0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/bitfield.h>
0012 #include <linux/delay.h>
0013 #include <linux/err.h>
0014 #include <linux/i2c.h>
0015 #include <linux/init.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/irq.h>
0018 #include <linux/module.h>
0019 #include <linux/mutex.h>
0020 #include <linux/regmap.h>
0021
0022 #include <linux/iio/iio.h>
0023 #include <linux/iio/sysfs.h>
0024 #include <linux/iio/events.h>
0025
0026 #define ADUX1020_REGMAP_NAME "adux1020_regmap"
0027 #define ADUX1020_DRV_NAME "adux1020"
0028
0029
0030 #define ADUX1020_REG_CHIP_ID 0x08
0031 #define ADUX1020_REG_SLAVE_ADDRESS 0x09
0032
0033 #define ADUX1020_REG_SW_RESET 0x0f
0034 #define ADUX1020_REG_INT_ENABLE 0x1c
0035 #define ADUX1020_REG_INT_POLARITY 0x1d
0036 #define ADUX1020_REG_PROX_TH_ON1 0x2a
0037 #define ADUX1020_REG_PROX_TH_OFF1 0x2b
0038 #define ADUX1020_REG_PROX_TYPE 0x2f
0039 #define ADUX1020_REG_TEST_MODES_3 0x32
0040 #define ADUX1020_REG_FORCE_MODE 0x33
0041 #define ADUX1020_REG_FREQUENCY 0x40
0042 #define ADUX1020_REG_LED_CURRENT 0x41
0043 #define ADUX1020_REG_OP_MODE 0x45
0044 #define ADUX1020_REG_INT_MASK 0x48
0045 #define ADUX1020_REG_INT_STATUS 0x49
0046 #define ADUX1020_REG_DATA_BUFFER 0x60
0047
0048
0049 #define ADUX1020_CHIP_ID_MASK GENMASK(11, 0)
0050 #define ADUX1020_CHIP_ID 0x03fc
0051
0052 #define ADUX1020_SW_RESET BIT(1)
0053 #define ADUX1020_FIFO_FLUSH BIT(15)
0054 #define ADUX1020_OP_MODE_MASK GENMASK(3, 0)
0055 #define ADUX1020_DATA_OUT_MODE_MASK GENMASK(7, 4)
0056 #define ADUX1020_DATA_OUT_PROX_I FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1)
0057
0058 #define ADUX1020_MODE_INT_MASK GENMASK(7, 0)
0059 #define ADUX1020_INT_ENABLE 0x2094
0060 #define ADUX1020_INT_DISABLE 0x2090
0061 #define ADUX1020_PROX_INT_ENABLE 0x00f0
0062 #define ADUX1020_PROX_ON1_INT BIT(0)
0063 #define ADUX1020_PROX_OFF1_INT BIT(1)
0064 #define ADUX1020_FIFO_INT_ENABLE 0x7f
0065 #define ADUX1020_MODE_INT_DISABLE 0xff
0066 #define ADUX1020_MODE_INT_STATUS_MASK GENMASK(7, 0)
0067 #define ADUX1020_FIFO_STATUS_MASK GENMASK(15, 8)
0068 #define ADUX1020_INT_CLEAR 0xff
0069 #define ADUX1020_PROX_TYPE BIT(15)
0070
0071 #define ADUX1020_INT_PROX_ON1 BIT(0)
0072 #define ADUX1020_INT_PROX_OFF1 BIT(1)
0073
0074 #define ADUX1020_FORCE_CLOCK_ON 0x0f4f
0075 #define ADUX1020_FORCE_CLOCK_RESET 0x0040
0076 #define ADUX1020_ACTIVE_4_STATE 0x0008
0077
0078 #define ADUX1020_PROX_FREQ_MASK GENMASK(7, 4)
0079 #define ADUX1020_PROX_FREQ(x) FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x)
0080
0081 #define ADUX1020_LED_CURRENT_MASK GENMASK(3, 0)
0082 #define ADUX1020_LED_PIREF_EN BIT(12)
0083
0084
0085 enum adux1020_op_modes {
0086 ADUX1020_MODE_STANDBY,
0087 ADUX1020_MODE_PROX_I,
0088 ADUX1020_MODE_PROX_XY,
0089 ADUX1020_MODE_GEST,
0090 ADUX1020_MODE_SAMPLE,
0091 ADUX1020_MODE_FORCE = 0x0e,
0092 ADUX1020_MODE_IDLE = 0x0f,
0093 };
0094
0095 struct adux1020_data {
0096 struct i2c_client *client;
0097 struct iio_dev *indio_dev;
0098 struct mutex lock;
0099 struct regmap *regmap;
0100 };
0101
0102 struct adux1020_mode_data {
