Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Device driver for monitoring ambient light intensity (lux)
0004  * within the TAOS tsl258x family of devices (tsl2580, tsl2581, tsl2583).
0005  *
0006  * Copyright (c) 2011, TAOS Corporation.
0007  * Copyright (c) 2016-2017 Brian Masney <masneyb@onstation.org>
0008  */
0009 
0010 #include <linux/kernel.h>
0011 #include <linux/i2c.h>
0012 #include <linux/errno.h>
0013 #include <linux/delay.h>
0014 #include <linux/string.h>
0015 #include <linux/mutex.h>
0016 #include <linux/unistd.h>
0017 #include <linux/slab.h>
0018 #include <linux/module.h>
0019 #include <linux/iio/iio.h>
0020 #include <linux/iio/sysfs.h>
0021 #include <linux/pm_runtime.h>
0022 
0023 /* Device Registers and Masks */
0024 #define TSL2583_CNTRL           0x00
0025 #define TSL2583_ALS_TIME        0X01
0026 #define TSL2583_INTERRUPT       0x02
0027 #define TSL2583_GAIN            0x07
0028 #define TSL2583_REVID           0x11
0029 #define TSL2583_CHIPID          0x12
0030 #define TSL2583_ALS_CHAN0LO     0x14
0031 #define TSL2583_ALS_CHAN0HI     0x15
0032 #define TSL2583_ALS_CHAN1LO     0x16
0033 #define TSL2583_ALS_CHAN1HI     0x17
0034 #define TSL2583_TMR_LO          0x18
0035 #define TSL2583_TMR_HI          0x19
0036 
0037 /* tsl2583 cmd reg masks */
0038 #define TSL2583_CMD_REG         0x80
0039 #define TSL2583_CMD_SPL_FN      0x60
0040 #define TSL2583_CMD_ALS_INT_CLR     0x01
0041 
0042 /* tsl2583 cntrl reg masks */
0043 #define TSL2583_CNTL_ADC_ENBL       0x02
0044 #define TSL2583_CNTL_PWR_OFF        0x00
0045 #define TSL2583_CNTL_PWR_ON     0x01
0046 
0047 /* tsl2583 status reg masks */
0048 #define TSL2583_STA_ADC_VALID       0x01
0049 #define TSL2583_STA_ADC_INTR        0x10
0050 
0051 /* Lux calculation constants */
0052 #define TSL2583_LUX_CALC_OVER_FLOW  65535
0053 
0054 #define TSL2583_INTERRUPT_DISABLED  0x00
0055 
0056 #define TSL2583_CHIP_ID         0x90
0057 #define TSL2583_CHIP_ID_MASK        0xf0
0058 
0059 #define TSL2583_POWER_OFF_DELAY_MS  2000
0060 
0061 /* Per-device data */
0062 struct tsl2583_als_info {
0063     u16 als_ch0;
0064     u16 als_ch1;
0065     u16 lux;
0066 };
0067 
0068 struct tsl2583_lux {
0069     unsigned int ratio;
0070     unsigned int ch0;
0071     unsigned int ch1;
0072 };
0073 
0074 static const struct tsl2583_lux tsl2583_default_lux[] = {
0075     {  9830,  8520, 15729 },
0076     { 12452, 10807, 23344 },
0077     { 14746,  6383, 11705 },
0078     { 17695,  4063,  6554 },
0079     {     0,     0,     0 }  /* Termination segment */
0080 };
0081 
0082 #define TSL2583_MAX_LUX_TABLE_ENTRIES 11
0083 
0084 struct tsl2583_settings {
0085     int als_time;
0086     int als_gain;
0087     int als_gain_trim;
0088     int als_cal_target;
0089 
0090     /*
0091      * This structure is intentionally large to accommodate updates via
0092      * sysfs. Sized to 11 = max 10 segments + 1 termination segment.
0093      * Assumption is that one and only one type of glass used.
0094      */
0095     struct tsl2583_lux als_device_lux[TSL2583_MAX_LUX_TABLE_ENTRIES];
0096 };
0097 
0098 struct tsl2583_chip {
0099     struct mutex als_mutex;
0100     struct i2c_client *client;
0101     struct tsl2583_als_info als_cur_info;
0102     struct tsl2583_settings als_settings;
0103     int als_time_scale;
0104     int als_saturation;
0105 };
0106 
0107 struct gainadj {
0108     s16 ch0;
0109     s16 ch1;
0110     s16 mean;
0111 };
0112 
0113 /* Index = (0 - 3) Used to validate the gain selection index */
0114 static const struct gainadj gainadj[] = {
0115     { 1, 1, 1 },
0116     { 8, 8, 8 },
0117     { 16, 16, 16 },
0118     { 107, 115, 111 }
0119 };
0120 
0121 /*
0122  * Provides initial operational parameter defaults.
