Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
0002 /*
0003  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
0004  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
0005  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
0006  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
0007  */
0008 
0009 #include <linux/completion.h>
0010 #include <linux/in.h>
0011 #include <linux/in6.h>
0012 #include <linux/mutex.h>
0013 #include <linux/random.h>
0014 #include <linux/rbtree.h>
0015 #include <linux/igmp.h>
0016 #include <linux/xarray.h>
0017 #include <linux/inetdevice.h>
0018 #include <linux/slab.h>
0019 #include <linux/module.h>
0020 #include <net/route.h>
0021 
0022 #include <net/net_namespace.h>
0023 #include <net/netns/generic.h>
0024 #include <net/netevent.h>
0025 #include <net/tcp.h>
0026 #include <net/ipv6.h>
0027 #include <net/ip_fib.h>
0028 #include <net/ip6_route.h>
0029 
0030 #include <rdma/rdma_cm.h>
0031 #include <rdma/rdma_cm_ib.h>
0032 #include <rdma/rdma_netlink.h>
0033 #include <rdma/ib.h>
0034 #include <rdma/ib_cache.h>
0035 #include <rdma/ib_cm.h>
0036 #include <rdma/ib_sa.h>
0037 #include <rdma/iw_cm.h>
0038 
0039 #include "core_priv.h"
0040 #include "cma_priv.h"
0041 #include "cma_trace.h"
0042 
0043 MODULE_AUTHOR("Sean Hefty");
0044 MODULE_DESCRIPTION("Generic RDMA CM Agent");
0045 MODULE_LICENSE("Dual BSD/GPL");
0046 
0047 #define CMA_CM_RESPONSE_TIMEOUT 20
0048 #define CMA_MAX_CM_RETRIES 15
0049 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
0050 #define CMA_IBOE_PACKET_LIFETIME 18
0051 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
0052 
0053 static const char * const cma_events[] = {
0054     [RDMA_CM_EVENT_ADDR_RESOLVED]    = "address resolved",
0055     [RDMA_CM_EVENT_ADDR_ERROR]   = "address error",
0056     [RDMA_CM_EVENT_ROUTE_RESOLVED]   = "route resolved ",
0057     [RDMA_CM_EVENT_ROUTE_ERROR]  = "route error",
0058     [RDMA_CM_EVENT_CONNECT_REQUEST]  = "connect request",
0059     [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
0060     [RDMA_CM_EVENT_CONNECT_ERROR]    = "connect error",
0061     [RDMA_CM_EVENT_UNREACHABLE]  = "unreachable",
0062     [RDMA_CM_EVENT_REJECTED]     = "rejected",
0063     [RDMA_CM_EVENT_ESTABLISHED]  = "established",
0064     [RDMA_CM_EVENT_DISCONNECTED]     = "disconnected",
0065     [RDMA_CM_EVENT_DEVICE_REMOVAL]   = "device removal",
0066     [RDMA_CM_EVENT_MULTICAST_JOIN]   = "multicast join",
0067     [RDMA_CM_EVENT_MULTICAST_ERROR]  = "multicast error",
0068     [RDMA_CM_EVENT_ADDR_CHANGE]  = "address change",
0069     [RDMA_CM_EVENT_TIMEWAIT_EXIT]    = "timewait exit",
0070 };
0071 
0072 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
0073                   enum ib_gid_type gid_type);
0074 
0075 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
0076 {
0077     size_t index = event;
0078 
0079     return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
0080             cma_events[index] : "unrecognized event";
0081 }
0082 EXPORT_SYMBOL(rdma_event_msg);
0083 
0084 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
0085                         int reason)
0086 {
0087     if (rdma_ib_or_roce(id->device, id->port_num))
0088         return ibcm_reject_msg(reason);
0089 
0090     if (rdma_protocol_iwarp(id->device, id->port_num))
0091         return iwcm_reject_msg(reason);
0092 
0093     WARN_ON_ONCE(1);
0094     return "unrecognized transport";
0095 }
0096 EXPORT_SYMBOL(rdma_reject_msg);
0097 
0098 /**
0099  * rdma_is_consumer_reject - return true if the consumer rejected the connect
0100  *                           request.
0101  * @id: Communication identifier that received the REJECT event.
0102  * @reason: Value returned in the REJECT event status field.
0103  */
0104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
0105 {
0106     if (rdma_ib_or_roce(id->device, id->port_num))
0107         return reason == IB_CM_REJ_CONSUMER_DEFINED;
0108 
0109     if (rdma_protocol_iwarp(id->device, id->port_num))
0110         return reason == -ECONNREFUSED;
0111 
0112     WARN_ON_ONCE(1);
0113     return false;
0114 }
0115 
0116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
0117                       struct rdma_cm_event *ev, u8 *data_len)
0118 {
0119     const void *p;
0120 
0121     if (rdma_is_consumer_reject(id, ev->status)) {
0122         *data_len = ev->param.conn.private_data_len;
0123         p = ev->param.conn.private_data;
0124     } else {
0125         *data_len = 0;
0126         p = NULL;
0127     }
0128     return p;
0129 }
0130 EXPORT_SYMBOL(rdma_consumer_reject_data);
0131 
0132 /**
0133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
0134  * @id: Communication Identifier
0135  */
0136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
0137 {
0138     struct rdma_id_private *id_priv;
0139 
0140     id_priv = container_of(id, struct rdma_id_private, id);
0141     if (id->device->node_type == RDMA_NODE_RNIC)
0142         return id_priv->cm_id.iw;
0143     return NULL;
0144 }
0145 EXPORT_SYMBOL(rdma_iw_cm_id);
0146 
0147 /**
0148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
0149  * @res: rdma resource tracking entry pointer
0150  */
0151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
0152 {
0153     struct rdma_id_private *id_priv =
0154         container_of(res, struct rdma_id_private, res);
0155 
0156     return &id_priv->id;
0157 }
0158 EXPORT_SYMBOL(rdma_res_to_id);
0159 
0160 static int cma_add_one(struct ib_device *device);
0161 static void cma_remove_one(struct ib_device *device, void *client_data);
0162 
0163 static struct ib_client cma_client = {
0164     .name   = "cma",
0165     .add    = cma_add_one,
0166     .remove = cma_remove_one
0167 };
0168 
0169 static struct ib_sa_client sa_client;
0170 static LIST_HEAD(dev_list);
0171 static LIST_HEAD(listen_any_list);
0172 static DEFINE_MUTEX(lock);
0173 static struct rb_root id_table = RB_ROOT;
0174 /* Serialize operations of id_table tree */
0175 static DEFINE_SPINLOCK(id_table_lock);
0176 static struct workqueue_struct *cma_wq;
0177 static unsigned int cma_pernet_id;
0178 
0179 struct cma_pernet {
0180     struct xarray tcp_ps;
0181     struct xarray udp_ps;
0182     struct xarray ipoib_ps;
0183     struct xarray ib_ps;
0184 };
0185 
0186 static struct cma_pernet *cma_pernet(struct net *net)
0187 {
0188     return net_generic(net, cma_pernet_id);
0189 }
0190 
0191 static
0192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
0193 {
0194     struct cma_pernet *pernet = cma_pernet(net);
0195 
0196     switch (ps) {
0197     case RDMA_PS_TCP:
0198         return &pernet->tcp_ps;
0199     case RDMA_PS_UDP:
0200         return &pernet->udp_ps;
0201     case RDMA_PS_IPOIB:
0202         return &pernet->ipoib_ps;
0203     case RDMA_PS_IB:
0204         return &pernet->ib_ps;
0205     default:
0206         return NULL;
0207     }
0208 }
0209 
0210 struct id_table_entry {
0211     struct list_head id_list;
0212     struct rb_node rb_node;
0213 };
0214 
0215 struct cma_device {
0216     struct list_head    list;
0217     struct ib_device    *device;
0218     struct completion   comp;
0219     refcount_t refcount;
0220     struct list_head    id_list;
0221     enum ib_gid_type    *default_gid_type;
0222     u8          *default_roce_tos;
0223 };
0224 
0225 struct rdma_bind_list {
0226     enum rdma_ucm_port_space ps;
0227     struct hlist_head   owners;
0228     unsigned short      port;
0229 };
0230 
0231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
0232             struct rdma_bind_list *bind_list, int snum)
0233 {
0234     struct xarray *xa = cma_pernet_xa(net, ps);
0235 
0236     return xa_insert(xa, snum, bind_list, GFP_KERNEL);
0237 }
0238 
0239 static struct rdma_bind_list *cma_ps_find(struct net *net,
0240                       enum rdma_ucm_port_space ps, int snum)
0241 {
0242     struct xarray *xa = cma_pernet_xa(net, ps);
0243 
0244     return xa_load(xa, snum);
0245 }
0246 
0247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
0248               int snum)
0249 {
0250     struct xarray *xa = cma_pernet_xa(net, ps);
0251 
0252     xa_erase(xa, snum);
0253 }
0254 
0255 enum {
0256     CMA_OPTION_AFONLY,
0257 };
0258 
0259 void cma_dev_get(struct cma_device *cma_dev)
0260 {
0261     refcount_inc(&cma_dev->refcount);
0262 }
0263 
0264 void cma_dev_put(struct cma_device *cma_dev)
0265 {
0266     if (refcount_dec_and_test(&cma_dev->refcount))
0267         complete(&cma_dev->comp);
0268 }
0269 
0270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter  filter,
0271                          void       *cookie)
0272 {
0273     struct cma_device *cma_dev;
0274     struct cma_device *found_cma_dev = NULL;
0275 
0276     mutex_lock(&lock);
0277 
0278     list_for_each_entry(cma_dev, &dev_list, list)
0279         if (filter(cma_dev->device, cookie)) {
0280             found_cma_dev = cma_dev;
0281             break;
0282         }
0283 
0284     if (found_cma_dev)
0285         cma_dev_get(found_cma_dev);
0286     mutex_unlock(&lock);
0287     return found_cma_dev;
0288 }
0289 
0290 int cma_get_default_gid_type(struct cma_device *cma_dev,
0291                  u32 port)
0292 {
0293     if (!rdma_is_port_valid(cma_dev->device, port))
0294         return -EINVAL;
0295 
0296     return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
0297 }
0298 
0299 int cma_set_default_gid_type(struct cma_device *cma_dev,
0300                  u32 port,
0301                  enum ib_gid_type default_gid_type)
0302 {
0303     unsigned long supported_gids;
0304 
0305     if (!rdma_is_port_valid(cma_dev->device, port))
0306         return -EINVAL;
0307 
0308     if (default_gid_type == IB_GID_TYPE_IB &&
0309         rdma_protocol_roce_eth_encap(cma_dev->device, port))
0310         default_gid_type = IB_GID_TYPE_ROCE;
0311 
0312     supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
0313 
0314     if (!(supported_gids & 1 << default_gid_type))
0315         return -EINVAL;
0316 
0317     cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
0318         default_gid_type;
0319 
0320     return 0;
0321 }
0322 
0323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
0324 {
0325     if (!rdma_is_port_valid(cma_dev->device, port))
0326         return -EINVAL;
0327 
0328     return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
0329 }
0330 
0331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
0332                  u8 default_roce_tos)
0333 {
0334     if (!rdma_is_port_valid(cma_dev->device, port))
0335         return -EINVAL;
0336 
0337     cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
0338          default_roce_tos;
0339 
0340     return 0;
0341 }
0342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
0343 {
0344     return cma_dev->device;
0345 }
0346 
0347 /*
0348  * Device removal can occur at anytime, so we need extra handling to
0349  * serialize notifying the user of device removal with other callbacks.
0350  * We do this by disabling removal notification while a callback is in process,
0351  * and reporting it after the callback completes.
0352  */
0353 
0354 struct cma_multicast {
0355     struct rdma_id_private *id_priv;
0356     union {
0357         struct ib_sa_multicast *sa_mc;
0358         struct {
0359             struct work_struct work;
0360             struct rdma_cm_event event;
0361         } iboe_join;
0362     };
0363     struct list_head    list;
0364     void            *context;
0365     struct sockaddr_storage addr;
0366     u8          join_state;
0367 };
0368 
0369 struct cma_work {
0370     struct work_struct  work;
0371     struct rdma_id_private  *id;
0372     enum rdma_cm_state  old_state;
0373     enum rdma_cm_state  new_state;
0374     struct rdma_cm_event    event;
0375 };
0376 
0377 union cma_ip_addr {
0378     struct in6_addr ip6;
0379     struct {
0380         __be32 pad[3];
0381         __be32 addr;
0382     } ip4;
0383 };
0384 
0385 struct cma_hdr {
0386     u8 cma_version;
0387     u8 ip_version;  /* IP version: 7:4 */
0388     __be16 port;
0389     union cma_ip_addr src_addr;
0390     union cma_ip_addr dst_addr;
0391 };
0392 
0393 #define CMA_VERSION 0x00
0394 
0395 struct cma_req_info {
0396     struct sockaddr_storage listen_addr_storage;
0397     struct sockaddr_storage src_addr_storage;
0398     struct ib_device *device;
0399     union ib_gid local_gid;
0400     __be64 service_id;
0401     int port;
0402     bool has_gid;
0403     u16 pkey;
0404 };
0405 
0406 static int cma_comp_exch(struct rdma_id_private *id_priv,
0407              enum rdma_cm_state comp, enum rdma_cm_state exch)
0408 {
0409     unsigned long flags;
0410     int ret;
0411 
0412     /*
0413      * The FSM uses a funny double locking where state is protected by both
0414      * the handler_mutex and the spinlock. State is not allowed to change
0415      * to/from a handler_mutex protected value without also holding
0416      * handler_mutex.
0417      */
0418     if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
0419         lockdep_assert_held(&id_priv->handler_mutex);
0420 
0421     spin_lock_irqsave(&id_priv->lock, flags);
0422     if ((ret = (id_priv->state == comp)))
0423         id_priv->state = exch;
0424     spin_unlock_irqrestore(&id_priv->lock, flags);
0425     return ret;
0426 }
0427 
0428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
0429 {
0430     return hdr->ip_version >> 4;
0431 }
0432 
0433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
0434 {
0435     hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
0436 }
0437 
0438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
0439 {
0440     return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
0441 }
0442 
0443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
0444 {
0445     return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
0446 }
0447 
0448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
0449 {
0450     struct in_device *in_dev = NULL;
0451 
0452     if (ndev) {
0453         rtnl_lock();
0454         in_dev = __in_dev_get_rtnl(ndev);
0455         if (in_dev) {
0456             if (join)
0457                 ip_mc_inc_group(in_dev,
0458                         *(__be32 *)(mgid->raw + 12));
0459             else
0460                 ip_mc_dec_group(in_dev,
0461                         *(__be32 *)(mgid->raw + 12));
0462         }
0463         rtnl_unlock();
0464     }
0465     return (in_dev) ? 0 : -ENODEV;
0466 }
0467 
0468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
0469                  struct id_table_entry *entry_b)
0470 {
0471     struct rdma_id_private *id_priv = list_first_entry(
0472         &entry_b->id_list, struct rdma_id_private, id_list_entry);
0473     int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
0474     struct sockaddr *sb = cma_dst_addr(id_priv);
0475 
0476     if (ifindex_a != ifindex_b)
0477         return (ifindex_a > ifindex_b) ? 1 : -1;
0478 
0479     if (sa->sa_family != sb->sa_family)
0480         return sa->sa_family - sb->sa_family;
0481 
0482     if (sa->sa_family == AF_INET)
0483         return memcmp((char *)&((struct sockaddr_in *)sa)->sin_addr,
0484                   (char *)&((struct sockaddr_in *)sb)->sin_addr,
0485                   sizeof(((struct sockaddr_in *)sa)->sin_addr));
0486 
0487     return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
0488                  &((struct sockaddr_in6 *)sb)->sin6_addr);
0489 }
0490 
0491 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
0492 {
0493     struct rb_node **new, *parent = NULL;
0494     struct id_table_entry *this, *node;
0495     unsigned long flags;
0496     int result;
0497 
0498     node = kzalloc(sizeof(*node), GFP_KERNEL);
0499     if (!node)
0500         return -ENOMEM;
0501 
0502     spin_lock_irqsave(&id_table_lock, flags);
0503     new = &id_table.rb_node;
0504     while (*new) {
0505         this = container_of(*new, struct id_table_entry, rb_node);
0506         result = compare_netdev_and_ip(
0507             node_id_priv->id.route.addr.dev_addr.bound_dev_if,
0508             cma_dst_addr(node_id_priv), this);
0509 
0510         parent = *new;
0511         if (result < 0)
0512             new = &((*new)->rb_left);
0513         else if (result > 0)
0514             new = &((*new)->rb_right);
0515         else {
0516             list_add_tail(&node_id_priv->id_list_entry,
0517                       &this->id_list);
0518             kfree(node);
0519             goto unlock;
0520         }
0521     }
0522 
0523     INIT_LIST_HEAD(&node->id_list);
0524     list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
0525 
0526     rb_link_node(&node->rb_node, parent, new);
0527     rb_insert_color(&node->rb_node, &id_table);
0528 
0529 unlock:
0530     spin_unlock_irqrestore(&id_table_lock, flags);
0531     return 0;
0532 }
0533 
0534 static struct id_table_entry *
0535 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
0536 {
0537     struct rb_node *node = root->rb_node;
0538     struct id_table_entry *data;
0539     int result;
0540 
0541     while (node) {
0542         data = container_of(node, struct id_table_entry, rb_node);
0543         result = compare_netdev_and_ip(ifindex, sa, data);
0544         if (result < 0)
0545             node = node->rb_left;
0546         else if (result > 0)
0547             node = node->rb_right;
0548         else
0549             return data;
0550     }
0551 
0552     return NULL;
0553 }
0554 
0555 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
0556 {
0557     struct id_table_entry *data;
0558     unsigned long flags;
0559 
0560     spin_lock_irqsave(&id_table_lock, flags);
0561     if (list_empty(&id_priv->id_list_entry))
0562         goto out;
0563 
0564     data = node_from_ndev_ip(&id_table,
0565                  id_priv->id.route.addr.dev_addr.bound_dev_if,
0566                  cma_dst_addr(id_priv));
0567     if (!data)
0568         goto out;
0569 
0570     list_del_init(&id_priv->id_list_entry);
0571     if (list_empty(&data->id_list)) {
0572         rb_erase(&data->rb_node, &id_table);
0573         kfree(data);
0574     }
0575 out:
0576     spin_unlock_irqrestore(&id_table_lock, flags);
0577 }
0578 
0579 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
0580                    struct cma_device *cma_dev)
0581 {
0582     cma_dev_get(cma_dev);
0583     id_priv->cma_dev = cma_dev;
0584     id_priv->id.device = cma_dev->device;
0585     id_priv->id.route.addr.dev_addr.transport =
0586         rdma_node_get_transport(cma_dev->device->node_type);
0587     list_add_tail(&id_priv->device_item, &cma_dev->id_list);
0588 
0589     trace_cm_id_attach(id_priv, cma_dev->device);
0590 }
0591 
0592 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
0593                   struct cma_device *cma_dev)
0594 {
0595     _cma_attach_to_dev(id_priv, cma_dev);
0596     id_priv->gid_type =
0597         cma_dev->default_gid_type[id_priv->id.port_num -
0598                       rdma_start_port(cma_dev->device)];
0599 }
0600 
0601 static void cma_release_dev(struct rdma_id_private *id_priv)
0602 {
0603     mutex_lock(&lock);
0604     list_del_init(&id_priv->device_item);
0605     cma_dev_put(id_priv->cma_dev);
0606     id_priv->cma_dev = NULL;
0607     id_priv->id.device = NULL;
0608     if (id_priv->id.route.addr.dev_addr.sgid_attr) {
0609         rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
0610         id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
0611     }
0612     mutex_unlock(&lock);
0613 }
0614 
0615 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
0616 {
0617     return id_priv->id.route.addr.src_addr.ss_family;
0618 }
0619 
0620 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
0621 {
0622     struct ib_sa_mcmember_rec rec;
0623     int ret = 0;
0624 
0625     if (id_priv->qkey) {
0626         if (qkey && id_priv->qkey != qkey)
0627             return -EINVAL;
0628         return 0;
0629     }
0630 
0631     if (qkey) {
0632         id_priv->qkey = qkey;
0633         return 0;
0634     }
0635 
0636     switch (id_priv->id.ps) {
0637     case RDMA_PS_UDP:
0638     case RDMA_PS_IB:
0639         id_priv->qkey = RDMA_UDP_QKEY;
0640         break;
0641     case RDMA_PS_IPOIB:
0642         ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
0643         ret = ib_sa_get_mcmember_rec(id_priv->id.device,
0644                          id_priv->id.port_num, &rec.mgid,
0645                          &rec);
0646         if (!ret)
0647             id_priv->qkey = be32_to_cpu(rec.qkey);
0648         break;
0649     default:
0650         break;
0651     }
0652     return ret;
0653 }
0654 
0655 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
0656 {
0657     dev_addr->dev_type = ARPHRD_INFINIBAND;
0658     rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
0659     ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
0660 }
0661 
0662 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
0663 {
0664     int ret;
0665 
0666     if (addr->sa_family != AF_IB) {
0667         ret = rdma_translate_ip(addr, dev_addr);
0668     } else {
0669         cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
0670         ret = 0;
0671     }
0672 
0673     return ret;
0674 }
0675 
0676 static const struct ib_gid_attr *
0677 cma_validate_port(struct ib_device *device, u32 port,
0678           enum ib_gid_type gid_type,
0679           union ib_gid *gid,
0680           struct rdma_id_private *id_priv)
0681 {
0682     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
0683     int bound_if_index = dev_addr->bound_dev_if;
0684     const struct ib_gid_attr *sgid_attr;
0685     int dev_type = dev_addr->dev_type;
0686     struct net_device *ndev = NULL;
0687 
0688     if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
0689         return ERR_PTR(-ENODEV);
0690 
0691     if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
0692         return ERR_PTR(-ENODEV);
0693 
0694     if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
0695         return ERR_PTR(-ENODEV);
0696 
0697     if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
0698         ndev = dev_get_by_index(dev_addr->net, bound_if_index);
0699         if (!ndev)
0700             return ERR_PTR(-ENODEV);
0701     } else {
0702         gid_type = IB_GID_TYPE_IB;
0703     }
0704 
0705     sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
0706     if (ndev)
0707         dev_put(ndev);
0708     return sgid_attr;
0709 }
0710 
0711 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
0712                    const struct ib_gid_attr *sgid_attr)
0713 {
0714     WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
0715     id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
0716 }
0717 
0718 /**
0719  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
0720  * based on source ip address.
