Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
0003  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
0004  *
0005  * This software is available to you under a choice of one of two
0006  * licenses.  You may choose to be licensed under the terms of the GNU
0007  * General Public License (GPL) Version 2, available from the file
0008  * COPYING in the main directory of this source tree, or the
0009  * OpenIB.org BSD license below:
0010  *
0011  *     Redistribution and use in source and binary forms, with or
0012  *     without modification, are permitted provided that the following
0013  *     conditions are met:
0014  *
0015  *      - Redistributions of source code must retain the above
0016  *        copyright notice, this list of conditions and the following
0017  *        disclaimer.
0018  *
0019  *      - Redistributions in binary form must reproduce the above
0020  *        copyright notice, this list of conditions and the following
0021  *        disclaimer in the documentation and/or other materials
0022  *        provided with the distribution.
0023  *
0024  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0025  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0026  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0027  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0028  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0029  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0030  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0031  * SOFTWARE.
0032  */
0033 
0034 #include <linux/module.h>
0035 #include <linux/string.h>
0036 #include <linux/errno.h>
0037 #include <linux/kernel.h>
0038 #include <linux/slab.h>
0039 #include <linux/init.h>
0040 #include <linux/netdevice.h>
0041 #include <net/net_namespace.h>
0042 #include <linux/security.h>
0043 #include <linux/notifier.h>
0044 #include <linux/hashtable.h>
0045 #include <rdma/rdma_netlink.h>
0046 #include <rdma/ib_addr.h>
0047 #include <rdma/ib_cache.h>
0048 #include <rdma/rdma_counter.h>
0049 
0050 #include "core_priv.h"
0051 #include "restrack.h"
0052 
0053 MODULE_AUTHOR("Roland Dreier");
0054 MODULE_DESCRIPTION("core kernel InfiniBand API");
0055 MODULE_LICENSE("Dual BSD/GPL");
0056 
0057 struct workqueue_struct *ib_comp_wq;
0058 struct workqueue_struct *ib_comp_unbound_wq;
0059 struct workqueue_struct *ib_wq;
0060 EXPORT_SYMBOL_GPL(ib_wq);
0061 static struct workqueue_struct *ib_unreg_wq;
0062 
0063 /*
0064  * Each of the three rwsem locks (devices, clients, client_data) protects the
0065  * xarray of the same name. Specifically it allows the caller to assert that
0066  * the MARK will/will not be changing under the lock, and for devices and
0067  * clients, that the value in the xarray is still a valid pointer. Change of
0068  * the MARK is linked to the object state, so holding the lock and testing the
0069  * MARK also asserts that the contained object is in a certain state.
0070  *
0071  * This is used to build a two stage register/unregister flow where objects
0072  * can continue to be in the xarray even though they are still in progress to
0073  * register/unregister.
0074  *
0075  * The xarray itself provides additional locking, and restartable iteration,
0076  * which is also relied on.
0077  *
0078  * Locks should not be nested, with the exception of client_data, which is
0079  * allowed to nest under the read side of the other two locks.
0080  *
0081  * The devices_rwsem also protects the device name list, any change or
0082  * assignment of device name must also hold the write side to guarantee unique
0083  * names.
0084  */
0085 
0086 /*
0087  * devices contains devices that have had their names assigned. The
0088  * devices may not be registered. Users that care about the registration
0089  * status need to call ib_device_try_get() on the device to ensure it is
0090  * registered, and keep it registered, for the required duration.
0091  *
0092  */
0093 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
0094 static DECLARE_RWSEM(devices_rwsem);
0095 #define DEVICE_REGISTERED XA_MARK_1
0096 
0097 static u32 highest_client_id;
0098 #define CLIENT_REGISTERED XA_MARK_1
0099 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
0100 static DECLARE_RWSEM(clients_rwsem);
0101 
0102 static void ib_client_put(struct ib_client *client)
0103 {
0104     if (refcount_dec_and_test(&client->uses))
0105         complete(&client->uses_zero);
0106 }
0107 
0108 /*
0109  * If client_data is registered then the corresponding client must also still
0110  * be registered.
0111  */
0112 #define CLIENT_DATA_REGISTERED XA_MARK_1
0113 
0114 unsigned int rdma_dev_net_id;
0115 
0116 /*
0117  * A list of net namespaces is maintained in an xarray. This is necessary
0118  * because we can't get the locking right using the existing net ns list. We
0119  * would require a init_net callback after the list is updated.
0120  */
0121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
0122 /*
0123  * rwsem to protect accessing the rdma_nets xarray entries.
0124  */
0125 static DECLARE_RWSEM(rdma_nets_rwsem);
0126 
0127 bool ib_devices_shared_netns = true;
0128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
0129 MODULE_PARM_DESC(netns_mode,
0130          "Share device among net namespaces; default=1 (shared)");
0131 /**
0132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
0133  *               from a specified net namespace or not.
0134  * @dev:    Pointer to rdma device which needs to be checked
0135  * @net:    Pointer to net namesapce for which access to be checked
0136  *
0137  * When the rdma device is in shared mode, it ignores the net namespace.
0138  * When the rdma device is exclusive to a net namespace, rdma device net
0139  * namespace is checked against the specified one.
0140  */
0141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
0142 {
0143     return (ib_devices_shared_netns ||
0144         net_eq(read_pnet(&dev->coredev.rdma_net), net));
0145 }
0146 EXPORT_SYMBOL(rdma_dev_access_netns);
0147 
0148 /*
0149  * xarray has this behavior where it won't iterate over NULL values stored in
0150  * allocated arrays.  So we need our own iterator to see all values stored in
0151  * the array. This does the same thing as xa_for_each except that it also
0152  * returns NULL valued entries if the array is allocating. Simplified to only
0153  * work on simple xarrays.
0154  */
0155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
0156                  xa_mark_t filter)
0157 {
0158     XA_STATE(xas, xa, *indexp);
0159     void *entry;
0160 
0161     rcu_read_lock();
0162     do {
0163         entry = xas_find_marked(&xas, ULONG_MAX, filter);
0164         if (xa_is_zero(entry))
0165             break;
0166     } while (xas_retry(&xas, entry));
0167     rcu_read_unlock();
0168 
0169     if (entry) {
0170         *indexp = xas.xa_index;
0171         if (xa_is_zero(entry))
0172             return NULL;
0173         return entry;
0174     }
0175     return XA_ERROR(-ENOENT);
0176 }
0177 #define xan_for_each_marked(xa, index, entry, filter)                          \
0178     for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
0179          !xa_is_err(entry);                                                \
0180          (index)++, entry = xan_find_marked(xa, &(index), filter))
0181 
0182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
0183 static DEFINE_SPINLOCK(ndev_hash_lock);
0184 static DECLARE_HASHTABLE(ndev_hash, 5);
0185 
0186 static void free_netdevs(struct ib_device *ib_dev);
0187 static void ib_unregister_work(struct work_struct *work);
0188 static void __ib_unregister_device(struct ib_device *device);
0189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
0190                   void *lsm_data);
0191 static void ib_policy_change_task(struct work_struct *work);
0192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
0193 
0194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
0195                struct va_format *vaf)
0196 {
0197     if (ibdev && ibdev->dev.parent)
0198         dev_printk_emit(level[1] - '0',
0199                 ibdev->dev.parent,
0200                 "%s %s %s: %pV",
0201                 dev_driver_string(ibdev->dev.parent),
0202                 dev_name(ibdev->dev.parent),
0203                 dev_name(&ibdev->dev),
0204                 vaf);
0205     else if (ibdev)
0206         printk("%s%s: %pV",
0207                level, dev_name(&ibdev->dev), vaf);
0208     else
0209         printk("%s(NULL ib_device): %pV", level, vaf);
0210 }
0211 
0212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
0213           const char *format, ...)
0214 {
0215     struct va_format vaf;
0216     va_list args;
0217 
0218     va_start(args, format);
0219 
0220     vaf.fmt = format;
0221     vaf.va = &args;
0222 
0223     __ibdev_printk(level, ibdev, &vaf);
0224 
0225     va_end(args);
0226 }
0227 EXPORT_SYMBOL(ibdev_printk);
0228 
0229 #define define_ibdev_printk_level(func, level)                  \
0230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
0231 {                                                               \
0232     struct va_format vaf;                                   \
0233     va_list args;                                           \
0234                                 \
0235     va_start(args, fmt);                                    \
0236                                 \
0237     vaf.fmt = fmt;                                          \
0238     vaf.va = &args;                                         \
0239                                 \
0240     __ibdev_printk(level, ibdev, &vaf);                     \
0241                                 \
0242     va_end(args);                                           \
0243 }                                                               \
0244 EXPORT_SYMBOL(func);
0245 
0246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
0247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
0248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
0249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
0250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
0251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
0252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
0253 
0254 static struct notifier_block ibdev_lsm_nb = {
0255     .notifier_call = ib_security_change,
0256 };
0257 
0258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
0259                  struct net *net);
0260 
0261 /* Pointer to the RCU head at the start of the ib_port_data array */
0262 struct ib_port_data_rcu {
0263     struct rcu_head rcu_head;
0264     struct ib_port_data pdata[];
0265 };
0266 
0267 static void ib_device_check_mandatory(struct ib_device *device)
0268 {
0269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
0270     static const struct {
0271         size_t offset;
0272         char  *name;
0273     } mandatory_table[] = {
0274         IB_MANDATORY_FUNC(query_device),
0275         IB_MANDATORY_FUNC(query_port),
0276         IB_MANDATORY_FUNC(alloc_pd),
0277         IB_MANDATORY_FUNC(dealloc_pd),
0278         IB_MANDATORY_FUNC(create_qp),
0279         IB_MANDATORY_FUNC(modify_qp),
0280         IB_MANDATORY_FUNC(destroy_qp),
0281         IB_MANDATORY_FUNC(post_send),
0282         IB_MANDATORY_FUNC(post_recv),
0283         IB_MANDATORY_FUNC(create_cq),
0284         IB_MANDATORY_FUNC(destroy_cq),
0285         IB_MANDATORY_FUNC(poll_cq),
0286         IB_MANDATORY_FUNC(req_notify_cq),
0287         IB_MANDATORY_FUNC(get_dma_mr),
0288         IB_MANDATORY_FUNC(reg_user_mr),
0289         IB_MANDATORY_FUNC(dereg_mr),
0290         IB_MANDATORY_FUNC(get_port_immutable)
0291     };
0292     int i;
0293 
0294     device->kverbs_provider = true;
0295     for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
0296         if (!*(void **) ((void *) &device->ops +
0297                  mandatory_table[i].offset)) {
0298             device->kverbs_provider = false;
0299             break;
0300         }
0301     }
0302 }
0303 
0304 /*
0305  * Caller must perform ib_device_put() to return the device reference count
0306  * when ib_device_get_by_index() returns valid device pointer.
0307  */
0308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
0309 {
0310     struct ib_device *device;
0311 
0312     down_read(&devices_rwsem);
0313     device = xa_load(&devices, index);
0314     if (device) {
0315         if (!rdma_dev_access_netns(device, net)) {
0316             device = NULL;
0317             goto out;
0318         }
0319 
0320         if (!ib_device_try_get(device))
0321             device = NULL;
0322     }
0323 out:
0324     up_read(&devices_rwsem);
0325     return device;
0326 }
0327 
0328 /**
0329  * ib_device_put - Release IB device reference
0330  * @device: device whose reference to be released
0331  *
0332  * ib_device_put() releases reference to the IB device to allow it to be
0333  * unregistered and eventually free.
0334  */
0335 void ib_device_put(struct ib_device *device)
0336 {
0337     if (refcount_dec_and_test(&device->refcount))
0338         complete(&device->unreg_completion);
0339 }
0340 EXPORT_SYMBOL(ib_device_put);
0341 
0342 static struct ib_device *__ib_device_get_by_name(const char *name)
0343 {
0344     struct ib_device *device;
0345     unsigned long index;
0346 
0347     xa_for_each (&devices, index, device)
0348         if (!strcmp(name, dev_name(&device->dev)))
0349             return device;
0350 
0351     return NULL;
0352 }
0353 
0354 /**
0355  * ib_device_get_by_name - Find an IB device by name
0356  * @name: The name to look for
0357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
0358  *
0359  * Find and hold an ib_device by its name. The caller must call
0360  * ib_device_put() on the returned pointer.
