Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2020 Invensense, Inc.
0004  */
0005 
0006 #include <linux/kernel.h>
0007 #include <linux/device.h>
0008 #include <linux/mutex.h>
0009 #include <linux/pm_runtime.h>
0010 #include <linux/regmap.h>
0011 #include <linux/delay.h>
0012 #include <linux/math64.h>
0013 #include <linux/iio/iio.h>
0014 #include <linux/iio/buffer.h>
0015 #include <linux/iio/kfifo_buf.h>
0016 
0017 #include "inv_icm42600.h"
0018 #include "inv_icm42600_temp.h"
0019 #include "inv_icm42600_buffer.h"
0020 #include "inv_icm42600_timestamp.h"
0021 
0022 #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info)        \
0023     {                               \
0024         .type = IIO_ANGL_VEL,                   \
0025         .modified = 1,                      \
0026         .channel2 = _modifier,                  \
0027         .info_mask_separate =                   \
0028             BIT(IIO_CHAN_INFO_RAW) |            \
0029             BIT(IIO_CHAN_INFO_CALIBBIAS),           \
0030         .info_mask_shared_by_type =             \
0031             BIT(IIO_CHAN_INFO_SCALE),           \
0032         .info_mask_shared_by_type_available =           \
0033             BIT(IIO_CHAN_INFO_SCALE) |          \
0034             BIT(IIO_CHAN_INFO_CALIBBIAS),           \
0035         .info_mask_shared_by_all =              \
0036             BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
0037         .info_mask_shared_by_all_available =            \
0038             BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
0039         .scan_index = _index,                   \
0040         .scan_type = {                      \
0041             .sign = 's',                    \
0042             .realbits = 16,                 \
0043             .storagebits = 16,              \
0044             .endianness = IIO_BE,               \
0045         },                          \
0046         .ext_info = _ext_info,                  \
0047     }
0048 
0049 enum inv_icm42600_gyro_scan {
0050     INV_ICM42600_GYRO_SCAN_X,
0051     INV_ICM42600_GYRO_SCAN_Y,
0052     INV_ICM42600_GYRO_SCAN_Z,
0053     INV_ICM42600_GYRO_SCAN_TEMP,
0054     INV_ICM42600_GYRO_SCAN_TIMESTAMP,
0055 };
0056 
0057 static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = {
0058     IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix),
0059     {},
0060 };
0061 
0062 static const struct iio_chan_spec inv_icm42600_gyro_channels[] = {
0063     INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X,
0064                    inv_icm42600_gyro_ext_infos),
0065     INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y,
0066                    inv_icm42600_gyro_ext_infos),
0067     INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z,
0068                    inv_icm42600_gyro_ext_infos),
0069     INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP),
0070     IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP),
0071 };
0072 
0073 /*
0074  * IIO buffer data: size must be a power of 2 and timestamp aligned
0075  * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp
0076  */
0077 struct inv_icm42600_gyro_buffer {
0078     struct inv_icm42600_fifo_sensor_data gyro;
0079     int16_t temp;
0080     int64_t timestamp __aligned(8);
0081 };
0082 
0083 #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS               \
0084     (BIT(INV_ICM42600_GYRO_SCAN_X) |                \
0085     BIT(INV_ICM42600_GYRO_SCAN_Y) |                 \
0086     BIT(INV_ICM42600_GYRO_SCAN_Z))
0087 
0088 #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP)
0089 
0090 static const unsigned long inv_icm42600_gyro_scan_masks[] = {
0091     /* 3-axis gyro + temperature */
0092     INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP,
0093     0,
0094 };
0095 
0096 /* enable gyroscope sensor and FIFO write */
0097 static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev,
0098                           const unsigned long *scan_mask)
0099 {
0100     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0101     struct inv_icm42600_timestamp *ts = iio_priv(indio_dev);
0102     struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
0103     unsigned int fifo_en = 0;
0104     unsigned int sleep_gyro = 0;
0105     unsigned int sleep_temp = 0;
0106     unsigned int sleep;
0107     int ret;