0123  * These defaults may be changed through the device's sysfs files.
0124  */
0125 static void tsl2583_defaults(struct tsl2583_chip *chip)
0126 {
0127     /*
0128      * The integration time must be a multiple of 50ms and within the
0129      * range [50, 600] ms.
0130      */
0131     chip->als_settings.als_time = 100;
0132 
0133     /*
0134      * This is an index into the gainadj table. Assume clear glass as the
0135      * default.
0136      */
0137     chip->als_settings.als_gain = 0;
0138 
0139     /* Default gain trim to account for aperture effects */
0140     chip->als_settings.als_gain_trim = 1000;
0141 
0142     /* Known external ALS reading used for calibration */
0143     chip->als_settings.als_cal_target = 130;
0144 
0145     /* Default lux table. */
0146     memcpy(chip->als_settings.als_device_lux, tsl2583_default_lux,
0147            sizeof(tsl2583_default_lux));
0148 }
0149 
0150 /*
0151  * Reads and calculates current lux value.
0152  * The raw ch0 and ch1 values of the ambient light sensed in the last
0153  * integration cycle are read from the device.
0154  * Time scale factor array values are adjusted based on the integration time.
0155  * The raw values are multiplied by a scale factor, and device gain is obtained
0156  * using gain index. Limit checks are done next, then the ratio of a multiple
0157  * of ch1 value, to the ch0 value, is calculated. The array als_device_lux[]
0158  * declared above is then scanned to find the first ratio value that is just
0159  * above the ratio we just calculated. The ch0 and ch1 multiplier constants in
0160  * the array are then used along with the time scale factor array values, to
0161  * calculate the lux.
0162  */
0163 static int tsl2583_get_lux(struct iio_dev *indio_dev)
0164 {
0165     u16 ch0, ch1; /* separated ch0/ch1 data from device */
0166     u32 lux; /* raw lux calculated from device data */
0167     u64 lux64;
0168     u32 ratio;
0169     u8 buf[5];
0170     struct tsl2583_lux *p;
0171     struct tsl2583_chip *chip = iio_priv(indio_dev);
0172     int i, ret;
0173 
0174     ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG);
0175     if (ret < 0) {
0176         dev_err(&chip->client->dev, "%s: failed to read CMD_REG register\n",
0177             __func__);
0178         goto done;
0179     }
0180 
0181     /* is data new & valid */
0182     if (!(ret & TSL2583_STA_ADC_INTR)) {
0183         dev_err(&chip->client->dev, "%s: data not valid; returning last value\n",
0184             __func__);
0185         ret = chip->als_cur_info.lux; /* return LAST VALUE */
0186         goto done;
0187     }
0188 
0189     for (i = 0; i < 4; i++) {
0190         int reg = TSL2583_CMD_REG | (TSL2583_ALS_CHAN0LO + i);
0191 
0192         ret = i2c_smbus_read_byte_data(chip->client, reg);
0193         if (ret < 0) {
0194             dev_err(&chip->client->dev, "%s: failed to read register %x\n",
0195                 __func__, reg);
0196             goto done;
0197         }
0198         buf[i] = ret;
0199     }
0200 
0201     /*
0202      * Clear the pending interrupt status bit on the chip to allow the next
0203      * integration cycle to start. This has to be done even though this
0204      * driver currently does not support interrupts.
0205      */
0206     ret = i2c_smbus_write_byte(chip->client,
0207                    (TSL2583_CMD_REG | TSL2583_CMD_SPL_FN |
0208                     TSL2583_CMD_ALS_INT_CLR));
0209     if (ret < 0) {
0210         dev_err(&chip->client->dev, "%s: failed to clear the interrupt bit\n",
0211             __func__);
0212         goto done; /* have no data, so return failure */
0213     }
0214 
0215     /* extract ALS/lux data */
0216     ch0 = le16_to_cpup((const __le16 *)&buf[0]);
0217     ch1 = le16_to_cpup((const __le16 *)&buf[2]);
0218 
0219     chip->als_cur_info.als_ch0 = ch0;
0220     chip->als_cur_info.als_ch1 = ch1;
0221 
0222     if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation))
0223         goto return_max;
0224 
0225     if (!ch0) {
0226         /*
0227          * The sensor appears to be in total darkness so set the
0228          * calculated lux to 0 and return early to avoid a division by
0229          * zero below when calculating the ratio.