0721  * @id_priv:    cm_id which should be bound to cma device
0722  *
0723  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
0724  * based on source IP address. It returns 0 on success or error code otherwise.
0725  * It is applicable to active and passive side cm_id.
0726  */
0727 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
0728 {
0729     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
0730     const struct ib_gid_attr *sgid_attr;
0731     union ib_gid gid, iboe_gid, *gidp;
0732     struct cma_device *cma_dev;
0733     enum ib_gid_type gid_type;
0734     int ret = -ENODEV;
0735     u32 port;
0736 
0737     if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
0738         id_priv->id.ps == RDMA_PS_IPOIB)
0739         return -EINVAL;
0740 
0741     rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
0742             &iboe_gid);
0743 
0744     memcpy(&gid, dev_addr->src_dev_addr +
0745            rdma_addr_gid_offset(dev_addr), sizeof(gid));
0746 
0747     mutex_lock(&lock);
0748     list_for_each_entry(cma_dev, &dev_list, list) {
0749         rdma_for_each_port (cma_dev->device, port) {
0750             gidp = rdma_protocol_roce(cma_dev->device, port) ?
0751                    &iboe_gid : &gid;
0752             gid_type = cma_dev->default_gid_type[port - 1];
0753             sgid_attr = cma_validate_port(cma_dev->device, port,
0754                               gid_type, gidp, id_priv);
0755             if (!IS_ERR(sgid_attr)) {
0756                 id_priv->id.port_num = port;
0757                 cma_bind_sgid_attr(id_priv, sgid_attr);
0758                 cma_attach_to_dev(id_priv, cma_dev);
0759                 ret = 0;
0760                 goto out;
0761             }
0762         }
0763     }
0764 out:
0765     mutex_unlock(&lock);
0766     return ret;
0767 }
0768 
0769 /**
0770  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
0771  * @id_priv:        cm id to bind to cma device
0772  * @listen_id_priv: listener cm id to match against
0773  * @req:        Pointer to req structure containaining incoming
0774  *          request information
0775  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
0776  * rdma device matches for listen_id and incoming request. It also verifies
0777  * that a GID table entry is present for the source address.
0778  * Returns 0 on success, or returns error code otherwise.
0779  */
0780 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
0781                   const struct rdma_id_private *listen_id_priv,
0782                   struct cma_req_info *req)
0783 {
0784     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
0785     const struct ib_gid_attr *sgid_attr;
0786     enum ib_gid_type gid_type;
0787     union ib_gid gid;
0788 
0789     if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
0790         id_priv->id.ps == RDMA_PS_IPOIB)
0791         return -EINVAL;
0792 
0793     if (rdma_protocol_roce(req->device, req->port))
0794         rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
0795                 &gid);
0796     else
0797         memcpy(&gid, dev_addr->src_dev_addr +
0798                rdma_addr_gid_offset(dev_addr), sizeof(gid));
0799 
0800     gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
0801     sgid_attr = cma_validate_port(req->device, req->port,
0802                       gid_type, &gid, id_priv);
0803     if (IS_ERR(sgid_attr))
0804         return PTR_ERR(sgid_attr);
0805 
0806     id_priv->id.port_num = req->port;
0807     cma_bind_sgid_attr(id_priv, sgid_attr);
0808     /* Need to acquire lock to protect against reader
0809      * of cma_dev->id_list such as cma_netdev_callback() and
0810      * cma_process_remove().
0811      */
0812     mutex_lock(&lock);
0813     cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
0814     mutex_unlock(&lock);
0815     rdma_restrack_add(&id_priv->res);
0816     return 0;
0817 }
0818 
0819 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
0820                   const struct rdma_id_private *listen_id_priv)
0821 {
0822     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
0823     const struct ib_gid_attr *sgid_attr;
0824     struct cma_device *cma_dev;
0825     enum ib_gid_type gid_type;
0826     int ret = -ENODEV;
0827     union ib_gid gid;
0828     u32 port;
0829 
0830     if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
0831         id_priv->id.ps == RDMA_PS_IPOIB)
0832         return -EINVAL;
0833 
0834     memcpy(&gid, dev_addr->src_dev_addr +
0835            rdma_addr_gid_offset(dev_addr), sizeof(gid));
0836 
0837     mutex_lock(&lock);
0838 
0839     cma_dev = listen_id_priv->cma_dev;
0840     port = listen_id_priv->id.port_num;
0841     gid_type = listen_id_priv->gid_type;
0842     sgid_attr = cma_validate_port(cma_dev->device, port,
0843                       gid_type, &gid, id_priv);
0844     if (!IS_ERR(sgid_attr)) {
0845         id_priv->id.port_num = port;
0846         cma_bind_sgid_attr(id_priv, sgid_attr);
0847         ret = 0;
0848         goto out;
0849     }
0850 
0851     list_for_each_entry(cma_dev, &dev_list, list) {
0852         rdma_for_each_port (cma_dev->device, port) {
0853             if (listen_id_priv->cma_dev == cma_dev &&
0854                 listen_id_priv->id.port_num == port)
0855                 continue;
0856 
0857             gid_type = cma_dev->default_gid_type[port - 1];
0858             sgid_attr = cma_validate_port(cma_dev->device, port,
0859                               gid_type, &gid, id_priv);
0860             if (!IS_ERR(sgid_attr)) {
0861                 id_priv->id.port_num = port;
0862                 cma_bind_sgid_attr(id_priv, sgid_attr);
0863                 ret = 0;
0864                 goto out;
0865             }
0866         }
0867     }
0868 
0869 out:
0870     if (!ret) {
0871         cma_attach_to_dev(id_priv, cma_dev);
0872         rdma_restrack_add(&id_priv->res);
0873     }
0874 
0875     mutex_unlock(&lock);
0876     return ret;
0877 }
0878 
0879 /*
0880  * Select the source IB device and address to reach the destination IB address.
0881  */
0882 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
0883 {
0884     struct cma_device *cma_dev, *cur_dev;
0885     struct sockaddr_ib *addr;
0886     union ib_gid gid, sgid, *dgid;
0887     unsigned int p;
0888     u16 pkey, index;
0889     enum ib_port_state port_state;
0890     int ret;
0891     int i;
0892 
0893     cma_dev = NULL;
0894     addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
0895     dgid = (union ib_gid *) &addr->sib_addr;
0896     pkey = ntohs(addr->sib_pkey);
0897 
0898     mutex_lock(&lock);
0899     list_for_each_entry(cur_dev, &dev_list, list) {
0900         rdma_for_each_port (cur_dev->device, p) {
0901             if (!rdma_cap_af_ib(cur_dev->device, p))
0902                 continue;
0903 
0904             if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
0905                 continue;
0906 
0907             if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
0908                 continue;
0909 
0910             for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
0911                  ++i) {
0912                 ret = rdma_query_gid(cur_dev->device, p, i,
0913                              &gid);
0914                 if (ret)
0915                     continue;
0916 
0917                 if (!memcmp(&gid, dgid, sizeof(gid))) {
0918                     cma_dev = cur_dev;
0919                     sgid = gid;
0920                     id_priv->id.port_num = p;
0921                     goto found;
0922                 }
0923 
0924                 if (!cma_dev && (gid.global.subnet_prefix ==
0925                     dgid->global.subnet_prefix) &&
0926                     port_state == IB_PORT_ACTIVE) {
0927                     cma_dev = cur_dev;
0928                     sgid = gid;
0929                     id_priv->id.port_num = p;
0930                     goto found;
0931                 }
0932             }
0933         }
0934     }
0935     mutex_unlock(&lock);
0936     return -ENODEV;
0937 
0938 found:
0939     cma_attach_to_dev(id_priv, cma_dev);
0940     rdma_restrack_add(&id_priv->res);
0941     mutex_unlock(&lock);
0942     addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
0943     memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
0944     cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
0945     return 0;
0946 }
0947 
0948 static void cma_id_get(struct rdma_id_private *id_priv)
0949 {
0950     refcount_inc(&id_priv->refcount);
0951 }
0952 
0953 static void cma_id_put(struct rdma_id_private *id_priv)
0954 {
0955     if (refcount_dec_and_test(&id_priv->refcount))
0956         complete(&id_priv->comp);
0957 }
0958 
0959 static struct rdma_id_private *
0960 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
0961          void *context, enum rdma_ucm_port_space ps,
0962          enum ib_qp_type qp_type, const struct rdma_id_private *parent)
0963 {
0964     struct rdma_id_private *id_priv;
0965 
0966     id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
0967     if (!id_priv)
0968         return ERR_PTR(-ENOMEM);
0969 
0970     id_priv->state = RDMA_CM_IDLE;
0971     id_priv->id.context = context;
0972     id_priv->id.event_handler = event_handler;
0973     id_priv->id.ps = ps;
0974     id_priv->id.qp_type = qp_type;
0975     id_priv->tos_set = false;
0976     id_priv->timeout_set = false;
0977     id_priv->min_rnr_timer_set = false;
0978     id_priv->gid_type = IB_GID_TYPE_IB;
0979     spin_lock_init(&id_priv->lock);
0980     mutex_init(&id_priv->qp_mutex);
0981     init_completion(&id_priv->comp);
0982     refcount_set(&id_priv->refcount, 1);
0983     mutex_init(&id_priv->handler_mutex);
0984     INIT_LIST_HEAD(&id_priv->device_item);
0985     INIT_LIST_HEAD(&id_priv->id_list_entry);
0986     INIT_LIST_HEAD(&id_priv->listen_list);
0987     INIT_LIST_HEAD(&id_priv->mc_list);
0988     get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
0989     id_priv->id.route.addr.dev_addr.net = get_net(net);
0990     id_priv->seq_num &= 0x00ffffff;
0991 
0992     rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
0993     if (parent)
0994         rdma_restrack_parent_name(&id_priv->res, &parent->res);
0995 
0996     return id_priv;
0997 }
0998 
0999 struct rdma_cm_id *
1000 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1001             void *context, enum rdma_ucm_port_space ps,
1002             enum ib_qp_type qp_type, const char *caller)
1003 {
1004     struct rdma_id_private *ret;
1005 
1006     ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1007     if (IS_ERR(ret))
1008         return ERR_CAST(ret);
1009 
1010     rdma_restrack_set_name(&ret->res, caller);
1011     return &ret->id;
1012 }
1013 EXPORT_SYMBOL(__rdma_create_kernel_id);
1014 
1015 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1016                        void *context,
1017                        enum rdma_ucm_port_space ps,
1018                        enum ib_qp_type qp_type)
1019 {
1020     struct rdma_id_private *ret;
1021 
1022     ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1023                    ps, qp_type, NULL);
1024     if (IS_ERR(ret))
1025         return ERR_CAST(ret);
1026 
1027     rdma_restrack_set_name(&ret->res, NULL);
1028     return &ret->id;
1029 }
1030 EXPORT_SYMBOL(rdma_create_user_id);
1031 
1032 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1033 {
1034     struct ib_qp_attr qp_attr;
1035     int qp_attr_mask, ret;
1036 
1037     qp_attr.qp_state = IB_QPS_INIT;
1038     ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1039     if (ret)
1040         return ret;
1041 
1042     ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1043     if (ret)
1044         return ret;
1045 
1046     qp_attr.qp_state = IB_QPS_RTR;
1047     ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1048     if (ret)
1049         return ret;
1050 
1051     qp_attr.qp_state = IB_QPS_RTS;
1052     qp_attr.sq_psn = 0;
1053     ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1054 
1055     return ret;
1056 }
1057 
1058 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1059 {
1060     struct ib_qp_attr qp_attr;
1061     int qp_attr_mask, ret;
1062 
1063     qp_attr.qp_state = IB_QPS_INIT;
1064     ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1065     if (ret)
1066         return ret;
1067 
1068     return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1069 }
1070 
1071 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1072            struct ib_qp_init_attr *qp_init_attr)
1073 {
1074     struct rdma_id_private *id_priv;
1075     struct ib_qp *qp;
1076     int ret;
1077 
1078     id_priv = container_of(id, struct rdma_id_private, id);
1079     if (id->device != pd->device) {
1080         ret = -EINVAL;
1081         goto out_err;
1082     }
1083 
1084     qp_init_attr->port_num = id->port_num;
1085     qp = ib_create_qp(pd, qp_init_attr);
1086     if (IS_ERR(qp)) {
1087         ret = PTR_ERR(qp);
1088         goto out_err;
1089     }
1090 
1091     if (id->qp_type == IB_QPT_UD)
1092         ret = cma_init_ud_qp(id_priv, qp);
1093     else
1094         ret = cma_init_conn_qp(id_priv, qp);
1095     if (ret)
1096         goto out_destroy;
1097 
1098     id->qp = qp;
1099     id_priv->qp_num = qp->qp_num;
1100     id_priv->srq = (qp->srq != NULL);
1101     trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1102     return 0;
1103 out_destroy:
1104     ib_destroy_qp(qp);
1105 out_err:
1106     trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1107     return ret;
1108 }
1109 EXPORT_SYMBOL(rdma_create_qp);
1110 
1111 void rdma_destroy_qp(struct rdma_cm_id *id)
1112 {
1113     struct rdma_id_private *id_priv;
1114 
1115     id_priv = container_of(id, struct rdma_id_private, id);
1116     trace_cm_qp_destroy(id_priv);
1117     mutex_lock(&id_priv->qp_mutex);
1118     ib_destroy_qp(id_priv->id.qp);
1119     id_priv->id.qp = NULL;
1120     mutex_unlock(&id_priv->qp_mutex);
1121 }
1122 EXPORT_SYMBOL(rdma_destroy_qp);
1123 
1124 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1125                  struct rdma_conn_param *conn_param)
1126 {
1127     struct ib_qp_attr qp_attr;
1128     int qp_attr_mask, ret;
1129 
1130     mutex_lock(&id_priv->qp_mutex);
1131     if (!id_priv->id.qp) {
1132         ret = 0;
1133         goto out;
1134     }
1135 
1136     /* Need to update QP attributes from default values. */
1137     qp_attr.qp_state = IB_QPS_INIT;
1138     ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1139     if (ret)
1140         goto out;
1141 
1142     ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1143     if (ret)
1144         goto out;
1145 
1146     qp_attr.qp_state = IB_QPS_RTR;
1147     ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1148     if (ret)
1149         goto out;
1150 
1151     BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1152 
1153     if (conn_param)
1154         qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1155     ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1156 out:
1157     mutex_unlock(&id_priv->qp_mutex);
1158     return ret;
1159 }
1160 
1161 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1162                  struct rdma_conn_param *conn_param)
1163 {
1164     struct ib_qp_attr qp_attr;
1165     int qp_attr_mask, ret;
1166 
1167     mutex_lock(&id_priv->qp_mutex);
1168     if (!id_priv->id.qp) {
1169         ret = 0;
1170         goto out;
1171     }
1172 
1173     qp_attr.qp_state = IB_QPS_RTS;
1174     ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1175     if (ret)
1176         goto out;
1177 
1178     if (conn_param)
1179         qp_attr.max_rd_atomic = conn_param->initiator_depth;
1180     ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1181 out:
1182     mutex_unlock(&id_priv->qp_mutex);
1183     return ret;
1184 }
1185 
1186 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1187 {
1188     struct ib_qp_attr qp_attr;
1189     int ret;
1190 
1191     mutex_lock(&id_priv->qp_mutex);
1192     if (!id_priv->id.qp) {
1193         ret = 0;
1194         goto out;
1195     }
1196 
1197     qp_attr.qp_state = IB_QPS_ERR;
1198     ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1199 out:
1200     mutex_unlock(&id_priv->qp_mutex);
1201     return ret;
1202 }
1203 
1204 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1205                    struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1206 {
1207     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1208     int ret;
1209     u16 pkey;
1210 
1211     if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1212         pkey = 0xffff;
1213     else
1214         pkey = ib_addr_get_pkey(dev_addr);
1215 
1216     ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1217                   pkey, &qp_attr->pkey_index);
1218     if (ret)
1219         return ret;
1220 
1221     qp_attr->port_num = id_priv->id.port_num;
1222     *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1223 
1224     if (id_priv->id.qp_type == IB_QPT_UD) {
1225         ret = cma_set_qkey(id_priv, 0);
1226         if (ret)
1227             return ret;
1228 
1229         qp_attr->qkey = id_priv->qkey;
1230         *qp_attr_mask |= IB_QP_QKEY;
1231     } else {
1232         qp_attr->qp_access_flags = 0;
1233         *qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1234     }
1235     return 0;
1236 }
1237 
1238 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1239                int *qp_attr_mask)
1240 {
1241     struct rdma_id_private *id_priv;
1242     int ret = 0;
1243 
1244     id_priv = container_of(id, struct rdma_id_private, id);
1245     if (rdma_cap_ib_cm(id->device, id->port_num)) {
1246         if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1247             ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1248         else
1249             ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1250                          qp_attr_mask);
1251 
1252         if (qp_attr->qp_state == IB_QPS_RTR)
1253             qp_attr->rq_psn = id_priv->seq_num;
1254     } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1255         if (!id_priv->cm_id.iw) {
1256             qp_attr->qp_access_flags = 0;
1257             *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1258         } else
1259             ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1260                          qp_attr_mask);
1261         qp_attr->port_num = id_priv->id.port_num;
1262         *qp_attr_mask |= IB_QP_PORT;
1263     } else {
1264         ret = -ENOSYS;
1265     }
1266 
1267     if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1268         qp_attr->timeout = id_priv->timeout;
1269 
1270     if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1271         qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1272 
1273     return ret;
1274 }
1275 EXPORT_SYMBOL(rdma_init_qp_attr);
1276 
1277 static inline bool cma_zero_addr(const struct sockaddr *addr)
1278 {
1279     switch (addr->sa_family) {
1280     case AF_INET:
1281         return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1282     case AF_INET6:
1283         return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1284     case AF_IB:
1285         return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1286     default:
1287         return false;
1288     }
1289 }
1290 
1291 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1292 {
1293     switch (addr->sa_family) {
1294     case AF_INET:
1295         return ipv4_is_loopback(
1296             ((struct sockaddr_in *)addr)->sin_addr.s_addr);
1297     case AF_INET6:
1298         return ipv6_addr_loopback(
1299             &((struct sockaddr_in6 *)addr)->sin6_addr);
1300     case AF_IB:
1301         return ib_addr_loopback(
1302             &((struct sockaddr_ib *)addr)->sib_addr);
1303     default:
1304         return false;
1305     }
1306 }
1307 
1308 static inline bool cma_any_addr(const struct sockaddr *addr)
1309 {
1310     return cma_zero_addr(addr) || cma_loopback_addr(addr);
1311 }
1312 
1313 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1314 {
1315     if (src->sa_family != dst->sa_family)
1316         return -1;
1317 
1318     switch (src->sa_family) {
1319     case AF_INET:
1320         return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1321                ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1322     case AF_INET6: {
1323         struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1324         struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1325         bool link_local;
1326 
1327         if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1328                       &dst_addr6->sin6_addr))
1329             return 1;
1330         link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1331                  IPV6_ADDR_LINKLOCAL;
1332         /* Link local must match their scope_ids */
1333         return link_local ? (src_addr6->sin6_scope_id !=
1334                      dst_addr6->sin6_scope_id) :
1335                     0;
1336     }
1337 
1338     default:
1339         return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1340                    &((struct sockaddr_ib *) dst)->sib_addr);
1341     }
1342 }
1343 
1344 static __be16 cma_port(const struct sockaddr *addr)
1345 {
1346     struct sockaddr_ib *sib;
1347 
1348     switch (addr->sa_family) {
1349     case AF_INET:
1350         return ((struct sockaddr_in *) addr)->sin_port;
1351     case AF_INET6:
1352         return ((struct sockaddr_in6 *) addr)->sin6_port;
1353     case AF_IB:
1354         sib = (struct sockaddr_ib *) addr;
1355         return htons((u16) (be64_to_cpu(sib->sib_sid) &
1356                     be64_to_cpu(sib->sib_sid_mask)));
1357     default:
1358         return 0;
1359     }
1360 }
1361 
1362 static inline int cma_any_port(const struct sockaddr *addr)
1363 {
1364     return !cma_port(addr);
1365 }
1366 
1367 static void cma_save_ib_info(struct sockaddr *src_addr,
1368                  struct sockaddr *dst_addr,
1369                  const struct rdma_cm_id *listen_id,
1370                  const struct sa_path_rec *path)
1371 {
1372     struct sockaddr_ib *listen_ib, *ib;
1373 
1374     listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1375     if (src_addr) {
1376         ib = (struct sockaddr_ib *)src_addr;
1377         ib->sib_family = AF_IB;
1378         if (path) {
1379             ib->sib_pkey = path->pkey;
1380             ib->sib_flowinfo = path->flow_label;
1381             memcpy(&ib->sib_addr, &path->sgid, 16);
1382             ib->sib_sid = path->service_id;
1383             ib->sib_scope_id = 0;
1384         } else {
1385             ib->sib_pkey = listen_ib->sib_pkey;
1386             ib->sib_flowinfo = listen_ib->sib_flowinfo;
1387             ib->sib_addr = listen_ib->sib_addr;
1388             ib->sib_sid = listen_ib->sib_sid;