0108 
0109     mutex_lock(&st->lock);
0110 
0111     if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) {
0112         /* enable temp sensor */
0113         ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp);
0114         if (ret)
0115             goto out_unlock;
0116         fifo_en |= INV_ICM42600_SENSOR_TEMP;
0117     }
0118 
0119     if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) {
0120         /* enable gyro sensor */
0121         conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
0122         ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro);
0123         if (ret)
0124             goto out_unlock;
0125         fifo_en |= INV_ICM42600_SENSOR_GYRO;
0126     }
0127 
0128     /* update data FIFO write */
0129     inv_icm42600_timestamp_apply_odr(ts, 0, 0, 0);
0130     ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en);
0131     if (ret)
0132         goto out_unlock;
0133 
0134     ret = inv_icm42600_buffer_update_watermark(st);
0135 
0136 out_unlock:
0137     mutex_unlock(&st->lock);
0138     /* sleep maximum required time */
0139     if (sleep_gyro > sleep_temp)
0140         sleep = sleep_gyro;
0141     else
0142         sleep = sleep_temp;
0143     if (sleep)
0144         msleep(sleep);
0145     return ret;
0146 }
0147 
0148 static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st,
0149                      struct iio_chan_spec const *chan,
0150                      int16_t *val)
0151 {
0152     struct device *dev = regmap_get_device(st->map);
0153     struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
0154     unsigned int reg;
0155     __be16 *data;
0156     int ret;
0157 
0158     if (chan->type != IIO_ANGL_VEL)
0159         return -EINVAL;
0160 
0161     switch (chan->channel2) {
0162     case IIO_MOD_X:
0163         reg = INV_ICM42600_REG_GYRO_DATA_X;
0164         break;
0165     case IIO_MOD_Y:
0166         reg = INV_ICM42600_REG_GYRO_DATA_Y;
0167         break;
0168     case IIO_MOD_Z:
0169         reg = INV_ICM42600_REG_GYRO_DATA_Z;
0170         break;
0171     default:
0172         return -EINVAL;
0173     }
0174 
0175     pm_runtime_get_sync(dev);
0176     mutex_lock(&st->lock);
0177 
0178     /* enable gyro sensor */
0179     conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
0180     ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
0181     if (ret)
0182         goto exit;
0183 
0184     /* read gyro register data */
0185     data = (__be16 *)&st->buffer[0];
0186     ret = regmap_bulk_read(st->map, reg, data, sizeof(*data));
0187     if (ret)
0188         goto exit;
0189 
0190     *val = (int16_t)be16_to_cpup(data);
0191     if (*val == INV_ICM42600_DATA_INVALID)
0192         ret = -EINVAL;
0193 exit:
0194     mutex_unlock(&st->lock);
0195     pm_runtime_mark_last_busy(dev);
0196     pm_runtime_put_autosuspend(dev);
0197     return ret;
0198 }
0199 
0200 /* IIO format int + nano */
0201 static const int inv_icm42600_gyro_scale[] = {
0202     /* +/- 2000dps => 0.001065264 rad/s */
0203     [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0,
0204     [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264,
0205     /* +/- 1000dps => 0.000532632 rad/s */
0206     [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0,
0207     [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632,
0208     /* +/- 500dps => 0.000266316 rad/s */
0209     [2 * INV_ICM42600_GYRO_FS_500DPS] = 0,
0210     [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316,
0211     /* +/- 250dps => 0.000133158 rad/s */
0212     [2 * INV_ICM42600_GYRO_FS_250DPS] = 0,
0213     [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158,
0214     /* +/- 125dps => 0.000066579 rad/s */
0215     [2 * INV_ICM42600_GYRO_FS_125DPS] = 0,
0216     [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579,
0217     /* +/- 62.5dps => 0.000033290 rad/s */
0218     [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0,
0219     [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290,
0220     /* +/- 31.25dps => 0.000016645 rad/s */
0221     [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0,
0222     [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645,
0223     /* +/- 15.625dps => 0.000008322 rad/s */
0224     [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0,
0225     [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322,
