit a tx req to ring
2342  * @sde: sdma engine to use
2343  * @wait: SE wait structure to use when full (may be NULL)
2344  * @tx: sdma_txreq to submit
2345  * @pkts_sent: has any packet been sent yet?
2346  *
2347  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2348  * the packet will be queued to the list in wait.
2349  *
2350  * Return:
2351  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2352  * ring (wait == NULL)
2353  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2354  */
2355 int sdma_send_txreq(struct sdma_engine *sde,
2356             struct iowait_work *wait,
2357             struct sdma_txreq *tx,
2358             bool pkts_sent)
2359 {
2360     int ret = 0;
2361     u16 tail;
2362     unsigned long flags;
2363 
2364     /* user should have supplied entire packet */
2365     if (unlikely(tx->tlen))
2366         return -EINVAL;
2367     tx->wait = iowait_ioww_to_iow(wait);
2368     spin_lock_irqsave(&sde->tail_lock, flags);
2369 retry:
2370     if (unlikely(!__sdma_running(sde)))
2371         goto unlock_noconn;
2372     if (unlikely(tx->num_desc > sde->desc_avail))
2373         goto nodesc;
2374     tail = submit_tx(sde, tx);
2375     if (wait)
2376         iowait_sdma_inc(iowait_ioww_to_iow(wait));
2377     sdma_update_tail(sde, tail);
2378 unlock:
2379     spin_unlock_irqrestore(&sde->tail_lock, flags);
2380     return ret;
2381 unlock_noconn:
2382     if (wait)
2383         iowait_sdma_inc(iowait_ioww_to_iow(wait));
2384     tx->next_descq_idx = 0;
2385 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2386     tx->sn = sde->tail_sn++;
2387     trace_hfi1_sdma_in_sn(sde, tx->sn);
2388 #endif
2389     spin_lock(&sde->flushlist_lock);
2390     list_add_tail(&tx->list, &sde->flushlist);
2391     spin_unlock(&sde->flushlist_lock);
2392     iowait_inc_wait_count(wait, tx->num_desc);
2393     queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2394     ret = -ECOMM;
2395     goto unlock;
2396 nodesc:
2397     ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2398     if (ret == -EAGAIN) {
2399         ret = 0;
2400         goto retry;
2401     }
2402     sde->descq_full_count++;
2403     goto unlock;
2404 }
2405 
2406 /**
2407  * sdma_send_txlist() - submit a list of tx req to ring
2408  * @sde: sdma engine to use
2409  * @wait: SE wait structure to use when full (may be NULL)
2410  * @tx_list: list of sdma_txreqs to submit
2411  * @count_out: pointer to a u16 which, after return will contain the total number of
2412  *             sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2413  *             whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2414  *             which are added to SDMA engine flush list if the SDMA engine state is
2415  *             not running.
2416  *
2417  * The call submits the list into the ring.
2418  *
2419  * If the iowait structure is non-NULL and not equal to the iowait list
2420  * the unprocessed part of the list  will be appended to the list in wait.
2421  *
2422  * In all cases, the tx_list will be updated so the head of the tx_list is
2423  * the list of descriptors that have yet to be transmitted.
2424  *
2425  * The intent of this call is to provide a more efficient
2426  * way of submitting multiple packets to SDMA while holding the tail
2427  * side locking.
