Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * vl6180.c - Support for STMicroelectronics VL6180 ALS, range and proximity
0004  * sensor
0005  *
0006  * Copyright 2017 Peter Meerwald-Stadler <pmeerw@pmeerw.net>
0007  * Copyright 2017 Manivannan Sadhasivam <manivannanece23@gmail.com>
0008  *
0009  * IIO driver for VL6180 (7-bit I2C slave address 0x29)
0010  *
0011  * Range: 0 to 100mm
0012  * ALS: < 1 Lux up to 100 kLux
0013  * IR: 850nm
0014  *
0015  * TODO: irq, threshold events, continuous mode, hardware buffer
0016  */
0017 
0018 #include <linux/module.h>
0019 #include <linux/mod_devicetable.h>
0020 #include <linux/i2c.h>
0021 #include <linux/mutex.h>
0022 #include <linux/err.h>
0023 #include <linux/of.h>
0024 #include <linux/delay.h>
0025 #include <linux/util_macros.h>
0026 
0027 #include <linux/iio/iio.h>
0028 #include <linux/iio/sysfs.h>
0029 
0030 #define VL6180_DRV_NAME "vl6180"
0031 
0032 /* Device identification register and value */
0033 #define VL6180_MODEL_ID 0x000
0034 #define VL6180_MODEL_ID_VAL 0xb4
0035 
0036 /* Configuration registers */
0037 #define VL6180_INTR_CONFIG 0x014
0038 #define VL6180_INTR_CLEAR 0x015
0039 #define VL6180_OUT_OF_RESET 0x016
0040 #define VL6180_HOLD 0x017
0041 #define VL6180_RANGE_START 0x018
0042 #define VL6180_ALS_START 0x038
0043 #define VL6180_ALS_GAIN 0x03f
0044 #define VL6180_ALS_IT 0x040
0045 
0046 /* Status registers */
0047 #define VL6180_RANGE_STATUS 0x04d
0048 #define VL6180_ALS_STATUS 0x04e
0049 #define VL6180_INTR_STATUS 0x04f
0050 
0051 /* Result value registers */
0052 #define VL6180_ALS_VALUE 0x050
0053 #define VL6180_RANGE_VALUE 0x062
0054 #define VL6180_RANGE_RATE 0x066
0055 
0056 /* bits of the RANGE_START and ALS_START register */
0057 #define VL6180_MODE_CONT BIT(1) /* continuous mode */
0058 #define VL6180_STARTSTOP BIT(0) /* start measurement, auto-reset */
0059 
0060 /* bits of the INTR_STATUS and INTR_CONFIG register */
0061 #define VL6180_ALS_READY BIT(5)
0062 #define VL6180_RANGE_READY BIT(2)
0063 
0064 /* bits of the INTR_CLEAR register */
0065 #define VL6180_CLEAR_ERROR BIT(2)
0066 #define VL6180_CLEAR_ALS BIT(1)
0067 #define VL6180_CLEAR_RANGE BIT(0)
0068 
0069 /* bits of the HOLD register */
0070 #define VL6180_HOLD_ON BIT(0)
0071 
0072 /* default value for the ALS_IT register */
0073 #define VL6180_ALS_IT_100 0x63 /* 100 ms */
0074 
0075 /* values for the ALS_GAIN register */
0076 #define VL6180_ALS_GAIN_1 0x46
0077 #define VL6180_ALS_GAIN_1_25 0x45
0078 #define VL6180_ALS_GAIN_1_67 0x44
0079 #define VL6180_ALS_GAIN_2_5 0x43
0080 #define VL6180_ALS_GAIN_5 0x42
0081 #define VL6180_ALS_GAIN_10 0x41
0082 #define VL6180_ALS_GAIN_20 0x40
0083 #define VL6180_ALS_GAIN_40 0x47
0084 
0085 struct vl6180_data {
0086     struct i2c_client *client;
0087     struct mutex lock;
0088     unsigned int als_gain_milli;
0089     unsigned int als_it_ms;
0090 };
0091 
0092 enum { VL6180_ALS, VL6180_RANGE, VL6180_PROX };
0093 
0094 /**
0095  * struct vl6180_chan_regs - Registers for accessing channels
0096  * @drdy_mask:          Data ready bit in status register
0097  * @start_reg:          Conversion start register
0098  * @value_reg:          Result value register
0099  * @word:           Register word length
0100  */
0101 struct vl6180_chan_regs {
0102     u8 drdy_mask;
0103     u16 start_reg, value_reg;
0104     bool word;
0105 };
0106 
0107 static const struct vl6180_chan_regs vl6180_chan_regs_table[] = {
0108     [VL6180_ALS] = {
0109         .drdy_mask = VL6180_ALS_READY,
0110         .start_reg = VL6180_ALS_START,
0111         .value_reg = VL6180_ALS_VALUE,
0112         .word = true,