1389             ib->sib_scope_id = listen_ib->sib_scope_id;
1390         }
1391         ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1392     }
1393     if (dst_addr) {
1394         ib = (struct sockaddr_ib *)dst_addr;
1395         ib->sib_family = AF_IB;
1396         if (path) {
1397             ib->sib_pkey = path->pkey;
1398             ib->sib_flowinfo = path->flow_label;
1399             memcpy(&ib->sib_addr, &path->dgid, 16);
1400         }
1401     }
1402 }
1403 
1404 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1405                   struct sockaddr_in *dst_addr,
1406                   struct cma_hdr *hdr,
1407                   __be16 local_port)
1408 {
1409     if (src_addr) {
1410         *src_addr = (struct sockaddr_in) {
1411             .sin_family = AF_INET,
1412             .sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1413             .sin_port = local_port,
1414         };
1415     }
1416 
1417     if (dst_addr) {
1418         *dst_addr = (struct sockaddr_in) {
1419             .sin_family = AF_INET,
1420             .sin_addr.s_addr = hdr->src_addr.ip4.addr,
1421             .sin_port = hdr->port,
1422         };
1423     }
1424 }
1425 
1426 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1427                   struct sockaddr_in6 *dst_addr,
1428                   struct cma_hdr *hdr,
1429                   __be16 local_port)
1430 {
1431     if (src_addr) {
1432         *src_addr = (struct sockaddr_in6) {
1433             .sin6_family = AF_INET6,
1434             .sin6_addr = hdr->dst_addr.ip6,
1435             .sin6_port = local_port,
1436         };
1437     }
1438 
1439     if (dst_addr) {
1440         *dst_addr = (struct sockaddr_in6) {
1441             .sin6_family = AF_INET6,
1442             .sin6_addr = hdr->src_addr.ip6,
1443             .sin6_port = hdr->port,
1444         };
1445     }
1446 }
1447 
1448 static u16 cma_port_from_service_id(__be64 service_id)
1449 {
1450     return (u16)be64_to_cpu(service_id);
1451 }
1452 
1453 static int cma_save_ip_info(struct sockaddr *src_addr,
1454                 struct sockaddr *dst_addr,
1455                 const struct ib_cm_event *ib_event,
1456                 __be64 service_id)
1457 {
1458     struct cma_hdr *hdr;
1459     __be16 port;
1460 
1461     hdr = ib_event->private_data;
1462     if (hdr->cma_version != CMA_VERSION)
1463         return -EINVAL;
1464 
1465     port = htons(cma_port_from_service_id(service_id));
1466 
1467     switch (cma_get_ip_ver(hdr)) {
1468     case 4:
1469         cma_save_ip4_info((struct sockaddr_in *)src_addr,
1470                   (struct sockaddr_in *)dst_addr, hdr, port);
1471         break;
1472     case 6:
1473         cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1474                   (struct sockaddr_in6 *)dst_addr, hdr, port);
1475         break;
1476     default:
1477         return -EAFNOSUPPORT;
1478     }
1479 
1480     return 0;
1481 }
1482 
1483 static int cma_save_net_info(struct sockaddr *src_addr,
1484                  struct sockaddr *dst_addr,
1485                  const struct rdma_cm_id *listen_id,
1486                  const struct ib_cm_event *ib_event,
1487                  sa_family_t sa_family, __be64 service_id)
1488 {
1489     if (sa_family == AF_IB) {
1490         if (ib_event->event == IB_CM_REQ_RECEIVED)
1491             cma_save_ib_info(src_addr, dst_addr, listen_id,
1492                      ib_event->param.req_rcvd.primary_path);
1493         else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1494             cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1495         return 0;
1496     }
1497 
1498     return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1499 }
1500 
1501 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1502                  struct cma_req_info *req)
1503 {
1504     const struct ib_cm_req_event_param *req_param =
1505         &ib_event->param.req_rcvd;
1506     const struct ib_cm_sidr_req_event_param *sidr_param =
1507         &ib_event->param.sidr_req_rcvd;
1508 
1509     switch (ib_event->event) {
1510     case IB_CM_REQ_RECEIVED:
1511         req->device = req_param->listen_id->device;
1512         req->port   = req_param->port;
1513         memcpy(&req->local_gid, &req_param->primary_path->sgid,
1514                sizeof(req->local_gid));
1515         req->has_gid    = true;
1516         req->service_id = req_param->primary_path->service_id;
1517         req->pkey   = be16_to_cpu(req_param->primary_path->pkey);
1518         if (req->pkey != req_param->bth_pkey)
1519             pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1520                         "RDMA CMA: in the future this may cause the request to be dropped\n",
1521                         req_param->bth_pkey, req->pkey);
1522         break;
1523     case IB_CM_SIDR_REQ_RECEIVED:
1524         req->device = sidr_param->listen_id->device;
1525         req->port   = sidr_param->port;
1526         req->has_gid    = false;
1527         req->service_id = sidr_param->service_id;
1528         req->pkey   = sidr_param->pkey;
1529         if (req->pkey != sidr_param->bth_pkey)
1530             pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1531                         "RDMA CMA: in the future this may cause the request to be dropped\n",
1532                         sidr_param->bth_pkey, req->pkey);
1533         break;
1534     default:
1535         return -EINVAL;
1536     }
1537 
1538     return 0;
1539 }
1540 
1541 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1542                   const struct sockaddr_in *dst_addr,
1543                   const struct sockaddr_in *src_addr)
1544 {
1545     __be32 daddr = dst_addr->sin_addr.s_addr,
1546            saddr = src_addr->sin_addr.s_addr;
1547     struct fib_result res;
1548     struct flowi4 fl4;
1549     int err;
1550     bool ret;
1551 
1552     if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1553         ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1554         ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1555         ipv4_is_loopback(saddr))
1556         return false;
1557 
1558     memset(&fl4, 0, sizeof(fl4));
1559     fl4.flowi4_iif = net_dev->ifindex;
1560     fl4.daddr = daddr;
1561     fl4.saddr = saddr;
1562 
1563     rcu_read_lock();
1564     err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1565     ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1566     rcu_read_unlock();
1567 
1568     return ret;
1569 }
1570 
1571 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1572                   const struct sockaddr_in6 *dst_addr,
1573                   const struct sockaddr_in6 *src_addr)
1574 {
1575 #if IS_ENABLED(CONFIG_IPV6)
1576     const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1577                IPV6_ADDR_LINKLOCAL;
1578     struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1579                      &src_addr->sin6_addr, net_dev->ifindex,
1580                      NULL, strict);
1581     bool ret;
1582 
1583     if (!rt)
1584         return false;
1585 
1586     ret = rt->rt6i_idev->dev == net_dev;
1587     ip6_rt_put(rt);
1588 
1589     return ret;
1590 #else
1591     return false;
1592 #endif
1593 }
1594 
1595 static bool validate_net_dev(struct net_device *net_dev,
1596                  const struct sockaddr *daddr,
1597                  const struct sockaddr *saddr)
1598 {
1599     const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1600     const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1601     const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1602     const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1603 
1604     switch (daddr->sa_family) {
1605     case AF_INET:
1606         return saddr->sa_family == AF_INET &&
1607                validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1608 
1609     case AF_INET6:
1610         return saddr->sa_family == AF_INET6 &&
1611                validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1612 
1613     default:
1614         return false;
1615     }
1616 }
1617 
1618 static struct net_device *
1619 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1620 {
1621     const struct ib_gid_attr *sgid_attr = NULL;
1622     struct net_device *ndev;
1623 
1624     if (ib_event->event == IB_CM_REQ_RECEIVED)
1625         sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1626     else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1627         sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1628 
1629     if (!sgid_attr)
1630         return NULL;
1631 
1632     rcu_read_lock();
1633     ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1634     if (IS_ERR(ndev))
1635         ndev = NULL;
1636     else
1637         dev_hold(ndev);
1638     rcu_read_unlock();
1639     return ndev;
1640 }
1641 
1642 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1643                       struct cma_req_info *req)
1644 {
1645     struct sockaddr *listen_addr =
1646             (struct sockaddr *)&req->listen_addr_storage;
1647     struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1648     struct net_device *net_dev;
1649     const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1650     int err;
1651 
1652     err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1653                    req->service_id);
1654     if (err)
1655         return ERR_PTR(err);
1656 
1657     if (rdma_protocol_roce(req->device, req->port))
1658         net_dev = roce_get_net_dev_by_cm_event(ib_event);
1659     else
1660         net_dev = ib_get_net_dev_by_params(req->device, req->port,
1661                            req->pkey,
1662                            gid, listen_addr);
1663     if (!net_dev)
1664         return ERR_PTR(-ENODEV);
1665 
1666     return net_dev;
1667 }
1668 
1669 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1670 {
1671     return (be64_to_cpu(service_id) >> 16) & 0xffff;
1672 }
1673 
1674 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1675                    const struct cma_hdr *hdr)
1676 {
1677     struct sockaddr *addr = cma_src_addr(id_priv);
1678     __be32 ip4_addr;
1679     struct in6_addr ip6_addr;
1680 
1681     if (cma_any_addr(addr) && !id_priv->afonly)
1682         return true;
1683 
1684     switch (addr->sa_family) {
1685     case AF_INET:
1686         ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1687         if (cma_get_ip_ver(hdr) != 4)
1688             return false;
1689         if (!cma_any_addr(addr) &&
1690             hdr->dst_addr.ip4.addr != ip4_addr)
1691             return false;
1692         break;
1693     case AF_INET6:
1694         ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1695         if (cma_get_ip_ver(hdr) != 6)
1696             return false;
1697         if (!cma_any_addr(addr) &&
1698             memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1699             return false;
1700         break;
1701     case AF_IB:
1702         return true;
1703     default:
1704         return false;
1705     }
1706 
1707     return true;
1708 }
1709 
1710 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1711 {
1712     struct ib_device *device = id->device;
1713     const u32 port_num = id->port_num ?: rdma_start_port(device);
1714 
1715     return rdma_protocol_roce(device, port_num);
1716 }
1717 
1718 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1719 {
1720     const struct sockaddr *daddr =
1721             (const struct sockaddr *)&req->listen_addr_storage;
1722     const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1723 
1724     /* Returns true if the req is for IPv6 link local */
1725     return (daddr->sa_family == AF_INET6 &&
1726         (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1727 }
1728 
1729 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1730                   const struct net_device *net_dev,
1731                   const struct cma_req_info *req)
1732 {
1733     const struct rdma_addr *addr = &id->route.addr;
1734 
1735     if (!net_dev)
1736         /* This request is an AF_IB request */
1737         return (!id->port_num || id->port_num == req->port) &&
1738                (addr->src_addr.ss_family == AF_IB);
1739 
1740     /*
1741      * If the request is not for IPv6 link local, allow matching
1742      * request to any netdevice of the one or multiport rdma device.
1743      */
1744     if (!cma_is_req_ipv6_ll(req))
1745         return true;
1746     /*
1747      * Net namespaces must match, and if the listner is listening
1748      * on a specific netdevice than netdevice must match as well.
1749      */
1750     if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1751         (!!addr->dev_addr.bound_dev_if ==
1752          (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1753         return true;
1754     else
1755         return false;
1756 }
1757 
1758 static struct rdma_id_private *cma_find_listener(
1759         const struct rdma_bind_list *bind_list,
1760         const struct ib_cm_id *cm_id,
1761         const struct ib_cm_event *ib_event,
1762         const struct cma_req_info *req,
1763         const struct net_device *net_dev)
1764 {
1765     struct rdma_id_private *id_priv, *id_priv_dev;
1766 
1767     lockdep_assert_held(&lock);
1768 
1769     if (!bind_list)
1770         return ERR_PTR(-EINVAL);
1771 
1772     hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1773         if (cma_match_private_data(id_priv, ib_event->private_data)) {
1774             if (id_priv->id.device == cm_id->device &&
1775                 cma_match_net_dev(&id_priv->id, net_dev, req))
1776                 return id_priv;
1777             list_for_each_entry(id_priv_dev,
1778                         &id_priv->listen_list,
1779                         listen_item) {
1780                 if (id_priv_dev->id.device == cm_id->device &&
1781                     cma_match_net_dev(&id_priv_dev->id,
1782                               net_dev, req))
1783                     return id_priv_dev;
1784             }
1785         }
1786     }
1787 
1788     return ERR_PTR(-EINVAL);
1789 }
1790 
1791 static struct rdma_id_private *
1792 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1793              const struct ib_cm_event *ib_event,
1794              struct cma_req_info *req,
1795              struct net_device **net_dev)
1796 {
1797     struct rdma_bind_list *bind_list;
1798     struct rdma_id_private *id_priv;
1799     int err;
1800 
1801     err = cma_save_req_info(ib_event, req);
1802     if (err)
1803         return ERR_PTR(err);
1804 
1805     *net_dev = cma_get_net_dev(ib_event, req);
1806     if (IS_ERR(*net_dev)) {
1807         if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1808             /* Assuming the protocol is AF_IB */
1809             *net_dev = NULL;
1810         } else {
1811             return ERR_CAST(*net_dev);
1812         }
1813     }
1814 
1815     mutex_lock(&lock);
1816     /*
1817      * Net namespace might be getting deleted while route lookup,
1818      * cm_id lookup is in progress. Therefore, perform netdevice
1819      * validation, cm_id lookup under rcu lock.
1820      * RCU lock along with netdevice state check, synchronizes with
1821      * netdevice migrating to different net namespace and also avoids
1822      * case where net namespace doesn't get deleted while lookup is in
1823      * progress.
1824      * If the device state is not IFF_UP, its properties such as ifindex
1825      * and nd_net cannot be trusted to remain valid without rcu lock.
1826      * net/core/dev.c change_net_namespace() ensures to synchronize with
1827      * ongoing operations on net device after device is closed using
1828      * synchronize_net().
1829      */
1830     rcu_read_lock();
1831     if (*net_dev) {
1832         /*
1833          * If netdevice is down, it is likely that it is administratively
1834          * down or it might be migrating to different namespace.
1835          * In that case avoid further processing, as the net namespace
1836          * or ifindex may change.
1837          */
1838         if (((*net_dev)->flags & IFF_UP) == 0) {
1839             id_priv = ERR_PTR(-EHOSTUNREACH);
1840             goto err;
1841         }
1842 
1843         if (!validate_net_dev(*net_dev,
1844                  (struct sockaddr *)&req->src_addr_storage,
1845                  (struct sockaddr *)&req->listen_addr_storage)) {
1846             id_priv = ERR_PTR(-EHOSTUNREACH);
1847             goto err;
1848         }
1849     }
1850 
1851     bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1852                 rdma_ps_from_service_id(req->service_id),
1853                 cma_port_from_service_id(req->service_id));
1854     id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1855 err:
1856     rcu_read_unlock();
1857     mutex_unlock(&lock);
1858     if (IS_ERR(id_priv) && *net_dev) {
1859         dev_put(*net_dev);
1860         *net_dev = NULL;
1861     }
1862     return id_priv;
1863 }
1864 
1865 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1866 {
1867     return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1868 }
1869 
1870 static void cma_cancel_route(struct rdma_id_private *id_priv)
1871 {
1872     if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1873         if (id_priv->query)
1874             ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1875     }
1876 }
1877 
1878 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1879 {
1880     struct rdma_id_private *dev_id_priv;
1881 
1882     lockdep_assert_held(&lock);
1883 
1884     /*
1885      * Remove from listen_any_list to prevent added devices from spawning
1886      * additional listen requests.
1887      */
1888     list_del_init(&id_priv->listen_any_item);
1889 
1890     while (!list_empty(&id_priv->listen_list)) {
1891         dev_id_priv =
1892             list_first_entry(&id_priv->listen_list,
1893                      struct rdma_id_private, listen_item);
1894         /* sync with device removal to avoid duplicate destruction */
1895         list_del_init(&dev_id_priv->device_item);
1896         list_del_init(&dev_id_priv->listen_item);
1897         mutex_unlock(&lock);
1898 
1899         rdma_destroy_id(&dev_id_priv->id);
1900         mutex_lock(&lock);
1901     }
1902 }
1903 
1904 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1905 {
1906     mutex_lock(&lock);
1907     _cma_cancel_listens(id_priv);
1908     mutex_unlock(&lock);
1909 }
1910 
1911 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1912                  enum rdma_cm_state state)
1913 {
1914     switch (state) {
1915     case RDMA_CM_ADDR_QUERY:
1916         /*
1917          * We can avoid doing the rdma_addr_cancel() based on state,
1918          * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1919          * Notice that the addr_handler work could still be exiting
1920          * outside this state, however due to the interaction with the
1921          * handler_mutex the work is guaranteed not to touch id_priv
1922          * during exit.
1923          */
1924         rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1925         break;
1926     case RDMA_CM_ROUTE_QUERY:
1927         cma_cancel_route(id_priv);
1928         break;
1929     case RDMA_CM_LISTEN:
1930         if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1931             cma_cancel_listens(id_priv);
1932         break;
1933     default:
1934         break;
1935     }
1936 }
1937 
1938 static void cma_release_port(struct rdma_id_private *id_priv)
1939 {
1940     struct rdma_bind_list *bind_list = id_priv->bind_list;
1941     struct net *net = id_priv->id.route.addr.dev_addr.net;
1942 
1943     if (!bind_list)
1944         return;
1945 
1946     mutex_lock(&lock);
1947     hlist_del(&id_priv->node);
1948     if (hlist_empty(&bind_list->owners)) {
1949         cma_ps_remove(net, bind_list->ps, bind_list->port);
1950         kfree(bind_list);
1951     }
1952     mutex_unlock(&lock);
1953 }
1954 
1955 static void destroy_mc(struct rdma_id_private *id_priv,
1956                struct cma_multicast *mc)
1957 {
1958     bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1959 
1960     if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1961         ib_sa_free_multicast(mc->sa_mc);
1962 
1963     if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1964         struct rdma_dev_addr *dev_addr =
1965             &id_priv->id.route.addr.dev_addr;
1966         struct net_device *ndev = NULL;
1967 
1968         if (dev_addr->bound_dev_if)
1969             ndev = dev_get_by_index(dev_addr->net,
1970                         dev_addr->bound_dev_if);
1971         if (ndev && !send_only) {
1972             enum ib_gid_type gid_type;
1973             union ib_gid mgid;
1974 
1975             gid_type = id_priv->cma_dev->default_gid_type
1976                        [id_priv->id.port_num -
1977                         rdma_start_port(
1978                             id_priv->cma_dev->device)];
1979             cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1980                       gid_type);
1981             cma_igmp_send(ndev, &mgid, false);
1982         }
1983         dev_put(ndev);
1984 
1985         cancel_work_sync(&mc->iboe_join.work);
1986     }
1987     kfree(mc);
1988 }
1989 
1990 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1991 {
1992     struct cma_multicast *mc;
1993 
1994     while (!list_empty(&id_priv->mc_list)) {
1995         mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1996                       list);
1997         list_del(&mc->list);
1998         destroy_mc(id_priv, mc);
1999     }
2000 }
2001 
2002 static void _destroy_id(struct rdma_id_private *id_priv,
2003             enum rdma_cm_state state)
2004 {
2005     cma_cancel_operation(id_priv, state);
2006 
2007     rdma_restrack_del(&id_priv->res);
2008     cma_remove_id_from_tree(id_priv);
2009     if (id_priv->cma_dev) {
2010         if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2011             if (id_priv->cm_id.ib)
2012                 ib_destroy_cm_id(id_priv->cm_id.ib);
2013         } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2014             if (id_priv->cm_id.iw)
2015                 iw_destroy_cm_id(id_priv->cm_id.iw);
2016         }
2017         cma_leave_mc_groups(id_priv);
2018         cma_release_dev(id_priv);
2019     }
2020 
2021     cma_release_port(id_priv);
2022     cma_id_put(id_priv);
2023     wait_for_completion(&id_priv->comp);
2024 
2025     if (id_priv->internal_id)
2026         cma_id_put(id_priv->id.context);
2027 
2028     kfree(id_priv->id.route.path_rec);
2029 
2030     put_net(id_priv->id.route.addr.dev_addr.net);
2031     kfree(id_priv);
2032 }
2033 
2034 /*
2035  * destroy an ID from within the handler_mutex. This ensures that no other
2036  * handlers can start running concurrently.