0103 u8 bytes;
0104 u8 buf_len;
0105 u16 int_en;
0106 };
0107
0108 static const struct adux1020_mode_data adux1020_modes[] = {
0109 [ADUX1020_MODE_PROX_I] = {
0110 .bytes = 2,
0111 .buf_len = 1,
0112 .int_en = ADUX1020_PROX_INT_ENABLE,
0113 },
0114 };
0115
0116 static const struct regmap_config adux1020_regmap_config = {
0117 .name = ADUX1020_REGMAP_NAME,
0118 .reg_bits = 8,
0119 .val_bits = 16,
0120 .max_register = 0x6F,
0121 .cache_type = REGCACHE_NONE,
0122 };
0123
0124 static const struct reg_sequence adux1020_def_conf[] = {
0125 { 0x000c, 0x000f },
0126 { 0x0010, 0x1010 },
0127 { 0x0011, 0x004c },
0128 { 0x0012, 0x5f0c },
0129 { 0x0013, 0xada5 },
0130 { 0x0014, 0x0080 },
0131 { 0x0015, 0x0000 },
0132 { 0x0016, 0x0600 },
0133 { 0x0017, 0x0000 },
0134 { 0x0018, 0x2693 },
0135 { 0x0019, 0x0004 },
0136 { 0x001a, 0x4280 },
0137 { 0x001b, 0x0060 },
0138 { 0x001c, 0x2094 },
0139 { 0x001d, 0x0020 },
0140 { 0x001e, 0x0001 },
0141 { 0x001f, 0x0100 },
0142 { 0x0020, 0x0320 },
0143 { 0x0021, 0x0A13 },
0144 { 0x0022, 0x0320 },
0145 { 0x0023, 0x0113 },
0146 { 0x0024, 0x0000 },
0147 { 0x0025, 0x2412 },
0148 { 0x0026, 0x2412 },
0149 { 0x0027, 0x0022 },
0150 { 0x0028, 0x0000 },
0151 { 0x0029, 0x0300 },
0152 { 0x002a, 0x0700 },
0153 { 0x002b, 0x0600 },
0154 { 0x002c, 0x6000 },
0155 { 0x002d, 0x4000 },
0156 { 0x002e, 0x0000 },
0157 { 0x002f, 0x0000 },
0158 { 0x0030, 0x0000 },
0159 { 0x0031, 0x0000 },
0160 { 0x0032, 0x0040 },
0161 { 0x0033, 0x0008 },
0162 { 0x0034, 0xE400 },
0163 { 0x0038, 0x8080 },
0164 { 0x0039, 0x8080 },
0165 { 0x003a, 0x2000 },
0166 { 0x003b, 0x1f00 },
0167 { 0x003c, 0x2000 },
0168 { 0x003d, 0x2000 },
0169 { 0x003e, 0x0000 },
0170 { 0x0040, 0x8069 },
0171 { 0x0041, 0x1f2f },
0172 { 0x0042, 0x4000 },
0173 { 0x0043, 0x0000 },
0174 { 0x0044, 0x0008 },
0175 { 0x0046, 0x0000 },
0176 { 0x0048, 0x00ef },
0177 { 0x0049, 0x0000 },
0178 { 0x0045, 0x0000 },
0179 };
0180
0181 static const int adux1020_rates[][2] = {
0182 { 0, 100000 },
0183 { 0, 200000 },
0184 { 0, 500000 },
0185 { 1, 0 },
0186 { 2, 0 },
0187 { 5, 0 },
0188 { 10, 0 },
0189 { 20, 0 },
0190 { 50, 0 },
0191 { 100, 0 },
0192 { 190, 0 },
0193 { 450, 0 },
0194 { 820, 0 },
0195 { 1400, 0 },
0196 };
0197
0198 static const int adux1020_led_currents[][2] = {
0199 { 0, 25000 },
0200 { 0, 40000 },
0201 { 0, 55000 },
0202 { 0, 70000 },
0203 { 0, 85000 },
0204 { 0, 100000 },
0205 { 0, 115000 },
0206 { 0, 130000 },
0207 { 0, 145000 },
0208 { 0, 160000 },
0209 { 0, 175000 },
0210 { 0, 190000 },
0211 { 0, 205000 },
0212 { 0, 220000 },
0213 { 0, 235000 },
0214 { 0, 250000 },
0215 };
0216
0217 static int adux1020_flush_fifo(struct adux1020_data *data)
0218 {
0219 int ret;
0220
0221
0222 ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE,
0223 ADUX1020_ACTIVE_4_STATE);
0224 if (ret < 0)
0225 return ret;
0226
0227 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
0228 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE);
0229 if (ret < 0)
0230 return ret;
0231
0232 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