2428  *
2429  * Return:
2430  * 0 - Success,
2431  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2432  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2433  */
2434 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2435              struct list_head *tx_list, u16 *count_out)
2436 {
2437     struct sdma_txreq *tx, *tx_next;
2438     int ret = 0;
2439     unsigned long flags;
2440     u16 tail = INVALID_TAIL;
2441     u32 submit_count = 0, flush_count = 0, total_count;
2442 
2443     spin_lock_irqsave(&sde->tail_lock, flags);
2444 retry:
2445     list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2446         tx->wait = iowait_ioww_to_iow(wait);
2447         if (unlikely(!__sdma_running(sde)))
2448             goto unlock_noconn;
2449         if (unlikely(tx->num_desc > sde->desc_avail))
2450             goto nodesc;
2451         if (unlikely(tx->tlen)) {
2452             ret = -EINVAL;
2453             goto update_tail;
2454         }
2455         list_del_init(&tx->list);
2456         tail = submit_tx(sde, tx);
2457         submit_count++;
2458         if (tail != INVALID_TAIL &&
2459             (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2460             sdma_update_tail(sde, tail);
2461             tail = INVALID_TAIL;
2462         }
2463     }
2464 update_tail:
2465     total_count = submit_count + flush_count;
2466     if (wait) {
2467         iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2468         iowait_starve_clear(submit_count > 0,
2469                     iowait_ioww_to_iow(wait));
2470     }
2471     if (tail != INVALID_TAIL)
2472         sdma_update_tail(sde, tail);
2473     spin_unlock_irqrestore(&sde->tail_lock, flags);
2474     *count_out = total_count;
2475     return ret;
2476 unlock_noconn:
2477     spin_lock(&sde->flushlist_lock);
2478     list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2479         tx->wait = iowait_ioww_to_iow(wait);
2480         list_del_init(&tx->list);
2481         tx->next_descq_idx = 0;
2482 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2483         tx->sn = sde->tail_sn++;
2484         trace_hfi1_sdma_in_sn(sde, tx->sn);
2485 #endif
2486         list_add_tail(&tx->list, &sde->flushlist);
2487         flush_count++;
2488         iowait_inc_wait_count(wait, tx->num_desc);
2489     }
2490     spin_unlock(&sde->flushlist_lock);
2491     queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2492     ret = -ECOMM;
2493     goto update_tail;
2494 nodesc:
2495     ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2496     if (ret == -EAGAIN) {
2497         ret = 0;
2498         goto retry;
2499     }
2500     sde->descq_full_count++;
2501     goto update_tail;
2502 }
2503 
2504 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2505 {
2506     unsigned long flags;
2507 
2508     spin_lock_irqsave(&sde->tail_lock, flags);
2509     write_seqlock(&sde->head_lock);
2510 
2511     __sdma_process_event(sde, event);
2512 
2513     if (sde->state.current_state == sdma_state_s99_running)
2514         sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2515 
2516     write_sequnlock(&sde->head_lock);
2517     spin_unlock_irqrestore(&sde->tail_lock, flags);
2518 }
2519 
2520 static void __sdma_process_event(struct sdma_engine *sde,
2521                  enum sdma_events event)
2522 {
2523     struct sdma_state *ss = &sde->state;
2524     int need_progress = 0;
2525 
2526     /* CONFIG SDMA temporary */
2527 #ifdef CONFIG_SDMA_VERBOSITY
2528     dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2529            sdma_state_names[ss->current_state],
2530            sdma_event_names[event]);
2531 #endif
2532 
2533     switch (ss->current_state) {
2534     case sdma_state_s00_hw_down:
2535         switch (event) {
2536         case sdma_event_e00_go_hw_down:
2537             break;
2538         case sdma_event_e30_go_running:
2539             /*
2540              * If down, but running requested (usually result
2541              * of link up, then we need to start up.
2542              * This can happen when hw down is requested while
2543              * bringing the link up with traffic active on
2544              * 7220, e.g.
2545              */
2546             ss->go_s99_running = 1;
2547             fallthrough;    /* and start dma engine */
2548         case sdma_event_e10_go_hw_start:
2549             /* This reference means the state machine is started */
2550             sdma_get(&sde->state);
2551             sdma_set_state(sde,
2552                        sdma_state_s10_hw_start_up_halt_wait);
2553             break;
2554         case sdma_event_e15_hw_halt_done:
2555             break;
2556         case sdma_event_e25_hw_clean_up_done:
2557             break;
2558         case sdma_event_e40_sw_cleaned:
2559             sdma_sw_tear_down(sde);
2560             break;
2561         case sdma_event_e50_hw_cleaned:
2562             break;
2563         case sdma_event_e60_hw_halted:
2564             break;
2565         case sdma_event_e70_go_idle:
2566             break;
2567         case sdma_event_e80_hw_freeze:
2568             break;
2569         case sdma_event_e81_hw_frozen:
2570             break;
2571         case sdma_event_e82_hw_unfreeze:
2572             break;
2573         case sdma_event_e85_link_down:
2574             break;
2575         case sdma_event_e90_sw_halted:
2576             break;
2577         }
2578         break;
2579 
2580     case sdma_state_s10_hw_start_up_halt_wait:
2581         switch (event) {
2582         case sdma_event_e00_go_hw_down:
2583             sdma_set_state(sde, sdma_state_s00_hw_down);
2584             sdma_sw_tear_down(sde);
2585             break;
2586         case sdma_event_e10_go_hw_start:
2587             break;
2588         case sdma_event_e15_hw_halt_done:
2589             sdma_set_state(sde,
2590                        sdma_state_s15_hw_start_up_clean_wait);
2591             sdma_start_hw_clean_up(sde);
2592             break;
2593         case sdma_event_e25_hw_clean_up_done:
2594             break;
2595         case sdma_event_e30_go_running:
2596             ss->go_s99_running = 1;
2597             break;
2598         case sdma_event_e40_sw_cleaned:
2599             break;
2600         case sdma_event_e50_hw_cleaned:
2601             break;
2602         case sdma_event_e60_hw_halted:
2603             schedule_work(&sde->err_halt_worker);
2604             break;
2605         case sdma_event_e70_go_idle:
2606             ss->go_s99_running = 0;
2607             break;
2608         case sdma_event_e80_hw_freeze:
2609             break;
2610         case sdma_event_e81_hw_frozen:
2611             break;
2612         case sdma_event_e82_hw_unfreeze:
2613             break;
2614         case sdma_event_e85_link_down:
2615             break;
2616         case sdma_event_e90_sw_halted:
2617             break;
2618         }
2619         break;
2620 
2621     case sdma_state_s15_hw_start_up_clean_wait:
2622         switch (event) {
2623         case sdma_event_e00_go_hw_down:
2624             sdma_set_state(sde, sdma_state_s00_hw_down);
2625             sdma_sw_tear_down(sde);
2626             break;
2627         case sdma_event_e10_go_hw_start:
2628             break;
2629         case sdma_event_e15_hw_halt_done:
2630             break;
2631         case sdma_event_e25_hw_clean_up_done:
2632             sdma_hw_start_up(sde);
2633             sdma_set_state(sde, ss->go_s99_running ?
2634                        sdma_state_s99_running :
2635                        sdma_state_s20_idle);
2636             break;
2637         case sdma_event_e30_go_running:
2638             ss->go_s99_running = 1;
2639             break;
2640         case sdma_event_e40_sw_cleaned:
2641             break;
2642         case sdma_event_e50_hw_cleaned:
2643             break;
2644         case sdma_event_e60_hw_halted:
2645             break;
2646         case sdma_event_e70_go_idle:
2647             ss->go_s99_running = 0;
2648             break;
2649         case sdma_event_e80_hw_freeze:
2650             break;
2651         case sdma_event_e81_hw_frozen:
2652             break;
2653         case sdma_event_e82_hw_unfreeze:
2654             break;
2655         case sdma_event_e85_link_down:
2656             break;
2657         case sdma_event_e90_sw_halted:
2658             break;
2659         }
2660         break;
2661 
2662     case sdma_state_s20_idle:
2663         switch (event) {
2664         case sdma_event_e00_go_hw_down:
2665             sdma_set_state(sde, sdma_state_s00_hw_down);
2666             sdma_sw_tear_down(sde);
2667             break;
2668         case sdma_event_e10_go_hw_start:
2669             break;
2670         case sdma_event_e15_hw_halt_done:
2671             break;
2672         case sdma_event_e25_hw_clean_up_done:
2673             break;
2674         case sdma_event_e30_go_running:
2675             sdma_set_state(sde, sdma_state_s99_running);
2676             ss->go_s99_running = 1;
2677             break;
2678         case sdma_event_e40_sw_cleaned:
2679             break;
2680         case sdma_event_e50_hw_cleaned:
2681             break;
2682         case sdma_event_e60_hw_halted:
2683             sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2684             schedule_work(&sde->err_halt_worker);
2685             break;
2686         case sdma_event_e70_go_idle:
2687             break;
2688         case sdma_event_e85_link_down:
2689         case sdma_event_e80_hw_freeze:
2690             sdma_set_state(sde, sdma_state_s80_hw_freeze);
2691             atomic_dec(&sde->dd->sdma_unfreeze_count);
2692             wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2693             break;
2694         case sdma_event_e81_hw_frozen:
2695             break;
2696         case sdma_event_e82_hw_unfreeze:
2697             break;
2698         case sdma_event_e90_sw_halted:
2699             break;
2700         }
2701         break;
2702 
2703     case sdma_state_s30_sw_clean_up_wait:
2704         switch (event) {
2705         case sdma_event_e00_go_hw_down:
2706             sdma_set_state(sde, sdma_state_s00_hw_down);
2707             break;
2708         case sdma_event_e10_go_hw_start:
2709             break;
2710         case sdma_event_e15_hw_halt_done:
2711             break;
2712         case sdma_event_e25_hw_clean_up_done:
2713             break;
2714         case sdma_event_e30_go_running:
2715             ss->go_s99_running = 1;
2716             break;
2717         case sdma_event_e40_sw_cleaned:
2718             sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2719             sdma_start_hw_clean_up(sde);