2037  */
2038 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2039     __releases(&idprv->handler_mutex)
2040 {
2041     enum rdma_cm_state state;
2042     unsigned long flags;
2043 
2044     trace_cm_id_destroy(id_priv);
2045 
2046     /*
2047      * Setting the state to destroyed under the handler mutex provides a
2048      * fence against calling handler callbacks. If this is invoked due to
2049      * the failure of a handler callback then it guarentees that no future
2050      * handlers will be called.
2051      */
2052     lockdep_assert_held(&id_priv->handler_mutex);
2053     spin_lock_irqsave(&id_priv->lock, flags);
2054     state = id_priv->state;
2055     id_priv->state = RDMA_CM_DESTROYING;
2056     spin_unlock_irqrestore(&id_priv->lock, flags);
2057     mutex_unlock(&id_priv->handler_mutex);
2058     _destroy_id(id_priv, state);
2059 }
2060 
2061 void rdma_destroy_id(struct rdma_cm_id *id)
2062 {
2063     struct rdma_id_private *id_priv =
2064         container_of(id, struct rdma_id_private, id);
2065 
2066     mutex_lock(&id_priv->handler_mutex);
2067     destroy_id_handler_unlock(id_priv);
2068 }
2069 EXPORT_SYMBOL(rdma_destroy_id);
2070 
2071 static int cma_rep_recv(struct rdma_id_private *id_priv)
2072 {
2073     int ret;
2074 
2075     ret = cma_modify_qp_rtr(id_priv, NULL);
2076     if (ret)
2077         goto reject;
2078 
2079     ret = cma_modify_qp_rts(id_priv, NULL);
2080     if (ret)
2081         goto reject;
2082 
2083     trace_cm_send_rtu(id_priv);
2084     ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2085     if (ret)
2086         goto reject;
2087 
2088     return 0;
2089 reject:
2090     pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2091     cma_modify_qp_err(id_priv);
2092     trace_cm_send_rej(id_priv);
2093     ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2094                NULL, 0, NULL, 0);
2095     return ret;
2096 }
2097 
2098 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2099                    const struct ib_cm_rep_event_param *rep_data,
2100                    void *private_data)
2101 {
2102     event->param.conn.private_data = private_data;
2103     event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2104     event->param.conn.responder_resources = rep_data->responder_resources;
2105     event->param.conn.initiator_depth = rep_data->initiator_depth;
2106     event->param.conn.flow_control = rep_data->flow_control;
2107     event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2108     event->param.conn.srq = rep_data->srq;
2109     event->param.conn.qp_num = rep_data->remote_qpn;
2110 
2111     event->ece.vendor_id = rep_data->ece.vendor_id;
2112     event->ece.attr_mod = rep_data->ece.attr_mod;
2113 }
2114 
2115 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2116                 struct rdma_cm_event *event)
2117 {
2118     int ret;
2119 
2120     lockdep_assert_held(&id_priv->handler_mutex);
2121 
2122     trace_cm_event_handler(id_priv, event);
2123     ret = id_priv->id.event_handler(&id_priv->id, event);
2124     trace_cm_event_done(id_priv, event, ret);
2125     return ret;
2126 }
2127 
2128 static int cma_ib_handler(struct ib_cm_id *cm_id,
2129               const struct ib_cm_event *ib_event)
2130 {
2131     struct rdma_id_private *id_priv = cm_id->context;
2132     struct rdma_cm_event event = {};
2133     enum rdma_cm_state state;
2134     int ret;
2135 
2136     mutex_lock(&id_priv->handler_mutex);
2137     state = READ_ONCE(id_priv->state);
2138     if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2139          state != RDMA_CM_CONNECT) ||
2140         (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2141          state != RDMA_CM_DISCONNECT))
2142         goto out;
2143 
2144     switch (ib_event->event) {
2145     case IB_CM_REQ_ERROR:
2146     case IB_CM_REP_ERROR:
2147         event.event = RDMA_CM_EVENT_UNREACHABLE;
2148         event.status = -ETIMEDOUT;
2149         break;
2150     case IB_CM_REP_RECEIVED:
2151         if (state == RDMA_CM_CONNECT &&
2152             (id_priv->id.qp_type != IB_QPT_UD)) {
2153             trace_cm_send_mra(id_priv);
2154             ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2155         }
2156         if (id_priv->id.qp) {
2157             event.status = cma_rep_recv(id_priv);
2158             event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2159                              RDMA_CM_EVENT_ESTABLISHED;
2160         } else {
2161             event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2162         }
2163         cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2164                        ib_event->private_data);
2165         break;
2166     case IB_CM_RTU_RECEIVED:
2167     case IB_CM_USER_ESTABLISHED:
2168         event.event = RDMA_CM_EVENT_ESTABLISHED;
2169         break;
2170     case IB_CM_DREQ_ERROR:
2171         event.status = -ETIMEDOUT;
2172         fallthrough;
2173     case IB_CM_DREQ_RECEIVED:
2174     case IB_CM_DREP_RECEIVED:
2175         if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2176                    RDMA_CM_DISCONNECT))
2177             goto out;
2178         event.event = RDMA_CM_EVENT_DISCONNECTED;
2179         break;
2180     case IB_CM_TIMEWAIT_EXIT:
2181         event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2182         break;
2183     case IB_CM_MRA_RECEIVED:
2184         /* ignore event */
2185         goto out;
2186     case IB_CM_REJ_RECEIVED:
2187         pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2188                                         ib_event->param.rej_rcvd.reason));
2189         cma_modify_qp_err(id_priv);
2190         event.status = ib_event->param.rej_rcvd.reason;
2191         event.event = RDMA_CM_EVENT_REJECTED;
2192         event.param.conn.private_data = ib_event->private_data;
2193         event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2194         break;
2195     default:
2196         pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2197                ib_event->event);
2198         goto out;
2199     }
2200 
2201     ret = cma_cm_event_handler(id_priv, &event);
2202     if (ret) {
2203         /* Destroy the CM ID by returning a non-zero value. */
2204         id_priv->cm_id.ib = NULL;
2205         destroy_id_handler_unlock(id_priv);
2206         return ret;
2207     }
2208 out:
2209     mutex_unlock(&id_priv->handler_mutex);
2210     return 0;
2211 }
2212 
2213 static struct rdma_id_private *
2214 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2215            const struct ib_cm_event *ib_event,
2216            struct net_device *net_dev)
2217 {
2218     struct rdma_id_private *listen_id_priv;
2219     struct rdma_id_private *id_priv;
2220     struct rdma_cm_id *id;
2221     struct rdma_route *rt;
2222     const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2223     struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2224     const __be64 service_id =
2225         ib_event->param.req_rcvd.primary_path->service_id;
2226     int ret;
2227 
2228     listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2229     id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2230                    listen_id->event_handler, listen_id->context,
2231                    listen_id->ps,
2232                    ib_event->param.req_rcvd.qp_type,
2233                    listen_id_priv);
2234     if (IS_ERR(id_priv))
2235         return NULL;
2236 
2237     id = &id_priv->id;
2238     if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2239                   (struct sockaddr *)&id->route.addr.dst_addr,
2240                   listen_id, ib_event, ss_family, service_id))
2241         goto err;
2242 
2243     rt = &id->route;
2244     rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2245     rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2246                      GFP_KERNEL);
2247     if (!rt->path_rec)
2248         goto err;
2249 
2250     rt->path_rec[0] = *path;
2251     if (rt->num_paths == 2)
2252         rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2253 
2254     if (net_dev) {
2255         rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2256     } else {
2257         if (!cma_protocol_roce(listen_id) &&
2258             cma_any_addr(cma_src_addr(id_priv))) {
2259             rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2260             rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2261             ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2262         } else if (!cma_any_addr(cma_src_addr(id_priv))) {
2263             ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2264             if (ret)
2265                 goto err;
2266         }
2267     }
2268     rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2269 
2270     id_priv->state = RDMA_CM_CONNECT;
2271     return id_priv;
2272 
2273 err:
2274     rdma_destroy_id(id);
2275     return NULL;
2276 }
2277 
2278 static struct rdma_id_private *
2279 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2280           const struct ib_cm_event *ib_event,
2281           struct net_device *net_dev)
2282 {
2283     const struct rdma_id_private *listen_id_priv;
2284     struct rdma_id_private *id_priv;
2285     struct rdma_cm_id *id;
2286     const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2287     struct net *net = listen_id->route.addr.dev_addr.net;
2288     int ret;
2289 
2290     listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2291     id_priv = __rdma_create_id(net, listen_id->event_handler,
2292                    listen_id->context, listen_id->ps, IB_QPT_UD,
2293                    listen_id_priv);
2294     if (IS_ERR(id_priv))
2295         return NULL;
2296 
2297     id = &id_priv->id;
2298     if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2299                   (struct sockaddr *)&id->route.addr.dst_addr,
2300                   listen_id, ib_event, ss_family,
2301                   ib_event->param.sidr_req_rcvd.service_id))
2302         goto err;
2303 
2304     if (net_dev) {
2305         rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2306     } else {
2307         if (!cma_any_addr(cma_src_addr(id_priv))) {
2308             ret = cma_translate_addr(cma_src_addr(id_priv),
2309                          &id->route.addr.dev_addr);
2310             if (ret)
2311                 goto err;
2312         }
2313     }
2314 
2315     id_priv->state = RDMA_CM_CONNECT;
2316     return id_priv;
2317 err:
2318     rdma_destroy_id(id);
2319     return NULL;
2320 }
2321 
2322 static void cma_set_req_event_data(struct rdma_cm_event *event,
2323                    const struct ib_cm_req_event_param *req_data,
2324                    void *private_data, int offset)
2325 {
2326     event->param.conn.private_data = private_data + offset;
2327     event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2328     event->param.conn.responder_resources = req_data->responder_resources;
2329     event->param.conn.initiator_depth = req_data->initiator_depth;
2330     event->param.conn.flow_control = req_data->flow_control;
2331     event->param.conn.retry_count = req_data->retry_count;
2332     event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2333     event->param.conn.srq = req_data->srq;
2334     event->param.conn.qp_num = req_data->remote_qpn;
2335 
2336     event->ece.vendor_id = req_data->ece.vendor_id;
2337     event->ece.attr_mod = req_data->ece.attr_mod;
2338 }
2339 
2340 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2341                     const struct ib_cm_event *ib_event)
2342 {
2343     return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2344          (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2345         ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2346          (id->qp_type == IB_QPT_UD)) ||
2347         (!id->qp_type));
2348 }
2349 
2350 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2351                   const struct ib_cm_event *ib_event)
2352 {
2353     struct rdma_id_private *listen_id, *conn_id = NULL;
2354     struct rdma_cm_event event = {};
2355     struct cma_req_info req = {};
2356     struct net_device *net_dev;
2357     u8 offset;
2358     int ret;
2359 
2360     listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2361     if (IS_ERR(listen_id))
2362         return PTR_ERR(listen_id);
2363 
2364     trace_cm_req_handler(listen_id, ib_event->event);
2365     if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2366         ret = -EINVAL;
2367         goto net_dev_put;
2368     }
2369 
2370     mutex_lock(&listen_id->handler_mutex);
2371     if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2372         ret = -ECONNABORTED;
2373         goto err_unlock;
2374     }
2375 
2376     offset = cma_user_data_offset(listen_id);
2377     event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2378     if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2379         conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2380         event.param.ud.private_data = ib_event->private_data + offset;
2381         event.param.ud.private_data_len =
2382                 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2383     } else {
2384         conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2385         cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2386                        ib_event->private_data, offset);
2387     }
2388     if (!conn_id) {
2389         ret = -ENOMEM;
2390         goto err_unlock;
2391     }
2392 
2393     mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2394     ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2395     if (ret) {
2396         destroy_id_handler_unlock(conn_id);
2397         goto err_unlock;
2398     }
2399 
2400     conn_id->cm_id.ib = cm_id;
2401     cm_id->context = conn_id;
2402     cm_id->cm_handler = cma_ib_handler;
2403 
2404     ret = cma_cm_event_handler(conn_id, &event);
2405     if (ret) {
2406         /* Destroy the CM ID by returning a non-zero value. */
2407         conn_id->cm_id.ib = NULL;
2408         mutex_unlock(&listen_id->handler_mutex);
2409         destroy_id_handler_unlock(conn_id);
2410         goto net_dev_put;
2411     }
2412 
2413     if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2414         conn_id->id.qp_type != IB_QPT_UD) {
2415         trace_cm_send_mra(cm_id->context);
2416         ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2417     }
2418     mutex_unlock(&conn_id->handler_mutex);
2419 
2420 err_unlock:
2421     mutex_unlock(&listen_id->handler_mutex);
2422 
2423 net_dev_put:
2424     if (net_dev)
2425         dev_put(net_dev);
2426 
2427     return ret;
2428 }
2429 
2430 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2431 {
2432     if (addr->sa_family == AF_IB)
2433         return ((struct sockaddr_ib *) addr)->sib_sid;
2434 
2435     return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2436 }
2437 EXPORT_SYMBOL(rdma_get_service_id);
2438 
2439 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2440             union ib_gid *dgid)
2441 {
2442     struct rdma_addr *addr = &cm_id->route.addr;
2443 
2444     if (!cm_id->device) {
2445         if (sgid)
2446             memset(sgid, 0, sizeof(*sgid));
2447         if (dgid)
2448             memset(dgid, 0, sizeof(*dgid));
2449         return;
2450     }
2451 
2452     if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2453         if (sgid)
2454             rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2455         if (dgid)
2456             rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2457     } else {
2458         if (sgid)
2459             rdma_addr_get_sgid(&addr->dev_addr, sgid);
2460         if (dgid)
2461             rdma_addr_get_dgid(&addr->dev_addr, dgid);
2462     }
2463 }
2464 EXPORT_SYMBOL(rdma_read_gids);
2465 
2466 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2467 {
2468     struct rdma_id_private *id_priv = iw_id->context;
2469     struct rdma_cm_event event = {};
2470     int ret = 0;
2471     struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2472     struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2473 
2474     mutex_lock(&id_priv->handler_mutex);
2475     if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2476         goto out;
2477 
2478     switch (iw_event->event) {
2479     case IW_CM_EVENT_CLOSE:
2480         event.event = RDMA_CM_EVENT_DISCONNECTED;
2481         break;
2482     case IW_CM_EVENT_CONNECT_REPLY:
2483         memcpy(cma_src_addr(id_priv), laddr,
2484                rdma_addr_size(laddr));
2485         memcpy(cma_dst_addr(id_priv), raddr,
2486                rdma_addr_size(raddr));
2487         switch (iw_event->status) {
2488         case 0:
2489             event.event = RDMA_CM_EVENT_ESTABLISHED;
2490             event.param.conn.initiator_depth = iw_event->ird;
2491             event.param.conn.responder_resources = iw_event->ord;
2492             break;
2493         case -ECONNRESET:
2494         case -ECONNREFUSED:
2495             event.event = RDMA_CM_EVENT_REJECTED;
2496             break;
2497         case -ETIMEDOUT:
2498             event.event = RDMA_CM_EVENT_UNREACHABLE;
2499             break;
2500         default:
2501             event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2502             break;
2503         }
2504         break;
2505     case IW_CM_EVENT_ESTABLISHED:
2506         event.event = RDMA_CM_EVENT_ESTABLISHED;
2507         event.param.conn.initiator_depth = iw_event->ird;
2508         event.param.conn.responder_resources = iw_event->ord;
2509         break;
2510     default:
2511         goto out;
2512     }
2513 
2514     event.status = iw_event->status;
2515     event.param.conn.private_data = iw_event->private_data;
2516     event.param.conn.private_data_len = iw_event->private_data_len;
2517     ret = cma_cm_event_handler(id_priv, &event);
2518     if (ret) {
2519         /* Destroy the CM ID by returning a non-zero value. */
2520         id_priv->cm_id.iw = NULL;
2521         destroy_id_handler_unlock(id_priv);
2522         return ret;
2523     }
2524 
2525 out:
2526     mutex_unlock(&id_priv->handler_mutex);
2527     return ret;
2528 }
2529 
2530 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2531                    struct iw_cm_event *iw_event)
2532 {
2533     struct rdma_id_private *listen_id, *conn_id;
2534     struct rdma_cm_event event = {};
2535     int ret = -ECONNABORTED;
2536     struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2537     struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2538 
2539     event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2540     event.param.conn.private_data = iw_event->private_data;
2541     event.param.conn.private_data_len = iw_event->private_data_len;
2542     event.param.conn.initiator_depth = iw_event->ird;
2543     event.param.conn.responder_resources = iw_event->ord;
2544 
2545     listen_id = cm_id->context;
2546 
2547     mutex_lock(&listen_id->handler_mutex);
2548     if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2549         goto out;
2550 
2551     /* Create a new RDMA id for the new IW CM ID */
2552     conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2553                    listen_id->id.event_handler,
2554                    listen_id->id.context, RDMA_PS_TCP,
2555                    IB_QPT_RC, listen_id);
2556     if (IS_ERR(conn_id)) {
2557         ret = -ENOMEM;
2558         goto out;
2559     }
2560     mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2561     conn_id->state = RDMA_CM_CONNECT;
2562 
2563     ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2564     if (ret) {
2565         mutex_unlock(&listen_id->handler_mutex);
2566         destroy_id_handler_unlock(conn_id);
2567         return ret;
2568     }
2569 
2570     ret = cma_iw_acquire_dev(conn_id, listen_id);
2571     if (ret) {
2572         mutex_unlock(&listen_id->handler_mutex);
2573         destroy_id_handler_unlock(conn_id);
2574         return ret;
2575     }
2576 
2577     conn_id->cm_id.iw = cm_id;
2578     cm_id->context = conn_id;
2579     cm_id->cm_handler = cma_iw_handler;
2580 
2581     memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2582     memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2583 
2584     ret = cma_cm_event_handler(conn_id, &event);
2585     if (ret) {
2586         /* User wants to destroy the CM ID */
2587         conn_id->cm_id.iw = NULL;
2588         mutex_unlock(&listen_id->handler_mutex);
2589         destroy_id_handler_unlock(conn_id);
2590         return ret;
2591     }
2592 
2593     mutex_unlock(&conn_id->handler_mutex);
2594 
2595 out:
2596     mutex_unlock(&listen_id->handler_mutex);
2597     return ret;
2598 }
2599 
2600 static int cma_ib_listen(struct rdma_id_private *id_priv)
2601 {
2602     struct sockaddr *addr;
2603     struct ib_cm_id *id;
2604     __be64 svc_id;
2605 
2606     addr = cma_src_addr(id_priv);
2607     svc_id = rdma_get_service_id(&id_priv->id, addr);
2608     id = ib_cm_insert_listen(id_priv->id.device,
2609                  cma_ib_req_handler, svc_id);
2610     if (IS_ERR(id))
2611         return PTR_ERR(id);
2612     id_priv->cm_id.ib = id;
2613 
2614     return 0;
2615 }
2616 
2617 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2618 {
2619     int ret;
2620     struct iw_cm_id *id;
2621 
2622     id = iw_create_cm_id(id_priv->id.device,
2623                  iw_conn_req_handler,
2624                  id_priv);
2625     if (IS_ERR(id))
2626         return PTR_ERR(id);
2627 
2628     mutex_lock(&id_priv->qp_mutex);
2629     id->tos = id_priv->tos;
2630     id->tos_set = id_priv->tos_set;
2631     mutex_unlock(&id_priv->qp_mutex);
2632     id->afonly = id_priv->afonly;
2633     id_priv->cm_id.iw = id;
2634 
2635     memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2636            rdma_addr_size(cma_src_addr(id_priv)));
2637 
2638     ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2639 
2640     if (ret) {
2641         iw_destroy_cm_id(id_priv->cm_id.iw);
2642         id_priv->cm_id.iw = NULL;
2643     }
2644 
2645     return ret;
2646 }
2647 
2648 static int cma_listen_handler(struct rdma_cm_id *id,
2649                   struct rdma_cm_event *event)
2650 {
2651     struct rdma_id_private *id_priv = id->context;
2652 
2653     /* Listening IDs are always destroyed on removal */
2654     if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2655         return -1;
2656 
2657     id->context = id_priv->id.context;
2658     id->event_handler = id_priv->id.event_handler;
2659     trace_cm_event_handler(id_priv, event);
2660     return id_priv->id.event_handler(id, event);
2661 }
2662 
2663 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2664                  struct cma_device *cma_dev,
2665                  struct rdma_id_private **to_destroy)
2666 {
2667     struct rdma_id_private *dev_id_priv;
2668     struct net *net = id_priv->id.route.addr.dev_addr.net;
2669     int ret;
2670 
2671     lockdep_assert_held(&lock);
2672 
2673     *to_destroy = NULL;
2674     if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2675         return 0;
2676 
2677     dev_id_priv =
2678         __rdma_create_id(net, cma_listen_handler, id_priv,
2679                  id_priv->id.ps, id_priv->id.qp_type, id_priv);
2680     if (IS_ERR(dev_id_priv))
2681         return PTR_ERR(dev_id_priv);
2682 
2683     dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2684     memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2685            rdma_addr_size(cma_src_addr(id_priv)));
2686 
2687     _cma_attach_to_dev(dev_id_priv, cma_dev);
2688     rdma_restrack_add(&dev_id_priv->res);
2689     cma_id_get(id_priv);
2690     dev_id_priv->internal_id = 1;
2691     dev_id_priv->afonly = id_priv->afonly;
2692     mutex_lock(&id_priv->qp_mutex);
2693     dev_id_priv->tos_set = id_priv->tos_set;
2694     dev_id_priv->tos = id_priv->tos;
2695     mutex_unlock(&id_priv->qp_mutex);
2696 
2697     ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2698     if (ret)
2699         goto err_listen;
2700     list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2701     return 0;
2702 err_listen:
2703     /* Caller must destroy this after releasing lock */
2704     *to_destroy = dev_id_priv;
2705     dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2706     return ret;
2707 }
2708 
2709 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2710 {
2711     struct rdma_id_private *to_destroy;
2712     struct cma_device *cma_dev;
2713     int ret;
2714 
2715     mutex_lock(&lock);
2716     list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2717     list_for_each_entry(cma_dev, &dev_list, list) {
2718         ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2719         if (ret) {
2720             /* Prevent racing with cma_process_remove() */
2721             if (to_destroy)
2722                 list_del_init(&to_destroy->device_item);
2723             goto err_listen;
2724         }
2725     }
2726     mutex_unlock(&lock);
2727     return 0;
2728 
2729 err_listen:
2730     _cma_cancel_listens(id_priv);
2731     mutex_unlock(&lock);
2732     if (to_destroy)
2733         rdma_destroy_id(&to_destroy->id);
2734     return ret;
2735 }
2736 
2737 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2738 {
2739     struct rdma_id_private *id_priv;
2740 
2741     id_priv = container_of(id, struct rdma_id_private, id);
2742     mutex_lock(&id_priv->qp_mutex);
2743     id_priv->tos = (u8) tos;
2744     id_priv->tos_set = true;
2745     mutex_unlock(&id_priv->qp_mutex);
2746 }
2747 EXPORT_SYMBOL(rdma_set_service_type);
2748 
2749 /**
2750  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2751  *                          with a connection identifier.