0361  */
0362 struct ib_device *ib_device_get_by_name(const char *name,
0363                     enum rdma_driver_id driver_id)
0364 {
0365     struct ib_device *device;
0366 
0367     down_read(&devices_rwsem);
0368     device = __ib_device_get_by_name(name);
0369     if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
0370         device->ops.driver_id != driver_id)
0371         device = NULL;
0372 
0373     if (device) {
0374         if (!ib_device_try_get(device))
0375             device = NULL;
0376     }
0377     up_read(&devices_rwsem);
0378     return device;
0379 }
0380 EXPORT_SYMBOL(ib_device_get_by_name);
0381 
0382 static int rename_compat_devs(struct ib_device *device)
0383 {
0384     struct ib_core_device *cdev;
0385     unsigned long index;
0386     int ret = 0;
0387 
0388     mutex_lock(&device->compat_devs_mutex);
0389     xa_for_each (&device->compat_devs, index, cdev) {
0390         ret = device_rename(&cdev->dev, dev_name(&device->dev));
0391         if (ret) {
0392             dev_warn(&cdev->dev,
0393                  "Fail to rename compatdev to new name %s\n",
0394                  dev_name(&device->dev));
0395             break;
0396         }
0397     }
0398     mutex_unlock(&device->compat_devs_mutex);
0399     return ret;
0400 }
0401 
0402 int ib_device_rename(struct ib_device *ibdev, const char *name)
0403 {
0404     unsigned long index;
0405     void *client_data;
0406     int ret;
0407 
0408     down_write(&devices_rwsem);
0409     if (!strcmp(name, dev_name(&ibdev->dev))) {
0410         up_write(&devices_rwsem);
0411         return 0;
0412     }
0413 
0414     if (__ib_device_get_by_name(name)) {
0415         up_write(&devices_rwsem);
0416         return -EEXIST;
0417     }
0418 
0419     ret = device_rename(&ibdev->dev, name);
0420     if (ret) {
0421         up_write(&devices_rwsem);
0422         return ret;
0423     }
0424 
0425     strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
0426     ret = rename_compat_devs(ibdev);
0427 
0428     downgrade_write(&devices_rwsem);
0429     down_read(&ibdev->client_data_rwsem);
0430     xan_for_each_marked(&ibdev->client_data, index, client_data,
0431                 CLIENT_DATA_REGISTERED) {
0432         struct ib_client *client = xa_load(&clients, index);
0433 
0434         if (!client || !client->rename)
0435             continue;
0436 
0437         client->rename(ibdev, client_data);
0438     }
0439     up_read(&ibdev->client_data_rwsem);
0440     up_read(&devices_rwsem);
0441     return 0;
0442 }
0443 
0444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
0445 {
0446     if (use_dim > 1)
0447         return -EINVAL;
0448     ibdev->use_cq_dim = use_dim;
0449 
0450     return 0;
0451 }
0452 
0453 static int alloc_name(struct ib_device *ibdev, const char *name)
0454 {
0455     struct ib_device *device;
0456     unsigned long index;
0457     struct ida inuse;
0458     int rc;
0459     int i;
0460 
0461     lockdep_assert_held_write(&devices_rwsem);
0462     ida_init(&inuse);
0463     xa_for_each (&devices, index, device) {
0464         char buf[IB_DEVICE_NAME_MAX];
0465 
0466         if (sscanf(dev_name(&device->dev), name, &i) != 1)
0467             continue;
0468         if (i < 0 || i >= INT_MAX)
0469             continue;
0470         snprintf(buf, sizeof buf, name, i);
0471         if (strcmp(buf, dev_name(&device->dev)) != 0)
0472             continue;
0473 
0474         rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
0475         if (rc < 0)
0476             goto out;
0477     }
0478 
0479     rc = ida_alloc(&inuse, GFP_KERNEL);
0480     if (rc < 0)
0481         goto out;
0482 
0483     rc = dev_set_name(&ibdev->dev, name, rc);
0484 out:
0485     ida_destroy(&inuse);
0486     return rc;
0487 }
0488 
0489 static void ib_device_release(struct device *device)
0490 {
0491     struct ib_device *dev = container_of(device, struct ib_device, dev);
0492 
0493     free_netdevs(dev);
0494     WARN_ON(refcount_read(&dev->refcount));
0495     if (dev->hw_stats_data)
0496         ib_device_release_hw_stats(dev->hw_stats_data);
0497     if (dev->port_data) {
0498         ib_cache_release_one(dev);
0499         ib_security_release_port_pkey_list(dev);
0500         rdma_counter_release(dev);
0501         kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
0502                        pdata[0]),
0503               rcu_head);
0504     }
0505 
0506     mutex_destroy(&dev->unregistration_lock);
0507     mutex_destroy(&dev->compat_devs_mutex);
0508 
0509     xa_destroy(&dev->compat_devs);
0510     xa_destroy(&dev->client_data);
0511     kfree_rcu(dev, rcu_head);
0512 }
0513 
0514 static int ib_device_uevent(struct device *device,
0515                 struct kobj_uevent_env *env)
0516 {
0517     if (add_uevent_var(env, "NAME=%s", dev_name(device)))
0518         return -ENOMEM;
0519 
0520     /*
0521      * It would be nice to pass the node GUID with the event...
0522      */
0523 
0524     return 0;
0525 }
0526 
0527 static const void *net_namespace(struct device *d)
0528 {
0529     struct ib_core_device *coredev =
0530             container_of(d, struct ib_core_device, dev);
0531 
0532     return read_pnet(&coredev->rdma_net);
0533 }
0534 
0535 static struct class ib_class = {
0536     .name    = "infiniband",
0537     .dev_release = ib_device_release,
0538     .dev_uevent = ib_device_uevent,
0539     .ns_type = &net_ns_type_operations,
0540     .namespace = net_namespace,
0541 };
0542 
0543 static void rdma_init_coredev(struct ib_core_device *coredev,
0544                   struct ib_device *dev, struct net *net)
0545 {
0546     /* This BUILD_BUG_ON is intended to catch layout change
0547      * of union of ib_core_device and device.
0548      * dev must be the first element as ib_core and providers
0549      * driver uses it. Adding anything in ib_core_device before
0550      * device will break this assumption.
0551      */
0552     BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
0553              offsetof(struct ib_device, dev));
0554 
0555     coredev->dev.class = &ib_class;
0556     coredev->dev.groups = dev->groups;
0557     device_initialize(&coredev->dev);
0558     coredev->owner = dev;
0559     INIT_LIST_HEAD(&coredev->port_list);
0560     write_pnet(&coredev->rdma_net, net);
0561 }
0562 
0563 /**
0564  * _ib_alloc_device - allocate an IB device struct
0565  * @size:size of structure to allocate
0566  *
0567  * Low-level drivers should use ib_alloc_device() to allocate &struct
0568  * ib_device.  @size is the size of the structure to be allocated,
0569  * including any private data used by the low-level driver.
0570  * ib_dealloc_device() must be used to free structures allocated with
0571  * ib_alloc_device().
0572  */
0573 struct ib_device *_ib_alloc_device(size_t size)
0574 {
0575     struct ib_device *device;
0576     unsigned int i;
0577 
0578     if (WARN_ON(size < sizeof(struct ib_device)))
0579         return NULL;
0580 
0581     device = kzalloc(size, GFP_KERNEL);
0582     if (!device)
0583         return NULL;
0584 
0585     if (rdma_restrack_init(device)) {
0586         kfree(device);
0587         return NULL;
0588     }
0589 
0590     rdma_init_coredev(&device->coredev, device, &init_net);
0591 
0592     INIT_LIST_HEAD(&device->event_handler_list);
0593     spin_lock_init(&device->qp_open_list_lock);
0594     init_rwsem(&device->event_handler_rwsem);
0595     mutex_init(&device->unregistration_lock);
0596     /*
0597      * client_data needs to be alloc because we don't want our mark to be
0598      * destroyed if the user stores NULL in the client data.
0599      */
0600     xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
0601     init_rwsem(&device->client_data_rwsem);
0602     xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
0603     mutex_init(&device->compat_devs_mutex);
0604     init_completion(&device->unreg_completion);
0605     INIT_WORK(&device->unregistration_work, ib_unregister_work);
0606 
0607     spin_lock_init(&device->cq_pools_lock);
0608     for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
0609         INIT_LIST_HEAD(&device->cq_pools[i]);
0610 
0611     rwlock_init(&device->cache_lock);
0612 
0613     device->uverbs_cmd_mask =
0614         BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
0615         BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
0616         BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
0617         BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
0618         BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
0619         BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
0620         BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
0621         BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
0622         BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
0623         BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
0624         BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
0625         BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
0626         BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
0627         BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
0628         BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
0629         BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
0630         BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
0631         BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
0632         BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
0633         BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
0634         BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
0635         BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
0636         BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
0637         BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
0638         BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
0639         BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
0640         BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
0641         BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
0642         BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
0643         BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
0644     return device;
0645 }
0646 EXPORT_SYMBOL(_ib_alloc_device);
0647 
0648 /**
0649  * ib_dealloc_device - free an IB device struct
0650  * @device:structure to free
0651  *
0652  * Free a structure allocated with ib_alloc_device().
0653  */
0654 void ib_dealloc_device(struct ib_device *device)
0655 {
0656     if (device->ops.dealloc_driver)
0657         device->ops.dealloc_driver(device);
0658 
0659     /*
0660      * ib_unregister_driver() requires all devices to remain in the xarray
0661      * while their ops are callable. The last op we call is dealloc_driver
0662      * above.  This is needed to create a fence on op callbacks prior to
0663      * allowing the driver module to unload.
0664      */
0665     down_write(&devices_rwsem);
0666     if (xa_load(&devices, device->index) == device)
0667         xa_erase(&devices, device->index);
0668     up_write(&devices_rwsem);
0669 
0670     /* Expedite releasing netdev references */
0671     free_netdevs(device);
0672 
0673     WARN_ON(!xa_empty(&device->compat_devs));
0674     WARN_ON(!xa_empty(&device->client_data));
0675     WARN_ON(refcount_read(&device->refcount));
0676     rdma_restrack_clean(device);
0677     /* Balances with device_initialize */
0678     put_device(&device->dev);
0679 }
0680 EXPORT_SYMBOL(ib_dealloc_device);
0681 
0682 /*
0683  * add_client_context() and remove_client_context() must be safe against
0684  * parallel calls on the same device - registration/unregistration of both the
0685  * device and client can be occurring in parallel.
0686  *
0687  * The routines need to be a fence, any caller must not return until the add
0688  * or remove is fully completed.
0689  */
0690 static int add_client_context(struct ib_device *device,
0691                   struct ib_client *client)
0692 {
0693     int ret = 0;
0694 
0695     if (!device->kverbs_provider && !client->no_kverbs_req)
0696         return 0;
0697 
0698     down_write(&device->client_data_rwsem);
0699     /*
0700      * So long as the client is registered hold both the client and device
0701      * unregistration locks.
0702      */
0703     if (!refcount_inc_not_zero(&client->uses))
0704         goto out_unlock;
0705     refcount_inc(&device->refcount);
0706 
0707     /*
0708      * Another caller to add_client_context got here first and has already
0709      * completely initialized context.
0710      */
0711     if (xa_get_mark(&device->client_data, client->client_id,
0712             CLIENT_DATA_REGISTERED))
0713         goto out;
0714 
0715     ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
0716                   GFP_KERNEL));
0717     if (ret)
0718         goto out;
0719     downgrade_write(&device->client_data_rwsem);
0720     if (client->add) {
0721         if (client->add(device)) {
0722             /*
0723              * If a client fails to add then the error code is
0724              * ignored, but we won't call any more ops on this
0725              * client.