0113     },
0114     [VL6180_RANGE] = {
0115         .drdy_mask = VL6180_RANGE_READY,
0116         .start_reg = VL6180_RANGE_START,
0117         .value_reg = VL6180_RANGE_VALUE,
0118         .word = false,
0119     },
0120     [VL6180_PROX] = {
0121         .drdy_mask = VL6180_RANGE_READY,
0122         .start_reg = VL6180_RANGE_START,
0123         .value_reg = VL6180_RANGE_RATE,
0124         .word = true,
0125     },
0126 };
0127 
0128 static int vl6180_read(struct i2c_client *client, u16 cmd, void *databuf,
0129                u8 len)
0130 {
0131     __be16 cmdbuf = cpu_to_be16(cmd);
0132     struct i2c_msg msgs[2] = {
0133         { .addr = client->addr, .len = sizeof(cmdbuf), .buf = (u8 *) &cmdbuf },
0134         { .addr = client->addr, .len = len, .buf = databuf,
0135           .flags = I2C_M_RD } };
0136     int ret;
0137 
0138     ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
0139     if (ret < 0)
0140         dev_err(&client->dev, "failed reading register 0x%04x\n", cmd);
0141 
0142     return ret;
0143 }
0144 
0145 static int vl6180_read_byte(struct i2c_client *client, u16 cmd)
0146 {
0147     u8 data;
0148     int ret;
0149 
0150     ret = vl6180_read(client, cmd, &data, sizeof(data));
0151     if (ret < 0)
0152         return ret;
0153 
0154     return data;
0155 }
0156 
0157 static int vl6180_read_word(struct i2c_client *client, u16 cmd)
0158 {
0159     __be16 data;
0160     int ret;
0161 
0162     ret = vl6180_read(client, cmd, &data, sizeof(data));
0163     if (ret < 0)
0164         return ret;
0165 
0166     return be16_to_cpu(data);
0167 }
0168 
0169 static int vl6180_write_byte(struct i2c_client *client, u16 cmd, u8 val)
0170 {
0171     u8 buf[3];
0172     struct i2c_msg msgs[1] = {
0173         { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
0174     int ret;
0175 
0176     buf[0] = cmd >> 8;
0177     buf[1] = cmd & 0xff;
0178     buf[2] = val;
0179 
0180     ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
0181     if (ret < 0) {
0182         dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
0183         return ret;
0184     }
0185 
0186     return 0;
0187 }
0188 
0189 static int vl6180_write_word(struct i2c_client *client, u16 cmd, u16 val)
0190 {
0191     __be16 buf[2];
0192     struct i2c_msg msgs[1] = {
0193         { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
0194     int ret;
0195 
0196     buf[0] = cpu_to_be16(cmd);
0197     buf[1] = cpu_to_be16(val);
0198 
0199     ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
0200     if (ret < 0) {
0201         dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
0202         return ret;
0203     }
0204 
0205     return 0;
0206 }
0207 
0208 static int vl6180_measure(struct vl6180_data *data, int addr)
0209 {
0210     struct i2c_client *client = data->client;
0211     int tries = 20, ret;
0212     u16 value;
0213 
0214     mutex_lock(&data->lock);
0215     /* Start single shot measurement */
0216     ret = vl6180_write_byte(client,
0217         vl6180_chan_regs_table[addr].start_reg, VL6180_STARTSTOP);
0218     if (ret < 0)
0219         goto fail;
0220 
0221     while (tries--) {
0222         ret = vl6180_read_byte(client, VL6180_INTR_STATUS);
0223         if (ret < 0)
0224             goto fail;
0225 
0226         if (ret & vl6180_chan_regs_table[addr].drdy_mask)
0227             break;
0228         msleep(20);
0229     }
0230 
0231     if (tries < 0) {
0232         ret = -EIO;
0233         goto fail;
0234     }
0235 
0236     /* Read result value from appropriate registers */
0237     ret = vl6180_chan_regs_table[addr].word ?