2752  * @id: Communication identifier to associated with service type.
2753  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2754  *
2755  * This function should be called before rdma_connect() on active side,
2756  * and on passive side before rdma_accept(). It is applicable to primary
2757  * path only. The timeout will affect the local side of the QP, it is not
2758  * negotiated with remote side and zero disables the timer. In case it is
2759  * set before rdma_resolve_route, the value will also be used to determine
2760  * PacketLifeTime for RoCE.
2761  *
2762  * Return: 0 for success
2763  */
2764 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2765 {
2766     struct rdma_id_private *id_priv;
2767 
2768     if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2769         return -EINVAL;
2770 
2771     id_priv = container_of(id, struct rdma_id_private, id);
2772     mutex_lock(&id_priv->qp_mutex);
2773     id_priv->timeout = timeout;
2774     id_priv->timeout_set = true;
2775     mutex_unlock(&id_priv->qp_mutex);
2776 
2777     return 0;
2778 }
2779 EXPORT_SYMBOL(rdma_set_ack_timeout);
2780 
2781 /**
2782  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2783  *                QP associated with a connection identifier.
2784  * @id: Communication identifier to associated with service type.
2785  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2786  *         Timer Field" in the IBTA specification.
2787  *
2788  * This function should be called before rdma_connect() on active
2789  * side, and on passive side before rdma_accept(). The timer value
2790  * will be associated with the local QP. When it receives a send it is
2791  * not read to handle, typically if the receive queue is empty, an RNR
2792  * Retry NAK is returned to the requester with the min_rnr_timer
2793  * encoded. The requester will then wait at least the time specified
2794  * in the NAK before retrying. The default is zero, which translates
2795  * to a minimum RNR Timer value of 655 ms.
2796  *
2797  * Return: 0 for success
2798  */
2799 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2800 {
2801     struct rdma_id_private *id_priv;
2802 
2803     /* It is a five-bit value */
2804     if (min_rnr_timer & 0xe0)
2805         return -EINVAL;
2806 
2807     if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2808         return -EINVAL;
2809 
2810     id_priv = container_of(id, struct rdma_id_private, id);
2811     mutex_lock(&id_priv->qp_mutex);
2812     id_priv->min_rnr_timer = min_rnr_timer;
2813     id_priv->min_rnr_timer_set = true;
2814     mutex_unlock(&id_priv->qp_mutex);
2815 
2816     return 0;
2817 }
2818 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2819 
2820 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2821                   void *context)
2822 {
2823     struct cma_work *work = context;
2824     struct rdma_route *route;
2825 
2826     route = &work->id->id.route;
2827 
2828     if (!status) {
2829         route->num_paths = 1;
2830         *route->path_rec = *path_rec;
2831     } else {
2832         work->old_state = RDMA_CM_ROUTE_QUERY;
2833         work->new_state = RDMA_CM_ADDR_RESOLVED;
2834         work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2835         work->event.status = status;
2836         pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2837                      status);
2838     }
2839 
2840     queue_work(cma_wq, &work->work);
2841 }
2842 
2843 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2844                   unsigned long timeout_ms, struct cma_work *work)
2845 {
2846     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2847     struct sa_path_rec path_rec;
2848     ib_sa_comp_mask comp_mask;
2849     struct sockaddr_in6 *sin6;
2850     struct sockaddr_ib *sib;
2851 
2852     memset(&path_rec, 0, sizeof path_rec);
2853 
2854     if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2855         path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2856     else
2857         path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2858     rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2859     rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2860     path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2861     path_rec.numb_path = 1;
2862     path_rec.reversible = 1;
2863     path_rec.service_id = rdma_get_service_id(&id_priv->id,
2864                           cma_dst_addr(id_priv));
2865 
2866     comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2867             IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2868             IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2869 
2870     switch (cma_family(id_priv)) {
2871     case AF_INET:
2872         path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2873         comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2874         break;
2875     case AF_INET6:
2876         sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2877         path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2878         comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2879         break;
2880     case AF_IB:
2881         sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2882         path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2883         comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2884         break;
2885     }
2886 
2887     id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2888                            id_priv->id.port_num, &path_rec,
2889                            comp_mask, timeout_ms,
2890                            GFP_KERNEL, cma_query_handler,
2891                            work, &id_priv->query);
2892 
2893     return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2894 }
2895 
2896 static void cma_iboe_join_work_handler(struct work_struct *work)
2897 {
2898     struct cma_multicast *mc =
2899         container_of(work, struct cma_multicast, iboe_join.work);
2900     struct rdma_cm_event *event = &mc->iboe_join.event;
2901     struct rdma_id_private *id_priv = mc->id_priv;
2902     int ret;
2903 
2904     mutex_lock(&id_priv->handler_mutex);
2905     if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2906         READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2907         goto out_unlock;
2908 
2909     ret = cma_cm_event_handler(id_priv, event);
2910     WARN_ON(ret);
2911 
2912 out_unlock:
2913     mutex_unlock(&id_priv->handler_mutex);
2914     if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2915         rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2916 }
2917 
2918 static void cma_work_handler(struct work_struct *_work)
2919 {
2920     struct cma_work *work = container_of(_work, struct cma_work, work);
2921     struct rdma_id_private *id_priv = work->id;
2922 
2923     mutex_lock(&id_priv->handler_mutex);
2924     if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2925         READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2926         goto out_unlock;
2927     if (work->old_state != 0 || work->new_state != 0) {
2928         if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2929             goto out_unlock;
2930     }
2931 
2932     if (cma_cm_event_handler(id_priv, &work->event)) {
2933         cma_id_put(id_priv);
2934         destroy_id_handler_unlock(id_priv);
2935         goto out_free;
2936     }
2937 
2938 out_unlock:
2939     mutex_unlock(&id_priv->handler_mutex);
2940     cma_id_put(id_priv);
2941 out_free:
2942     if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2943         rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2944     kfree(work);
2945 }
2946 
2947 static void cma_init_resolve_route_work(struct cma_work *work,
2948                     struct rdma_id_private *id_priv)
2949 {
2950     work->id = id_priv;
2951     INIT_WORK(&work->work, cma_work_handler);
2952     work->old_state = RDMA_CM_ROUTE_QUERY;
2953     work->new_state = RDMA_CM_ROUTE_RESOLVED;
2954     work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2955 }
2956 
2957 static void enqueue_resolve_addr_work(struct cma_work *work,
2958                       struct rdma_id_private *id_priv)
2959 {
2960     /* Balances with cma_id_put() in cma_work_handler */
2961     cma_id_get(id_priv);
2962 
2963     work->id = id_priv;
2964     INIT_WORK(&work->work, cma_work_handler);
2965     work->old_state = RDMA_CM_ADDR_QUERY;
2966     work->new_state = RDMA_CM_ADDR_RESOLVED;
2967     work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2968 
2969     queue_work(cma_wq, &work->work);
2970 }
2971 
2972 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2973                 unsigned long timeout_ms)
2974 {
2975     struct rdma_route *route = &id_priv->id.route;
2976     struct cma_work *work;
2977     int ret;
2978 
2979     work = kzalloc(sizeof *work, GFP_KERNEL);
2980     if (!work)
2981         return -ENOMEM;
2982 
2983     cma_init_resolve_route_work(work, id_priv);
2984 
2985     if (!route->path_rec)
2986         route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2987     if (!route->path_rec) {
2988         ret = -ENOMEM;
2989         goto err1;
2990     }
2991 
2992     ret = cma_query_ib_route(id_priv, timeout_ms, work);
2993     if (ret)
2994         goto err2;
2995 
2996     return 0;
2997 err2:
2998     kfree(route->path_rec);
2999     route->path_rec = NULL;
3000 err1:
3001     kfree(work);
3002     return ret;
3003 }
3004 
3005 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3006                        unsigned long supported_gids,
3007                        enum ib_gid_type default_gid)
3008 {
3009     if ((network_type == RDMA_NETWORK_IPV4 ||
3010          network_type == RDMA_NETWORK_IPV6) &&
3011         test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3012         return IB_GID_TYPE_ROCE_UDP_ENCAP;
3013 
3014     return default_gid;
3015 }
3016 
3017 /*
3018  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3019  * path record type based on GID type.
3020  * It also sets up other L2 fields which includes destination mac address
3021  * netdev ifindex, of the path record.
3022  * It returns the netdev of the bound interface for this path record entry.
3023  */
3024 static struct net_device *
3025 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3026 {
3027     struct rdma_route *route = &id_priv->id.route;
3028     enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3029     struct rdma_addr *addr = &route->addr;
3030     unsigned long supported_gids;
3031     struct net_device *ndev;
3032 
3033     if (!addr->dev_addr.bound_dev_if)
3034         return NULL;
3035 
3036     ndev = dev_get_by_index(addr->dev_addr.net,
3037                 addr->dev_addr.bound_dev_if);
3038     if (!ndev)
3039         return NULL;
3040 
3041     supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3042                             id_priv->id.port_num);
3043     gid_type = cma_route_gid_type(addr->dev_addr.network,
3044                       supported_gids,
3045                       id_priv->gid_type);
3046     /* Use the hint from IP Stack to select GID Type */
3047     if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3048         gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3049     route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3050 
3051     route->path_rec->roce.route_resolved = true;
3052     sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3053     return ndev;
3054 }
3055 
3056 int rdma_set_ib_path(struct rdma_cm_id *id,
3057              struct sa_path_rec *path_rec)
3058 {
3059     struct rdma_id_private *id_priv;
3060     struct net_device *ndev;
3061     int ret;
3062 
3063     id_priv = container_of(id, struct rdma_id_private, id);
3064     if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3065                RDMA_CM_ROUTE_RESOLVED))
3066         return -EINVAL;
3067 
3068     id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3069                      GFP_KERNEL);
3070     if (!id->route.path_rec) {
3071         ret = -ENOMEM;
3072         goto err;
3073     }
3074 
3075     if (rdma_protocol_roce(id->device, id->port_num)) {
3076         ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3077         if (!ndev) {
3078             ret = -ENODEV;
3079             goto err_free;
3080         }
3081         dev_put(ndev);
3082     }
3083 
3084     id->route.num_paths = 1;
3085     return 0;
3086 
3087 err_free:
3088     kfree(id->route.path_rec);
3089     id->route.path_rec = NULL;
3090 err:
3091     cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3092     return ret;
3093 }
3094 EXPORT_SYMBOL(rdma_set_ib_path);
3095 
3096 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3097 {
3098     struct cma_work *work;
3099 
3100     work = kzalloc(sizeof *work, GFP_KERNEL);
3101     if (!work)
3102         return -ENOMEM;
3103 
3104     cma_init_resolve_route_work(work, id_priv);
3105     queue_work(cma_wq, &work->work);
3106     return 0;
3107 }
3108 
3109 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3110 {
3111     struct net_device *dev;
3112 
3113     dev = vlan_dev_real_dev(vlan_ndev);
3114     if (dev->num_tc)
3115         return netdev_get_prio_tc_map(dev, prio);
3116 
3117     return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3118         VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3119 }
3120 
3121 struct iboe_prio_tc_map {
3122     int input_prio;
3123     int output_tc;
3124     bool found;
3125 };
3126 
3127 static int get_lower_vlan_dev_tc(struct net_device *dev,
3128                  struct netdev_nested_priv *priv)
3129 {
3130     struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3131 
3132     if (is_vlan_dev(dev))
3133         map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3134     else if (dev->num_tc)
3135         map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3136     else
3137         map->output_tc = 0;
3138     /* We are interested only in first level VLAN device, so always
3139      * return 1 to stop iterating over next level devices.
3140      */
3141     map->found = true;
3142     return 1;
3143 }
3144 
3145 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3146 {
3147     struct iboe_prio_tc_map prio_tc_map = {};
3148     int prio = rt_tos2priority(tos);
3149     struct netdev_nested_priv priv;
3150 
3151     /* If VLAN device, get it directly from the VLAN netdev */
3152     if (is_vlan_dev(ndev))
3153         return get_vlan_ndev_tc(ndev, prio);
3154 
3155     prio_tc_map.input_prio = prio;
3156     priv.data = (void *)&prio_tc_map;
3157     rcu_read_lock();
3158     netdev_walk_all_lower_dev_rcu(ndev,
3159                       get_lower_vlan_dev_tc,
3160                       &priv);
3161     rcu_read_unlock();
3162     /* If map is found from lower device, use it; Otherwise
3163      * continue with the current netdevice to get priority to tc map.
3164      */
3165     if (prio_tc_map.found)
3166         return prio_tc_map.output_tc;
3167     else if (ndev->num_tc)
3168         return netdev_get_prio_tc_map(ndev, prio);
3169     else
3170         return 0;
3171 }
3172 
3173 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3174 {
3175     struct sockaddr_in6 *addr6;
3176     u16 dport, sport;
3177     u32 hash, fl;
3178 
3179     addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3180     fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3181     if ((cma_family(id_priv) != AF_INET6) || !fl) {
3182         dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3183         sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3184         hash = (u32)sport * 31 + dport;
3185         fl = hash & IB_GRH_FLOWLABEL_MASK;
3186     }
3187 
3188     return cpu_to_be32(fl);
3189 }
3190 
3191 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3192 {
3193     struct rdma_route *route = &id_priv->id.route;
3194     struct rdma_addr *addr = &route->addr;
3195     struct cma_work *work;
3196     int ret;
3197     struct net_device *ndev;
3198 
3199     u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3200                     rdma_start_port(id_priv->cma_dev->device)];
3201     u8 tos;
3202 
3203     mutex_lock(&id_priv->qp_mutex);
3204     tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3205     mutex_unlock(&id_priv->qp_mutex);
3206 
3207     work = kzalloc(sizeof *work, GFP_KERNEL);
3208     if (!work)
3209         return -ENOMEM;
3210 
3211     route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3212     if (!route->path_rec) {
3213         ret = -ENOMEM;
3214         goto err1;
3215     }
3216 
3217     route->num_paths = 1;
3218 
3219     ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3220     if (!ndev) {
3221         ret = -ENODEV;
3222         goto err2;
3223     }
3224 
3225     rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3226             &route->path_rec->sgid);
3227     rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3228             &route->path_rec->dgid);
3229 
3230     if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3231         /* TODO: get the hoplimit from the inet/inet6 device */
3232         route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3233     else
3234         route->path_rec->hop_limit = 1;
3235     route->path_rec->reversible = 1;
3236     route->path_rec->pkey = cpu_to_be16(0xffff);
3237     route->path_rec->mtu_selector = IB_SA_EQ;
3238     route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3239     route->path_rec->traffic_class = tos;
3240     route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3241     route->path_rec->rate_selector = IB_SA_EQ;
3242     route->path_rec->rate = iboe_get_rate(ndev);
3243     dev_put(ndev);
3244     route->path_rec->packet_life_time_selector = IB_SA_EQ;
3245     /* In case ACK timeout is set, use this value to calculate
3246      * PacketLifeTime.  As per IBTA 12.7.34,
3247      * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3248      * Assuming a negligible local ACK delay, we can use
3249      * PacketLifeTime = local ACK timeout/2
3250      * as a reasonable approximation for RoCE networks.
3251      */
3252     mutex_lock(&id_priv->qp_mutex);
3253     if (id_priv->timeout_set && id_priv->timeout)
3254         route->path_rec->packet_life_time = id_priv->timeout - 1;
3255     else
3256         route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3257     mutex_unlock(&id_priv->qp_mutex);
3258 
3259     if (!route->path_rec->mtu) {
3260         ret = -EINVAL;
3261         goto err2;
3262     }
3263 
3264     if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3265                      id_priv->id.port_num))
3266         route->path_rec->flow_label =
3267             cma_get_roce_udp_flow_label(id_priv);
3268 
3269     cma_init_resolve_route_work(work, id_priv);
3270     queue_work(cma_wq, &work->work);
3271 
3272     return 0;
3273 
3274 err2:
3275     kfree(route->path_rec);
3276     route->path_rec = NULL;
3277     route->num_paths = 0;
3278 err1:
3279     kfree(work);
3280     return ret;
3281 }
3282 
3283 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3284 {
3285     struct rdma_id_private *id_priv;
3286     int ret;
3287 
3288     if (!timeout_ms)
3289         return -EINVAL;
3290 
3291     id_priv = container_of(id, struct rdma_id_private, id);
3292     if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3293         return -EINVAL;
3294 
3295     cma_id_get(id_priv);
3296     if (rdma_cap_ib_sa(id->device, id->port_num))
3297         ret = cma_resolve_ib_route(id_priv, timeout_ms);
3298     else if (rdma_protocol_roce(id->device, id->port_num)) {
3299         ret = cma_resolve_iboe_route(id_priv);
3300         if (!ret)
3301             cma_add_id_to_tree(id_priv);
3302     }
3303     else if (rdma_protocol_iwarp(id->device, id->port_num))
3304         ret = cma_resolve_iw_route(id_priv);
3305     else
3306         ret = -ENOSYS;
3307 
3308     if (ret)
3309         goto err;
3310 
3311     return 0;
3312 err:
3313     cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3314     cma_id_put(id_priv);
3315     return ret;
3316 }
3317 EXPORT_SYMBOL(rdma_resolve_route);
3318 
3319 static void cma_set_loopback(struct sockaddr *addr)
3320 {
3321     switch (addr->sa_family) {
3322     case AF_INET:
3323         ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3324         break;
3325     case AF_INET6:
3326         ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3327                   0, 0, 0, htonl(1));
3328         break;
3329     default:
3330         ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3331                 0, 0, 0, htonl(1));
3332         break;
3333     }
3334 }
3335 
3336 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3337 {
3338     struct cma_device *cma_dev, *cur_dev;
3339     union ib_gid gid;
3340     enum ib_port_state port_state;
3341     unsigned int p;
3342     u16 pkey;
3343     int ret;
3344 
3345     cma_dev = NULL;
3346     mutex_lock(&lock);
3347     list_for_each_entry(cur_dev, &dev_list, list) {
3348         if (cma_family(id_priv) == AF_IB &&
3349             !rdma_cap_ib_cm(cur_dev->device, 1))
3350             continue;
3351 
3352         if (!cma_dev)
3353             cma_dev = cur_dev;
3354 
3355         rdma_for_each_port (cur_dev->device, p) {
3356             if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3357                 port_state == IB_PORT_ACTIVE) {
3358                 cma_dev = cur_dev;
3359                 goto port_found;
3360             }
3361         }
3362     }
3363 
3364     if (!cma_dev) {
3365         ret = -ENODEV;
3366         goto out;
3367     }
3368 
3369     p = 1;
3370 
3371 port_found:
3372     ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3373     if (ret)
3374         goto out;
3375 
3376     ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3377     if (ret)
3378         goto out;
3379 
3380     id_priv->id.route.addr.dev_addr.dev_type =
3381         (rdma_protocol_ib(cma_dev->device, p)) ?