0230          */
0231         ret = 0;
0232         chip->als_cur_info.lux = 0;
0233         goto done;
0234     }
0235 
0236     /* calculate ratio */
0237     ratio = (ch1 << 15) / ch0;
0238 
0239     /* convert to unscaled lux using the pointer to the table */
0240     for (p = (struct tsl2583_lux *)chip->als_settings.als_device_lux;
0241          p->ratio != 0 && p->ratio < ratio; p++)
0242         ;
0243 
0244     if (p->ratio == 0) {
0245         lux = 0;
0246     } else {
0247         u32 ch0lux, ch1lux;
0248 
0249         ch0lux = ((ch0 * p->ch0) +
0250               (gainadj[chip->als_settings.als_gain].ch0 >> 1))
0251              / gainadj[chip->als_settings.als_gain].ch0;
0252         ch1lux = ((ch1 * p->ch1) +
0253               (gainadj[chip->als_settings.als_gain].ch1 >> 1))
0254              / gainadj[chip->als_settings.als_gain].ch1;
0255 
0256         /* note: lux is 31 bit max at this point */
0257         if (ch1lux > ch0lux) {
0258             dev_dbg(&chip->client->dev, "%s: No Data - Returning 0\n",
0259                 __func__);
0260             ret = 0;
0261             chip->als_cur_info.lux = 0;
0262             goto done;
0263         }
0264 
0265         lux = ch0lux - ch1lux;
0266     }
0267 
0268     /* adjust for active time scale */
0269     if (chip->als_time_scale == 0)
0270         lux = 0;
0271     else
0272         lux = (lux + (chip->als_time_scale >> 1)) /
0273             chip->als_time_scale;
0274 
0275     /*
0276      * Adjust for active gain scale.
0277      * The tsl2583_default_lux tables above have a factor of 8192 built in,
0278      * so we need to shift right.
0279      * User-specified gain provides a multiplier.
0280      * Apply user-specified gain before shifting right to retain precision.
0281      * Use 64 bits to avoid overflow on multiplication.
0282      * Then go back to 32 bits before division to avoid using div_u64().
0283      */
0284     lux64 = lux;
0285     lux64 = lux64 * chip->als_settings.als_gain_trim;
0286     lux64 >>= 13;
0287     lux = lux64;
0288     lux = DIV_ROUND_CLOSEST(lux, 1000);
0289 
0290     if (lux > TSL2583_LUX_CALC_OVER_FLOW) { /* check for overflow */
0291 return_max:
0292         lux = TSL2583_LUX_CALC_OVER_FLOW;
0293     }
0294 
0295     /* Update the structure with the latest VALID lux. */
0296     chip->als_cur_info.lux = lux;
0297     ret = lux;
0298 
0299 done:
0300     return ret;
0301 }
0302 
0303 /*
0304  * Obtain single reading and calculate the als_gain_trim (later used
0305  * to derive actual lux).
0306  * Return updated gain_trim value.
0307  */
0308 static int tsl2583_als_calibrate(struct iio_dev *indio_dev)
0309 {
0310     struct tsl2583_chip *chip = iio_priv(indio_dev);
0311     unsigned int gain_trim_val;
0312     int ret;
0313     int lux_val;
0314 
0315     ret = i2c_smbus_read_byte_data(chip->client,
0316                        TSL2583_CMD_REG | TSL2583_CNTRL);
0317     if (ret < 0) {
0318         dev_err(&chip->client->dev,
0319             "%s: failed to read from the CNTRL register\n",
0320             __func__);
0321         return ret;
0322     }
0323 
0324     if ((ret & (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON))
0325             != (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) {
0326         dev_err(&chip->client->dev,
0327             "%s: Device is not powered on and/or ADC is not enabled\n",
0328             __func__);
0329         return -EINVAL;