0226 };
0227 
0228 static int inv_icm42600_gyro_read_scale(struct inv_icm42600_state *st,
0229                     int *val, int *val2)
0230 {
0231     unsigned int idx;
0232 
0233     idx = st->conf.gyro.fs;
0234 
0235     *val = inv_icm42600_gyro_scale[2 * idx];
0236     *val2 = inv_icm42600_gyro_scale[2 * idx + 1];
0237     return IIO_VAL_INT_PLUS_NANO;
0238 }
0239 
0240 static int inv_icm42600_gyro_write_scale(struct inv_icm42600_state *st,
0241                      int val, int val2)
0242 {
0243     struct device *dev = regmap_get_device(st->map);
0244     unsigned int idx;
0245     struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
0246     int ret;
0247 
0248     for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_scale); idx += 2) {
0249         if (val == inv_icm42600_gyro_scale[idx] &&
0250             val2 == inv_icm42600_gyro_scale[idx + 1])
0251             break;
0252     }
0253     if (idx >= ARRAY_SIZE(inv_icm42600_gyro_scale))
0254         return -EINVAL;
0255 
0256     conf.fs = idx / 2;
0257 
0258     pm_runtime_get_sync(dev);
0259     mutex_lock(&st->lock);
0260 
0261     ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
0262 
0263     mutex_unlock(&st->lock);
0264     pm_runtime_mark_last_busy(dev);
0265     pm_runtime_put_autosuspend(dev);
0266 
0267     return ret;
0268 }
0269 
0270 /* IIO format int + micro */
0271 static const int inv_icm42600_gyro_odr[] = {
0272     /* 12.5Hz */
0273     12, 500000,
0274     /* 25Hz */
0275     25, 0,
0276     /* 50Hz */
0277     50, 0,
0278     /* 100Hz */
0279     100, 0,
0280     /* 200Hz */
0281     200, 0,
0282     /* 1kHz */
0283     1000, 0,
0284     /* 2kHz */
0285     2000, 0,
0286     /* 4kHz */
0287     4000, 0,
0288 };
0289 
0290 static const int inv_icm42600_gyro_odr_conv[] = {
0291     INV_ICM42600_ODR_12_5HZ,
0292     INV_ICM42600_ODR_25HZ,
0293     INV_ICM42600_ODR_50HZ,
0294     INV_ICM42600_ODR_100HZ,
0295     INV_ICM42600_ODR_200HZ,
0296     INV_ICM42600_ODR_1KHZ_LN,
0297     INV_ICM42600_ODR_2KHZ_LN,
0298     INV_ICM42600_ODR_4KHZ_LN,
0299 };
0300 
0301 static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st,
0302                       int *val, int *val2)
0303 {
0304     unsigned int odr;
0305     unsigned int i;
0306 
0307     odr = st->conf.gyro.odr;
0308 
0309     for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) {
0310         if (inv_icm42600_gyro_odr_conv[i] == odr)
0311             break;
0312     }
0313     if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv))
0314         return -EINVAL;
0315 
0316     *val = inv_icm42600_gyro_odr[2 * i];
0317     *val2 = inv_icm42600_gyro_odr[2 * i + 1];
0318 
0319     return IIO_VAL_INT_PLUS_MICRO;
0320 }
0321 
0322 static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev,
0323                        int val, int val2)
0324 {
0325     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0326     struct inv_icm42600_timestamp *ts = iio_priv(indio_dev);
0327     struct device *dev = regmap_get_device(st->map);
0328     unsigned int idx;
0329     struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
0330     int ret;
0331 
0332     for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) {
0333         if (val == inv_icm42600_gyro_odr[idx] &&
0334             val2 == inv_icm42600_gyro_odr[idx + 1])
0335             break;
0336     }
0337     if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr))
0338         return -EINVAL;
0339 
0340     conf.odr = inv_icm42600_gyro_odr_conv[idx / 2];
0341 
0342     pm_runtime_get_sync(dev);
0343     mutex_lock(&st->lock);
0344 
0345     ret = inv_icm42600_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr),
0346                         iio_buffer_enabled(indio_dev));
0347     if (ret)
0348         goto out_unlock;
0349 
0350     ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
0351     if (ret)
0352         goto out_unlock;
0353     inv_icm42600_buffer_update_fifo_period(st);
0354     inv_icm42600_buffer_update_watermark(st);
0355 
0356 out_unlock:
0357     mutex_unlock(&st->lock);
0358     pm_runtime_mark_last_busy(dev);
0359     pm_runtime_put_autosuspend(dev);
0360 
0361     return ret;
0362 }
0363 
0364 /*
0365  * Calibration bias values, IIO range format int + nano.
0366  * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps.