3382         ARPHRD_INFINIBAND : ARPHRD_ETHER;
3383 
3384     rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3385     ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3386     id_priv->id.port_num = p;
3387     cma_attach_to_dev(id_priv, cma_dev);
3388     rdma_restrack_add(&id_priv->res);
3389     cma_set_loopback(cma_src_addr(id_priv));
3390 out:
3391     mutex_unlock(&lock);
3392     return ret;
3393 }
3394 
3395 static void addr_handler(int status, struct sockaddr *src_addr,
3396              struct rdma_dev_addr *dev_addr, void *context)
3397 {
3398     struct rdma_id_private *id_priv = context;
3399     struct rdma_cm_event event = {};
3400     struct sockaddr *addr;
3401     struct sockaddr_storage old_addr;
3402 
3403     mutex_lock(&id_priv->handler_mutex);
3404     if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3405                RDMA_CM_ADDR_RESOLVED))
3406         goto out;
3407 
3408     /*
3409      * Store the previous src address, so that if we fail to acquire
3410      * matching rdma device, old address can be restored back, which helps
3411      * to cancel the cma listen operation correctly.
3412      */
3413     addr = cma_src_addr(id_priv);
3414     memcpy(&old_addr, addr, rdma_addr_size(addr));
3415     memcpy(addr, src_addr, rdma_addr_size(src_addr));
3416     if (!status && !id_priv->cma_dev) {
3417         status = cma_acquire_dev_by_src_ip(id_priv);
3418         if (status)
3419             pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3420                          status);
3421         rdma_restrack_add(&id_priv->res);
3422     } else if (status) {
3423         pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3424     }
3425 
3426     if (status) {
3427         memcpy(addr, &old_addr,
3428                rdma_addr_size((struct sockaddr *)&old_addr));
3429         if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3430                    RDMA_CM_ADDR_BOUND))
3431             goto out;
3432         event.event = RDMA_CM_EVENT_ADDR_ERROR;
3433         event.status = status;
3434     } else
3435         event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3436 
3437     if (cma_cm_event_handler(id_priv, &event)) {
3438         destroy_id_handler_unlock(id_priv);
3439         return;
3440     }
3441 out:
3442     mutex_unlock(&id_priv->handler_mutex);
3443 }
3444 
3445 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3446 {
3447     struct cma_work *work;
3448     union ib_gid gid;
3449     int ret;
3450 
3451     work = kzalloc(sizeof *work, GFP_KERNEL);
3452     if (!work)
3453         return -ENOMEM;
3454 
3455     if (!id_priv->cma_dev) {
3456         ret = cma_bind_loopback(id_priv);
3457         if (ret)
3458             goto err;
3459     }
3460 
3461     rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3462     rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3463 
3464     enqueue_resolve_addr_work(work, id_priv);
3465     return 0;
3466 err:
3467     kfree(work);
3468     return ret;
3469 }
3470 
3471 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3472 {
3473     struct cma_work *work;
3474     int ret;
3475 
3476     work = kzalloc(sizeof *work, GFP_KERNEL);
3477     if (!work)
3478         return -ENOMEM;
3479 
3480     if (!id_priv->cma_dev) {
3481         ret = cma_resolve_ib_dev(id_priv);
3482         if (ret)
3483             goto err;
3484     }
3485 
3486     rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3487         &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3488 
3489     enqueue_resolve_addr_work(work, id_priv);
3490     return 0;
3491 err:
3492     kfree(work);
3493     return ret;
3494 }
3495 
3496 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3497              const struct sockaddr *dst_addr)
3498 {
3499     struct sockaddr_storage zero_sock = {};
3500 
3501     if (src_addr && src_addr->sa_family)
3502         return rdma_bind_addr(id, src_addr);
3503 
3504     /*
3505      * When the src_addr is not specified, automatically supply an any addr
3506      */
3507     zero_sock.ss_family = dst_addr->sa_family;
3508     if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
3509         struct sockaddr_in6 *src_addr6 =
3510             (struct sockaddr_in6 *)&zero_sock;
3511         struct sockaddr_in6 *dst_addr6 =
3512             (struct sockaddr_in6 *)dst_addr;
3513 
3514         src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3515         if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3516             id->route.addr.dev_addr.bound_dev_if =
3517                 dst_addr6->sin6_scope_id;
3518     } else if (dst_addr->sa_family == AF_IB) {
3519         ((struct sockaddr_ib *)&zero_sock)->sib_pkey =
3520             ((struct sockaddr_ib *)dst_addr)->sib_pkey;
3521     }
3522     return rdma_bind_addr(id, (struct sockaddr *)&zero_sock);
3523 }
3524 
3525 /*
3526  * If required, resolve the source address for bind and leave the id_priv in
3527  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3528  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3529  * ignored.
3530  */
3531 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3532                    struct sockaddr *src_addr,
3533                    const struct sockaddr *dst_addr)
3534 {
3535     int ret;
3536 
3537     memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3538     if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3539         /* For a well behaved ULP state will be RDMA_CM_IDLE */
3540         ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3541         if (ret)
3542             goto err_dst;
3543         if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3544                        RDMA_CM_ADDR_QUERY))) {
3545             ret = -EINVAL;
3546             goto err_dst;
3547         }
3548     }
3549 
3550     if (cma_family(id_priv) != dst_addr->sa_family) {
3551         ret = -EINVAL;
3552         goto err_state;
3553     }
3554     return 0;
3555 
3556 err_state:
3557     cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3558 err_dst:
3559     memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3560     return ret;
3561 }
3562 
3563 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3564               const struct sockaddr *dst_addr, unsigned long timeout_ms)
3565 {
3566     struct rdma_id_private *id_priv =
3567         container_of(id, struct rdma_id_private, id);
3568     int ret;
3569 
3570     ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3571     if (ret)
3572         return ret;
3573 
3574     if (cma_any_addr(dst_addr)) {
3575         ret = cma_resolve_loopback(id_priv);
3576     } else {
3577         if (dst_addr->sa_family == AF_IB) {
3578             ret = cma_resolve_ib_addr(id_priv);
3579         } else {
3580             /*
3581              * The FSM can return back to RDMA_CM_ADDR_BOUND after
3582              * rdma_resolve_ip() is called, eg through the error
3583              * path in addr_handler(). If this happens the existing
3584              * request must be canceled before issuing a new one.
3585              * Since canceling a request is a bit slow and this
3586              * oddball path is rare, keep track once a request has
3587              * been issued. The track turns out to be a permanent
3588              * state since this is the only cancel as it is
3589              * immediately before rdma_resolve_ip().
3590              */
3591             if (id_priv->used_resolve_ip)
3592                 rdma_addr_cancel(&id->route.addr.dev_addr);
3593             else
3594                 id_priv->used_resolve_ip = 1;
3595             ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3596                           &id->route.addr.dev_addr,
3597                           timeout_ms, addr_handler,
3598                           false, id_priv);
3599         }
3600     }
3601     if (ret)
3602         goto err;
3603 
3604     return 0;
3605 err:
3606     cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3607     return ret;
3608 }
3609 EXPORT_SYMBOL(rdma_resolve_addr);
3610 
3611 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3612 {
3613     struct rdma_id_private *id_priv;
3614     unsigned long flags;
3615     int ret;
3616 
3617     id_priv = container_of(id, struct rdma_id_private, id);
3618     spin_lock_irqsave(&id_priv->lock, flags);
3619     if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3620         id_priv->state == RDMA_CM_IDLE) {
3621         id_priv->reuseaddr = reuse;
3622         ret = 0;
3623     } else {
3624         ret = -EINVAL;
3625     }
3626     spin_unlock_irqrestore(&id_priv->lock, flags);
3627     return ret;
3628 }
3629 EXPORT_SYMBOL(rdma_set_reuseaddr);
3630 
3631 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3632 {
3633     struct rdma_id_private *id_priv;
3634     unsigned long flags;
3635     int ret;
3636 
3637     id_priv = container_of(id, struct rdma_id_private, id);
3638     spin_lock_irqsave(&id_priv->lock, flags);
3639     if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3640         id_priv->options |= (1 << CMA_OPTION_AFONLY);
3641         id_priv->afonly = afonly;
3642         ret = 0;
3643     } else {
3644         ret = -EINVAL;
3645     }
3646     spin_unlock_irqrestore(&id_priv->lock, flags);
3647     return ret;
3648 }
3649 EXPORT_SYMBOL(rdma_set_afonly);
3650 
3651 static void cma_bind_port(struct rdma_bind_list *bind_list,
3652               struct rdma_id_private *id_priv)
3653 {
3654     struct sockaddr *addr;
3655     struct sockaddr_ib *sib;
3656     u64 sid, mask;
3657     __be16 port;
3658 
3659     lockdep_assert_held(&lock);
3660 
3661     addr = cma_src_addr(id_priv);
3662     port = htons(bind_list->port);
3663 
3664     switch (addr->sa_family) {
3665     case AF_INET:
3666         ((struct sockaddr_in *) addr)->sin_port = port;
3667         break;
3668     case AF_INET6:
3669         ((struct sockaddr_in6 *) addr)->sin6_port = port;
3670         break;
3671     case AF_IB:
3672         sib = (struct sockaddr_ib *) addr;
3673         sid = be64_to_cpu(sib->sib_sid);
3674         mask = be64_to_cpu(sib->sib_sid_mask);
3675         sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3676         sib->sib_sid_mask = cpu_to_be64(~0ULL);
3677         break;
3678     }
3679     id_priv->bind_list = bind_list;
3680     hlist_add_head(&id_priv->node, &bind_list->owners);
3681 }
3682 
3683 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3684               struct rdma_id_private *id_priv, unsigned short snum)
3685 {
3686     struct rdma_bind_list *bind_list;
3687     int ret;
3688 
3689     lockdep_assert_held(&lock);
3690 
3691     bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3692     if (!bind_list)
3693         return -ENOMEM;
3694 
3695     ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3696                snum);
3697     if (ret < 0)
3698         goto err;
3699 
3700     bind_list->ps = ps;
3701     bind_list->port = snum;
3702     cma_bind_port(bind_list, id_priv);
3703     return 0;
3704 err:
3705     kfree(bind_list);
3706     return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3707 }
3708 
3709 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3710                   struct rdma_id_private *id_priv)
3711 {
3712     struct rdma_id_private *cur_id;
3713     struct sockaddr  *daddr = cma_dst_addr(id_priv);
3714     struct sockaddr  *saddr = cma_src_addr(id_priv);
3715     __be16 dport = cma_port(daddr);
3716 
3717     lockdep_assert_held(&lock);
3718 
3719     hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3720         struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3721         struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3722         __be16 cur_dport = cma_port(cur_daddr);
3723 
3724         if (id_priv == cur_id)
3725             continue;
3726 
3727         /* different dest port -> unique */
3728         if (!cma_any_port(daddr) &&
3729             !cma_any_port(cur_daddr) &&
3730             (dport != cur_dport))
3731             continue;
3732 
3733         /* different src address -> unique */
3734         if (!cma_any_addr(saddr) &&
3735             !cma_any_addr(cur_saddr) &&
3736             cma_addr_cmp(saddr, cur_saddr))
3737             continue;
3738 
3739         /* different dst address -> unique */
3740         if (!cma_any_addr(daddr) &&
3741             !cma_any_addr(cur_daddr) &&
3742             cma_addr_cmp(daddr, cur_daddr))
3743             continue;
3744 
3745         return -EADDRNOTAVAIL;
3746     }
3747     return 0;
3748 }
3749 
3750 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3751                   struct rdma_id_private *id_priv)
3752 {
3753     static unsigned int last_used_port;
3754     int low, high, remaining;
3755     unsigned int rover;
3756     struct net *net = id_priv->id.route.addr.dev_addr.net;
3757 
3758     lockdep_assert_held(&lock);
3759 
3760     inet_get_local_port_range(net, &low, &high);
3761     remaining = (high - low) + 1;
3762     rover = prandom_u32() % remaining + low;
3763 retry:
3764     if (last_used_port != rover) {
3765         struct rdma_bind_list *bind_list;
3766         int ret;
3767 
3768         bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3769 
3770         if (!bind_list) {
3771             ret = cma_alloc_port(ps, id_priv, rover);
3772         } else {
3773             ret = cma_port_is_unique(bind_list, id_priv);
3774             if (!ret)
3775                 cma_bind_port(bind_list, id_priv);
3776         }
3777         /*
3778          * Remember previously used port number in order to avoid
3779          * re-using same port immediately after it is closed.
3780          */
3781         if (!ret)
3782             last_used_port = rover;
3783         if (ret != -EADDRNOTAVAIL)
3784             return ret;
3785     }
3786     if (--remaining) {
3787         rover++;
3788         if ((rover < low) || (rover > high))
3789             rover = low;
3790         goto retry;
3791     }
3792     return -EADDRNOTAVAIL;
3793 }
3794 
3795 /*
3796  * Check that the requested port is available.  This is called when trying to
3797  * bind to a specific port, or when trying to listen on a bound port.  In
3798  * the latter case, the provided id_priv may already be on the bind_list, but
3799  * we still need to check that it's okay to start listening.
3800  */
3801 static int cma_check_port(struct rdma_bind_list *bind_list,
3802               struct rdma_id_private *id_priv, uint8_t reuseaddr)
3803 {
3804     struct rdma_id_private *cur_id;
3805     struct sockaddr *addr, *cur_addr;
3806 
3807     lockdep_assert_held(&lock);
3808 
3809     addr = cma_src_addr(id_priv);
3810     hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3811         if (id_priv == cur_id)
3812             continue;
3813 
3814         if (reuseaddr && cur_id->reuseaddr)
3815             continue;
3816 
3817         cur_addr = cma_src_addr(cur_id);
3818         if (id_priv->afonly && cur_id->afonly &&
3819             (addr->sa_family != cur_addr->sa_family))
3820             continue;
3821 
3822         if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3823             return -EADDRNOTAVAIL;
3824 
3825         if (!cma_addr_cmp(addr, cur_addr))
3826             return -EADDRINUSE;
3827     }
3828     return 0;
3829 }
3830 
3831 static int cma_use_port(enum rdma_ucm_port_space ps,
3832             struct rdma_id_private *id_priv)
3833 {
3834     struct rdma_bind_list *bind_list;
3835     unsigned short snum;
3836     int ret;
3837 
3838     lockdep_assert_held(&lock);
3839 
3840     snum = ntohs(cma_port(cma_src_addr(id_priv)));
3841     if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3842         return -EACCES;
3843 
3844     bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3845     if (!bind_list) {
3846         ret = cma_alloc_port(ps, id_priv, snum);
3847     } else {
3848         ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3849         if (!ret)
3850             cma_bind_port(bind_list, id_priv);
3851     }
3852     return ret;
3853 }
3854 
3855 static enum rdma_ucm_port_space
3856 cma_select_inet_ps(struct rdma_id_private *id_priv)
3857 {
3858     switch (id_priv->id.ps) {
3859     case RDMA_PS_TCP:
3860     case RDMA_PS_UDP:
3861     case RDMA_PS_IPOIB:
3862     case RDMA_PS_IB:
3863         return id_priv->id.ps;
3864     default:
3865 
3866         return 0;
3867     }
3868 }
3869 
3870 static enum rdma_ucm_port_space
3871 cma_select_ib_ps(struct rdma_id_private *id_priv)
3872 {
3873     enum rdma_ucm_port_space ps = 0;
3874     struct sockaddr_ib *sib;
3875     u64 sid_ps, mask, sid;
3876 
3877     sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3878     mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3879     sid = be64_to_cpu(sib->sib_sid) & mask;
3880 
3881     if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3882         sid_ps = RDMA_IB_IP_PS_IB;
3883         ps = RDMA_PS_IB;
3884     } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3885            (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3886         sid_ps = RDMA_IB_IP_PS_TCP;
3887         ps = RDMA_PS_TCP;
3888     } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3889            (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3890         sid_ps = RDMA_IB_IP_PS_UDP;
3891         ps = RDMA_PS_UDP;
3892     }
3893 
3894     if (ps) {
3895         sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3896         sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3897                         be64_to_cpu(sib->sib_sid_mask));
3898     }
3899     return ps;
3900 }
3901 
3902 static int cma_get_port(struct rdma_id_private *id_priv)
3903 {
3904     enum rdma_ucm_port_space ps;
3905     int ret;
3906 
3907     if (cma_family(id_priv) != AF_IB)
3908         ps = cma_select_inet_ps(id_priv);
3909     else
3910         ps = cma_select_ib_ps(id_priv);
3911     if (!ps)
3912         return -EPROTONOSUPPORT;
3913 
3914     mutex_lock(&lock);
3915     if (cma_any_port(cma_src_addr(id_priv)))
3916         ret = cma_alloc_any_port(ps, id_priv);
3917     else
3918         ret = cma_use_port(ps, id_priv);
3919     mutex_unlock(&lock);
3920 
3921     return ret;
3922 }
3923 
3924 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3925                    struct sockaddr *addr)
3926 {
3927 #if IS_ENABLED(CONFIG_IPV6)
3928     struct sockaddr_in6 *sin6;
3929 
3930     if (addr->sa_family != AF_INET6)
3931         return 0;
3932 
3933     sin6 = (struct sockaddr_in6 *) addr;
3934 
3935     if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3936         return 0;
3937 
3938     if (!sin6->sin6_scope_id)
3939             return -EINVAL;
3940 
3941     dev_addr->bound_dev_if = sin6->sin6_scope_id;
3942 #endif
3943     return 0;
3944 }
3945 
3946 int rdma_listen(struct rdma_cm_id *id, int backlog)
3947 {
3948     struct rdma_id_private *id_priv =
3949         container_of(id, struct rdma_id_private, id);
3950     int ret;
3951 
3952     if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3953         struct sockaddr_in any_in = {
3954             .sin_family = AF_INET,
3955             .sin_addr.s_addr = htonl(INADDR_ANY),
3956         };
3957 
3958         /* For a well behaved ULP state will be RDMA_CM_IDLE */
3959         ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3960         if (ret)
3961             return ret;
3962         if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3963                        RDMA_CM_LISTEN)))
3964             return -EINVAL;
3965     }
3966 
3967     /*
3968      * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3969      * any more, and has to be unique in the bind list.
3970      */
3971     if (id_priv->reuseaddr) {
3972         mutex_lock(&lock);
3973         ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3974         if (!ret)
3975             id_priv->reuseaddr = 0;
3976         mutex_unlock(&lock);
3977         if (ret)
3978             goto err;
3979     }
3980 
3981     id_priv->backlog = backlog;
3982     if (id_priv->cma_dev) {
3983         if (rdma_cap_ib_cm(id->device, 1)) {
3984             ret = cma_ib_listen(id_priv);
3985             if (ret)
3986                 goto err;
3987         } else if (rdma_cap_iw_cm(id->device, 1)) {
3988             ret = cma_iw_listen(id_priv, backlog);
3989             if (ret)
3990                 goto err;
3991         } else {
3992             ret = -ENOSYS;
3993             goto err;
3994         }
3995     } else {
3996         ret = cma_listen_on_all(id_priv);
3997         if (ret)
3998             goto err;
3999     }
4000 
4001     return 0;
4002 err:
4003     id_priv->backlog = 0;
4004     /*
4005      * All the failure paths that lead here will not allow the req_handler's
4006      * to have run.