0330     } else if ((ret & TSL2583_STA_ADC_VALID) != TSL2583_STA_ADC_VALID) {
0331         dev_err(&chip->client->dev,
0332             "%s: The two ADC channels have not completed an integration cycle\n",
0333             __func__);
0334         return -ENODATA;
0335     }
0336 
0337     lux_val = tsl2583_get_lux(indio_dev);
0338     if (lux_val < 0) {
0339         dev_err(&chip->client->dev, "%s: failed to get lux\n",
0340             __func__);
0341         return lux_val;
0342     }
0343 
0344     /* Avoid division by zero of lux_value later on */
0345     if (lux_val == 0) {
0346         dev_err(&chip->client->dev,
0347             "%s: lux_val of 0 will produce out of range trim_value\n",
0348             __func__);
0349         return -ENODATA;
0350     }
0351 
0352     gain_trim_val = (unsigned int)(((chip->als_settings.als_cal_target)
0353             * chip->als_settings.als_gain_trim) / lux_val);
0354     if ((gain_trim_val < 250) || (gain_trim_val > 4000)) {
0355         dev_err(&chip->client->dev,
0356             "%s: trim_val of %d is not within the range [250, 4000]\n",
0357             __func__, gain_trim_val);
0358         return -ENODATA;
0359     }
0360 
0361     chip->als_settings.als_gain_trim = (int)gain_trim_val;
0362 
0363     return 0;
0364 }
0365 
0366 static int tsl2583_set_als_time(struct tsl2583_chip *chip)
0367 {
0368     int als_count, als_time, ret;
0369     u8 val;
0370 
0371     /* determine als integration register */
0372     als_count = DIV_ROUND_CLOSEST(chip->als_settings.als_time * 100, 270);
0373     if (!als_count)
0374         als_count = 1; /* ensure at least one cycle */
0375 
0376     /* convert back to time (encompasses overrides) */
0377     als_time = DIV_ROUND_CLOSEST(als_count * 27, 10);
0378 
0379     val = 256 - als_count;
0380     ret = i2c_smbus_write_byte_data(chip->client,
0381                     TSL2583_CMD_REG | TSL2583_ALS_TIME,
0382                     val);
0383     if (ret < 0) {
0384         dev_err(&chip->client->dev, "%s: failed to set the als time to %d\n",
0385             __func__, val);
0386         return ret;
0387     }
0388 
0389     /* set chip struct re scaling and saturation */
0390     chip->als_saturation = als_count * 922; /* 90% of full scale */
0391     chip->als_time_scale = DIV_ROUND_CLOSEST(als_time, 50);
0392 
0393     return ret;
0394 }
0395 
0396 static int tsl2583_set_als_gain(struct tsl2583_chip *chip)
0397 {
0398     int ret;
0399 
0400     /* Set the gain based on als_settings struct */
0401     ret = i2c_smbus_write_byte_data(chip->client,
0402                     TSL2583_CMD_REG | TSL2583_GAIN,
0403                     chip->als_settings.als_gain);
0404     if (ret < 0)
0405         dev_err(&chip->client->dev,
0406             "%s: failed to set the gain to %d\n", __func__,
0407             chip->als_settings.als_gain);
0408 
0409     return ret;
0410 }
0411 
0412 static int tsl2583_set_power_state(struct tsl2583_chip *chip, u8 state)
0413 {
0414     int ret;
0415 
0416     ret = i2c_smbus_write_byte_data(chip->client,
0417                     TSL2583_CMD_REG | TSL2583_CNTRL, state);
0418     if (ret < 0)
0419         dev_err(&chip->client->dev,
0420             "%s: failed to set the power state to %d\n", __func__,
0421             state);
0422 
0423     return ret;
0424 }
0425 
0426 /*
0427  * Turn the device on.
0428  * Configuration must be set before calling this function.