0238         vl6180_read_word(client, vl6180_chan_regs_table[addr].value_reg) :
0239         vl6180_read_byte(client, vl6180_chan_regs_table[addr].value_reg);
0240     if (ret < 0)
0241         goto fail;
0242     value = ret;
0243 
0244     /* Clear the interrupt flag after data read */
0245     ret = vl6180_write_byte(client, VL6180_INTR_CLEAR,
0246         VL6180_CLEAR_ERROR | VL6180_CLEAR_ALS | VL6180_CLEAR_RANGE);
0247     if (ret < 0)
0248         goto fail;
0249 
0250     ret = value;
0251 
0252 fail:
0253     mutex_unlock(&data->lock);
0254 
0255     return ret;
0256 }
0257 
0258 static const struct iio_chan_spec vl6180_channels[] = {
0259     {
0260         .type = IIO_LIGHT,
0261         .address = VL6180_ALS,
0262         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
0263             BIT(IIO_CHAN_INFO_INT_TIME) |
0264             BIT(IIO_CHAN_INFO_SCALE) |
0265             BIT(IIO_CHAN_INFO_HARDWAREGAIN),
0266     }, {
0267         .type = IIO_DISTANCE,
0268         .address = VL6180_RANGE,
0269         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
0270             BIT(IIO_CHAN_INFO_SCALE),
0271     }, {
0272         .type = IIO_PROXIMITY,
0273         .address = VL6180_PROX,
0274         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0275     }
0276 };
0277 
0278 /*
0279  * Available Ambient Light Sensor gain settings, 1/1000th, and
0280  * corresponding setting for the VL6180_ALS_GAIN register
0281  */
0282 static const int vl6180_als_gain_tab[8] = {
0283     1000, 1250, 1670, 2500, 5000, 10000, 20000, 40000
0284 };
0285 static const u8 vl6180_als_gain_tab_bits[8] = {
0286     VL6180_ALS_GAIN_1,    VL6180_ALS_GAIN_1_25,
0287     VL6180_ALS_GAIN_1_67, VL6180_ALS_GAIN_2_5,
0288     VL6180_ALS_GAIN_5,    VL6180_ALS_GAIN_10,
0289     VL6180_ALS_GAIN_20,   VL6180_ALS_GAIN_40
0290 };
0291 
0292 static int vl6180_read_raw(struct iio_dev *indio_dev,
0293                 struct iio_chan_spec const *chan,
0294                 int *val, int *val2, long mask)
0295 {
0296     struct vl6180_data *data = iio_priv(indio_dev);
0297     int ret;
0298 
0299     switch (mask) {
0300     case IIO_CHAN_INFO_RAW:
0301         ret = vl6180_measure(data, chan->address);
0302         if (ret < 0)
0303             return ret;
0304         *val = ret;
0305 
0306         return IIO_VAL_INT;
0307     case IIO_CHAN_INFO_INT_TIME:
0308         *val = data->als_it_ms;
0309         *val2 = 1000;
0310 
0311         return IIO_VAL_FRACTIONAL;
0312 
0313     case IIO_CHAN_INFO_SCALE:
0314         switch (chan->type) {
0315         case IIO_LIGHT:
0316             /* one ALS count is 0.32 Lux @ gain 1, IT 100 ms */
0317             *val = 32000; /* 0.32 * 1000 * 100 */
0318             *val2 = data->als_gain_milli * data->als_it_ms;
0319 
0320             return IIO_VAL_FRACTIONAL;
0321 
0322         case IIO_DISTANCE:
0323             *val = 0; /* sensor reports mm, scale to meter */
0324             *val2 = 1000;
0325             break;
0326         default:
0327             return -EINVAL;
0328         }
0329 
0330         return IIO_VAL_INT_PLUS_MICRO;
0331     case IIO_CHAN_INFO_HARDWAREGAIN:
0332         *val = data->als_gain_milli;
0333         *val2 = 1000;
0334 
0335         return IIO_VAL_FRACTIONAL;
0336 
0337     default:
0338         return -EINVAL;
0339     }
0340 }
0341 
0342 static IIO_CONST_ATTR(als_gain_available, "1 1.25 1.67 2.5 5 10 20 40");
0343 
0344 static struct attribute *vl6180_attributes[] = {