0233 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE);
0234 if (ret < 0)
0235 return ret;
0236
0237
0238 ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
0239 ADUX1020_FORCE_CLOCK_ON);
0240 if (ret < 0)
0241 return ret;
0242
0243 ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
0244 ADUX1020_FIFO_FLUSH);
0245 if (ret < 0)
0246 return ret;
0247
0248 return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
0249 ADUX1020_FORCE_CLOCK_RESET);
0250 }
0251
0252 static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len)
0253 {
0254 unsigned int regval;
0255 int i, ret;
0256
0257
0258 ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
0259 ADUX1020_FORCE_CLOCK_ON);
0260 if (ret < 0)
0261 return ret;
0262
0263 for (i = 0; i < buf_len; i++) {
0264 ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER,
0265 ®val);
0266 if (ret < 0)
0267 return ret;
0268
0269 buf[i] = regval;
0270 }
0271
0272
0273 return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
0274 ADUX1020_FORCE_CLOCK_RESET);
0275 }
0276
0277 static int adux1020_set_mode(struct adux1020_data *data,
0278 enum adux1020_op_modes mode)
0279 {
0280 int ret;
0281
0282
0283 ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE,
0284 ADUX1020_MODE_STANDBY);
0285 if (ret < 0)
0286 return ret;
0287
0288
0289 switch (mode) {
0290 case ADUX1020_MODE_PROX_I:
0291 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
0292 ADUX1020_DATA_OUT_MODE_MASK,
0293 ADUX1020_DATA_OUT_PROX_I);
0294 if (ret < 0)
0295 return ret;
0296
0297 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
0298 ADUX1020_OP_MODE_MASK,
0299 ADUX1020_MODE_PROX_I);
0300 if (ret < 0)
0301 return ret;
0302 break;
0303 default:
0304 return -EINVAL;
0305 }
0306
0307 return 0;
0308 }
0309
0310 static int adux1020_measure(struct adux1020_data *data,
0311 enum adux1020_op_modes mode,
0312 u16 *val)
0313 {
0314 unsigned int status;
0315 int ret, tries = 50;
0316
0317
0318 ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
0319 ADUX1020_INT_DISABLE);
0320 if (ret < 0)
0321 return ret;
0322
0323
0324 ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
0325 ADUX1020_MODE_INT_MASK,
0326 adux1020_modes[mode].int_en);
0327 if (ret < 0)
0328 return ret;
0329
0330 while (tries--) {
0331 ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS,
0332 &status);
0333 if (ret < 0)
0334 return ret;
0335
0336 status &= ADUX1020_FIFO_STATUS_MASK;
0337 if (status >= adux1020_modes[mode].bytes)
0338 break;
0339 msleep(20);
0340 }
0341
0342 if (tries < 0)
0343 return -EIO;
0344
0345 ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len);
0346 if (ret < 0)
0347 return ret;
0348
0349
0350 ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
0351 (~adux1020_modes[mode].int_en));
0352 if (ret < 0)
0353 return ret;
0354
0355
0356 return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
0357 ADUX1020_MODE_INT_MASK,
0358 ADUX1020_MODE_INT_DISABLE);
0359 }
0360
0361 static int adux1020_read_raw(struct iio_dev *indio_dev,
0362 struct iio_chan_spec const *chan,
0363 int *val, int *val2, long mask)