0429  */
0430 static int tsl2583_chip_init_and_power_on(struct iio_dev *indio_dev)
0431 {
0432     struct tsl2583_chip *chip = iio_priv(indio_dev);
0433     int ret;
0434 
0435     /* Power on the device; ADC off. */
0436     ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON);
0437     if (ret < 0)
0438         return ret;
0439 
0440     ret = i2c_smbus_write_byte_data(chip->client,
0441                     TSL2583_CMD_REG | TSL2583_INTERRUPT,
0442                     TSL2583_INTERRUPT_DISABLED);
0443     if (ret < 0) {
0444         dev_err(&chip->client->dev,
0445             "%s: failed to disable interrupts\n", __func__);
0446         return ret;
0447     }
0448 
0449     ret = tsl2583_set_als_time(chip);
0450     if (ret < 0)
0451         return ret;
0452 
0453     ret = tsl2583_set_als_gain(chip);
0454     if (ret < 0)
0455         return ret;
0456 
0457     usleep_range(3000, 3500);
0458 
0459     ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON |
0460                         TSL2583_CNTL_ADC_ENBL);
0461     if (ret < 0)
0462         return ret;
0463 
0464     return ret;
0465 }
0466 
0467 /* Sysfs Interface Functions */
0468 
0469 static ssize_t in_illuminance_input_target_show(struct device *dev,
0470                         struct device_attribute *attr,
0471                         char *buf)
0472 {
0473     struct iio_dev *indio_dev = dev_to_iio_dev(dev);
0474     struct tsl2583_chip *chip = iio_priv(indio_dev);
0475     int ret;
0476 
0477     mutex_lock(&chip->als_mutex);
0478     ret = sprintf(buf, "%d\n", chip->als_settings.als_cal_target);
0479     mutex_unlock(&chip->als_mutex);
0480 
0481     return ret;
0482 }
0483 
0484 static ssize_t in_illuminance_input_target_store(struct device *dev,
0485                          struct device_attribute *attr,
0486                          const char *buf, size_t len)
0487 {
0488     struct iio_dev *indio_dev = dev_to_iio_dev(dev);
0489     struct tsl2583_chip *chip = iio_priv(indio_dev);
0490     int value;
0491 
0492     if (kstrtoint(buf, 0, &value) || !value)
0493         return -EINVAL;
0494 
0495     mutex_lock(&chip->als_mutex);
0496     chip->als_settings.als_cal_target = value;
0497     mutex_unlock(&chip->als_mutex);
0498 
0499     return len;
0500 }
0501 
0502 static ssize_t in_illuminance_calibrate_store(struct device *dev,
0503                           struct device_attribute *attr,
0504                           const char *buf, size_t len)
0505 {
0506     struct iio_dev *indio_dev = dev_to_iio_dev(dev);
0507     struct tsl2583_chip *chip = iio_priv(indio_dev);
0508     int value, ret;
0509 
0510     if (kstrtoint(buf, 0, &value) || value != 1)
0511         return -EINVAL;
0512 
0513     mutex_lock(&chip->als_mutex);
0514 
0515     ret = tsl2583_als_calibrate(indio_dev);
0516     if (ret < 0)
0517         goto done;
0518 
0519     ret = len;
0520 done:
0521     mutex_unlock(&chip->als_mutex);
0522 
0523     return ret;
0524 }
0525 
0526 static ssize_t in_illuminance_lux_table_show(struct device *dev,
0527                          struct device_attribute *attr,
0528                          char *buf)
0529 {
0530     struct iio_dev *indio_dev = dev_to_iio_dev(dev);
0531     struct tsl2583_chip *chip = iio_priv(indio_dev);
0532     unsigned int i;
0533     int offset = 0;
0534 
0535     for (i = 0; i < ARRAY_SIZE(chip->als_settings.als_device_lux); i++) {
0536         offset += sprintf(buf + offset, "%u,%u,%u,",
0537                   chip->als_settings.als_device_lux[i].ratio,
0538                   chip->als_settings.als_device_lux[i].ch0,
0539                   chip->als_settings.als_device_lux[i].ch1);
0540         if (chip->als_settings.als_device_lux[i].ratio == 0) {
0541             /*
0542              * We just printed the first "0" entry.
0543              * Now get rid of the extra "," and break.
0544              */
0545             offset--;
0546             break;
0547         }
0548     }
0549 
0550     offset += sprintf(buf + offset, "\n");
0551 
0552     return offset;
0553 }
0554 
0555 static ssize_t in_illuminance_lux_table_store(struct device *dev,
0556                           struct device_attribute *attr,
0557                           const char *buf, size_t len)
0558 {
0559     struct iio_dev *indio_dev = dev_to_iio_dev(dev);
0560     struct tsl2583_chip *chip = iio_priv(indio_dev);
0561     const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3;
0562     int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1];
0563     int ret = -EINVAL;
0564     unsigned int n;
0565 
0566     mutex_lock(&chip->als_mutex);
0567 
0568     get_options(buf, ARRAY_SIZE(value), value);
0569 
0570     /*
0571      * We now have an array of ints starting at value[1], and
0572      * enumerated by value[0].
0573      * We expect each group of three ints is one table entry,
0574      * and the last table entry is all 0.