0726              */
0727             xa_erase(&device->client_data, client->client_id);
0728             up_read(&device->client_data_rwsem);
0729             ib_device_put(device);
0730             ib_client_put(client);
0731             return 0;
0732         }
0733     }
0734 
0735     /* Readers shall not see a client until add has been completed */
0736     xa_set_mark(&device->client_data, client->client_id,
0737             CLIENT_DATA_REGISTERED);
0738     up_read(&device->client_data_rwsem);
0739     return 0;
0740 
0741 out:
0742     ib_device_put(device);
0743     ib_client_put(client);
0744 out_unlock:
0745     up_write(&device->client_data_rwsem);
0746     return ret;
0747 }
0748 
0749 static void remove_client_context(struct ib_device *device,
0750                   unsigned int client_id)
0751 {
0752     struct ib_client *client;
0753     void *client_data;
0754 
0755     down_write(&device->client_data_rwsem);
0756     if (!xa_get_mark(&device->client_data, client_id,
0757              CLIENT_DATA_REGISTERED)) {
0758         up_write(&device->client_data_rwsem);
0759         return;
0760     }
0761     client_data = xa_load(&device->client_data, client_id);
0762     xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
0763     client = xa_load(&clients, client_id);
0764     up_write(&device->client_data_rwsem);
0765 
0766     /*
0767      * Notice we cannot be holding any exclusive locks when calling the
0768      * remove callback as the remove callback can recurse back into any
0769      * public functions in this module and thus try for any locks those
0770      * functions take.
0771      *
0772      * For this reason clients and drivers should not call the
0773      * unregistration functions will holdling any locks.
0774      */
0775     if (client->remove)
0776         client->remove(device, client_data);
0777 
0778     xa_erase(&device->client_data, client_id);
0779     ib_device_put(device);
0780     ib_client_put(client);
0781 }
0782 
0783 static int alloc_port_data(struct ib_device *device)
0784 {
0785     struct ib_port_data_rcu *pdata_rcu;
0786     u32 port;
0787 
0788     if (device->port_data)
0789         return 0;
0790 
0791     /* This can only be called once the physical port range is defined */
0792     if (WARN_ON(!device->phys_port_cnt))
0793         return -EINVAL;
0794 
0795     /* Reserve U32_MAX so the logic to go over all the ports is sane */
0796     if (WARN_ON(device->phys_port_cnt == U32_MAX))
0797         return -EINVAL;
0798 
0799     /*
0800      * device->port_data is indexed directly by the port number to make
0801      * access to this data as efficient as possible.
0802      *
0803      * Therefore port_data is declared as a 1 based array with potential
0804      * empty slots at the beginning.
0805      */
0806     pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
0807                     rdma_end_port(device) + 1),
0808                 GFP_KERNEL);
0809     if (!pdata_rcu)
0810         return -ENOMEM;
0811     /*
0812      * The rcu_head is put in front of the port data array and the stored
0813      * pointer is adjusted since we never need to see that member until
0814      * kfree_rcu.
0815      */
0816     device->port_data = pdata_rcu->pdata;
0817 
0818     rdma_for_each_port (device, port) {
0819         struct ib_port_data *pdata = &device->port_data[port];
0820 
0821         pdata->ib_dev = device;
0822         spin_lock_init(&pdata->pkey_list_lock);
0823         INIT_LIST_HEAD(&pdata->pkey_list);
0824         spin_lock_init(&pdata->netdev_lock);
0825         INIT_HLIST_NODE(&pdata->ndev_hash_link);
0826     }
0827     return 0;
0828 }
0829 
0830 static int verify_immutable(const struct ib_device *dev, u32 port)
0831 {
0832     return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
0833                 rdma_max_mad_size(dev, port) != 0);
0834 }
0835 
0836 static int setup_port_data(struct ib_device *device)
0837 {
0838     u32 port;
0839     int ret;
0840 
0841     ret = alloc_port_data(device);
0842     if (ret)
0843         return ret;
0844 
0845     rdma_for_each_port (device, port) {
0846         struct ib_port_data *pdata = &device->port_data[port];
0847 
0848         ret = device->ops.get_port_immutable(device, port,
0849                              &pdata->immutable);
0850         if (ret)
0851             return ret;
0852 
0853         if (verify_immutable(device, port))
0854             return -EINVAL;
0855     }
0856     return 0;
0857 }
0858 
0859 /**
0860  * ib_port_immutable_read() - Read rdma port's immutable data
0861  * @dev: IB device
0862  * @port: port number whose immutable data to read. It starts with index 1 and
0863  *        valid upto including rdma_end_port().
0864  */
0865 const struct ib_port_immutable*
0866 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
0867 {
0868     WARN_ON(!rdma_is_port_valid(dev, port));
0869     return &dev->port_data[port].immutable;
0870 }
0871 EXPORT_SYMBOL(ib_port_immutable_read);
0872 
0873 void ib_get_device_fw_str(struct ib_device *dev, char *str)
0874 {
0875     if (dev->ops.get_dev_fw_str)
0876         dev->ops.get_dev_fw_str(dev, str);
0877     else
0878         str[0] = '\0';
0879 }
0880 EXPORT_SYMBOL(ib_get_device_fw_str);
0881 
0882 static void ib_policy_change_task(struct work_struct *work)
0883 {
0884     struct ib_device *dev;
0885     unsigned long index;
0886 
0887     down_read(&devices_rwsem);
0888     xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
0889         unsigned int i;
0890 
0891         rdma_for_each_port (dev, i) {
0892             u64 sp;
0893             ib_get_cached_subnet_prefix(dev, i, &sp);
0894             ib_security_cache_change(dev, i, sp);
0895         }
0896     }
0897     up_read(&devices_rwsem);
0898 }
0899 
0900 static int ib_security_change(struct notifier_block *nb, unsigned long event,
0901                   void *lsm_data)
0902 {
0903     if (event != LSM_POLICY_CHANGE)
0904         return NOTIFY_DONE;
0905 
0906     schedule_work(&ib_policy_change_work);
0907     ib_mad_agent_security_change();
0908 
0909     return NOTIFY_OK;
0910 }
0911 
0912 static void compatdev_release(struct device *dev)
0913 {
0914     struct ib_core_device *cdev =
0915         container_of(dev, struct ib_core_device, dev);
0916 
0917     kfree(cdev);
0918 }
0919 
0920 static int add_one_compat_dev(struct ib_device *device,
0921                   struct rdma_dev_net *rnet)
0922 {
0923     struct ib_core_device *cdev;
0924     int ret;
0925 
0926     lockdep_assert_held(&rdma_nets_rwsem);
0927     if (!ib_devices_shared_netns)
0928         return 0;
0929 
0930     /*
0931      * Create and add compat device in all namespaces other than where it
0932      * is currently bound to.
0933      */
0934     if (net_eq(read_pnet(&rnet->net),
0935            read_pnet(&device->coredev.rdma_net)))
0936         return 0;
0937 
0938     /*
0939      * The first of init_net() or ib_register_device() to take the
0940      * compat_devs_mutex wins and gets to add the device. Others will wait
0941      * for completion here.
0942      */
0943     mutex_lock(&device->compat_devs_mutex);
0944     cdev = xa_load(&device->compat_devs, rnet->id);
0945     if (cdev) {
0946         ret = 0;
0947         goto done;
0948     }
0949     ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
0950     if (ret)
0951         goto done;
0952 
0953     cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
0954     if (!cdev) {
0955         ret = -ENOMEM;
0956         goto cdev_err;
0957     }
0958 
0959     cdev->dev.parent = device->dev.parent;
0960     rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
0961     cdev->dev.release = compatdev_release;
0962     ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
0963     if (ret)
0964         goto add_err;
0965 
0966     ret = device_add(&cdev->dev);
0967     if (ret)
0968         goto add_err;
0969     ret = ib_setup_port_attrs(cdev);
0970     if (ret)
0971         goto port_err;
0972 
0973     ret = xa_err(xa_store(&device->compat_devs, rnet->id,
0974                   cdev, GFP_KERNEL));
0975     if (ret)
0976         goto insert_err;
0977 
0978     mutex_unlock(&device->compat_devs_mutex);
0979     return 0;
0980 
0981 insert_err:
0982     ib_free_port_attrs(cdev);
0983 port_err:
0984     device_del(&cdev->dev);
0985 add_err:
0986     put_device(&cdev->dev);
0987 cdev_err:
0988     xa_release(&device->compat_devs, rnet->id);
0989 done:
0990     mutex_unlock(&device->compat_devs_mutex);
0991     return ret;
0992 }
0993 
0994 static void remove_one_compat_dev(struct ib_device *device, u32 id)
0995 {
0996     struct ib_core_device *cdev;
0997 
0998     mutex_lock(&device->compat_devs_mutex);
0999     cdev = xa_erase(&device->compat_devs, id);
1000     mutex_unlock(&device->compat_devs_mutex);
1001     if (cdev) {
1002         ib_free_port_attrs(cdev);
1003         device_del(&cdev->dev);
1004         put_device(&cdev->dev);
1005     }
1006 }
1007 
1008 static void remove_compat_devs(struct ib_device *device)
1009 {
1010     struct ib_core_device *cdev;
1011     unsigned long index;
1012 
1013     xa_for_each (&device->compat_devs, index, cdev)
1014         remove_one_compat_dev(device, index);
1015 }
1016 
1017 static int add_compat_devs(struct ib_device *device)
1018 {
1019     struct rdma_dev_net *rnet;
1020     unsigned long index;
1021     int ret = 0;
1022 
1023     lockdep_assert_held(&devices_rwsem);
1024 
1025     down_read(&rdma_nets_rwsem);
1026     xa_for_each (&rdma_nets, index, rnet) {
1027         ret = add_one_compat_dev(device, rnet);
1028         if (ret)
1029             break;
1030     }
1031     up_read(&rdma_nets_rwsem);
1032     return ret;
1033 }
1034 
1035 static void remove_all_compat_devs(void)
1036 {
1037     struct ib_compat_device *cdev;
1038     struct ib_device *dev;
1039     unsigned long index;
1040 
1041     down_read(&devices_rwsem);
1042     xa_for_each (&devices, index, dev) {
1043         unsigned long c_index = 0;
1044 
1045         /* Hold nets_rwsem so that any other thread modifying this
1046          * system param can sync with this thread.
1047          */
1048         down_read(&rdma_nets_rwsem);
1049         xa_for_each (&dev->compat_devs, c_index, cdev)
1050             remove_one_compat_dev(dev, c_index);
1051         up_read(&rdma_nets_rwsem);
1052     }
1053     up_read(&devices_rwsem);
1054 }
1055 
1056 static int add_all_compat_devs(void)
1057 {
1058     struct rdma_dev_net *rnet;
1059     struct ib_device *dev;
1060     unsigned long index;
1061     int ret = 0;
1062 
1063     down_read(&devices_rwsem);
1064     xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065         unsigned long net_index = 0;
1066 
1067         /* Hold nets_rwsem so that any other thread modifying this
1068          * system param can sync with this thread.
1069          */
1070         down_read(&rdma_nets_rwsem);
1071         xa_for_each (&rdma_nets, net_index, rnet) {
1072             ret = add_one_compat_dev(dev, rnet);
1073             if (ret)
1074                 break;
1075         }
1076         up_read(&rdma_nets_rwsem);
1077     }
1078     up_read(&devices_rwsem);
1079     if (ret)
1080         remove_all_compat_devs();
1081     return ret;
1082 }
1083 
1084 int rdma_compatdev_set(u8 enable)
1085 {
1086     struct rdma_dev_net *rnet;
1087     unsigned long index;
1088     int ret = 0;
1089 
1090     down_write(&rdma_nets_rwsem);
1091     if (ib_devices_shared_netns == enable) {
1092         up_write(&rdma_nets_rwsem);
1093         return 0;
1094     }
1095 
1096     /* enable/disable of compat devices is not supported
1097      * when more than default init_net exists.