2720             break;
2721         case sdma_event_e50_hw_cleaned:
2722             break;
2723         case sdma_event_e60_hw_halted:
2724             break;
2725         case sdma_event_e70_go_idle:
2726             ss->go_s99_running = 0;
2727             break;
2728         case sdma_event_e80_hw_freeze:
2729             break;
2730         case sdma_event_e81_hw_frozen:
2731             break;
2732         case sdma_event_e82_hw_unfreeze:
2733             break;
2734         case sdma_event_e85_link_down:
2735             ss->go_s99_running = 0;
2736             break;
2737         case sdma_event_e90_sw_halted:
2738             break;
2739         }
2740         break;
2741 
2742     case sdma_state_s40_hw_clean_up_wait:
2743         switch (event) {
2744         case sdma_event_e00_go_hw_down:
2745             sdma_set_state(sde, sdma_state_s00_hw_down);
2746             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2747             break;
2748         case sdma_event_e10_go_hw_start:
2749             break;
2750         case sdma_event_e15_hw_halt_done:
2751             break;
2752         case sdma_event_e25_hw_clean_up_done:
2753             sdma_hw_start_up(sde);
2754             sdma_set_state(sde, ss->go_s99_running ?
2755                        sdma_state_s99_running :
2756                        sdma_state_s20_idle);
2757             break;
2758         case sdma_event_e30_go_running:
2759             ss->go_s99_running = 1;
2760             break;
2761         case sdma_event_e40_sw_cleaned:
2762             break;
2763         case sdma_event_e50_hw_cleaned:
2764             break;
2765         case sdma_event_e60_hw_halted:
2766             break;
2767         case sdma_event_e70_go_idle:
2768             ss->go_s99_running = 0;
2769             break;
2770         case sdma_event_e80_hw_freeze:
2771             break;
2772         case sdma_event_e81_hw_frozen:
2773             break;
2774         case sdma_event_e82_hw_unfreeze:
2775             break;
2776         case sdma_event_e85_link_down:
2777             ss->go_s99_running = 0;
2778             break;
2779         case sdma_event_e90_sw_halted:
2780             break;
2781         }
2782         break;
2783 
2784     case sdma_state_s50_hw_halt_wait:
2785         switch (event) {
2786         case sdma_event_e00_go_hw_down:
2787             sdma_set_state(sde, sdma_state_s00_hw_down);
2788             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2789             break;
2790         case sdma_event_e10_go_hw_start:
2791             break;
2792         case sdma_event_e15_hw_halt_done:
2793             sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2794             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2795             break;
2796         case sdma_event_e25_hw_clean_up_done:
2797             break;
2798         case sdma_event_e30_go_running:
2799             ss->go_s99_running = 1;
2800             break;
2801         case sdma_event_e40_sw_cleaned:
2802             break;
2803         case sdma_event_e50_hw_cleaned:
2804             break;
2805         case sdma_event_e60_hw_halted:
2806             schedule_work(&sde->err_halt_worker);
2807             break;
2808         case sdma_event_e70_go_idle:
2809             ss->go_s99_running = 0;
2810             break;
2811         case sdma_event_e80_hw_freeze:
2812             break;
2813         case sdma_event_e81_hw_frozen:
2814             break;
2815         case sdma_event_e82_hw_unfreeze:
2816             break;
2817         case sdma_event_e85_link_down:
2818             ss->go_s99_running = 0;
2819             break;
2820         case sdma_event_e90_sw_halted:
2821             break;
2822         }
2823         break;
2824 
2825     case sdma_state_s60_idle_halt_wait:
2826         switch (event) {
2827         case sdma_event_e00_go_hw_down:
2828             sdma_set_state(sde, sdma_state_s00_hw_down);
2829             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2830             break;
2831         case sdma_event_e10_go_hw_start:
2832             break;
2833         case sdma_event_e15_hw_halt_done:
2834             sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2835             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2836             break;
2837         case sdma_event_e25_hw_clean_up_done:
2838             break;
2839         case sdma_event_e30_go_running:
2840             ss->go_s99_running = 1;
2841             break;
2842         case sdma_event_e40_sw_cleaned:
2843             break;
2844         case sdma_event_e50_hw_cleaned:
2845             break;
2846         case sdma_event_e60_hw_halted:
2847             schedule_work(&sde->err_halt_worker);
2848             break;
2849         case sdma_event_e70_go_idle:
2850             ss->go_s99_running = 0;
2851             break;
2852         case sdma_event_e80_hw_freeze:
2853             break;
2854         case sdma_event_e81_hw_frozen:
2855             break;
2856         case sdma_event_e82_hw_unfreeze:
2857             break;
2858         case sdma_event_e85_link_down:
2859             break;
2860         case sdma_event_e90_sw_halted:
2861             break;
2862         }
2863         break;
2864 