0575      */
0576     n = value[0];
0577     if ((n % 3) || n < 6 || n > max_ints) {
0578         dev_err(dev,
0579             "%s: The number of entries in the lux table must be a multiple of 3 and within the range [6, %d]\n",
0580             __func__, max_ints);
0581         goto done;
0582     }
0583     if ((value[n - 2] | value[n - 1] | value[n]) != 0) {
0584         dev_err(dev, "%s: The last 3 entries in the lux table must be zeros.\n",
0585             __func__);
0586         goto done;
0587     }
0588 
0589     memcpy(chip->als_settings.als_device_lux, &value[1],
0590            value[0] * sizeof(value[1]));
0591 
0592     ret = len;
0593 
0594 done:
0595     mutex_unlock(&chip->als_mutex);
0596 
0597     return ret;
0598 }
0599 
0600 static IIO_CONST_ATTR(in_illuminance_calibscale_available, "1 8 16 111");
0601 static IIO_CONST_ATTR(in_illuminance_integration_time_available,
0602               "0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650");
0603 static IIO_DEVICE_ATTR_RW(in_illuminance_input_target, 0);
0604 static IIO_DEVICE_ATTR_WO(in_illuminance_calibrate, 0);
0605 static IIO_DEVICE_ATTR_RW(in_illuminance_lux_table, 0);
0606 
0607 static struct attribute *sysfs_attrs_ctrl[] = {
0608     &iio_const_attr_in_illuminance_calibscale_available.dev_attr.attr,
0609     &iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr,
0610     &iio_dev_attr_in_illuminance_input_target.dev_attr.attr,
0611     &iio_dev_attr_in_illuminance_calibrate.dev_attr.attr,
0612     &iio_dev_attr_in_illuminance_lux_table.dev_attr.attr,
0613     NULL
0614 };
0615 
0616 static const struct attribute_group tsl2583_attribute_group = {
0617     .attrs = sysfs_attrs_ctrl,
0618 };
0619 
0620 static const struct iio_chan_spec tsl2583_channels[] = {
0621     {
0622         .type = IIO_LIGHT,
0623         .modified = 1,
0624         .channel2 = IIO_MOD_LIGHT_IR,
0625         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0626     },
0627     {
0628         .type = IIO_LIGHT,
0629         .modified = 1,
0630         .channel2 = IIO_MOD_LIGHT_BOTH,
0631         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0632     },
0633     {
0634         .type = IIO_LIGHT,
0635         .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
0636                       BIT(IIO_CHAN_INFO_CALIBBIAS) |
0637                       BIT(IIO_CHAN_INFO_CALIBSCALE) |
0638                       BIT(IIO_CHAN_INFO_INT_TIME),
0639     },
0640 };
0641 
0642 static int tsl2583_set_pm_runtime_busy(struct tsl2583_chip *chip, bool on)
0643 {
0644     int ret;
0645 
0646     if (on) {
0647         ret = pm_runtime_resume_and_get(&chip->client->dev);
0648     } else {
0649         pm_runtime_mark_last_busy(&chip->client->dev);
0650         ret = pm_runtime_put_autosuspend(&chip->client->dev);
0651     }
0652 
0653     return ret;
0654 }
0655 
0656 static int tsl2583_read_raw(struct iio_dev *indio_dev,
0657                 struct iio_chan_spec const *chan,
0658                 int *val, int *val2, long mask)
0659 {
0660     struct tsl2583_chip *chip = iio_priv(indio_dev);
0661     int ret, pm_ret;
0662 
0663     ret = tsl2583_set_pm_runtime_busy(chip, true);
0664     if (ret < 0)
0665         return ret;
0666 
0667     mutex_lock(&chip->als_mutex);
0668 
0669     ret = -EINVAL;
0670     switch (mask) {
0671     case IIO_CHAN_INFO_RAW:
0672         if (chan->type == IIO_LIGHT) {
0673             ret = tsl2583_get_lux(indio_dev);
0674             if (ret < 0)
0675                 goto read_done;
0676 
0677             /*
0678              * From page 20 of the TSL2581, TSL2583 data
0679              * sheet (TAOS134 − MARCH 2011):
0680              *
0681              * One of the photodiodes (channel 0) is
0682              * sensitive to both visible and infrared light,
0683              * while the second photodiode (channel 1) is
0684              * sensitive primarily to infrared light.