0367  */
0368 static int inv_icm42600_gyro_calibbias[] = {
0369     -1, 117010721,      /* min: -1.117010721 rad/s */
0370     0, 545415,      /* step: 0.000545415 rad/s */
0371     1, 116465306,       /* max: 1.116465306 rad/s */
0372 };
0373 
0374 static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st,
0375                      struct iio_chan_spec const *chan,
0376                      int *val, int *val2)
0377 {
0378     struct device *dev = regmap_get_device(st->map);
0379     int64_t val64;
0380     int32_t bias;
0381     unsigned int reg;
0382     int16_t offset;
0383     uint8_t data[2];
0384     int ret;
0385 
0386     if (chan->type != IIO_ANGL_VEL)
0387         return -EINVAL;
0388 
0389     switch (chan->channel2) {
0390     case IIO_MOD_X:
0391         reg = INV_ICM42600_REG_OFFSET_USER0;
0392         break;
0393     case IIO_MOD_Y:
0394         reg = INV_ICM42600_REG_OFFSET_USER1;
0395         break;
0396     case IIO_MOD_Z:
0397         reg = INV_ICM42600_REG_OFFSET_USER3;
0398         break;
0399     default:
0400         return -EINVAL;
0401     }
0402 
0403     pm_runtime_get_sync(dev);
0404     mutex_lock(&st->lock);
0405 
0406     ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data));
0407     memcpy(data, st->buffer, sizeof(data));
0408 
0409     mutex_unlock(&st->lock);
0410     pm_runtime_mark_last_busy(dev);
0411     pm_runtime_put_autosuspend(dev);
0412     if (ret)
0413         return ret;
0414 
0415     /* 12 bits signed value */
0416     switch (chan->channel2) {
0417     case IIO_MOD_X:
0418         offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
0419         break;
0420     case IIO_MOD_Y:
0421         offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11);
0422         break;
0423     case IIO_MOD_Z:
0424         offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
0425         break;
0426     default:
0427         return -EINVAL;
0428     }
0429 
0430     /*
0431      * convert raw offset to dps then to rad/s
0432      * 12 bits signed raw max 64 to dps: 64 / 2048
0433      * dps to rad: Pi / 180
0434      * result in nano (1000000000)
0435      * (offset * 64 * Pi * 1000000000) / (2048 * 180)
0436      */
0437     val64 = (int64_t)offset * 64LL * 3141592653LL;
0438     /* for rounding, add + or - divisor (2048 * 180) divided by 2 */
0439     if (val64 >= 0)
0440         val64 += 2048 * 180 / 2;
0441     else
0442         val64 -= 2048 * 180 / 2;
0443     bias = div_s64(val64, 2048 * 180);
0444     *val = bias / 1000000000L;
0445     *val2 = bias % 1000000000L;
0446 
0447     return IIO_VAL_INT_PLUS_NANO;
0448 }
0449 
0450 static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st,
0451                       struct iio_chan_spec const *chan,
0452                       int val, int val2)
0453 {
0454     struct device *dev = regmap_get_device(st->map);
0455     int64_t val64, min, max;
0456     unsigned int reg, regval;
0457     int16_t offset;
0458     int ret;
0459 
0460     if (chan->type != IIO_ANGL_VEL)
0461         return -EINVAL;
0462 
0463     switch (chan->channel2) {
0464     case IIO_MOD_X:
0465         reg = INV_ICM42600_REG_OFFSET_USER0;
0466         break;
0467     case IIO_MOD_Y:
0468         reg = INV_ICM42600_REG_OFFSET_USER1;
0469         break;
0470     case IIO_MOD_Z:
0471         reg = INV_ICM42600_REG_OFFSET_USER3;
0472         break;
0473     default:
0474         return -EINVAL;
0475     }
0476 
0477     /* inv_icm42600_gyro_calibbias: min - step - max in nano */
0478     min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL +
0479           (int64_t)inv_icm42600_gyro_calibbias[1];
0480     max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL +
0481           (int64_t)inv_icm42600_gyro_calibbias[5];
0482     val64 = (int64_t)val * 1000000000LL + (int64_t)val2;
0483     if (val64 < min || val64 > max)
0484         return -EINVAL;
0485 
0486     /*
0487      * convert rad/s to dps then to raw value
0488      * rad to dps: 180 / Pi
0489      * dps to raw 12 bits signed, max 64: 2048 / 64
0490      * val in nano (1000000000)
0491      * val * 180 * 2048 / (Pi * 1000000000 * 64)
0492      */