2865     case sdma_state_s80_hw_freeze:
2866         switch (event) {
2867         case sdma_event_e00_go_hw_down:
2868             sdma_set_state(sde, sdma_state_s00_hw_down);
2869             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2870             break;
2871         case sdma_event_e10_go_hw_start:
2872             break;
2873         case sdma_event_e15_hw_halt_done:
2874             break;
2875         case sdma_event_e25_hw_clean_up_done:
2876             break;
2877         case sdma_event_e30_go_running:
2878             ss->go_s99_running = 1;
2879             break;
2880         case sdma_event_e40_sw_cleaned:
2881             break;
2882         case sdma_event_e50_hw_cleaned:
2883             break;
2884         case sdma_event_e60_hw_halted:
2885             break;
2886         case sdma_event_e70_go_idle:
2887             ss->go_s99_running = 0;
2888             break;
2889         case sdma_event_e80_hw_freeze:
2890             break;
2891         case sdma_event_e81_hw_frozen:
2892             sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2893             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2894             break;
2895         case sdma_event_e82_hw_unfreeze:
2896             break;
2897         case sdma_event_e85_link_down:
2898             break;
2899         case sdma_event_e90_sw_halted:
2900             break;
2901         }
2902         break;
2903 
2904     case sdma_state_s82_freeze_sw_clean:
2905         switch (event) {
2906         case sdma_event_e00_go_hw_down:
2907             sdma_set_state(sde, sdma_state_s00_hw_down);
2908             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2909             break;
2910         case sdma_event_e10_go_hw_start:
2911             break;
2912         case sdma_event_e15_hw_halt_done:
2913             break;
2914         case sdma_event_e25_hw_clean_up_done:
2915             break;
2916         case sdma_event_e30_go_running:
2917             ss->go_s99_running = 1;
2918             break;
2919         case sdma_event_e40_sw_cleaned:
2920             /* notify caller this engine is done cleaning */
2921             atomic_dec(&sde->dd->sdma_unfreeze_count);
2922             wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2923             break;
2924         case sdma_event_e50_hw_cleaned:
2925             break;
2926         case sdma_event_e60_hw_halted:
2927             break;
2928         case sdma_event_e70_go_idle:
2929             ss->go_s99_running = 0;
2930             break;
2931         case sdma_event_e80_hw_freeze:
2932             break;
2933         case sdma_event_e81_hw_frozen:
2934             break;
2935         case sdma_event_e82_hw_unfreeze:
2936             sdma_hw_start_up(sde);
2937             sdma_set_state(sde, ss->go_s99_running ?
2938                        sdma_state_s99_running :
2939                        sdma_state_s20_idle);
2940             break;
2941         case sdma_event_e85_link_down:
2942             break;
2943         case sdma_event_e90_sw_halted:
2944             break;
2945         }
2946         break;
2947 
2948     case sdma_state_s99_running:
2949         switch (event) {
2950         case sdma_event_e00_go_hw_down:
2951             sdma_set_state(sde, sdma_state_s00_hw_down);
2952             tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2953             break;
2954         case sdma_event_e10_go_hw_start:
2955             break;
2956         case sdma_event_e15_hw_halt_done:
2957             break;
2958         case sdma_event_e25_hw_clean_up_done:
2959             break;
2960         case sdma_event_e30_go_running:
2961             break;
2962         case sdma_event_e40_sw_cleaned:
2963             break;
2964         case sdma_event_e50_hw_cleaned:
2965             break;
2966         case sdma_event_e60_hw_halted:
2967             need_progress = 1;
2968             sdma_err_progress_check_schedule(sde);
2969             fallthrough;
2970         case sdma_event_e90_sw_halted:
2971             /*
2972             * SW initiated halt does not perform engines
2973             * progress check
2974             */
2975             sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2976             schedule_work(&sde->err_halt_worker);
2977             break;
2978         case sdma_event_e70_go_idle:
2979             sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2980             break;
2981         case sdma_event_e85_link_down:
2982             ss->go_s99_running = 0;
2983             fallthrough;
2984         case sdma_event_e80_hw_freeze:
2985             sdma_set_state(sde, sdma_state_s80_hw_freeze);
2986             atomic_dec(&sde->dd->sdma_unfreeze_count);
2987             wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2988             break;
2989         case sdma_event_e81_hw_frozen:
2990             break;
2991         case sdma_event_e82_hw_unfreeze:
2992             break;
2993         }
2994         break;
2995     }
2996 
2997     ss->last_event = event;
2998     if (need_progress)
2999         sdma_make_progress(sde, 0);
3000 }
3001 
3002 /*
3003  * _extend_sdma_tx_descs() - helper to extend txreq
3004  *
3005  * This is called once the initial nominal allocation
3006  * of descriptors in the sdma_txreq is exhausted.