0685              */
0686             if (chan->channel2 == IIO_MOD_LIGHT_BOTH)
0687                 *val = chip->als_cur_info.als_ch0;
0688             else
0689                 *val = chip->als_cur_info.als_ch1;
0690 
0691             ret = IIO_VAL_INT;
0692         }
0693         break;
0694     case IIO_CHAN_INFO_PROCESSED:
0695         if (chan->type == IIO_LIGHT) {
0696             ret = tsl2583_get_lux(indio_dev);
0697             if (ret < 0)
0698                 goto read_done;
0699 
0700             *val = ret;
0701             ret = IIO_VAL_INT;
0702         }
0703         break;
0704     case IIO_CHAN_INFO_CALIBBIAS:
0705         if (chan->type == IIO_LIGHT) {
0706             *val = chip->als_settings.als_gain_trim;
0707             ret = IIO_VAL_INT;
0708         }
0709         break;
0710     case IIO_CHAN_INFO_CALIBSCALE:
0711         if (chan->type == IIO_LIGHT) {
0712             *val = gainadj[chip->als_settings.als_gain].mean;
0713             ret = IIO_VAL_INT;
0714         }
0715         break;
0716     case IIO_CHAN_INFO_INT_TIME:
0717         if (chan->type == IIO_LIGHT) {
0718             *val = 0;
0719             *val2 = chip->als_settings.als_time;
0720             ret = IIO_VAL_INT_PLUS_MICRO;
0721         }
0722         break;
0723     default:
0724         break;
0725     }
0726 
0727 read_done:
0728     mutex_unlock(&chip->als_mutex);
0729 
0730     if (ret < 0) {
0731         tsl2583_set_pm_runtime_busy(chip, false);
0732         return ret;
0733     }
0734 
0735     /*
0736      * Preserve the ret variable if the call to
0737      * tsl2583_set_pm_runtime_busy() is successful so the reading
0738      * (if applicable) is returned to user space.
0739      */
0740     pm_ret = tsl2583_set_pm_runtime_busy(chip, false);
0741     if (pm_ret < 0)
0742         return pm_ret;
0743 
0744     return ret;
0745 }
0746 
0747 static int tsl2583_write_raw(struct iio_dev *indio_dev,
0748                  struct iio_chan_spec const *chan,
0749                  int val, int val2, long mask)
0750 {
0751     struct tsl2583_chip *chip = iio_priv(indio_dev);
0752     int ret;
0753 
0754     ret = tsl2583_set_pm_runtime_busy(chip, true);
0755     if (ret < 0)
0756         return ret;
0757 
0758     mutex_lock(&chip->als_mutex);
0759 
0760     ret = -EINVAL;
0761     switch (mask) {
0762     case IIO_CHAN_INFO_CALIBBIAS:
0763         if (chan->type == IIO_LIGHT) {
0764             chip->als_settings.als_gain_trim = val;
0765             ret = 0;
0766         }
0767         break;
0768     case IIO_CHAN_INFO_CALIBSCALE:
0769         if (chan->type == IIO_LIGHT) {
0770             unsigned int i;
0771 
0772             for (i = 0; i < ARRAY_SIZE(gainadj); i++) {
0773                 if (gainadj[i].mean == val) {
0774                     chip->als_settings.als_gain = i;
0775                     ret = tsl2583_set_als_gain(chip);
0776                     break;
0777                 }
0778             }
0779         }
0780         break;
0781     case IIO_CHAN_INFO_INT_TIME:
0782         if (chan->type == IIO_LIGHT && !val && val2 >= 50 &&
0783             val2 <= 650 && !(val2 % 50)) {
0784             chip->als_settings.als_time = val2;
0785             ret = tsl2583_set_als_time(chip);
0786         }
0787         break;
0788     default:
0789         break;
0790     }
0791 
0792     mutex_unlock(&chip->als_mutex);
0793 
0794     if (ret < 0) {
0795         tsl2583_set_pm_runtime_busy(chip, false);
0796         return ret;
0797     }
0798 
0799     ret = tsl2583_set_pm_runtime_busy(chip, false);
0800     if (ret < 0)
0801         return ret;
0802 
0803     return ret;
0804 }
0805 
0806 static const struct iio_info tsl2583_info = {
0807     .attrs = &tsl2583_attribute_group,
0808     .read_raw = tsl2583_read_raw,
0809     .write_raw = tsl2583_write_raw,
0810 };
0811 
0812 static int tsl2583_probe(struct i2c_client *clientp,
0813              const struct i2c_device_id *idp)
0814 {
0815     int ret;
0816     struct tsl2583_chip *chip;
0817     struct iio_dev *indio_dev;
0818 
0819     if (!i2c_check_functionality(clientp->adapter,
0820                      I2C_FUNC_SMBUS_BYTE_DATA)) {
0821         dev_err(&clientp->dev, "%s: i2c smbus byte data functionality is unsupported\n",