4007      */
4008     cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
4009     return ret;
4010 }
4011 EXPORT_SYMBOL(rdma_listen);
4012 
4013 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4014 {
4015     struct rdma_id_private *id_priv;
4016     int ret;
4017     struct sockaddr  *daddr;
4018 
4019     if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4020         addr->sa_family != AF_IB)
4021         return -EAFNOSUPPORT;
4022 
4023     id_priv = container_of(id, struct rdma_id_private, id);
4024     if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4025         return -EINVAL;
4026 
4027     ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
4028     if (ret)
4029         goto err1;
4030 
4031     memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4032     if (!cma_any_addr(addr)) {
4033         ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
4034         if (ret)
4035             goto err1;
4036 
4037         ret = cma_acquire_dev_by_src_ip(id_priv);
4038         if (ret)
4039             goto err1;
4040     }
4041 
4042     if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4043         if (addr->sa_family == AF_INET)
4044             id_priv->afonly = 1;
4045 #if IS_ENABLED(CONFIG_IPV6)
4046         else if (addr->sa_family == AF_INET6) {
4047             struct net *net = id_priv->id.route.addr.dev_addr.net;
4048 
4049             id_priv->afonly = net->ipv6.sysctl.bindv6only;
4050         }
4051 #endif
4052     }
4053     daddr = cma_dst_addr(id_priv);
4054     daddr->sa_family = addr->sa_family;
4055 
4056     ret = cma_get_port(id_priv);
4057     if (ret)
4058         goto err2;
4059 
4060     if (!cma_any_addr(addr))
4061         rdma_restrack_add(&id_priv->res);
4062     return 0;
4063 err2:
4064     if (id_priv->cma_dev)
4065         cma_release_dev(id_priv);
4066 err1:
4067     cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4068     return ret;
4069 }
4070 EXPORT_SYMBOL(rdma_bind_addr);
4071 
4072 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4073 {
4074     struct cma_hdr *cma_hdr;
4075 
4076     cma_hdr = hdr;
4077     cma_hdr->cma_version = CMA_VERSION;
4078     if (cma_family(id_priv) == AF_INET) {
4079         struct sockaddr_in *src4, *dst4;
4080 
4081         src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4082         dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4083 
4084         cma_set_ip_ver(cma_hdr, 4);
4085         cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4086         cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4087         cma_hdr->port = src4->sin_port;
4088     } else if (cma_family(id_priv) == AF_INET6) {
4089         struct sockaddr_in6 *src6, *dst6;
4090 
4091         src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4092         dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4093 
4094         cma_set_ip_ver(cma_hdr, 6);
4095         cma_hdr->src_addr.ip6 = src6->sin6_addr;
4096         cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4097         cma_hdr->port = src6->sin6_port;
4098     }
4099     return 0;
4100 }
4101 
4102 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4103                 const struct ib_cm_event *ib_event)
4104 {
4105     struct rdma_id_private *id_priv = cm_id->context;
4106     struct rdma_cm_event event = {};
4107     const struct ib_cm_sidr_rep_event_param *rep =
4108                 &ib_event->param.sidr_rep_rcvd;
4109     int ret;
4110 
4111     mutex_lock(&id_priv->handler_mutex);
4112     if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4113         goto out;
4114 
4115     switch (ib_event->event) {
4116     case IB_CM_SIDR_REQ_ERROR:
4117         event.event = RDMA_CM_EVENT_UNREACHABLE;
4118         event.status = -ETIMEDOUT;
4119         break;
4120     case IB_CM_SIDR_REP_RECEIVED:
4121         event.param.ud.private_data = ib_event->private_data;
4122         event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4123         if (rep->status != IB_SIDR_SUCCESS) {
4124             event.event = RDMA_CM_EVENT_UNREACHABLE;
4125             event.status = ib_event->param.sidr_rep_rcvd.status;
4126             pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4127                          event.status);
4128             break;
4129         }
4130         ret = cma_set_qkey(id_priv, rep->qkey);
4131         if (ret) {
4132             pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4133             event.event = RDMA_CM_EVENT_ADDR_ERROR;
4134             event.status = ret;
4135             break;
4136         }
4137         ib_init_ah_attr_from_path(id_priv->id.device,
4138                       id_priv->id.port_num,
4139                       id_priv->id.route.path_rec,
4140                       &event.param.ud.ah_attr,
4141                       rep->sgid_attr);
4142         event.param.ud.qp_num = rep->qpn;
4143         event.param.ud.qkey = rep->qkey;
4144         event.event = RDMA_CM_EVENT_ESTABLISHED;
4145         event.status = 0;
4146         break;
4147     default:
4148         pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4149                ib_event->event);
4150         goto out;
4151     }
4152 
4153     ret = cma_cm_event_handler(id_priv, &event);
4154 
4155     rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4156     if (ret) {
4157         /* Destroy the CM ID by returning a non-zero value. */
4158         id_priv->cm_id.ib = NULL;
4159         destroy_id_handler_unlock(id_priv);
4160         return ret;
4161     }
4162 out:
4163     mutex_unlock(&id_priv->handler_mutex);
4164     return 0;
4165 }
4166 
4167 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4168                   struct rdma_conn_param *conn_param)
4169 {
4170     struct ib_cm_sidr_req_param req;
4171     struct ib_cm_id *id;
4172     void *private_data;
4173     u8 offset;
4174     int ret;
4175 
4176     memset(&req, 0, sizeof req);
4177     offset = cma_user_data_offset(id_priv);
4178     if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4179         return -EINVAL;
4180 
4181     if (req.private_data_len) {
4182         private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4183         if (!private_data)
4184             return -ENOMEM;
4185     } else {
4186         private_data = NULL;
4187     }
4188 
4189     if (conn_param->private_data && conn_param->private_data_len)
4190         memcpy(private_data + offset, conn_param->private_data,
4191                conn_param->private_data_len);
4192 
4193     if (private_data) {
4194         ret = cma_format_hdr(private_data, id_priv);
4195         if (ret)
4196             goto out;
4197         req.private_data = private_data;
4198     }
4199 
4200     id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4201                  id_priv);
4202     if (IS_ERR(id)) {
4203         ret = PTR_ERR(id);
4204         goto out;
4205     }
4206     id_priv->cm_id.ib = id;
4207 
4208     req.path = id_priv->id.route.path_rec;
4209     req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4210     req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4211     req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4212     req.max_cm_retries = CMA_MAX_CM_RETRIES;
4213 
4214     trace_cm_send_sidr_req(id_priv);
4215     ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4216     if (ret) {
4217         ib_destroy_cm_id(id_priv->cm_id.ib);
4218         id_priv->cm_id.ib = NULL;
4219     }
4220 out:
4221     kfree(private_data);
4222     return ret;
4223 }
4224 
4225 static int cma_connect_ib(struct rdma_id_private *id_priv,
4226               struct rdma_conn_param *conn_param)
4227 {
4228     struct ib_cm_req_param req;
4229     struct rdma_route *route;
4230     void *private_data;
4231     struct ib_cm_id *id;
4232     u8 offset;
4233     int ret;
4234 
4235     memset(&req, 0, sizeof req);
4236     offset = cma_user_data_offset(id_priv);
4237     if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4238         return -EINVAL;
4239 
4240     if (req.private_data_len) {
4241         private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4242         if (!private_data)
4243             return -ENOMEM;
4244     } else {
4245         private_data = NULL;
4246     }
4247 
4248     if (conn_param->private_data && conn_param->private_data_len)
4249         memcpy(private_data + offset, conn_param->private_data,
4250                conn_param->private_data_len);
4251 
4252     id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4253     if (IS_ERR(id)) {
4254         ret = PTR_ERR(id);
4255         goto out;
4256     }
4257     id_priv->cm_id.ib = id;
4258 
4259     route = &id_priv->id.route;
4260     if (private_data) {
4261         ret = cma_format_hdr(private_data, id_priv);
4262         if (ret)
4263             goto out;
4264         req.private_data = private_data;
4265     }
4266 
4267     req.primary_path = &route->path_rec[0];
4268     if (route->num_paths == 2)
4269         req.alternate_path = &route->path_rec[1];
4270 
4271     req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4272     /* Alternate path SGID attribute currently unsupported */
4273     req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4274     req.qp_num = id_priv->qp_num;
4275     req.qp_type = id_priv->id.qp_type;
4276     req.starting_psn = id_priv->seq_num;
4277     req.responder_resources = conn_param->responder_resources;
4278     req.initiator_depth = conn_param->initiator_depth;
4279     req.flow_control = conn_param->flow_control;
4280     req.retry_count = min_t(u8, 7, conn_param->retry_count);
4281     req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4282     req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4283     req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4284     req.max_cm_retries = CMA_MAX_CM_RETRIES;
4285     req.srq = id_priv->srq ? 1 : 0;
4286     req.ece.vendor_id = id_priv->ece.vendor_id;
4287     req.ece.attr_mod = id_priv->ece.attr_mod;
4288 
4289     trace_cm_send_req(id_priv);
4290     ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4291 out:
4292     if (ret && !IS_ERR(id)) {
4293         ib_destroy_cm_id(id);
4294         id_priv->cm_id.ib = NULL;
4295     }
4296 
4297     kfree(private_data);
4298     return ret;
4299 }
4300 
4301 static int cma_connect_iw(struct rdma_id_private *id_priv,
4302               struct rdma_conn_param *conn_param)
4303 {
4304     struct iw_cm_id *cm_id;
4305     int ret;
4306     struct iw_cm_conn_param iw_param;
4307 
4308     cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4309     if (IS_ERR(cm_id))
4310         return PTR_ERR(cm_id);
4311 
4312     mutex_lock(&id_priv->qp_mutex);
4313     cm_id->tos = id_priv->tos;
4314     cm_id->tos_set = id_priv->tos_set;
4315     mutex_unlock(&id_priv->qp_mutex);
4316 
4317     id_priv->cm_id.iw = cm_id;
4318 
4319     memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4320            rdma_addr_size(cma_src_addr(id_priv)));
4321     memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4322            rdma_addr_size(cma_dst_addr(id_priv)));
4323 
4324     ret = cma_modify_qp_rtr(id_priv, conn_param);
4325     if (ret)
4326         goto out;
4327 
4328     if (conn_param) {
4329         iw_param.ord = conn_param->initiator_depth;
4330         iw_param.ird = conn_param->responder_resources;
4331         iw_param.private_data = conn_param->private_data;
4332         iw_param.private_data_len = conn_param->private_data_len;
4333         iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4334     } else {
4335         memset(&iw_param, 0, sizeof iw_param);
4336         iw_param.qpn = id_priv->qp_num;
4337     }
4338     ret = iw_cm_connect(cm_id, &iw_param);
4339 out:
4340     if (ret) {
4341         iw_destroy_cm_id(cm_id);
4342         id_priv->cm_id.iw = NULL;
4343     }
4344     return ret;
4345 }
4346 
4347 /**
4348  * rdma_connect_locked - Initiate an active connection request.
4349  * @id: Connection identifier to connect.
4350  * @conn_param: Connection information used for connected QPs.
4351  *
4352  * Same as rdma_connect() but can only be called from the
4353  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4354  */
4355 int rdma_connect_locked(struct rdma_cm_id *id,
4356             struct rdma_conn_param *conn_param)
4357 {
4358     struct rdma_id_private *id_priv =
4359         container_of(id, struct rdma_id_private, id);
4360     int ret;
4361 
4362     if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4363         return -EINVAL;
4364 
4365     if (!id->qp) {
4366         id_priv->qp_num = conn_param->qp_num;
4367         id_priv->srq = conn_param->srq;
4368     }
4369 
4370     if (rdma_cap_ib_cm(id->device, id->port_num)) {
4371         if (id->qp_type == IB_QPT_UD)
4372             ret = cma_resolve_ib_udp(id_priv, conn_param);
4373         else
4374             ret = cma_connect_ib(id_priv, conn_param);
4375     } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4376         ret = cma_connect_iw(id_priv, conn_param);
4377     } else {
4378         ret = -ENOSYS;
4379     }
4380     if (ret)
4381         goto err_state;
4382     return 0;
4383 err_state:
4384     cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4385     return ret;
4386 }
4387 EXPORT_SYMBOL(rdma_connect_locked);
4388 
4389 /**
4390  * rdma_connect - Initiate an active connection request.
4391  * @id: Connection identifier to connect.
4392  * @conn_param: Connection information used for connected QPs.
4393  *
4394  * Users must have resolved a route for the rdma_cm_id to connect with by having
4395  * called rdma_resolve_route before calling this routine.
4396  *
4397  * This call will either connect to a remote QP or obtain remote QP information
4398  * for unconnected rdma_cm_id's.  The actual operation is based on the
4399  * rdma_cm_id's port space.
4400  */
4401 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4402 {
4403     struct rdma_id_private *id_priv =
4404         container_of(id, struct rdma_id_private, id);
4405     int ret;
4406 
4407     mutex_lock(&id_priv->handler_mutex);
4408     ret = rdma_connect_locked(id, conn_param);
4409     mutex_unlock(&id_priv->handler_mutex);
4410     return ret;
4411 }
4412 EXPORT_SYMBOL(rdma_connect);
4413 
4414 /**
4415  * rdma_connect_ece - Initiate an active connection request with ECE data.
4416  * @id: Connection identifier to connect.
4417  * @conn_param: Connection information used for connected QPs.
4418  * @ece: ECE parameters
4419  *
4420  * See rdma_connect() explanation.
4421  */
4422 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4423              struct rdma_ucm_ece *ece)
4424 {
4425     struct rdma_id_private *id_priv =
4426         container_of(id, struct rdma_id_private, id);
4427 
4428     id_priv->ece.vendor_id = ece->vendor_id;
4429     id_priv->ece.attr_mod = ece->attr_mod;
4430 
4431     return rdma_connect(id, conn_param);
4432 }
4433 EXPORT_SYMBOL(rdma_connect_ece);
4434 
4435 static int cma_accept_ib(struct rdma_id_private *id_priv,
4436              struct rdma_conn_param *conn_param)
4437 {
4438     struct ib_cm_rep_param rep;
4439     int ret;
4440 
4441     ret = cma_modify_qp_rtr(id_priv, conn_param);
4442     if (ret)
4443         goto out;
4444 
4445     ret = cma_modify_qp_rts(id_priv, conn_param);
4446     if (ret)
4447         goto out;
4448 
4449     memset(&rep, 0, sizeof rep);
4450     rep.qp_num = id_priv->qp_num;
4451     rep.starting_psn = id_priv->seq_num;
4452     rep.private_data = conn_param->private_data;
4453     rep.private_data_len = conn_param->private_data_len;
4454     rep.responder_resources = conn_param->responder_resources;
4455     rep.initiator_depth = conn_param->initiator_depth;
4456     rep.failover_accepted = 0;
4457     rep.flow_control = conn_param->flow_control;
4458     rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4459     rep.srq = id_priv->srq ? 1 : 0;
4460     rep.ece.vendor_id = id_priv->ece.vendor_id;
4461     rep.ece.attr_mod = id_priv->ece.attr_mod;
4462 
4463     trace_cm_send_rep(id_priv);
4464     ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4465 out:
4466     return ret;
4467 }
4468 
4469 static int cma_accept_iw(struct rdma_id_private *id_priv,
4470           struct rdma_conn_param *conn_param)
4471 {
4472     struct iw_cm_conn_param iw_param;
4473     int ret;
4474 
4475     if (!conn_param)
4476         return -EINVAL;
4477 
4478     ret = cma_modify_qp_rtr(id_priv, conn_param);
4479     if (ret)
4480         return ret;
4481 
4482     iw_param.ord = conn_param->initiator_depth;
4483     iw_param.ird = conn_param->responder_resources;
4484     iw_param.private_data = conn_param->private_data;
4485     iw_param.private_data_len = conn_param->private_data_len;
4486     if (id_priv->id.qp)
4487         iw_param.qpn = id_priv->qp_num;
4488     else
4489         iw_param.qpn = conn_param->qp_num;
4490 
4491     return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4492 }
4493 
4494 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4495                  enum ib_cm_sidr_status status, u32 qkey,
4496                  const void *private_data, int private_data_len)
4497 {
4498     struct ib_cm_sidr_rep_param rep;
4499     int ret;
4500 
4501     memset(&rep, 0, sizeof rep);
4502     rep.status = status;
4503     if (status == IB_SIDR_SUCCESS) {
4504         ret = cma_set_qkey(id_priv, qkey);
4505         if (ret)
4506             return ret;
4507         rep.qp_num = id_priv->qp_num;
4508         rep.qkey = id_priv->qkey;
4509 
4510         rep.ece.vendor_id = id_priv->ece.vendor_id;
4511         rep.ece.attr_mod = id_priv->ece.attr_mod;
4512     }
4513 
4514     rep.private_data = private_data;
4515     rep.private_data_len = private_data_len;
4516 
4517     trace_cm_send_sidr_rep(id_priv);
4518     return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4519 }
4520 
4521 /**
4522  * rdma_accept - Called to accept a connection request or response.
4523  * @id: Connection identifier associated with the request.
4524  * @conn_param: Information needed to establish the connection.  This must be
4525  *   provided if accepting a connection request.  If accepting a connection
4526  *   response, this parameter must be NULL.
4527  *
4528  * Typically, this routine is only called by the listener to accept a connection
4529  * request.  It must also be called on the active side of a connection if the
4530  * user is performing their own QP transitions.
4531  *
4532  * In the case of error, a reject message is sent to the remote side and the
4533  * state of the qp associated with the id is modified to error, such that any
4534  * previously posted receive buffers would be flushed.
4535  *
4536  * This function is for use by kernel ULPs and must be called from under the
4537  * handler callback.