3007  *
3008  * The code will bump the allocation up to the max
3009  * of MAX_DESC (64) descriptors. There doesn't seem
3010  * much point in an interim step. The last descriptor
3011  * is reserved for coalesce buffer in order to support
3012  * cases where input packet has >MAX_DESC iovecs.
3013  *
3014  */
3015 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3016 {
3017     int i;
3018     struct sdma_desc *descp;
3019 
3020     /* Handle last descriptor */
3021     if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3022         /* if tlen is 0, it is for padding, release last descriptor */
3023         if (!tx->tlen) {
3024             tx->desc_limit = MAX_DESC;
3025         } else if (!tx->coalesce_buf) {
3026             /* allocate coalesce buffer with space for padding */
3027             tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3028                            GFP_ATOMIC);
3029             if (!tx->coalesce_buf)
3030                 goto enomem;
3031             tx->coalesce_idx = 0;
3032         }
3033         return 0;
3034     }
3035 
3036     if (unlikely(tx->num_desc == MAX_DESC))
3037         goto enomem;
3038 
3039     descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3040     if (!descp)
3041         goto enomem;
3042     tx->descp = descp;
3043 
3044     /* reserve last descriptor for coalescing */
3045     tx->desc_limit = MAX_DESC - 1;
3046     /* copy ones already built */
3047     for (i = 0; i < tx->num_desc; i++)
3048         tx->descp[i] = tx->descs[i];
3049     return 0;
3050 enomem:
3051     __sdma_txclean(dd, tx);
3052     return -ENOMEM;
3053 }
3054 
3055 /*
3056  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3057  *
3058  * This is called once the initial nominal allocation of descriptors
3059  * in the sdma_txreq is exhausted.
3060  *
3061  * This function calls _extend_sdma_tx_descs to extend or allocate
3062  * coalesce buffer. If there is a allocated coalesce buffer, it will
3063  * copy the input packet data into the coalesce buffer. It also adds
3064  * coalesce buffer descriptor once when whole packet is received.
3065  *
3066  * Return:
3067  * <0 - error
3068  * 0 - coalescing, don't populate descriptor
3069  * 1 - continue with populating descriptor
3070  */
3071 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3072                int type, void *kvaddr, struct page *page,
3073                unsigned long offset, u16 len)
3074 {
3075     int pad_len, rval;
3076     dma_addr_t addr;
3077 
3078     rval = _extend_sdma_tx_descs(dd, tx);
3079     if (rval) {
3080         __sdma_txclean(dd, tx);
3081         return rval;
3082     }
3083 
3084     /* If coalesce buffer is allocated, copy data into it */
3085     if (tx->coalesce_buf) {
3086         if (type == SDMA_MAP_NONE) {
3087             __sdma_txclean(dd, tx);
3088             return -EINVAL;
3089         }
3090 
3091         if (type == SDMA_MAP_PAGE) {
3092             kvaddr = kmap_local_page(page);
3093             kvaddr += offset;
3094         } else if (WARN_ON(!kvaddr)) {
3095             __sdma_txclean(dd, tx);
3096             return -EINVAL;
3097         }
3098 
3099         memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3100         tx->coalesce_idx += len;
3101         if (type == SDMA_MAP_PAGE)
3102             kunmap_local(kvaddr);
3103 
3104         /* If there is more data, return */
3105         if (tx->tlen - tx->coalesce_idx)
3106             return 0;
3107 
3108         /* Whole packet is received; add any padding */
3109         pad_len = tx->packet_len & (sizeof(u32) - 1);
3110         if (pad_len) {
3111             pad_len = sizeof(u32) - pad_len;
3112             memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3113             /* padding is taken care of for coalescing case */
3114             tx->packet_len += pad_len;
3115             tx->tlen += pad_len;
3116         }
3117 
3118         /* dma map the coalesce buffer */
3119         addr = dma_map_single(&dd->pcidev->dev,
3120                       tx->coalesce_buf,
3121                       tx->tlen,
3122                       DMA_TO_DEVICE);
3123 
3124         if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3125             __sdma_txclean(dd, tx);
3126             return -ENOSPC;
3127         }
3128 
3129         /* Add descriptor for coalesce buffer */
3130         tx->desc_limit = MAX_DESC;
3131         return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3132                      addr, tx->tlen);