0364 {
0365 struct adux1020_data *data = iio_priv(indio_dev);
0366 u16 buf[3];
0367 int ret = -EINVAL;
0368 unsigned int regval;
0369
0370 mutex_lock(&data->lock);
0371
0372 switch (mask) {
0373 case IIO_CHAN_INFO_RAW:
0374 switch (chan->type) {
0375 case IIO_PROXIMITY:
0376 ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
0377 if (ret < 0)
0378 goto fail;
0379
0380 ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf);
0381 if (ret < 0)
0382 goto fail;
0383
0384 *val = buf[0];
0385 ret = IIO_VAL_INT;
0386 break;
0387 default:
0388 break;
0389 }
0390 break;
0391 case IIO_CHAN_INFO_PROCESSED:
0392 switch (chan->type) {
0393 case IIO_CURRENT:
0394 ret = regmap_read(data->regmap,
0395 ADUX1020_REG_LED_CURRENT, ®val);
0396 if (ret < 0)
0397 goto fail;
0398
0399 regval = regval & ADUX1020_LED_CURRENT_MASK;
0400
0401 *val = adux1020_led_currents[regval][0];
0402 *val2 = adux1020_led_currents[regval][1];
0403
0404 ret = IIO_VAL_INT_PLUS_MICRO;
0405 break;
0406 default:
0407 break;
0408 }
0409 break;
0410 case IIO_CHAN_INFO_SAMP_FREQ:
0411 switch (chan->type) {
0412 case IIO_PROXIMITY:
0413 ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY,
0414 ®val);
0415 if (ret < 0)
0416 goto fail;
0417
0418 regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval);
0419
0420 *val = adux1020_rates[regval][0];
0421 *val2 = adux1020_rates[regval][1];
0422
0423 ret = IIO_VAL_INT_PLUS_MICRO;
0424 break;
0425 default:
0426 break;
0427 }
0428 break;
0429 default:
0430 break;
0431 }
0432
0433 fail:
0434 mutex_unlock(&data->lock);
0435
0436 return ret;
0437 };
0438
0439 static inline int adux1020_find_index(const int array[][2], int count, int val,
0440 int val2)
0441 {
0442 int i;
0443
0444 for (i = 0; i < count; i++)
0445 if (val == array[i][0] && val2 == array[i][1])
0446 return i;
0447
0448 return -EINVAL;
0449 }
0450
0451 static int adux1020_write_raw(struct iio_dev *indio_dev,
0452 struct iio_chan_spec const *chan,
0453 int val, int val2, long mask)
0454 {
0455 struct adux1020_data *data = iio_priv(indio_dev);
0456 int i, ret = -EINVAL;
0457
0458 mutex_lock(&data->lock);
0459
0460 switch (mask) {
0461 case IIO_CHAN_INFO_SAMP_FREQ:
0462 if (chan->type == IIO_PROXIMITY) {
0463 i = adux1020_find_index(adux1020_rates,
0464 ARRAY_SIZE(adux1020_rates),
0465 val, val2);
0466 if (i < 0) {
0467 ret = i;
0468 goto fail;
0469 }
0470
0471 ret = regmap_update_bits(data->regmap,
0472 ADUX1020_REG_FREQUENCY,
0473 ADUX1020_PROX_FREQ_MASK,
0474 ADUX1020_PROX_FREQ(i));
0475 }
0476 break;
0477 case IIO_CHAN_INFO_PROCESSED:
0478 if (chan->type == IIO_CURRENT) {
0479 i = adux1020_find_index(adux1020_led_currents,
0480 ARRAY_SIZE(adux1020_led_currents),
0481 val, val2);
0482 if (i < 0) {
0483 ret = i;
0484 goto fail;
0485 }
0486
0487 ret = regmap_update_bits(data->regmap,
0488 ADUX1020_REG_LED_CURRENT,
0489 ADUX1020_LED_CURRENT_MASK, i);
0490 }
0491 break;
0492 default:
0493 break;
0494 }
0495
0496 fail:
0497 mutex_unlock(&data->lock);
0498
0499 return ret;
0500 }
0501
0502 static int adux1020_write_event_config(struct iio_dev *indio_dev,