1098      */
1099     xa_for_each (&rdma_nets, index, rnet) {
1100         ret++;
1101         break;
1102     }
1103     if (!ret)
1104         ib_devices_shared_netns = enable;
1105     up_write(&rdma_nets_rwsem);
1106     if (ret)
1107         return -EBUSY;
1108 
1109     if (enable)
1110         ret = add_all_compat_devs();
1111     else
1112         remove_all_compat_devs();
1113     return ret;
1114 }
1115 
1116 static void rdma_dev_exit_net(struct net *net)
1117 {
1118     struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119     struct ib_device *dev;
1120     unsigned long index;
1121     int ret;
1122 
1123     down_write(&rdma_nets_rwsem);
1124     /*
1125      * Prevent the ID from being re-used and hide the id from xa_for_each.
1126      */
1127     ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1128     WARN_ON(ret);
1129     up_write(&rdma_nets_rwsem);
1130 
1131     down_read(&devices_rwsem);
1132     xa_for_each (&devices, index, dev) {
1133         get_device(&dev->dev);
1134         /*
1135          * Release the devices_rwsem so that pontentially blocking
1136          * device_del, doesn't hold the devices_rwsem for too long.
1137          */
1138         up_read(&devices_rwsem);
1139 
1140         remove_one_compat_dev(dev, rnet->id);
1141 
1142         /*
1143          * If the real device is in the NS then move it back to init.
1144          */
1145         rdma_dev_change_netns(dev, net, &init_net);
1146 
1147         put_device(&dev->dev);
1148         down_read(&devices_rwsem);
1149     }
1150     up_read(&devices_rwsem);
1151 
1152     rdma_nl_net_exit(rnet);
1153     xa_erase(&rdma_nets, rnet->id);
1154 }
1155 
1156 static __net_init int rdma_dev_init_net(struct net *net)
1157 {
1158     struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159     unsigned long index;
1160     struct ib_device *dev;
1161     int ret;
1162 
1163     write_pnet(&rnet->net, net);
1164 
1165     ret = rdma_nl_net_init(rnet);
1166     if (ret)
1167         return ret;
1168 
1169     /* No need to create any compat devices in default init_net. */
1170     if (net_eq(net, &init_net))
1171         return 0;
1172 
1173     ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1174     if (ret) {
1175         rdma_nl_net_exit(rnet);
1176         return ret;
1177     }
1178 
1179     down_read(&devices_rwsem);
1180     xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181         /* Hold nets_rwsem so that netlink command cannot change
1182          * system configuration for device sharing mode.
1183          */
1184         down_read(&rdma_nets_rwsem);
1185         ret = add_one_compat_dev(dev, rnet);
1186         up_read(&rdma_nets_rwsem);
1187         if (ret)
1188             break;
1189     }
1190     up_read(&devices_rwsem);
1191 
1192     if (ret)
1193         rdma_dev_exit_net(net);
1194 
1195     return ret;
1196 }
1197 
1198 /*
1199  * Assign the unique string device name and the unique device index. This is
1200  * undone by ib_dealloc_device.
1201  */
1202 static int assign_name(struct ib_device *device, const char *name)
1203 {
1204     static u32 last_id;
1205     int ret;
1206 
1207     down_write(&devices_rwsem);
1208     /* Assign a unique name to the device */
1209     if (strchr(name, '%'))
1210         ret = alloc_name(device, name);
1211     else
1212         ret = dev_set_name(&device->dev, name);
1213     if (ret)
1214         goto out;
1215 
1216     if (__ib_device_get_by_name(dev_name(&device->dev))) {
1217         ret = -ENFILE;
1218         goto out;
1219     }
1220     strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221 
1222     ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1223             &last_id, GFP_KERNEL);
1224     if (ret > 0)
1225         ret = 0;
1226 
1227 out:
1228     up_write(&devices_rwsem);
1229     return ret;
1230 }
1231 
1232 /*
1233  * setup_device() allocates memory and sets up data that requires calling the
1234  * device ops, this is the only reason these actions are not done during
1235  * ib_alloc_device. It is undone by ib_dealloc_device().
1236  */
1237 static int setup_device(struct ib_device *device)
1238 {
1239     struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240     int ret;
1241 
1242     ib_device_check_mandatory(device);
1243 
1244     ret = setup_port_data(device);
1245     if (ret) {
1246         dev_warn(&device->dev, "Couldn't create per-port data\n");
1247         return ret;
1248     }
1249 
1250     memset(&device->attrs, 0, sizeof(device->attrs));
1251     ret = device->ops.query_device(device, &device->attrs, &uhw);
1252     if (ret) {
1253         dev_warn(&device->dev,
1254              "Couldn't query the device attributes\n");
1255         return ret;
1256     }
1257 
1258     return 0;
1259 }
1260 
1261 static void disable_device(struct ib_device *device)
1262 {
1263     u32 cid;
1264 
1265     WARN_ON(!refcount_read(&device->refcount));
1266 
1267     down_write(&devices_rwsem);
1268     xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269     up_write(&devices_rwsem);
1270 
1271     /*
1272      * Remove clients in LIFO order, see assign_client_id. This could be
1273      * more efficient if xarray learns to reverse iterate. Since no new
1274      * clients can be added to this ib_device past this point we only need
1275      * the maximum possible client_id value here.
1276      */
1277     down_read(&clients_rwsem);
1278     cid = highest_client_id;
1279     up_read(&clients_rwsem);
1280     while (cid) {
1281         cid--;
1282         remove_client_context(device, cid);
1283     }
1284 
1285     ib_cq_pool_cleanup(device);
1286 
1287     /* Pairs with refcount_set in enable_device */
1288     ib_device_put(device);
1289     wait_for_completion(&device->unreg_completion);
1290 
1291     /*
1292      * compat devices must be removed after device refcount drops to zero.
1293      * Otherwise init_net() may add more compatdevs after removing compat
1294      * devices and before device is disabled.
1295      */
1296     remove_compat_devs(device);
1297 }
1298 
1299 /*
1300  * An enabled device is visible to all clients and to all the public facing
1301  * APIs that return a device pointer. This always returns with a new get, even
1302  * if it fails.
1303  */
1304 static int enable_device_and_get(struct ib_device *device)
1305 {
1306     struct ib_client *client;
1307     unsigned long index;
1308     int ret = 0;
1309 
1310     /*
1311      * One ref belongs to the xa and the other belongs to this
1312      * thread. This is needed to guard against parallel unregistration.
1313      */
1314     refcount_set(&device->refcount, 2);
1315     down_write(&devices_rwsem);
1316     xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1317 
1318     /*
1319      * By using downgrade_write() we ensure that no other thread can clear
1320      * DEVICE_REGISTERED while we are completing the client setup.
1321      */
1322     downgrade_write(&devices_rwsem);
1323 
1324     if (device->ops.enable_driver) {
1325         ret = device->ops.enable_driver(device);
1326         if (ret)
1327             goto out;
1328     }
1329 
1330     down_read(&clients_rwsem);
1331     xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332         ret = add_client_context(device, client);
1333         if (ret)
1334             break;
1335     }
1336     up_read(&clients_rwsem);
1337     if (!ret)
1338         ret = add_compat_devs(device);
1339 out:
1340     up_read(&devices_rwsem);
1341     return ret;
1342 }
1343 
1344 static void prevent_dealloc_device(struct ib_device *ib_dev)
1345 {
1346 }
1347 
1348 /**
1349  * ib_register_device - Register an IB device with IB core
1350  * @device: Device to register
1351  * @name: unique string device name. This may include a '%' which will
1352  *    cause a unique index to be added to the passed device name.
1353  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354  *          device will be used. In this case the caller should fully
1355  *      setup the ibdev for DMA. This usually means using dma_virt_ops.
1356  *
1357  * Low-level drivers use ib_register_device() to register their
1358  * devices with the IB core.  All registered clients will receive a
1359  * callback for each device that is added. @device must be allocated
1360  * with ib_alloc_device().
1361  *
1362  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363  * asynchronously then the device pointer may become freed as soon as this
1364  * function returns.
1365  */
1366 int ib_register_device(struct ib_device *device, const char *name,
1367                struct device *dma_device)
1368 {
1369     int ret;
1370 
1371     ret = assign_name(device, name);
1372     if (ret)
1373         return ret;
1374 
1375     /*
1376      * If the caller does not provide a DMA capable device then the IB core
1377      * will set up ib_sge and scatterlist structures that stash the kernel
1378      * virtual address into the address field.
1379      */
1380     WARN_ON(dma_device && !dma_device->dma_parms);
1381     device->dma_device = dma_device;
1382 
1383     ret = setup_device(device);
1384     if (ret)
1385         return ret;
1386 
1387     ret = ib_cache_setup_one(device);
1388     if (ret) {
1389         dev_warn(&device->dev,
1390              "Couldn't set up InfiniBand P_Key/GID cache\n");
1391         return ret;
1392     }
1393 
1394     device->groups[0] = &ib_dev_attr_group;
1395     device->groups[1] = device->ops.device_group;
1396     ret = ib_setup_device_attrs(device);
1397     if (ret)
1398         goto cache_cleanup;
1399 
1400     ib_device_register_rdmacg(device);
1401 
1402     rdma_counter_init(device);
1403 
1404     /*
1405      * Ensure that ADD uevent is not fired because it
1406      * is too early amd device is not initialized yet.
1407      */
1408     dev_set_uevent_suppress(&device->dev, true);
1409     ret = device_add(&device->dev);
1410     if (ret)
1411         goto cg_cleanup;
1412 
1413     ret = ib_setup_port_attrs(&device->coredev);
1414     if (ret) {
1415         dev_warn(&device->dev,
1416              "Couldn't register device with driver model\n");
1417         goto dev_cleanup;
1418     }
1419 
1420     ret = enable_device_and_get(device);
1421     if (ret) {
1422         void (*dealloc_fn)(struct ib_device *);
1423 
1424         /*
1425          * If we hit this error flow then we don't want to
1426          * automatically dealloc the device since the caller is
1427          * expected to call ib_dealloc_device() after
1428          * ib_register_device() fails. This is tricky due to the
1429          * possibility for a parallel unregistration along with this
1430          * error flow. Since we have a refcount here we know any
1431          * parallel flow is stopped in disable_device and will see the
1432          * special dealloc_driver pointer, causing the responsibility to
1433          * ib_dealloc_device() to revert back to this thread.
1434          */
1435         dealloc_fn = device->ops.dealloc_driver;
1436         device->ops.dealloc_driver = prevent_dealloc_device;
1437         ib_device_put(device);
1438         __ib_unregister_device(device);
1439         device->ops.dealloc_driver = dealloc_fn;
1440         dev_set_uevent_suppress(&device->dev, false);
1441         return ret;
1442     }
1443     dev_set_uevent_suppress(&device->dev, false);
1444     /* Mark for userspace that device is ready */
1445     kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1446     ib_device_put(device);
1447 
1448     return 0;
1449 
1450 dev_cleanup:
1451     device_del(&device->dev);
1452 cg_cleanup:
1453     dev_set_uevent_suppress(&device->dev, false);
1454     ib_device_unregister_rdmacg(device);
1455 cache_cleanup:
1456     ib_cache_cleanup_one(device);
1457     return ret;
1458 }
1459 EXPORT_SYMBOL(ib_register_device);
1460 
1461 /* Callers must hold a get on the device. */
1462 static void __ib_unregister_device(struct ib_device *ib_dev)
1463 {
1464     /*
1465      * We have a registration lock so that all the calls to unregister are
1466      * fully fenced, once any unregister returns the device is truely
1467      * unregistered even if multiple callers are unregistering it at the
1468      * same time. This also interacts with the registration flow and
1469      * provides sane semantics if register and unregister are racing.