0345     &iio_const_attr_als_gain_available.dev_attr.attr,
0346     NULL
0347 };
0348 
0349 static const struct attribute_group vl6180_attribute_group = {
0350     .attrs = vl6180_attributes,
0351 };
0352 
0353 /* HOLD is needed before updating any config registers */
0354 static int vl6180_hold(struct vl6180_data *data, bool hold)
0355 {
0356     return vl6180_write_byte(data->client, VL6180_HOLD,
0357         hold ? VL6180_HOLD_ON : 0);
0358 }
0359 
0360 static int vl6180_set_als_gain(struct vl6180_data *data, int val, int val2)
0361 {
0362     int i, ret, gain;
0363 
0364     if (val < 1 || val > 40)
0365         return -EINVAL;
0366 
0367     gain = (val * 1000000 + val2) / 1000;
0368     if (gain < 1 || gain > 40000)
0369         return -EINVAL;
0370 
0371     i = find_closest(gain, vl6180_als_gain_tab,
0372              ARRAY_SIZE(vl6180_als_gain_tab));
0373 
0374     mutex_lock(&data->lock);
0375     ret = vl6180_hold(data, true);
0376     if (ret < 0)
0377         goto fail;
0378 
0379     ret = vl6180_write_byte(data->client, VL6180_ALS_GAIN,
0380                 vl6180_als_gain_tab_bits[i]);
0381 
0382     if (ret >= 0)
0383         data->als_gain_milli = vl6180_als_gain_tab[i];
0384 
0385 fail:
0386     vl6180_hold(data, false);
0387     mutex_unlock(&data->lock);
0388     return ret;
0389 }
0390 
0391 static int vl6180_set_it(struct vl6180_data *data, int val, int val2)
0392 {
0393     int ret, it_ms;
0394 
0395     it_ms = DIV_ROUND_CLOSEST(val2, 1000); /* round to ms */
0396     if (val != 0 || it_ms < 1 || it_ms > 512)
0397         return -EINVAL;
0398 
0399     mutex_lock(&data->lock);
0400     ret = vl6180_hold(data, true);
0401     if (ret < 0)
0402         goto fail;
0403 
0404     ret = vl6180_write_word(data->client, VL6180_ALS_IT, it_ms - 1);
0405 
0406     if (ret >= 0)
0407         data->als_it_ms = it_ms;
0408 
0409 fail:
0410     vl6180_hold(data, false);
0411     mutex_unlock(&data->lock);
0412 
0413     return ret;
0414 }
0415 
0416 static int vl6180_write_raw(struct iio_dev *indio_dev,
0417                  struct iio_chan_spec const *chan,
0418                  int val, int val2, long mask)
0419 {
0420     struct vl6180_data *data = iio_priv(indio_dev);
0421 
0422     switch (mask) {
0423     case IIO_CHAN_INFO_INT_TIME:
0424         return vl6180_set_it(data, val, val2);
0425 
0426     case IIO_CHAN_INFO_HARDWAREGAIN:
0427         if (chan->type != IIO_LIGHT)
0428             return -EINVAL;
0429 
0430         return vl6180_set_als_gain(data, val, val2);
0431     default:
0432         return -EINVAL;
0433     }
0434 }
0435 
0436 static const struct iio_info vl6180_info = {
0437     .read_raw = vl6180_read_raw,
0438     .write_raw = vl6180_write_raw,
0439     .attrs = &vl6180_attribute_group,
0440 };
0441 
0442 static int vl6180_init(struct vl6180_data *data)
0443 {
0444     struct i2c_client *client = data->client;
0445     int ret;
0446 
0447     ret = vl6180_read_byte(client, VL6180_MODEL_ID);
0448     if (ret < 0)
0449         return ret;
0450 
0451     if (ret != VL6180_MODEL_ID_VAL) {
0452         dev_err(&client->dev, "invalid model ID %02x\n", ret);
0453         return -ENODEV;
0454     }
0455 
0456     ret = vl6180_hold(data, true);
0457     if (ret < 0)
0458         return ret;
0459 
0460     ret = vl6180_read_byte(client, VL6180_OUT_OF_RESET);
0461     if (ret < 0)
0462         return ret;
0463 
0464     /*
0465      * Detect false reset condition here. This bit is always set when the
0466      * system comes out of reset.