0503 const struct iio_chan_spec *chan,
0504 enum iio_event_type type,
0505 enum iio_event_direction dir, int state)
0506 {
0507 struct adux1020_data *data = iio_priv(indio_dev);
0508 int ret, mask;
0509
0510 mutex_lock(&data->lock);
0511
0512 ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
0513 ADUX1020_INT_ENABLE);
0514 if (ret < 0)
0515 goto fail;
0516
0517 ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0);
0518 if (ret < 0)
0519 goto fail;
0520
0521 switch (chan->type) {
0522 case IIO_PROXIMITY:
0523 if (dir == IIO_EV_DIR_RISING)
0524 mask = ADUX1020_PROX_ON1_INT;
0525 else
0526 mask = ADUX1020_PROX_OFF1_INT;
0527
0528 if (state)
0529 state = 0;
0530 else
0531 state = mask;
0532
0533 ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
0534 mask, state);
0535 if (ret < 0)
0536 goto fail;
0537
0538
0539
0540
0541
0542 ret = regmap_update_bits(data->regmap, ADUX1020_REG_PROX_TYPE,
0543 ADUX1020_PROX_TYPE,
0544 ADUX1020_PROX_TYPE);
0545 if (ret < 0)
0546 goto fail;
0547
0548
0549 ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
0550 break;
0551 default:
0552 ret = -EINVAL;
0553 break;
0554 }
0555
0556 fail:
0557 mutex_unlock(&data->lock);
0558
0559 return ret;
0560 }
0561
0562 static int adux1020_read_event_config(struct iio_dev *indio_dev,
0563 const struct iio_chan_spec *chan,
0564 enum iio_event_type type,
0565 enum iio_event_direction dir)
0566 {
0567 struct adux1020_data *data = iio_priv(indio_dev);
0568 int ret, mask;
0569 unsigned int regval;
0570
0571 switch (chan->type) {
0572 case IIO_PROXIMITY:
0573 if (dir == IIO_EV_DIR_RISING)
0574 mask = ADUX1020_PROX_ON1_INT;
0575 else
0576 mask = ADUX1020_PROX_OFF1_INT;
0577 break;
0578 default:
0579 return -EINVAL;
0580 }
0581
0582 ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, ®val);
0583 if (ret < 0)
0584 return ret;
0585
0586 return !(regval & mask);
0587 }
0588
0589 static int adux1020_read_thresh(struct iio_dev *indio_dev,
0590 const struct iio_chan_spec *chan,
0591 enum iio_event_type type,
0592 enum iio_event_direction dir,
0593 enum iio_event_info info, int *val, int *val2)
0594 {
0595 struct adux1020_data *data = iio_priv(indio_dev);
0596 u8 reg;
0597 int ret;
0598 unsigned int regval;
0599
0600 switch (chan->type) {
0601 case IIO_PROXIMITY:
0602 if (dir == IIO_EV_DIR_RISING)
0603 reg = ADUX1020_REG_PROX_TH_ON1;
0604 else
0605 reg = ADUX1020_REG_PROX_TH_OFF1;
0606 break;
0607 default:
0608 return -EINVAL;
0609 }
0610
0611 ret = regmap_read(data->regmap, reg, ®val);
0612 if (ret < 0)
0613 return ret;
0614
0615 *val = regval;
0616
0617 return IIO_VAL_INT;
0618 }
0619
0620 static int adux1020_write_thresh(struct iio_dev *indio_dev,
0621 const struct iio_chan_spec *chan,
0622 enum iio_event_type type,
0623 enum iio_event_direction dir,
0624 enum iio_event_info info, int val, int val2)
0625 {
0626 struct adux1020_data *data = iio_priv(indio_dev);
0627 u8 reg;
0628
0629 switch (chan->type) {
0630 case IIO_PROXIMITY:
0631 if (dir == IIO_EV_DIR_RISING)
0632 reg = ADUX1020_REG_PROX_TH_ON1;
0633 else