1470      */
1471     mutex_lock(&ib_dev->unregistration_lock);
1472     if (!refcount_read(&ib_dev->refcount))
1473         goto out;
1474 
1475     disable_device(ib_dev);
1476 
1477     /* Expedite removing unregistered pointers from the hash table */
1478     free_netdevs(ib_dev);
1479 
1480     ib_free_port_attrs(&ib_dev->coredev);
1481     device_del(&ib_dev->dev);
1482     ib_device_unregister_rdmacg(ib_dev);
1483     ib_cache_cleanup_one(ib_dev);
1484 
1485     /*
1486      * Drivers using the new flow may not call ib_dealloc_device except
1487      * in error unwind prior to registration success.
1488      */
1489     if (ib_dev->ops.dealloc_driver &&
1490         ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491         WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492         ib_dealloc_device(ib_dev);
1493     }
1494 out:
1495     mutex_unlock(&ib_dev->unregistration_lock);
1496 }
1497 
1498 /**
1499  * ib_unregister_device - Unregister an IB device
1500  * @ib_dev: The device to unregister
1501  *
1502  * Unregister an IB device.  All clients will receive a remove callback.
1503  *
1504  * Callers should call this routine only once, and protect against races with
1505  * registration. Typically it should only be called as part of a remove
1506  * callback in an implementation of driver core's struct device_driver and
1507  * related.
1508  *
1509  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510  * this function.
1511  */
1512 void ib_unregister_device(struct ib_device *ib_dev)
1513 {
1514     get_device(&ib_dev->dev);
1515     __ib_unregister_device(ib_dev);
1516     put_device(&ib_dev->dev);
1517 }
1518 EXPORT_SYMBOL(ib_unregister_device);
1519 
1520 /**
1521  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522  * @ib_dev: The device to unregister
1523  *
1524  * This is the same as ib_unregister_device(), except it includes an internal
1525  * ib_device_put() that should match a 'get' obtained by the caller.
1526  *
1527  * It is safe to call this routine concurrently from multiple threads while
1528  * holding the 'get'. When the function returns the device is fully
1529  * unregistered.
1530  *
1531  * Drivers using this flow MUST use the driver_unregister callback to clean up
1532  * their resources associated with the device and dealloc it.
1533  */
1534 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535 {
1536     WARN_ON(!ib_dev->ops.dealloc_driver);
1537     get_device(&ib_dev->dev);
1538     ib_device_put(ib_dev);
1539     __ib_unregister_device(ib_dev);
1540     put_device(&ib_dev->dev);
1541 }
1542 EXPORT_SYMBOL(ib_unregister_device_and_put);
1543 
1544 /**
1545  * ib_unregister_driver - Unregister all IB devices for a driver
1546  * @driver_id: The driver to unregister
1547  *
1548  * This implements a fence for device unregistration. It only returns once all
1549  * devices associated with the driver_id have fully completed their
1550  * unregistration and returned from ib_unregister_device*().
1551  *
1552  * If device's are not yet unregistered it goes ahead and starts unregistering
1553  * them.
1554  *
1555  * This does not block creation of new devices with the given driver_id, that
1556  * is the responsibility of the caller.
1557  */
1558 void ib_unregister_driver(enum rdma_driver_id driver_id)
1559 {
1560     struct ib_device *ib_dev;
1561     unsigned long index;
1562 
1563     down_read(&devices_rwsem);
1564     xa_for_each (&devices, index, ib_dev) {
1565         if (ib_dev->ops.driver_id != driver_id)
1566             continue;
1567 
1568         get_device(&ib_dev->dev);
1569         up_read(&devices_rwsem);
1570 
1571         WARN_ON(!ib_dev->ops.dealloc_driver);
1572         __ib_unregister_device(ib_dev);
1573 
1574         put_device(&ib_dev->dev);
1575         down_read(&devices_rwsem);
1576     }
1577     up_read(&devices_rwsem);
1578 }
1579 EXPORT_SYMBOL(ib_unregister_driver);
1580 
1581 static void ib_unregister_work(struct work_struct *work)
1582 {
1583     struct ib_device *ib_dev =
1584         container_of(work, struct ib_device, unregistration_work);
1585 
1586     __ib_unregister_device(ib_dev);
1587     put_device(&ib_dev->dev);
1588 }
1589 
1590 /**
1591  * ib_unregister_device_queued - Unregister a device using a work queue
1592  * @ib_dev: The device to unregister
1593  *
1594  * This schedules an asynchronous unregistration using a WQ for the device. A
1595  * driver should use this to avoid holding locks while doing unregistration,
1596  * such as holding the RTNL lock.
1597  *
1598  * Drivers using this API must use ib_unregister_driver before module unload
1599  * to ensure that all scheduled unregistrations have completed.
1600  */
1601 void ib_unregister_device_queued(struct ib_device *ib_dev)
1602 {
1603     WARN_ON(!refcount_read(&ib_dev->refcount));
1604     WARN_ON(!ib_dev->ops.dealloc_driver);
1605     get_device(&ib_dev->dev);
1606     if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1607         put_device(&ib_dev->dev);
1608 }
1609 EXPORT_SYMBOL(ib_unregister_device_queued);
1610 
1611 /*
1612  * The caller must pass in a device that has the kref held and the refcount
1613  * released. If the device is in cur_net and still registered then it is moved
1614  * into net.
1615  */
1616 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617                  struct net *net)
1618 {
1619     int ret2 = -EINVAL;
1620     int ret;
1621 
1622     mutex_lock(&device->unregistration_lock);
1623 
1624     /*
1625      * If a device not under ib_device_get() or if the unregistration_lock
1626      * is not held, the namespace can be changed, or it can be unregistered.
1627      * Check again under the lock.
1628      */
1629     if (refcount_read(&device->refcount) == 0 ||
1630         !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1631         ret = -ENODEV;
1632         goto out;
1633     }
1634 
1635     kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1636     disable_device(device);
1637 
1638     /*
1639      * At this point no one can be using the device, so it is safe to
1640      * change the namespace.
1641      */
1642     write_pnet(&device->coredev.rdma_net, net);
1643 
1644     down_read(&devices_rwsem);
1645     /*
1646      * Currently rdma devices are system wide unique. So the device name
1647      * is guaranteed free in the new namespace. Publish the new namespace
1648      * at the sysfs level.
1649      */
1650     ret = device_rename(&device->dev, dev_name(&device->dev));
1651     up_read(&devices_rwsem);
1652     if (ret) {
1653         dev_warn(&device->dev,
1654              "%s: Couldn't rename device after namespace change\n",
1655              __func__);
1656         /* Try and put things back and re-enable the device */
1657         write_pnet(&device->coredev.rdma_net, cur_net);
1658     }
1659 
1660     ret2 = enable_device_and_get(device);
1661     if (ret2) {
1662         /*
1663          * This shouldn't really happen, but if it does, let the user
1664          * retry at later point. So don't disable the device.
1665          */
1666         dev_warn(&device->dev,
1667              "%s: Couldn't re-enable device after namespace change\n",
1668              __func__);
1669     }
1670     kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1671 
1672     ib_device_put(device);
1673 out:
1674     mutex_unlock(&device->unregistration_lock);
1675     if (ret)
1676         return ret;
1677     return ret2;
1678 }
1679 
1680 int ib_device_set_netns_put(struct sk_buff *skb,
1681                 struct ib_device *dev, u32 ns_fd)
1682 {
1683     struct net *net;
1684     int ret;
1685 
1686     net = get_net_ns_by_fd(ns_fd);
1687     if (IS_ERR(net)) {
1688         ret = PTR_ERR(net);
1689         goto net_err;
1690     }
1691 
1692     if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1693         ret = -EPERM;
1694         goto ns_err;
1695     }
1696 
1697     /*
1698      * All the ib_clients, including uverbs, are reset when the namespace is
1699      * changed and this cannot be blocked waiting for userspace to do
1700      * something, so disassociation is mandatory.
1701      */
1702     if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703         ret = -EOPNOTSUPP;
1704         goto ns_err;
1705     }
1706 
1707     get_device(&dev->dev);
1708     ib_device_put(dev);
1709     ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1710     put_device(&dev->dev);
1711 
1712     put_net(net);
1713     return ret;
1714 
1715 ns_err:
1716     put_net(net);
1717 net_err:
1718     ib_device_put(dev);
1719     return ret;
1720 }
1721 
1722 static struct pernet_operations rdma_dev_net_ops = {
1723     .init = rdma_dev_init_net,
1724     .exit = rdma_dev_exit_net,
1725     .id = &rdma_dev_net_id,
1726     .size = sizeof(struct rdma_dev_net),
1727 };
1728 
1729 static int assign_client_id(struct ib_client *client)
1730 {
1731     int ret;
1732 
1733     down_write(&clients_rwsem);
1734     /*
1735      * The add/remove callbacks must be called in FIFO/LIFO order. To
1736      * achieve this we assign client_ids so they are sorted in
1737      * registration order.
1738      */
1739     client->client_id = highest_client_id;
1740     ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1741     if (ret)
1742         goto out;
1743 
1744     highest_client_id++;
1745     xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1746 
1747 out:
1748     up_write(&clients_rwsem);
1749     return ret;
1750 }
1751 
1752 static void remove_client_id(struct ib_client *client)
1753 {
1754     down_write(&clients_rwsem);
1755     xa_erase(&clients, client->client_id);
1756     for (; highest_client_id; highest_client_id--)
1757         if (xa_load(&clients, highest_client_id - 1))
1758             break;
1759     up_write(&clients_rwsem);
1760 }
1761 
1762 /**
1763  * ib_register_client - Register an IB client
1764  * @client:Client to register
1765  *
1766  * Upper level users of the IB drivers can use ib_register_client() to
1767  * register callbacks for IB device addition and removal.  When an IB
1768  * device is added, each registered client's add method will be called
1769  * (in the order the clients were registered), and when a device is
1770  * removed, each client's remove method will be called (in the reverse
1771  * order that clients were registered).  In addition, when
1772  * ib_register_client() is called, the client will receive an add
1773  * callback for all devices already registered.
1774  */
1775 int ib_register_client(struct ib_client *client)
1776 {
1777     struct ib_device *device;
1778     unsigned long index;
1779     int ret;
1780 
1781     refcount_set(&client->uses, 1);
1782     init_completion(&client->uses_zero);
1783     ret = assign_client_id(client);
1784     if (ret)
1785         return ret;
1786 
1787     down_read(&devices_rwsem);
1788     xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1789         ret = add_client_context(device, client);
1790         if (ret) {
1791             up_read(&devices_rwsem);
1792             ib_unregister_client(client);
1793             return ret;
1794         }
1795     }
1796     up_read(&devices_rwsem);
1797     return 0;
1798 }
1799 EXPORT_SYMBOL(ib_register_client);
1800 
1801 /**
1802  * ib_unregister_client - Unregister an IB client
1803  * @client:Client to unregister
1804  *
1805  * Upper level users use ib_unregister_client() to remove their client
1806  * registration.  When ib_unregister_client() is called, the client
1807  * will receive a remove callback for each IB device still registered.
1808  *
1809  * This is a full fence, once it returns no client callbacks will be called,
1810  * or are running in another thread.
1811  */
1812 void ib_unregister_client(struct ib_client *client)
1813 {
1814     struct ib_device *device;
1815     unsigned long index;
1816 
1817     down_write(&clients_rwsem);
1818     ib_client_put(client);
1819     xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1820     up_write(&clients_rwsem);
1821 
1822     /* We do not want to have locks while calling client->remove() */
1823     rcu_read_lock();
1824     xa_for_each (&devices, index, device) {
1825         if (!ib_device_try_get(device))
1826             continue;
1827         rcu_read_unlock();
1828 
1829         remove_client_context(device, client->client_id);
1830 
1831         ib_device_put(device);
1832         rcu_read_lock();
1833     }
1834     rcu_read_unlock();
1835 
1836     /*
1837      * remove_client_context() is not a fence, it can return even though a
1838      * removal is ongoing. Wait until all removals are completed.