3133     }
3134 
3135     return 1;
3136 }
3137 
3138 /* Update sdes when the lmc changes */
3139 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3140 {
3141     struct sdma_engine *sde;
3142     int i;
3143     u64 sreg;
3144 
3145     sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3146         SD(CHECK_SLID_MASK_SHIFT)) |
3147         (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3148         SD(CHECK_SLID_VALUE_SHIFT));
3149 
3150     for (i = 0; i < dd->num_sdma; i++) {
3151         hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3152               i, (u32)sreg);
3153         sde = &dd->per_sdma[i];
3154         write_sde_csr(sde, SD(CHECK_SLID), sreg);
3155     }
3156 }
3157 
3158 /* tx not dword sized - pad */
3159 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3160 {
3161     int rval = 0;
3162 
3163     tx->num_desc++;
3164     if ((unlikely(tx->num_desc == tx->desc_limit))) {
3165         rval = _extend_sdma_tx_descs(dd, tx);
3166         if (rval) {
3167             __sdma_txclean(dd, tx);
3168             return rval;
3169         }
3170     }
3171     /* finish the one just added */
3172     make_tx_sdma_desc(
3173         tx,
3174         SDMA_MAP_NONE,
3175         dd->sdma_pad_phys,
3176         sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3177     _sdma_close_tx(dd, tx);
3178     return rval;
3179 }
3180 
3181 /*
3182  * Add ahg to the sdma_txreq
3183  *
3184  * The logic will consume up to 3
3185  * descriptors at the beginning of
3186  * sdma_txreq.
3187  */
3188 void _sdma_txreq_ahgadd(
3189     struct sdma_txreq *tx,
3190     u8 num_ahg,
3191     u8 ahg_entry,
3192     u32 *ahg,
3193     u8 ahg_hlen)
3194 {
3195     u32 i, shift = 0, desc = 0;
3196     u8 mode;
3197 
3198     WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3199     /* compute mode */
3200     if (num_ahg == 1)
3201         mode = SDMA_AHG_APPLY_UPDATE1;
3202     else if (num_ahg <= 5)
3203         mode = SDMA_AHG_APPLY_UPDATE2;
3204     else
3205         mode = SDMA_AHG_APPLY_UPDATE3;
3206     tx->num_desc++;
3207     /* initialize to consumed descriptors to zero */
3208     switch (mode) {
3209     case SDMA_AHG_APPLY_UPDATE3:
3210         tx->num_desc++;
3211         tx->descs[2].qw[0] = 0;
3212         tx->descs[2].qw[1] = 0;
3213         fallthrough;
3214     case SDMA_AHG_APPLY_UPDATE2:
3215         tx->num_desc++;
3216         tx->descs[1].qw[0] = 0;
3217         tx->descs[1].qw[1] = 0;
3218         break;
3219     }
3220     ahg_hlen >>= 2;
3221     tx->descs[0].qw[1] |=
3222         (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3223             << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3224         (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3225             << SDMA_DESC1_HEADER_DWS_SHIFT) |
3226         (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3227             << SDMA_DESC1_HEADER_MODE_SHIFT) |
3228         (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3229             << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3230     for (i = 0; i < (num_ahg - 1); i++) {
3231         if (!shift && !(i & 2))
3232             desc++;
3233         tx->descs[desc].qw[!!(i & 2)] |=
3234             (((u64)ahg[i + 1])
3235                 << shift);
3236         shift = (shift + 32) & 63;
3237     }
3238 }
3239 
3240 /**
3241  * sdma_ahg_alloc - allocate an AHG entry
3242  * @sde: engine to allocate from
3243  *
3244  * Return:
3245  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3246  * -ENOSPC if an entry is not available
3247  */
3248 int sdma_ahg_alloc(struct sdma_engine *sde)
3249 {
3250     int nr;
3251     int oldbit;
3252 
3253     if (!sde) {
3254         trace_hfi1_ahg_allocate(sde, -EINVAL);
3255         return -EINVAL;
3256     }
3257     while (1) {
3258         nr = ffz(READ_ONCE(sde->ahg_bits));
3259         if (nr > 31) {
3260             trace_hfi1_ahg_allocate(sde, -ENOSPC);
3261             return -ENOSPC;
3262         }
3263         oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3264         if (!oldbit)
3265             break;
3266         cpu_relax();
3267     }
3268     trace_hfi1_ahg_allocate(sde, nr);
3269     return nr;
3270 }
3271 
3272 /**
3273  * sdma_ahg_free - free an AHG entry
3274  * @sde: engine to return AHG entry
3275  * @ahg_index: index to free
3276  *
3277  * This routine frees the indicate AHG entry.