0822             __func__);
0823         return -EOPNOTSUPP;
0824     }
0825 
0826     indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip));
0827     if (!indio_dev)
0828         return -ENOMEM;
0829 
0830     chip = iio_priv(indio_dev);
0831     chip->client = clientp;
0832     i2c_set_clientdata(clientp, indio_dev);
0833 
0834     mutex_init(&chip->als_mutex);
0835 
0836     ret = i2c_smbus_read_byte_data(clientp,
0837                        TSL2583_CMD_REG | TSL2583_CHIPID);
0838     if (ret < 0) {
0839         dev_err(&clientp->dev,
0840             "%s: failed to read the chip ID register\n", __func__);
0841         return ret;
0842     }
0843 
0844     if ((ret & TSL2583_CHIP_ID_MASK) != TSL2583_CHIP_ID) {
0845         dev_err(&clientp->dev, "%s: received an unknown chip ID %x\n",
0846             __func__, ret);
0847         return -EINVAL;
0848     }
0849 
0850     indio_dev->info = &tsl2583_info;
0851     indio_dev->channels = tsl2583_channels;
0852     indio_dev->num_channels = ARRAY_SIZE(tsl2583_channels);
0853     indio_dev->modes = INDIO_DIRECT_MODE;
0854     indio_dev->name = chip->client->name;
0855 
0856     pm_runtime_enable(&clientp->dev);
0857     pm_runtime_set_autosuspend_delay(&clientp->dev,
0858                      TSL2583_POWER_OFF_DELAY_MS);
0859     pm_runtime_use_autosuspend(&clientp->dev);
0860 
0861     ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
0862     if (ret) {
0863         dev_err(&clientp->dev, "%s: iio registration failed\n",
0864             __func__);
0865         return ret;
0866     }
0867 
0868     /* Load up the V2 defaults (these are hard coded defaults for now) */
0869     tsl2583_defaults(chip);
0870 
0871     dev_info(&clientp->dev, "Light sensor found.\n");
0872 
0873     return 0;
0874 }
0875 
0876 static int tsl2583_remove(struct i2c_client *client)
0877 {
0878     struct iio_dev *indio_dev = i2c_get_clientdata(client);
0879     struct tsl2583_chip *chip = iio_priv(indio_dev);
0880 
0881     iio_device_unregister(indio_dev);
0882 
0883     pm_runtime_disable(&client->dev);
0884     pm_runtime_set_suspended(&client->dev);
0885 
0886     tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
0887 
0888     return 0;
0889 }
0890 
0891 static int tsl2583_suspend(struct device *dev)
0892 {
0893     struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
0894     struct tsl2583_chip *chip = iio_priv(indio_dev);
0895     int ret;
0896 
0897     mutex_lock(&chip->als_mutex);
0898 
0899     ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
0900 
0901     mutex_unlock(&chip->als_mutex);
0902 
0903     return ret;
0904 }
0905 
0906 static int tsl2583_resume(struct device *dev)
0907 {
0908     struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
0909     struct tsl2583_chip *chip = iio_priv(indio_dev);
0910     int ret;
0911 
0912     mutex_lock(&chip->als_mutex);
0913 
0914     ret = tsl2583_chip_init_and_power_on(indio_dev);
0915 
0916     mutex_unlock(&chip->als_mutex);
0917 
0918     return ret;
0919 }
0920 
0921 static DEFINE_RUNTIME_DEV_PM_OPS(tsl2583_pm_ops, tsl2583_suspend,
0922                  tsl2583_resume, NULL);
0923 
0924 static const struct i2c_device_id tsl2583_idtable[] = {
0925     { "tsl2580", 0 },
0926     { "tsl2581", 1 },
0927     { "tsl2583", 2 },
0928     {}
0929 };
0930 MODULE_DEVICE_TABLE(i2c, tsl2583_idtable);
0931 
0932 static const struct of_device_id tsl2583_of_match[] = {
0933     { .compatible = "amstaos,tsl2580", },
0934     { .compatible = "amstaos,tsl2581", },
0935     { .compatible = "amstaos,tsl2583", },
0936     { },
0937 };
0938 MODULE_DEVICE_TABLE(of, tsl2583_of_match);
0939 
0940 /* Driver definition */
0941 static struct i2c_driver tsl2583_driver = {
0942     .driver = {
0943         .name = "tsl2583",
0944         .pm = pm_ptr(&tsl2583_pm_ops),
0945         .of_match_table = tsl2583_of_match,
0946     },
0947     .id_table = tsl2583_idtable,
0948     .probe = tsl2583_probe,
0949     .remove = tsl2583_remove,
0950 };
0951 module_i2c_driver(tsl2583_driver);
0952 
0953 MODULE_AUTHOR("J. August Brenner <jbrenner@taosinc.com>");
0954 MODULE_AUTHOR("Brian Masney <masneyb@onstation.org>");
0955 MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver");
0956 MODULE_LICENSE("GPL");