1839      */
1840     wait_for_completion(&client->uses_zero);
1841     remove_client_id(client);
1842 }
1843 EXPORT_SYMBOL(ib_unregister_client);
1844 
1845 static int __ib_get_global_client_nl_info(const char *client_name,
1846                       struct ib_client_nl_info *res)
1847 {
1848     struct ib_client *client;
1849     unsigned long index;
1850     int ret = -ENOENT;
1851 
1852     down_read(&clients_rwsem);
1853     xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1854         if (strcmp(client->name, client_name) != 0)
1855             continue;
1856         if (!client->get_global_nl_info) {
1857             ret = -EOPNOTSUPP;
1858             break;
1859         }
1860         ret = client->get_global_nl_info(res);
1861         if (WARN_ON(ret == -ENOENT))
1862             ret = -EINVAL;
1863         if (!ret && res->cdev)
1864             get_device(res->cdev);
1865         break;
1866     }
1867     up_read(&clients_rwsem);
1868     return ret;
1869 }
1870 
1871 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1872                    const char *client_name,
1873                    struct ib_client_nl_info *res)
1874 {
1875     unsigned long index;
1876     void *client_data;
1877     int ret = -ENOENT;
1878 
1879     down_read(&ibdev->client_data_rwsem);
1880     xan_for_each_marked (&ibdev->client_data, index, client_data,
1881                  CLIENT_DATA_REGISTERED) {
1882         struct ib_client *client = xa_load(&clients, index);
1883 
1884         if (!client || strcmp(client->name, client_name) != 0)
1885             continue;
1886         if (!client->get_nl_info) {
1887             ret = -EOPNOTSUPP;
1888             break;
1889         }
1890         ret = client->get_nl_info(ibdev, client_data, res);
1891         if (WARN_ON(ret == -ENOENT))
1892             ret = -EINVAL;
1893 
1894         /*
1895          * The cdev is guaranteed valid as long as we are inside the
1896          * client_data_rwsem as remove_one can't be called. Keep it
1897          * valid for the caller.
1898          */
1899         if (!ret && res->cdev)
1900             get_device(res->cdev);
1901         break;
1902     }
1903     up_read(&ibdev->client_data_rwsem);
1904 
1905     return ret;
1906 }
1907 
1908 /**
1909  * ib_get_client_nl_info - Fetch the nl_info from a client
1910  * @ibdev: IB device
1911  * @client_name: Name of the client
1912  * @res: Result of the query
1913  */
1914 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1915               struct ib_client_nl_info *res)
1916 {
1917     int ret;
1918 
1919     if (ibdev)
1920         ret = __ib_get_client_nl_info(ibdev, client_name, res);
1921     else
1922         ret = __ib_get_global_client_nl_info(client_name, res);
1923 #ifdef CONFIG_MODULES
1924     if (ret == -ENOENT) {
1925         request_module("rdma-client-%s", client_name);
1926         if (ibdev)
1927             ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928         else
1929             ret = __ib_get_global_client_nl_info(client_name, res);
1930     }
1931 #endif
1932     if (ret) {
1933         if (ret == -ENOENT)
1934             return -EOPNOTSUPP;
1935         return ret;
1936     }
1937 
1938     if (WARN_ON(!res->cdev))
1939         return -EINVAL;
1940     return 0;
1941 }
1942 
1943 /**
1944  * ib_set_client_data - Set IB client context
1945  * @device:Device to set context for
1946  * @client:Client to set context for
1947  * @data:Context to set
1948  *
1949  * ib_set_client_data() sets client context data that can be retrieved with
1950  * ib_get_client_data(). This can only be called while the client is
1951  * registered to the device, once the ib_client remove() callback returns this
1952  * cannot be called.
1953  */
1954 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1955             void *data)
1956 {
1957     void *rc;
1958 
1959     if (WARN_ON(IS_ERR(data)))
1960         data = NULL;
1961 
1962     rc = xa_store(&device->client_data, client->client_id, data,
1963               GFP_KERNEL);
1964     WARN_ON(xa_is_err(rc));
1965 }
1966 EXPORT_SYMBOL(ib_set_client_data);
1967 
1968 /**
1969  * ib_register_event_handler - Register an IB event handler
1970  * @event_handler:Handler to register
1971  *
1972  * ib_register_event_handler() registers an event handler that will be
1973  * called back when asynchronous IB events occur (as defined in
1974  * chapter 11 of the InfiniBand Architecture Specification). This
1975  * callback occurs in workqueue context.
1976  */
1977 void ib_register_event_handler(struct ib_event_handler *event_handler)
1978 {
1979     down_write(&event_handler->device->event_handler_rwsem);
1980     list_add_tail(&event_handler->list,
1981               &event_handler->device->event_handler_list);
1982     up_write(&event_handler->device->event_handler_rwsem);
1983 }
1984 EXPORT_SYMBOL(ib_register_event_handler);
1985 
1986 /**
1987  * ib_unregister_event_handler - Unregister an event handler
1988  * @event_handler:Handler to unregister
1989  *
1990  * Unregister an event handler registered with
1991  * ib_register_event_handler().
1992  */
1993 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1994 {
1995     down_write(&event_handler->device->event_handler_rwsem);
1996     list_del(&event_handler->list);
1997     up_write(&event_handler->device->event_handler_rwsem);
1998 }
1999 EXPORT_SYMBOL(ib_unregister_event_handler);
2000 
2001 void ib_dispatch_event_clients(struct ib_event *event)
2002 {
2003     struct ib_event_handler *handler;
2004 
2005     down_read(&event->device->event_handler_rwsem);
2006 
2007     list_for_each_entry(handler, &event->device->event_handler_list, list)
2008         handler->handler(handler, event);
2009 
2010     up_read(&event->device->event_handler_rwsem);
2011 }
2012 
2013 static int iw_query_port(struct ib_device *device,
2014                u32 port_num,
2015                struct ib_port_attr *port_attr)
2016 {
2017     struct in_device *inetdev;
2018     struct net_device *netdev;
2019 
2020     memset(port_attr, 0, sizeof(*port_attr));
2021 
2022     netdev = ib_device_get_netdev(device, port_num);
2023     if (!netdev)
2024         return -ENODEV;
2025 
2026     port_attr->max_mtu = IB_MTU_4096;
2027     port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2028 
2029     if (!netif_carrier_ok(netdev)) {
2030         port_attr->state = IB_PORT_DOWN;
2031         port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2032     } else {
2033         rcu_read_lock();
2034         inetdev = __in_dev_get_rcu(netdev);
2035 
2036         if (inetdev && inetdev->ifa_list) {
2037             port_attr->state = IB_PORT_ACTIVE;
2038             port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2039         } else {
2040             port_attr->state = IB_PORT_INIT;
2041             port_attr->phys_state =
2042                 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2043         }
2044 
2045         rcu_read_unlock();
2046     }
2047 
2048     dev_put(netdev);
2049     return device->ops.query_port(device, port_num, port_attr);
2050 }
2051 
2052 static int __ib_query_port(struct ib_device *device,
2053                u32 port_num,
2054                struct ib_port_attr *port_attr)
2055 {
2056     int err;
2057 
2058     memset(port_attr, 0, sizeof(*port_attr));
2059 
2060     err = device->ops.query_port(device, port_num, port_attr);
2061     if (err || port_attr->subnet_prefix)
2062         return err;
2063 
2064     if (rdma_port_get_link_layer(device, port_num) !=
2065         IB_LINK_LAYER_INFINIBAND)
2066         return 0;
2067 
2068     ib_get_cached_subnet_prefix(device, port_num,
2069                     &port_attr->subnet_prefix);
2070     return 0;
2071 }
2072 
2073 /**
2074  * ib_query_port - Query IB port attributes
2075  * @device:Device to query
2076  * @port_num:Port number to query
2077  * @port_attr:Port attributes
2078  *
2079  * ib_query_port() returns the attributes of a port through the
2080  * @port_attr pointer.
2081  */
2082 int ib_query_port(struct ib_device *device,
2083           u32 port_num,
2084           struct ib_port_attr *port_attr)
2085 {
2086     if (!rdma_is_port_valid(device, port_num))
2087         return -EINVAL;
2088 
2089     if (rdma_protocol_iwarp(device, port_num))
2090         return iw_query_port(device, port_num, port_attr);
2091     else
2092         return __ib_query_port(device, port_num, port_attr);
2093 }
2094 EXPORT_SYMBOL(ib_query_port);
2095 
2096 static void add_ndev_hash(struct ib_port_data *pdata)
2097 {
2098     unsigned long flags;
2099 
2100     might_sleep();
2101 
2102     spin_lock_irqsave(&ndev_hash_lock, flags);
2103     if (hash_hashed(&pdata->ndev_hash_link)) {
2104         hash_del_rcu(&pdata->ndev_hash_link);
2105         spin_unlock_irqrestore(&ndev_hash_lock, flags);
2106         /*
2107          * We cannot do hash_add_rcu after a hash_del_rcu until the
2108          * grace period
2109          */
2110         synchronize_rcu();
2111         spin_lock_irqsave(&ndev_hash_lock, flags);
2112     }
2113     if (pdata->netdev)
2114         hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2115                  (uintptr_t)pdata->netdev);
2116     spin_unlock_irqrestore(&ndev_hash_lock, flags);
2117 }
2118 
2119 /**
2120  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2121  * @ib_dev: Device to modify
2122  * @ndev: net_device to affiliate, may be NULL
2123  * @port: IB port the net_device is connected to
2124  *
2125  * Drivers should use this to link the ib_device to a netdev so the netdev
2126  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2127  * affiliated with any port.
2128  *
2129  * The caller must ensure that the given ndev is not unregistered or
2130  * unregistering, and that either the ib_device is unregistered or
2131  * ib_device_set_netdev() is called with NULL when the ndev sends a
2132  * NETDEV_UNREGISTER event.
2133  */
2134 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2135              u32 port)
2136 {
2137     struct net_device *old_ndev;
2138     struct ib_port_data *pdata;
2139     unsigned long flags;
2140     int ret;
2141 
2142     /*
2143      * Drivers wish to call this before ib_register_driver, so we have to
2144      * setup the port data early.
2145      */
2146     ret = alloc_port_data(ib_dev);
2147     if (ret)
2148         return ret;
2149 
2150     if (!rdma_is_port_valid(ib_dev, port))
2151         return -EINVAL;
2152 
2153     pdata = &ib_dev->port_data[port];
2154     spin_lock_irqsave(&pdata->netdev_lock, flags);
2155     old_ndev = rcu_dereference_protected(
2156         pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2157     if (old_ndev == ndev) {
2158         spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2159         return 0;
2160     }
2161 
2162     if (ndev)
2163         dev_hold(ndev);
2164     rcu_assign_pointer(pdata->netdev, ndev);
2165     spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2166 
2167     add_ndev_hash(pdata);
2168     if (old_ndev)
2169         dev_put(old_ndev);
2170 
2171     return 0;
2172 }
2173 EXPORT_SYMBOL(ib_device_set_netdev);
2174 
2175 static void free_netdevs(struct ib_device *ib_dev)
2176 {
2177     unsigned long flags;
2178     u32 port;
2179 
2180     if (!ib_dev->port_data)
2181         return;
2182 
2183     rdma_for_each_port (ib_dev, port) {
2184         struct ib_port_data *pdata = &ib_dev->port_data[port];
2185         struct net_device *ndev;
2186 
2187         spin_lock_irqsave(&pdata->netdev_lock, flags);
2188         ndev = rcu_dereference_protected(
2189             pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2190         if (ndev) {
2191             spin_lock(&ndev_hash_lock);
2192             hash_del_rcu(&pdata->ndev_hash_link);
2193             spin_unlock(&ndev_hash_lock);
2194 
2195             /*
2196              * If this is the last dev_put there is still a
2197              * synchronize_rcu before the netdev is kfreed, so we
2198              * can continue to rely on unlocked pointer
2199              * comparisons after the put
2200              */
2201             rcu_assign_pointer(pdata->netdev, NULL);
2202             dev_put(ndev);
2203         }
2204         spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2205     }
2206 }
2207 
2208 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2209                     u32 port)
2210 {
2211     struct ib_port_data *pdata;
2212     struct net_device *res;
2213 
2214     if (!rdma_is_port_valid(ib_dev, port))
2215         return NULL;
2216 
2217     pdata = &ib_dev->port_data[port];
2218 
2219     /*
2220      * New drivers should use ib_device_set_netdev() not the legacy
2221      * get_netdev().