0634 reg = ADUX1020_REG_PROX_TH_OFF1;
0635 break;
0636 default:
0637 return -EINVAL;
0638 }
0639
0640
0641 if (val < 0 || val > 65535)
0642 return -EINVAL;
0643
0644 return regmap_write(data->regmap, reg, val);
0645 }
0646
0647 static const struct iio_event_spec adux1020_proximity_event[] = {
0648 {
0649 .type = IIO_EV_TYPE_THRESH,
0650 .dir = IIO_EV_DIR_RISING,
0651 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
0652 BIT(IIO_EV_INFO_ENABLE),
0653 },
0654 {
0655 .type = IIO_EV_TYPE_THRESH,
0656 .dir = IIO_EV_DIR_FALLING,
0657 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
0658 BIT(IIO_EV_INFO_ENABLE),
0659 },
0660 };
0661
0662 static const struct iio_chan_spec adux1020_channels[] = {
0663 {
0664 .type = IIO_PROXIMITY,
0665 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
0666 BIT(IIO_CHAN_INFO_SAMP_FREQ),
0667 .event_spec = adux1020_proximity_event,
0668 .num_event_specs = ARRAY_SIZE(adux1020_proximity_event),
0669 },
0670 {
0671 .type = IIO_CURRENT,
0672 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
0673 .extend_name = "led",
0674 .output = 1,
0675 },
0676 };
0677
0678 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
0679 "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400");
0680
0681 static struct attribute *adux1020_attributes[] = {
0682 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
0683 NULL
0684 };
0685
0686 static const struct attribute_group adux1020_attribute_group = {
0687 .attrs = adux1020_attributes,
0688 };
0689
0690 static const struct iio_info adux1020_info = {
0691 .attrs = &adux1020_attribute_group,
0692 .read_raw = adux1020_read_raw,
0693 .write_raw = adux1020_write_raw,
0694 .read_event_config = adux1020_read_event_config,
0695 .write_event_config = adux1020_write_event_config,
0696 .read_event_value = adux1020_read_thresh,
0697 .write_event_value = adux1020_write_thresh,
0698 };
0699
0700 static irqreturn_t adux1020_interrupt_handler(int irq, void *private)
0701 {
0702 struct iio_dev *indio_dev = private;
0703 struct adux1020_data *data = iio_priv(indio_dev);
0704 int ret, status;
0705
0706 ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status);
0707 if (ret < 0)
0708 return IRQ_HANDLED;
0709
0710 status &= ADUX1020_MODE_INT_STATUS_MASK;
0711
0712 if (status & ADUX1020_INT_PROX_ON1) {
0713 iio_push_event(indio_dev,
0714 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
0715 IIO_EV_TYPE_THRESH,
0716 IIO_EV_DIR_RISING),
0717 iio_get_time_ns(indio_dev));
0718 }
0719
0720 if (status & ADUX1020_INT_PROX_OFF1) {
0721 iio_push_event(indio_dev,
0722 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
0723 IIO_EV_TYPE_THRESH,
0724 IIO_EV_DIR_FALLING),
0725 iio_get_time_ns(indio_dev));
0726 }
0727
0728 regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS,
0729 ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR);
0730
0731 return IRQ_HANDLED;
0732 }
0733
0734 static int adux1020_chip_init(struct adux1020_data *data)
0735 {
0736 struct i2c_client *client = data->client;
0737 int ret;
0738 unsigned int val;
0739