4538  */
4539 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4540 {
4541     struct rdma_id_private *id_priv =
4542         container_of(id, struct rdma_id_private, id);
4543     int ret;
4544 
4545     lockdep_assert_held(&id_priv->handler_mutex);
4546 
4547     if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4548         return -EINVAL;
4549 
4550     if (!id->qp && conn_param) {
4551         id_priv->qp_num = conn_param->qp_num;
4552         id_priv->srq = conn_param->srq;
4553     }
4554 
4555     if (rdma_cap_ib_cm(id->device, id->port_num)) {
4556         if (id->qp_type == IB_QPT_UD) {
4557             if (conn_param)
4558                 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4559                             conn_param->qkey,
4560                             conn_param->private_data,
4561                             conn_param->private_data_len);
4562             else
4563                 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4564                             0, NULL, 0);
4565         } else {
4566             if (conn_param)
4567                 ret = cma_accept_ib(id_priv, conn_param);
4568             else
4569                 ret = cma_rep_recv(id_priv);
4570         }
4571     } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4572         ret = cma_accept_iw(id_priv, conn_param);
4573     } else {
4574         ret = -ENOSYS;
4575     }
4576     if (ret)
4577         goto reject;
4578 
4579     return 0;
4580 reject:
4581     cma_modify_qp_err(id_priv);
4582     rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4583     return ret;
4584 }
4585 EXPORT_SYMBOL(rdma_accept);
4586 
4587 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4588             struct rdma_ucm_ece *ece)
4589 {
4590     struct rdma_id_private *id_priv =
4591         container_of(id, struct rdma_id_private, id);
4592 
4593     id_priv->ece.vendor_id = ece->vendor_id;
4594     id_priv->ece.attr_mod = ece->attr_mod;
4595 
4596     return rdma_accept(id, conn_param);
4597 }
4598 EXPORT_SYMBOL(rdma_accept_ece);
4599 
4600 void rdma_lock_handler(struct rdma_cm_id *id)
4601 {
4602     struct rdma_id_private *id_priv =
4603         container_of(id, struct rdma_id_private, id);
4604 
4605     mutex_lock(&id_priv->handler_mutex);
4606 }
4607 EXPORT_SYMBOL(rdma_lock_handler);
4608 
4609 void rdma_unlock_handler(struct rdma_cm_id *id)
4610 {
4611     struct rdma_id_private *id_priv =
4612         container_of(id, struct rdma_id_private, id);
4613 
4614     mutex_unlock(&id_priv->handler_mutex);
4615 }
4616 EXPORT_SYMBOL(rdma_unlock_handler);
4617 
4618 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4619 {
4620     struct rdma_id_private *id_priv;
4621     int ret;
4622 
4623     id_priv = container_of(id, struct rdma_id_private, id);
4624     if (!id_priv->cm_id.ib)
4625         return -EINVAL;
4626 
4627     switch (id->device->node_type) {
4628     case RDMA_NODE_IB_CA:
4629         ret = ib_cm_notify(id_priv->cm_id.ib, event);
4630         break;
4631     default:
4632         ret = 0;
4633         break;
4634     }
4635     return ret;
4636 }
4637 EXPORT_SYMBOL(rdma_notify);
4638 
4639 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4640         u8 private_data_len, u8 reason)
4641 {
4642     struct rdma_id_private *id_priv;
4643     int ret;
4644 
4645     id_priv = container_of(id, struct rdma_id_private, id);
4646     if (!id_priv->cm_id.ib)
4647         return -EINVAL;
4648 
4649     if (rdma_cap_ib_cm(id->device, id->port_num)) {
4650         if (id->qp_type == IB_QPT_UD) {
4651             ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4652                         private_data, private_data_len);
4653         } else {
4654             trace_cm_send_rej(id_priv);
4655             ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4656                          private_data, private_data_len);
4657         }
4658     } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4659         ret = iw_cm_reject(id_priv->cm_id.iw,
4660                    private_data, private_data_len);
4661     } else {
4662         ret = -ENOSYS;
4663     }
4664 
4665     return ret;
4666 }
4667 EXPORT_SYMBOL(rdma_reject);
4668 
4669 int rdma_disconnect(struct rdma_cm_id *id)
4670 {
4671     struct rdma_id_private *id_priv;
4672     int ret;
4673 
4674     id_priv = container_of(id, struct rdma_id_private, id);
4675     if (!id_priv->cm_id.ib)
4676         return -EINVAL;
4677 
4678     if (rdma_cap_ib_cm(id->device, id->port_num)) {
4679         ret = cma_modify_qp_err(id_priv);
4680         if (ret)
4681             goto out;
4682         /* Initiate or respond to a disconnect. */
4683         trace_cm_disconnect(id_priv);
4684         if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4685             if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4686                 trace_cm_sent_drep(id_priv);
4687         } else {
4688             trace_cm_sent_dreq(id_priv);
4689         }
4690     } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4691         ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4692     } else
4693         ret = -EINVAL;
4694 
4695 out:
4696     return ret;
4697 }
4698 EXPORT_SYMBOL(rdma_disconnect);
4699 
4700 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4701                   struct ib_sa_multicast *multicast,
4702                   struct rdma_cm_event *event,
4703                   struct cma_multicast *mc)
4704 {
4705     struct rdma_dev_addr *dev_addr;
4706     enum ib_gid_type gid_type;
4707     struct net_device *ndev;
4708 
4709     if (!status)
4710         status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4711     else
4712         pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4713                      status);
4714 
4715     event->status = status;
4716     event->param.ud.private_data = mc->context;
4717     if (status) {
4718         event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4719         return;
4720     }
4721 
4722     dev_addr = &id_priv->id.route.addr.dev_addr;
4723     ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4724     gid_type =
4725         id_priv->cma_dev
4726             ->default_gid_type[id_priv->id.port_num -
4727                        rdma_start_port(
4728                            id_priv->cma_dev->device)];
4729 
4730     event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4731     if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4732                      &multicast->rec, ndev, gid_type,
4733                      &event->param.ud.ah_attr)) {
4734         event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4735         goto out;
4736     }
4737 
4738     event->param.ud.qp_num = 0xFFFFFF;
4739     event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4740 
4741 out:
4742     if (ndev)
4743         dev_put(ndev);
4744 }
4745 
4746 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4747 {
4748     struct cma_multicast *mc = multicast->context;
4749     struct rdma_id_private *id_priv = mc->id_priv;
4750     struct rdma_cm_event event = {};
4751     int ret = 0;
4752 
4753     mutex_lock(&id_priv->handler_mutex);
4754     if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4755         READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4756         goto out;
4757 
4758     cma_make_mc_event(status, id_priv, multicast, &event, mc);
4759     ret = cma_cm_event_handler(id_priv, &event);
4760     rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4761     WARN_ON(ret);
4762 
4763 out:
4764     mutex_unlock(&id_priv->handler_mutex);
4765     return 0;
4766 }
4767 
4768 static void cma_set_mgid(struct rdma_id_private *id_priv,
4769              struct sockaddr *addr, union ib_gid *mgid)
4770 {
4771     unsigned char mc_map[MAX_ADDR_LEN];
4772     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4773     struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4774     struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4775 
4776     if (cma_any_addr(addr)) {
4777         memset(mgid, 0, sizeof *mgid);
4778     } else if ((addr->sa_family == AF_INET6) &&
4779            ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4780                                  0xFF10A01B)) {
4781         /* IPv6 address is an SA assigned MGID. */
4782         memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4783     } else if (addr->sa_family == AF_IB) {
4784         memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4785     } else if (addr->sa_family == AF_INET6) {
4786         ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4787         if (id_priv->id.ps == RDMA_PS_UDP)
4788             mc_map[7] = 0x01;   /* Use RDMA CM signature */
4789         *mgid = *(union ib_gid *) (mc_map + 4);
4790     } else {
4791         ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4792         if (id_priv->id.ps == RDMA_PS_UDP)
4793             mc_map[7] = 0x01;   /* Use RDMA CM signature */
4794         *mgid = *(union ib_gid *) (mc_map + 4);
4795     }
4796 }
4797 
4798 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4799                  struct cma_multicast *mc)
4800 {
4801     struct ib_sa_mcmember_rec rec;
4802     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4803     ib_sa_comp_mask comp_mask;
4804     int ret;
4805 
4806     ib_addr_get_mgid(dev_addr, &rec.mgid);
4807     ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4808                      &rec.mgid, &rec);
4809     if (ret)
4810         return ret;
4811 
4812     ret = cma_set_qkey(id_priv, 0);
4813     if (ret)
4814         return ret;
4815 
4816     cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4817     rec.qkey = cpu_to_be32(id_priv->qkey);
4818     rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4819     rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4820     rec.join_state = mc->join_state;
4821 
4822     comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4823             IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4824             IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4825             IB_SA_MCMEMBER_REC_FLOW_LABEL |
4826             IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4827 
4828     if (id_priv->id.ps == RDMA_PS_IPOIB)
4829         comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4830                  IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4831                  IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4832                  IB_SA_MCMEMBER_REC_MTU |
4833                  IB_SA_MCMEMBER_REC_HOP_LIMIT;
4834 
4835     mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4836                      id_priv->id.port_num, &rec, comp_mask,
4837                      GFP_KERNEL, cma_ib_mc_handler, mc);
4838     return PTR_ERR_OR_ZERO(mc->sa_mc);
4839 }
4840 
4841 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4842                   enum ib_gid_type gid_type)
4843 {
4844     struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4845     struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4846 
4847     if (cma_any_addr(addr)) {
4848         memset(mgid, 0, sizeof *mgid);
4849     } else if (addr->sa_family == AF_INET6) {
4850         memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4851     } else {
4852         mgid->raw[0] =
4853             (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4854         mgid->raw[1] =
4855             (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4856         mgid->raw[2] = 0;
4857         mgid->raw[3] = 0;
4858         mgid->raw[4] = 0;
4859         mgid->raw[5] = 0;
4860         mgid->raw[6] = 0;
4861         mgid->raw[7] = 0;
4862         mgid->raw[8] = 0;
4863         mgid->raw[9] = 0;
4864         mgid->raw[10] = 0xff;
4865         mgid->raw[11] = 0xff;
4866         *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4867     }
4868 }
4869 
4870 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4871                    struct cma_multicast *mc)
4872 {
4873     struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4874     int err = 0;
4875     struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4876     struct net_device *ndev = NULL;
4877     struct ib_sa_multicast ib;
4878     enum ib_gid_type gid_type;
4879     bool send_only;
4880 
4881     send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4882 
4883     if (cma_zero_addr(addr))
4884         return -EINVAL;
4885 
4886     gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4887            rdma_start_port(id_priv->cma_dev->device)];
4888     cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4889 
4890     ib.rec.pkey = cpu_to_be16(0xffff);
4891     if (id_priv->id.ps == RDMA_PS_UDP)
4892         ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4893 
4894     if (dev_addr->bound_dev_if)
4895         ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4896     if (!ndev)
4897         return -ENODEV;
4898 
4899     ib.rec.rate = iboe_get_rate(ndev);
4900     ib.rec.hop_limit = 1;
4901     ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4902 
4903     if (addr->sa_family == AF_INET) {
4904         if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4905             ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4906             if (!send_only) {
4907                 err = cma_igmp_send(ndev, &ib.rec.mgid,
4908                             true);
4909             }
4910         }
4911     } else {
4912         if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4913             err = -ENOTSUPP;
4914     }
4915     dev_put(ndev);
4916     if (err || !ib.rec.mtu)
4917         return err ?: -EINVAL;
4918 
4919     rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4920             &ib.rec.port_gid);
4921     INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4922     cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4923     queue_work(cma_wq, &mc->iboe_join.work);
4924     return 0;
4925 }
4926 
4927 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4928             u8 join_state, void *context)
4929 {
4930     struct rdma_id_private *id_priv =
4931         container_of(id, struct rdma_id_private, id);
4932     struct cma_multicast *mc;
4933     int ret;
4934 
4935     /* Not supported for kernel QPs */
4936     if (WARN_ON(id->qp))
4937         return -EINVAL;
4938 
4939     /* ULP is calling this wrong. */
4940     if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4941                 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4942         return -EINVAL;
4943 
4944     mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4945     if (!mc)
4946         return -ENOMEM;
4947 
4948     memcpy(&mc->addr, addr, rdma_addr_size(addr));
4949     mc->context = context;
4950     mc->id_priv = id_priv;
4951     mc->join_state = join_state;
4952 
4953     if (rdma_protocol_roce(id->device, id->port_num)) {
4954         ret = cma_iboe_join_multicast(id_priv, mc);
4955         if (ret)
4956             goto out_err;
4957     } else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4958         ret = cma_join_ib_multicast(id_priv, mc);
4959         if (ret)
4960             goto out_err;
4961     } else {
4962         ret = -ENOSYS;
4963         goto out_err;
4964     }
4965 
4966     spin_lock(&id_priv->lock);
4967     list_add(&mc->list, &id_priv->mc_list);
4968     spin_unlock(&id_priv->lock);
4969 
4970     return 0;
4971 out_err:
4972     kfree(mc);
4973     return ret;
4974 }
4975 EXPORT_SYMBOL(rdma_join_multicast);
4976 
4977 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4978 {
4979     struct rdma_id_private *id_priv;
4980     struct cma_multicast *mc;
4981 
4982     id_priv = container_of(id, struct rdma_id_private, id);
4983     spin_lock_irq(&id_priv->lock);
4984     list_for_each_entry(mc, &id_priv->mc_list, list) {
4985         if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4986             continue;
4987         list_del(&mc->list);
4988         spin_unlock_irq(&id_priv->lock);
4989 
4990         WARN_ON(id_priv->cma_dev->device != id->device);
4991         destroy_mc(id_priv, mc);
4992         return;
4993     }
4994     spin_unlock_irq(&id_priv->lock);
4995 }
4996 EXPORT_SYMBOL(rdma_leave_multicast);
4997 
4998 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4999 {
5000     struct rdma_dev_addr *dev_addr;
5001     struct cma_work *work;
5002 
5003     dev_addr = &id_priv->id.route.addr.dev_addr;
5004 
5005     if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5006         (net_eq(dev_net(ndev), dev_addr->net)) &&
5007         memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5008         pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5009             ndev->name, &id_priv->id);
5010         work = kzalloc(sizeof *work, GFP_KERNEL);
5011         if (!work)
5012             return -ENOMEM;
5013 
5014         INIT_WORK(&work->work, cma_work_handler);
5015         work->id = id_priv;
5016         work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5017         cma_id_get(id_priv);
5018         queue_work(cma_wq, &work->work);
5019     }
5020 
5021     return 0;
5022 }
5023 
5024 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5025                    void *ptr)
5026 {
5027     struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5028     struct cma_device *cma_dev;
5029     struct rdma_id_private *id_priv;
5030     int ret = NOTIFY_DONE;
5031 
5032     if (event != NETDEV_BONDING_FAILOVER)
5033         return NOTIFY_DONE;
5034 
5035     if (!netif_is_bond_master(ndev))
5036         return NOTIFY_DONE;
5037 
5038     mutex_lock(&lock);
5039     list_for_each_entry(cma_dev, &dev_list, list)
5040         list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5041             ret = cma_netdev_change(ndev, id_priv);
5042             if (ret)
5043                 goto out;
5044         }
5045 
5046 out:
5047     mutex_unlock(&lock);
5048     return ret;
5049 }
5050 
5051 static void cma_netevent_work_handler(struct work_struct *_work)
5052 {
5053     struct rdma_id_private *id_priv =
5054         container_of(_work, struct rdma_id_private, id.net_work);
5055     struct rdma_cm_event event = {};
5056 
5057     mutex_lock(&id_priv->handler_mutex);
5058 
5059     if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5060         READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5061         goto out_unlock;
5062 
5063     event.event = RDMA_CM_EVENT_UNREACHABLE;
5064     event.status = -ETIMEDOUT;
5065 
5066     if (cma_cm_event_handler(id_priv, &event)) {
5067         __acquire(&id_priv->handler_mutex);
5068         id_priv->cm_id.ib = NULL;
5069         cma_id_put(id_priv);
5070         destroy_id_handler_unlock(id_priv);
5071         return;
5072     }
5073 
5074 out_unlock:
5075     mutex_unlock(&id_priv->handler_mutex);
5076     cma_id_put(id_priv);
5077 }
5078 
5079 static int cma_netevent_callback(struct notifier_block *self,
5080                  unsigned long event, void *ctx)
5081 {
5082     struct id_table_entry *ips_node = NULL;
5083     struct rdma_id_private *current_id;
5084     struct neighbour *neigh = ctx;
5085     unsigned long flags;
5086 
5087     if (event != NETEVENT_NEIGH_UPDATE)
5088         return NOTIFY_DONE;
5089 
5090     spin_lock_irqsave(&id_table_lock, flags);
5091     if (neigh->tbl->family == AF_INET6) {
5092         struct sockaddr_in6 neigh_sock_6;
5093 
5094         neigh_sock_6.sin6_family = AF_INET6;
5095         neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5096         ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5097                          (struct sockaddr *)&neigh_sock_6);
5098     } else if (neigh->tbl->family == AF_INET) {
5099         struct sockaddr_in neigh_sock_4;
5100 
5101         neigh_sock_4.sin_family = AF_INET;
5102         neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5103         ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5104                          (struct sockaddr *)&neigh_sock_4);
5105     } else
5106         goto out;
5107 
5108     if (!ips_node)
5109         goto out;
5110 
5111     list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5112         if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5113                neigh->ha, ETH_ALEN))
5114             continue;
5115         INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5116         cma_id_get(current_id);
5117         queue_work(cma_wq, &current_id->id.net_work);
5118     }
5119 out:
5120     spin_unlock_irqrestore(&id_table_lock, flags);
5121     return NOTIFY_DONE;
5122 }
5123 
5124 static struct notifier_block cma_nb = {
5125     .notifier_call = cma_netdev_callback
5126 };
5127 
5128 static struct notifier_block cma_netevent_cb = {
5129     .notifier_call = cma_netevent_callback
5130 };
5131 
5132 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5133 {
5134     struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5135     enum rdma_cm_state state;
5136     unsigned long flags;
5137 
5138     mutex_lock(&id_priv->handler_mutex);
5139     /* Record that we want to remove the device */
5140     spin_lock_irqsave(&id_priv->lock, flags);
5141     state = id_priv->state;
5142     if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5143         spin_unlock_irqrestore(&id_priv->lock, flags);
5144         mutex_unlock(&id_priv->handler_mutex);
5145         cma_id_put(id_priv);
5146         return;
5147     }
5148     id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5149     spin_unlock_irqrestore(&id_priv->lock, flags);
5150 
5151     if (cma_cm_event_handler(id_priv, &event)) {
5152         /*
5153          * At this point the ULP promises it won't call
5154          * rdma_destroy_id() concurrently
5155          */
5156         cma_id_put(id_priv);
5157         mutex_unlock(&id_priv->handler_mutex);
5158         trace_cm_id_destroy(id_priv);
5159         _destroy_id(id_priv, state);
5160         return;
5161     }
5162     mutex_unlock(&id_priv->handler_mutex);
5163 
5164     /*
5165      * If this races with destroy then the thread that first assigns state
5166      * to a destroying does the cancel.
5167      */
5168     cma_cancel_operation(id_priv, state);
5169     cma_id_put(id_priv);
5170 }
5171 
5172 static void cma_process_remove(struct cma_device *cma_dev)
5173 {
5174     mutex_lock(&lock);
5175     while (!list_empty(&cma_dev->id_list)) {
5176         struct rdma_id_private *id_priv = list_first_entry(
5177             &cma_dev->id_list, struct rdma_id_private, device_item);
5178 
5179         list_del_init(&id_priv->listen_item);
5180         list_del_init(&id_priv->device_item);
5181         cma_id_get(id_priv);
5182         mutex_unlock(&lock);
5183 
5184         cma_send_device_removal_put(id_priv);
5185 
5186         mutex_lock(&lock);
5187     }
5188     mutex_unlock(&lock);
5189 
5190     cma_dev_put(cma_dev);
5191     wait_for_completion(&cma_dev->comp);
5192 }
5193 
5194 static bool cma_supported(struct ib_device *device)
5195 {
5196     u32 i;
5197 
5198     rdma_for_each_port(device, i) {
5199         if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5200             return true;
5201     }
5202     return false;
5203 }
5204 
5205 static int cma_add_one(struct ib_device *device)
5206 {
5207     struct rdma_id_private *to_destroy;
5208     struct cma_device *cma_dev;
5209     struct rdma_id_private *id_priv;
5210     unsigned long supported_gids = 0;
5211     int ret;
5212     u32 i;
5213 
5214     if (!cma_supported(device))
5215         return -EOPNOTSUPP;
5216 
5217     cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5218     if (!cma_dev)
5219         return -ENOMEM;
5220 
5221     cma_dev->device = device;
5222     cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5223                         sizeof(*cma_dev->default_gid_type),
5224                         GFP_KERNEL);
5225     if (!cma_dev->default_gid_type) {
5226         ret = -ENOMEM;
5227         goto free_cma_dev;
5228     }
5229 
5230     cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5231                         sizeof(*cma_dev->default_roce_tos),
5232                         GFP_KERNEL);
5233     if (!cma_dev->default_roce_tos) {
5234         ret = -ENOMEM;
5235         goto free_gid_type;
5236     }
5237 
5238     rdma_for_each_port (device, i) {
5239         supported_gids = roce_gid_type_mask_support(device, i);
5240         WARN_ON(!supported_gids);
5241         if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5242             cma_dev->default_gid_type[i - rdma_start_port(device)] =
5243                 CMA_PREFERRED_ROCE_GID_TYPE;
5244         else
5245             cma_dev->default_gid_type[i - rdma_start_port(device)] =
5246                 find_first_bit(&supported_gids, BITS_PER_LONG);
5247         cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5248     }
5249 
5250     init_completion(&cma_dev->comp);
5251     refcount_set(&cma_dev->refcount, 1);
5252     INIT_LIST_HEAD(&cma_dev->id_list);
5253     ib_set_client_data(device, &cma_client, cma_dev);
5254 
5255     mutex_lock(&lock);
5256     list_add_tail(&cma_dev->list, &dev_list);
5257     list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5258         ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5259         if (ret)
5260             goto free_listen;
5261     }
5262     mutex_unlock(&lock);
5263 
5264     trace_cm_add_one(device);
5265     return 0;
5266 
5267 free_listen:
5268     list_del(&cma_dev->list);
5269     mutex_unlock(&lock);
5270 
5271     /* cma_process_remove() will delete to_destroy */
5272     cma_process_remove(cma_dev);
5273     kfree(cma_dev->default_roce_tos);
5274 free_gid_type:
5275     kfree(cma_dev->default_gid_type);
5276 
5277 free_cma_dev:
5278     kfree(cma_dev);
5279     return ret;
5280 }
5281 
5282 static void cma_remove_one(struct ib_device *device, void *client_data)
5283 {
5284     struct cma_device *cma_dev = client_data;
5285 
5286     trace_cm_remove_one(device);
5287 
5288     mutex_lock(&lock);
5289     list_del(&cma_dev->list);
5290     mutex_unlock(&lock);
5291 
5292     cma_process_remove(cma_dev);
5293     kfree(cma_dev->default_roce_tos);
5294     kfree(cma_dev->default_gid_type);
5295     kfree(cma_dev);
5296 }
5297 
5298 static int cma_init_net(struct net *net)
5299 {
5300     struct cma_pernet *pernet = cma_pernet(net);
5301 
5302     xa_init(&pernet->tcp_ps);
5303     xa_init(&pernet->udp_ps);
5304     xa_init(&pernet->ipoib_ps);
5305     xa_init(&pernet->ib_ps);
5306 
5307     return 0;
5308 }
5309 
5310 static void cma_exit_net(struct net *net)
5311 {
5312     struct cma_pernet *pernet = cma_pernet(net);
5313 
5314     WARN_ON(!xa_empty(&pernet->tcp_ps));
5315     WARN_ON(!xa_empty(&pernet->udp_ps));
5316     WARN_ON(!xa_empty(&pernet->ipoib_ps));
5317     WARN_ON(!xa_empty(&pernet->ib_ps));
5318 }
5319 
5320 static struct pernet_operations cma_pernet_operations = {
5321     .init = cma_init_net,
5322     .exit = cma_exit_net,
5323     .id = &cma_pernet_id,
5324     .size = sizeof(struct cma_pernet),
5325 };
5326 
5327 static int __init cma_init(void)
5328 {
5329     int ret;
5330 
5331     /*
5332      * There is a rare lock ordering dependency in cma_netdev_callback()
5333      * that only happens when bonding is enabled. Teach lockdep that rtnl
5334      * must never be nested under lock so it can find these without having
5335      * to test with bonding.
5336      */
5337     if (IS_ENABLED(CONFIG_LOCKDEP)) {
5338         rtnl_lock();
5339         mutex_lock(&lock);
5340         mutex_unlock(&lock);
5341         rtnl_unlock();
5342     }
5343 
5344     cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5345     if (!cma_wq)
5346         return -ENOMEM;
5347 
5348     ret = register_pernet_subsys(&cma_pernet_operations);
5349     if (ret)
5350         goto err_wq;
5351 
5352     ib_sa_register_client(&sa_client);
5353     register_netdevice_notifier(&cma_nb);
5354     register_netevent_notifier(&cma_netevent_cb);
5355 
5356     ret = ib_register_client(&cma_client);
5357     if (ret)
5358         goto err;
5359 
5360     ret = cma_configfs_init();
5361     if (ret)
5362         goto err_ib;
5363 
5364     return 0;
5365 
5366 err_ib:
5367     ib_unregister_client(&cma_client);
5368 err:
5369     unregister_netevent_notifier(&cma_netevent_cb);
5370     unregister_netdevice_notifier(&cma_nb);
5371     ib_sa_unregister_client(&sa_client);
5372     unregister_pernet_subsys(&cma_pernet_operations);
5373 err_wq:
5374     destroy_workqueue(cma_wq);
5375     return ret;
5376 }
5377 
5378 static void __exit cma_cleanup(void)
5379 {
5380     cma_configfs_exit();
5381     ib_unregister_client(&cma_client);
5382     unregister_netevent_notifier(&cma_netevent_cb);
5383     unregister_netdevice_notifier(&cma_nb);
5384     ib_sa_unregister_client(&sa_client);
5385     unregister_pernet_subsys(&cma_pernet_operations);
5386     destroy_workqueue(cma_wq);
5387 }
5388 
5389 module_init(cma_init);
5390 module_exit(cma_cleanup);