3278  */
3279 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3280 {
3281     if (!sde)
3282         return;
3283     trace_hfi1_ahg_deallocate(sde, ahg_index);
3284     if (ahg_index < 0 || ahg_index > 31)
3285         return;
3286     clear_bit(ahg_index, &sde->ahg_bits);
3287 }
3288 
3289 /*
3290  * SPC freeze handling for SDMA engines.  Called when the driver knows
3291  * the SPC is going into a freeze but before the freeze is fully
3292  * settled.  Generally an error interrupt.
3293  *
3294  * This event will pull the engine out of running so no more entries can be
3295  * added to the engine's queue.
3296  */
3297 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3298 {
3299     int i;
3300     enum sdma_events event = link_down ? sdma_event_e85_link_down :
3301                          sdma_event_e80_hw_freeze;
3302 
3303     /* set up the wait but do not wait here */
3304     atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3305 
3306     /* tell all engines to stop running and wait */
3307     for (i = 0; i < dd->num_sdma; i++)
3308         sdma_process_event(&dd->per_sdma[i], event);
3309 
3310     /* sdma_freeze() will wait for all engines to have stopped */
3311 }
3312 
3313 /*
3314  * SPC freeze handling for SDMA engines.  Called when the driver knows
3315  * the SPC is fully frozen.
3316  */
3317 void sdma_freeze(struct hfi1_devdata *dd)
3318 {
3319     int i;
3320     int ret;
3321 
3322     /*
3323      * Make sure all engines have moved out of the running state before
3324      * continuing.
3325      */
3326     ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3327                        atomic_read(&dd->sdma_unfreeze_count) <=
3328                        0);
3329     /* interrupted or count is negative, then unloading - just exit */
3330     if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3331         return;
3332 
3333     /* set up the count for the next wait */
3334     atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3335 
3336     /* tell all engines that the SPC is frozen, they can start cleaning */
3337     for (i = 0; i < dd->num_sdma; i++)
3338         sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3339 
3340     /*
3341      * Wait for everyone to finish software clean before exiting.  The
3342      * software clean will read engine CSRs, so must be completed before
3343      * the next step, which will clear the engine CSRs.
3344      */
3345     (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3346                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3347     /* no need to check results - done no matter what */
3348 }
3349 
3350 /*
3351  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3352  *
3353  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3354  * that is left is a software clean.  We could do it after the SPC is fully
3355  * frozen, but then we'd have to add another state to wait for the unfreeze.
3356  * Instead, just defer the software clean until the unfreeze step.
3357  */
3358 void sdma_unfreeze(struct hfi1_devdata *dd)
3359 {
3360     int i;
3361 
3362     /* tell all engines start freeze clean up */
3363     for (i = 0; i < dd->num_sdma; i++)
3364         sdma_process_event(&dd->per_sdma[i],
3365                    sdma_event_e82_hw_unfreeze);
3366 }
3367 
3368 /**
3369  * _sdma_engine_progress_schedule() - schedule progress on engine
3370  * @sde: sdma_engine to schedule progress
3371  *
3372  */
3373 void _sdma_engine_progress_schedule(
3374     struct sdma_engine *sde)
3375 {
3376     trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3377     /* assume we have selected a good cpu */
3378     write_csr(sde->dd,
3379           CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3380           sde->progress_mask);
3381 }