2222      */
2223     if (ib_dev->ops.get_netdev)
2224         res = ib_dev->ops.get_netdev(ib_dev, port);
2225     else {
2226         spin_lock(&pdata->netdev_lock);
2227         res = rcu_dereference_protected(
2228             pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2229         if (res)
2230             dev_hold(res);
2231         spin_unlock(&pdata->netdev_lock);
2232     }
2233 
2234     /*
2235      * If we are starting to unregister expedite things by preventing
2236      * propagation of an unregistering netdev.
2237      */
2238     if (res && res->reg_state != NETREG_REGISTERED) {
2239         dev_put(res);
2240         return NULL;
2241     }
2242 
2243     return res;
2244 }
2245 
2246 /**
2247  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2248  * @ndev: netdev to locate
2249  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2250  *
2251  * Find and hold an ib_device that is associated with a netdev via
2252  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2253  * returned pointer.
2254  */
2255 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2256                       enum rdma_driver_id driver_id)
2257 {
2258     struct ib_device *res = NULL;
2259     struct ib_port_data *cur;
2260 
2261     rcu_read_lock();
2262     hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2263                     (uintptr_t)ndev) {
2264         if (rcu_access_pointer(cur->netdev) == ndev &&
2265             (driver_id == RDMA_DRIVER_UNKNOWN ||
2266              cur->ib_dev->ops.driver_id == driver_id) &&
2267             ib_device_try_get(cur->ib_dev)) {
2268             res = cur->ib_dev;
2269             break;
2270         }
2271     }
2272     rcu_read_unlock();
2273 
2274     return res;
2275 }
2276 EXPORT_SYMBOL(ib_device_get_by_netdev);
2277 
2278 /**
2279  * ib_enum_roce_netdev - enumerate all RoCE ports
2280  * @ib_dev : IB device we want to query
2281  * @filter: Should we call the callback?
2282  * @filter_cookie: Cookie passed to filter
2283  * @cb: Callback to call for each found RoCE ports
2284  * @cookie: Cookie passed back to the callback
2285  *
2286  * Enumerates all of the physical RoCE ports of ib_dev
2287  * which are related to netdevice and calls callback() on each
2288  * device for which filter() function returns non zero.
2289  */
2290 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2291              roce_netdev_filter filter,
2292              void *filter_cookie,
2293              roce_netdev_callback cb,
2294              void *cookie)
2295 {
2296     u32 port;
2297 
2298     rdma_for_each_port (ib_dev, port)
2299         if (rdma_protocol_roce(ib_dev, port)) {
2300             struct net_device *idev =
2301                 ib_device_get_netdev(ib_dev, port);
2302 
2303             if (filter(ib_dev, port, idev, filter_cookie))
2304                 cb(ib_dev, port, idev, cookie);
2305 
2306             if (idev)
2307                 dev_put(idev);
2308         }
2309 }
2310 
2311 /**
2312  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2313  * @filter: Should we call the callback?
2314  * @filter_cookie: Cookie passed to filter
2315  * @cb: Callback to call for each found RoCE ports
2316  * @cookie: Cookie passed back to the callback
2317  *
2318  * Enumerates all RoCE devices' physical ports which are related
2319  * to netdevices and calls callback() on each device for which
2320  * filter() function returns non zero.
2321  */
2322 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2323                   void *filter_cookie,
2324                   roce_netdev_callback cb,
2325                   void *cookie)
2326 {
2327     struct ib_device *dev;
2328     unsigned long index;
2329 
2330     down_read(&devices_rwsem);
2331     xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2332         ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2333     up_read(&devices_rwsem);
2334 }
2335 
2336 /*
2337  * ib_enum_all_devs - enumerate all ib_devices
2338  * @cb: Callback to call for each found ib_device
2339  *
2340  * Enumerates all ib_devices and calls callback() on each device.
2341  */
2342 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2343              struct netlink_callback *cb)
2344 {
2345     unsigned long index;
2346     struct ib_device *dev;
2347     unsigned int idx = 0;
2348     int ret = 0;
2349 
2350     down_read(&devices_rwsem);
2351     xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2352         if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2353             continue;
2354 
2355         ret = nldev_cb(dev, skb, cb, idx);
2356         if (ret)
2357             break;
2358         idx++;
2359     }
2360     up_read(&devices_rwsem);
2361     return ret;
2362 }
2363 
2364 /**
2365  * ib_query_pkey - Get P_Key table entry
2366  * @device:Device to query
2367  * @port_num:Port number to query
2368  * @index:P_Key table index to query
2369  * @pkey:Returned P_Key
2370  *
2371  * ib_query_pkey() fetches the specified P_Key table entry.
2372  */
2373 int ib_query_pkey(struct ib_device *device,
2374           u32 port_num, u16 index, u16 *pkey)
2375 {
2376     if (!rdma_is_port_valid(device, port_num))
2377         return -EINVAL;
2378 
2379     if (!device->ops.query_pkey)
2380         return -EOPNOTSUPP;
2381 
2382     return device->ops.query_pkey(device, port_num, index, pkey);
2383 }
2384 EXPORT_SYMBOL(ib_query_pkey);
2385 
2386 /**
2387  * ib_modify_device - Change IB device attributes
2388  * @device:Device to modify
2389  * @device_modify_mask:Mask of attributes to change
2390  * @device_modify:New attribute values
2391  *
2392  * ib_modify_device() changes a device's attributes as specified by
2393  * the @device_modify_mask and @device_modify structure.
2394  */
2395 int ib_modify_device(struct ib_device *device,
2396              int device_modify_mask,
2397              struct ib_device_modify *device_modify)
2398 {
2399     if (!device->ops.modify_device)
2400         return -EOPNOTSUPP;
2401 
2402     return device->ops.modify_device(device, device_modify_mask,
2403                      device_modify);
2404 }
2405 EXPORT_SYMBOL(ib_modify_device);
2406 
2407 /**
2408  * ib_modify_port - Modifies the attributes for the specified port.
2409  * @device: The device to modify.
2410  * @port_num: The number of the port to modify.
2411  * @port_modify_mask: Mask used to specify which attributes of the port
2412  *   to change.
2413  * @port_modify: New attribute values for the port.
2414  *
2415  * ib_modify_port() changes a port's attributes as specified by the
2416  * @port_modify_mask and @port_modify structure.
2417  */
2418 int ib_modify_port(struct ib_device *device,
2419            u32 port_num, int port_modify_mask,
2420            struct ib_port_modify *port_modify)
2421 {
2422     int rc;
2423 
2424     if (!rdma_is_port_valid(device, port_num))
2425         return -EINVAL;
2426 
2427     if (device->ops.modify_port)
2428         rc = device->ops.modify_port(device, port_num,
2429                          port_modify_mask,
2430                          port_modify);
2431     else if (rdma_protocol_roce(device, port_num) &&
2432          ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2433           (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2434         rc = 0;
2435     else
2436         rc = -EOPNOTSUPP;
2437     return rc;
2438 }
2439 EXPORT_SYMBOL(ib_modify_port);
2440 
2441 /**
2442  * ib_find_gid - Returns the port number and GID table index where
2443  *   a specified GID value occurs. Its searches only for IB link layer.
2444  * @device: The device to query.
2445  * @gid: The GID value to search for.
2446  * @port_num: The port number of the device where the GID value was found.
2447  * @index: The index into the GID table where the GID was found.  This
2448  *   parameter may be NULL.
2449  */
2450 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2451         u32 *port_num, u16 *index)
2452 {
2453     union ib_gid tmp_gid;
2454     u32 port;
2455     int ret, i;
2456 
2457     rdma_for_each_port (device, port) {
2458         if (!rdma_protocol_ib(device, port))
2459             continue;
2460 
2461         for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2462              ++i) {
2463             ret = rdma_query_gid(device, port, i, &tmp_gid);
2464             if (ret)
2465                 continue;
2466 
2467             if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2468                 *port_num = port;
2469                 if (index)
2470                     *index = i;
2471                 return 0;
2472             }
2473         }
2474     }
2475 
2476     return -ENOENT;
2477 }
2478 EXPORT_SYMBOL(ib_find_gid);
2479 
2480 /**
2481  * ib_find_pkey - Returns the PKey table index where a specified
2482  *   PKey value occurs.
2483  * @device: The device to query.
2484  * @port_num: The port number of the device to search for the PKey.
2485  * @pkey: The PKey value to search for.
2486  * @index: The index into the PKey table where the PKey was found.
2487  */
2488 int ib_find_pkey(struct ib_device *device,
2489          u32 port_num, u16 pkey, u16 *index)
2490 {
2491     int ret, i;
2492     u16 tmp_pkey;
2493     int partial_ix = -1;
2494 
2495     for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2496          ++i) {
2497         ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2498         if (ret)
2499             return ret;
2500         if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2501             /* if there is full-member pkey take it.*/
2502             if (tmp_pkey & 0x8000) {
2503                 *index = i;
2504                 return 0;
2505             }
2506             if (partial_ix < 0)
2507                 partial_ix = i;
2508         }
2509     }
2510 
2511     /*no full-member, if exists take the limited*/
2512     if (partial_ix >= 0) {
2513         *index = partial_ix;
2514         return 0;
2515     }
2516     return -ENOENT;
2517 }
2518 EXPORT_SYMBOL(ib_find_pkey);
2519 
2520 /**
2521  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2522  * for a received CM request
2523  * @dev:    An RDMA device on which the request has been received.
2524  * @port:   Port number on the RDMA device.
2525  * @pkey:   The Pkey the request came on.
2526  * @gid:    A GID that the net_dev uses to communicate.
2527  * @addr:   Contains the IP address that the request specified as its
2528  *      destination.