0467      */
0468     if (ret != 0x01)
0469         dev_info(&client->dev, "device is not fresh out of reset\n");
0470 
0471     /* Enable ALS and Range ready interrupts */
0472     ret = vl6180_write_byte(client, VL6180_INTR_CONFIG,
0473                 VL6180_ALS_READY | VL6180_RANGE_READY);
0474     if (ret < 0)
0475         return ret;
0476 
0477     /* ALS integration time: 100ms */
0478     data->als_it_ms = 100;
0479     ret = vl6180_write_word(client, VL6180_ALS_IT, VL6180_ALS_IT_100);
0480     if (ret < 0)
0481         return ret;
0482 
0483     /* ALS gain: 1 */
0484     data->als_gain_milli = 1000;
0485     ret = vl6180_write_byte(client, VL6180_ALS_GAIN, VL6180_ALS_GAIN_1);
0486     if (ret < 0)
0487         return ret;
0488 
0489     ret = vl6180_write_byte(client, VL6180_OUT_OF_RESET, 0x00);
0490     if (ret < 0)
0491         return ret;
0492 
0493     return vl6180_hold(data, false);
0494 }
0495 
0496 static int vl6180_probe(struct i2c_client *client,
0497               const struct i2c_device_id *id)
0498 {
0499     struct vl6180_data *data;
0500     struct iio_dev *indio_dev;
0501     int ret;
0502 
0503     indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
0504     if (!indio_dev)
0505         return -ENOMEM;
0506 
0507     data = iio_priv(indio_dev);
0508     i2c_set_clientdata(client, indio_dev);
0509     data->client = client;
0510     mutex_init(&data->lock);
0511 
0512     indio_dev->info = &vl6180_info;
0513     indio_dev->channels = vl6180_channels;
0514     indio_dev->num_channels = ARRAY_SIZE(vl6180_channels);
0515     indio_dev->name = VL6180_DRV_NAME;
0516     indio_dev->modes = INDIO_DIRECT_MODE;
0517 
0518     ret = vl6180_init(data);
0519     if (ret < 0)
0520         return ret;
0521 
0522     return devm_iio_device_register(&client->dev, indio_dev);
0523 }
0524 
0525 static const struct of_device_id vl6180_of_match[] = {
0526     { .compatible = "st,vl6180", },
0527     { },
0528 };
0529 MODULE_DEVICE_TABLE(of, vl6180_of_match);
0530 
0531 static const struct i2c_device_id vl6180_id[] = {
0532     { "vl6180", 0 },
0533     { }
0534 };
0535 MODULE_DEVICE_TABLE(i2c, vl6180_id);
0536 
0537 static struct i2c_driver vl6180_driver = {
0538     .driver = {
0539         .name   = VL6180_DRV_NAME,
0540         .of_match_table = vl6180_of_match,
0541     },
0542     .probe  = vl6180_probe,
0543     .id_table = vl6180_id,
0544 };
0545 
0546 module_i2c_driver(vl6180_driver);
0547 
0548 MODULE_AUTHOR("Peter Meerwald-Stadler <pmeerw@pmeerw.net>");
0549 MODULE_AUTHOR("Manivannan Sadhasivam <manivannanece23@gmail.com>");
0550 MODULE_DESCRIPTION("STMicro VL6180 ALS, range and proximity sensor driver");
0551 MODULE_LICENSE("GPL");