0740 ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val);
0741 if (ret < 0)
0742 return ret;
0743
0744 if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) {
0745 dev_err(&client->dev, "invalid chip id 0x%04x\n", val);
0746 return -ENODEV;
0747 }
0748
0749 dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val);
0750
0751 ret = regmap_update_bits(data->regmap, ADUX1020_REG_SW_RESET,
0752 ADUX1020_SW_RESET, ADUX1020_SW_RESET);
0753 if (ret < 0)
0754 return ret;
0755
0756
0757 ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf,
0758 ARRAY_SIZE(adux1020_def_conf));
0759 if (ret < 0)
0760 return ret;
0761
0762 ret = adux1020_flush_fifo(data);
0763 if (ret < 0)
0764 return ret;
0765
0766
0767 ret = regmap_update_bits(data->regmap, ADUX1020_REG_LED_CURRENT,
0768 ADUX1020_LED_PIREF_EN, 0);
0769 if (ret < 0)
0770 return ret;
0771
0772
0773 return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
0774 ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE);
0775 }
0776
0777 static int adux1020_probe(struct i2c_client *client,
0778 const struct i2c_device_id *id)
0779 {
0780 struct adux1020_data *data;
0781 struct iio_dev *indio_dev;
0782 int ret;
0783
0784 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
0785 if (!indio_dev)
0786 return -ENOMEM;
0787
0788 indio_dev->info = &adux1020_info;
0789 indio_dev->name = ADUX1020_DRV_NAME;
0790 indio_dev->channels = adux1020_channels;
0791 indio_dev->num_channels = ARRAY_SIZE(adux1020_channels);
0792 indio_dev->modes = INDIO_DIRECT_MODE;
0793
0794 data = iio_priv(indio_dev);
0795
0796 data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config);
0797 if (IS_ERR(data->regmap)) {
0798 dev_err(&client->dev, "regmap initialization failed.\n");
0799 return PTR_ERR(data->regmap);
0800 }
0801
0802 data->client = client;
0803 data->indio_dev = indio_dev;
0804 mutex_init(&data->lock);
0805
0806 ret = adux1020_chip_init(data);
0807 if (ret)
0808 return ret;
0809
0810 if (client->irq) {
0811 ret = devm_request_threaded_irq(&client->dev, client->irq,
0812 NULL, adux1020_interrupt_handler,
0813 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
0814 ADUX1020_DRV_NAME, indio_dev);
0815 if (ret) {
0816 dev_err(&client->dev, "irq request error %d\n", -ret);
0817 return ret;
0818 }
0819 }
0820
0821 return devm_iio_device_register(&client->dev, indio_dev);
0822 }
0823
0824 static const struct i2c_device_id adux1020_id[] = {
0825 { "adux1020", 0 },
0826 {}
0827 };
0828 MODULE_DEVICE_TABLE(i2c, adux1020_id);
0829
0830 static const struct of_device_id adux1020_of_match[] = {
0831 { .compatible = "adi,adux1020" },
0832 { }
0833 };
0834 MODULE_DEVICE_TABLE(of, adux1020_of_match);
0835
0836 static struct i2c_driver adux1020_driver = {
0837 .driver = {
0838 .name = ADUX1020_DRV_NAME,
0839 .of_match_table = adux1020_of_match,
0840 },
0841 .probe = adux1020_probe,
0842 .id_table = adux1020_id,
0843 };
0844 module_i2c_driver(adux1020_driver);
0845
0846 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
0847 MODULE_DESCRIPTION("ADUX1020 photometric sensor");
0848 MODULE_LICENSE("GPL");