2529  *
2530  */
2531 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2532                         u32 port,
2533                         u16 pkey,
2534                         const union ib_gid *gid,
2535                         const struct sockaddr *addr)
2536 {
2537     struct net_device *net_dev = NULL;
2538     unsigned long index;
2539     void *client_data;
2540 
2541     if (!rdma_protocol_ib(dev, port))
2542         return NULL;
2543 
2544     /*
2545      * Holding the read side guarantees that the client will not become
2546      * unregistered while we are calling get_net_dev_by_params()
2547      */
2548     down_read(&dev->client_data_rwsem);
2549     xan_for_each_marked (&dev->client_data, index, client_data,
2550                  CLIENT_DATA_REGISTERED) {
2551         struct ib_client *client = xa_load(&clients, index);
2552 
2553         if (!client || !client->get_net_dev_by_params)
2554             continue;
2555 
2556         net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2557                             addr, client_data);
2558         if (net_dev)
2559             break;
2560     }
2561     up_read(&dev->client_data_rwsem);
2562 
2563     return net_dev;
2564 }
2565 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2566 
2567 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2568 {
2569     struct ib_device_ops *dev_ops = &dev->ops;
2570 #define SET_DEVICE_OP(ptr, name)                                               \
2571     do {                                                                   \
2572         if (ops->name)                                                 \
2573             if (!((ptr)->name))                    \
2574                 (ptr)->name = ops->name;                       \
2575     } while (0)
2576 
2577 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2578 
2579     if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2580         WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2581             dev_ops->driver_id != ops->driver_id);
2582         dev_ops->driver_id = ops->driver_id;
2583     }
2584     if (ops->owner) {
2585         WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2586         dev_ops->owner = ops->owner;
2587     }
2588     if (ops->uverbs_abi_ver)
2589         dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2590 
2591     dev_ops->uverbs_no_driver_id_binding |=
2592         ops->uverbs_no_driver_id_binding;
2593 
2594     SET_DEVICE_OP(dev_ops, add_gid);
2595     SET_DEVICE_OP(dev_ops, advise_mr);
2596     SET_DEVICE_OP(dev_ops, alloc_dm);
2597     SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2598     SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2599     SET_DEVICE_OP(dev_ops, alloc_mr);
2600     SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2601     SET_DEVICE_OP(dev_ops, alloc_mw);
2602     SET_DEVICE_OP(dev_ops, alloc_pd);
2603     SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2604     SET_DEVICE_OP(dev_ops, alloc_ucontext);
2605     SET_DEVICE_OP(dev_ops, alloc_xrcd);
2606     SET_DEVICE_OP(dev_ops, attach_mcast);
2607     SET_DEVICE_OP(dev_ops, check_mr_status);
2608     SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2609     SET_DEVICE_OP(dev_ops, counter_bind_qp);
2610     SET_DEVICE_OP(dev_ops, counter_dealloc);
2611     SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2612     SET_DEVICE_OP(dev_ops, counter_update_stats);
2613     SET_DEVICE_OP(dev_ops, create_ah);
2614     SET_DEVICE_OP(dev_ops, create_counters);
2615     SET_DEVICE_OP(dev_ops, create_cq);
2616     SET_DEVICE_OP(dev_ops, create_flow);
2617     SET_DEVICE_OP(dev_ops, create_qp);
2618     SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2619     SET_DEVICE_OP(dev_ops, create_srq);
2620     SET_DEVICE_OP(dev_ops, create_user_ah);
2621     SET_DEVICE_OP(dev_ops, create_wq);
2622     SET_DEVICE_OP(dev_ops, dealloc_dm);
2623     SET_DEVICE_OP(dev_ops, dealloc_driver);
2624     SET_DEVICE_OP(dev_ops, dealloc_mw);
2625     SET_DEVICE_OP(dev_ops, dealloc_pd);
2626     SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2627     SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2628     SET_DEVICE_OP(dev_ops, del_gid);
2629     SET_DEVICE_OP(dev_ops, dereg_mr);
2630     SET_DEVICE_OP(dev_ops, destroy_ah);
2631     SET_DEVICE_OP(dev_ops, destroy_counters);
2632     SET_DEVICE_OP(dev_ops, destroy_cq);
2633     SET_DEVICE_OP(dev_ops, destroy_flow);
2634     SET_DEVICE_OP(dev_ops, destroy_flow_action);
2635     SET_DEVICE_OP(dev_ops, destroy_qp);
2636     SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2637     SET_DEVICE_OP(dev_ops, destroy_srq);
2638     SET_DEVICE_OP(dev_ops, destroy_wq);
2639     SET_DEVICE_OP(dev_ops, device_group);
2640     SET_DEVICE_OP(dev_ops, detach_mcast);
2641     SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2642     SET_DEVICE_OP(dev_ops, drain_rq);
2643     SET_DEVICE_OP(dev_ops, drain_sq);
2644     SET_DEVICE_OP(dev_ops, enable_driver);
2645     SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2646     SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2647     SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2648     SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2649     SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2650     SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2651     SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2652     SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2653     SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2654     SET_DEVICE_OP(dev_ops, get_dma_mr);
2655     SET_DEVICE_OP(dev_ops, get_hw_stats);
2656     SET_DEVICE_OP(dev_ops, get_link_layer);
2657     SET_DEVICE_OP(dev_ops, get_netdev);
2658     SET_DEVICE_OP(dev_ops, get_numa_node);
2659     SET_DEVICE_OP(dev_ops, get_port_immutable);
2660     SET_DEVICE_OP(dev_ops, get_vector_affinity);
2661     SET_DEVICE_OP(dev_ops, get_vf_config);
2662     SET_DEVICE_OP(dev_ops, get_vf_guid);
2663     SET_DEVICE_OP(dev_ops, get_vf_stats);
2664     SET_DEVICE_OP(dev_ops, iw_accept);
2665     SET_DEVICE_OP(dev_ops, iw_add_ref);
2666     SET_DEVICE_OP(dev_ops, iw_connect);
2667     SET_DEVICE_OP(dev_ops, iw_create_listen);
2668     SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2669     SET_DEVICE_OP(dev_ops, iw_get_qp);
2670     SET_DEVICE_OP(dev_ops, iw_reject);
2671     SET_DEVICE_OP(dev_ops, iw_rem_ref);
2672     SET_DEVICE_OP(dev_ops, map_mr_sg);
2673     SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2674     SET_DEVICE_OP(dev_ops, mmap);
2675     SET_DEVICE_OP(dev_ops, mmap_free);
2676     SET_DEVICE_OP(dev_ops, modify_ah);
2677     SET_DEVICE_OP(dev_ops, modify_cq);
2678     SET_DEVICE_OP(dev_ops, modify_device);
2679     SET_DEVICE_OP(dev_ops, modify_hw_stat);
2680     SET_DEVICE_OP(dev_ops, modify_port);
2681     SET_DEVICE_OP(dev_ops, modify_qp);
2682     SET_DEVICE_OP(dev_ops, modify_srq);
2683     SET_DEVICE_OP(dev_ops, modify_wq);
2684     SET_DEVICE_OP(dev_ops, peek_cq);
2685     SET_DEVICE_OP(dev_ops, poll_cq);
2686     SET_DEVICE_OP(dev_ops, port_groups);
2687     SET_DEVICE_OP(dev_ops, post_recv);
2688     SET_DEVICE_OP(dev_ops, post_send);
2689     SET_DEVICE_OP(dev_ops, post_srq_recv);
2690     SET_DEVICE_OP(dev_ops, process_mad);
2691     SET_DEVICE_OP(dev_ops, query_ah);
2692     SET_DEVICE_OP(dev_ops, query_device);
2693     SET_DEVICE_OP(dev_ops, query_gid);
2694     SET_DEVICE_OP(dev_ops, query_pkey);
2695     SET_DEVICE_OP(dev_ops, query_port);
2696     SET_DEVICE_OP(dev_ops, query_qp);
2697     SET_DEVICE_OP(dev_ops, query_srq);
2698     SET_DEVICE_OP(dev_ops, query_ucontext);
2699     SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2700     SET_DEVICE_OP(dev_ops, read_counters);
2701     SET_DEVICE_OP(dev_ops, reg_dm_mr);
2702     SET_DEVICE_OP(dev_ops, reg_user_mr);
2703     SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2704     SET_DEVICE_OP(dev_ops, req_notify_cq);
2705     SET_DEVICE_OP(dev_ops, rereg_user_mr);
2706     SET_DEVICE_OP(dev_ops, resize_cq);
2707     SET_DEVICE_OP(dev_ops, set_vf_guid);
2708     SET_DEVICE_OP(dev_ops, set_vf_link_state);
2709 
2710     SET_OBJ_SIZE(dev_ops, ib_ah);
2711     SET_OBJ_SIZE(dev_ops, ib_counters);
2712     SET_OBJ_SIZE(dev_ops, ib_cq);
2713     SET_OBJ_SIZE(dev_ops, ib_mw);
2714     SET_OBJ_SIZE(dev_ops, ib_pd);
2715     SET_OBJ_SIZE(dev_ops, ib_qp);
2716     SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2717     SET_OBJ_SIZE(dev_ops, ib_srq);
2718     SET_OBJ_SIZE(dev_ops, ib_ucontext);
2719     SET_OBJ_SIZE(dev_ops, ib_xrcd);
2720 }
2721 EXPORT_SYMBOL(ib_set_device_ops);
2722 
2723 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2724 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2725 {
2726     struct scatterlist *s;
2727     int i;
2728 
2729     for_each_sg(sg, s, nents, i) {
2730         sg_dma_address(s) = (uintptr_t)sg_virt(s);
2731         sg_dma_len(s) = s->length;
2732     }
2733     return nents;
2734 }
2735 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2736 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2737 
2738 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2739     [RDMA_NL_LS_OP_RESOLVE] = {
2740         .doit = ib_nl_handle_resolve_resp,
2741         .flags = RDMA_NL_ADMIN_PERM,
2742     },
2743     [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2744         .doit = ib_nl_handle_set_timeout,
2745         .flags = RDMA_NL_ADMIN_PERM,
2746     },
2747     [RDMA_NL_LS_OP_IP_RESOLVE] = {
2748         .doit = ib_nl_handle_ip_res_resp,
2749         .flags = RDMA_NL_ADMIN_PERM,
2750     },
2751 };
2752 
2753 static int __init ib_core_init(void)
2754 {
2755     int ret = -ENOMEM;
2756 
2757     ib_wq = alloc_workqueue("infiniband", 0, 0);
2758     if (!ib_wq)
2759         return -ENOMEM;
2760 
2761     ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2762                       WQ_UNBOUND_MAX_ACTIVE);
2763     if (!ib_unreg_wq)
2764         goto err;
2765 
2766     ib_comp_wq = alloc_workqueue("ib-comp-wq",
2767             WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2768     if (!ib_comp_wq)
2769         goto err_unbound;
2770 
2771     ib_comp_unbound_wq =
2772         alloc_workqueue("ib-comp-unb-wq",
2773                 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2774                 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2775     if (!ib_comp_unbound_wq)
2776         goto err_comp;
2777 
2778     ret = class_register(&ib_class);
2779     if (ret) {
2780         pr_warn("Couldn't create InfiniBand device class\n");
2781         goto err_comp_unbound;
2782     }
2783 
2784     rdma_nl_init();
2785 
2786     ret = addr_init();
2787     if (ret) {
2788         pr_warn("Couldn't init IB address resolution\n");
2789         goto err_ibnl;
2790     }
2791 
2792     ret = ib_mad_init();
2793     if (ret) {
2794         pr_warn("Couldn't init IB MAD\n");
2795         goto err_addr;
2796     }
2797 
2798     ret = ib_sa_init();
2799     if (ret) {
2800         pr_warn("Couldn't init SA\n");
2801         goto err_mad;
2802     }
2803 
2804     ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2805     if (ret) {
2806         pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2807         goto err_sa;
2808     }
2809 
2810     ret = register_pernet_device(&rdma_dev_net_ops);
2811     if (ret) {
2812         pr_warn("Couldn't init compat dev. ret %d\n", ret);
2813         goto err_compat;
2814     }
2815 
2816     nldev_init();
2817     rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2818     roce_gid_mgmt_init();
2819 
2820     return 0;
2821 
2822 err_compat:
2823     unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2824 err_sa:
2825     ib_sa_cleanup();
2826 err_mad:
2827     ib_mad_cleanup();
2828 err_addr:
2829     addr_cleanup();
2830 err_ibnl:
2831     class_unregister(&ib_class);
2832 err_comp_unbound:
2833     destroy_workqueue(ib_comp_unbound_wq);
2834 err_comp:
2835     destroy_workqueue(ib_comp_wq);
2836 err_unbound:
2837     destroy_workqueue(ib_unreg_wq);
2838 err:
2839     destroy_workqueue(ib_wq);
2840     return ret;
2841 }
2842 
2843 static void __exit ib_core_cleanup(void)
2844 {
2845     roce_gid_mgmt_cleanup();
2846     nldev_exit();
2847     rdma_nl_unregister(RDMA_NL_LS);
2848     unregister_pernet_device(&rdma_dev_net_ops);
2849     unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2850     ib_sa_cleanup();
2851     ib_mad_cleanup();
2852     addr_cleanup();
2853     rdma_nl_exit();
2854     class_unregister(&ib_class);
2855     destroy_workqueue(ib_comp_unbound_wq);
2856     destroy_workqueue(ib_comp_wq);
2857     /* Make sure that any pending umem accounting work is done. */
2858     destroy_workqueue(ib_wq);
2859     destroy_workqueue(ib_unreg_wq);
2860     WARN_ON(!xa_empty(&clients));
2861     WARN_ON(!xa_empty(&devices));
2862 }
2863 
2864 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2865 
2866 /* ib core relies on netdev stack to first register net_ns_type_operations
2867  * ns kobject type before ib_core initialization.
2868  */
2869 fs_initcall(ib_core_init);
2870 module_exit(ib_core_cleanup);