0493     val64 = val64 * 180LL * 2048LL;
0494     /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */
0495     if (val64 >= 0)
0496         val64 += 3141592653LL * 64LL / 2LL;
0497     else
0498         val64 -= 3141592653LL * 64LL / 2LL;
0499     offset = div64_s64(val64, 3141592653LL * 64LL);
0500 
0501     /* clamp value limited to 12 bits signed */
0502     if (offset < -2048)
0503         offset = -2048;
0504     else if (offset > 2047)
0505         offset = 2047;
0506 
0507     pm_runtime_get_sync(dev);
0508     mutex_lock(&st->lock);
0509 
0510     switch (chan->channel2) {
0511     case IIO_MOD_X:
0512         /* OFFSET_USER1 register is shared */
0513         ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
0514                   &regval);
0515         if (ret)
0516             goto out_unlock;
0517         st->buffer[0] = offset & 0xFF;
0518         st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
0519         break;
0520     case IIO_MOD_Y:
0521         /* OFFSET_USER1 register is shared */
0522         ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
0523                   &regval);
0524         if (ret)
0525             goto out_unlock;
0526         st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F);
0527         st->buffer[1] = offset & 0xFF;
0528         break;
0529     case IIO_MOD_Z:
0530         /* OFFSET_USER4 register is shared */
0531         ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4,
0532                   &regval);
0533         if (ret)
0534             goto out_unlock;
0535         st->buffer[0] = offset & 0xFF;
0536         st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
0537         break;
0538     default:
0539         ret = -EINVAL;
0540         goto out_unlock;
0541     }
0542 
0543     ret = regmap_bulk_write(st->map, reg, st->buffer, 2);
0544 
0545 out_unlock:
0546     mutex_unlock(&st->lock);
0547     pm_runtime_mark_last_busy(dev);
0548     pm_runtime_put_autosuspend(dev);
0549     return ret;
0550 }
0551 
0552 static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev,
0553                       struct iio_chan_spec const *chan,
0554                       int *val, int *val2, long mask)
0555 {
0556     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0557     int16_t data;
0558     int ret;
0559 
0560     switch (chan->type) {
0561     case IIO_ANGL_VEL:
0562         break;
0563     case IIO_TEMP:
0564         return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask);
0565     default:
0566         return -EINVAL;
0567     }
0568 
0569     switch (mask) {
0570     case IIO_CHAN_INFO_RAW:
0571         ret = iio_device_claim_direct_mode(indio_dev);
0572         if (ret)
0573             return ret;
0574         ret = inv_icm42600_gyro_read_sensor(st, chan, &data);
0575         iio_device_release_direct_mode(indio_dev);
0576         if (ret)
0577             return ret;
0578         *val = data;
0579         return IIO_VAL_INT;
0580     case IIO_CHAN_INFO_SCALE:
0581         return inv_icm42600_gyro_read_scale(st, val, val2);
0582     case IIO_CHAN_INFO_SAMP_FREQ:
0583         return inv_icm42600_gyro_read_odr(st, val, val2);
0584     case IIO_CHAN_INFO_CALIBBIAS:
0585         return inv_icm42600_gyro_read_offset(st, chan, val, val2);
0586     default:
0587         return -EINVAL;
0588     }
0589 }
0590 
0591 static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev,
0592                     struct iio_chan_spec const *chan,
0593                     const int **vals,
0594                     int *type, int *length, long mask)
0595 {
0596     if (chan->type != IIO_ANGL_VEL)
0597         return -EINVAL;
0598 
0599     switch (mask) {
0600     case IIO_CHAN_INFO_SCALE:
0601         *vals = inv_icm42600_gyro_scale;
0602         *type = IIO_VAL_INT_PLUS_NANO;
0603         *length = ARRAY_SIZE(inv_icm42600_gyro_scale);
0604         return IIO_AVAIL_LIST;
0605     case IIO_CHAN_INFO_SAMP_FREQ:
0606         *vals = inv_icm42600_gyro_odr;
0607         *type = IIO_VAL_INT_PLUS_MICRO;
0608         *length = ARRAY_SIZE(inv_icm42600_gyro_odr);
0609         return IIO_AVAIL_LIST;
0610     case IIO_CHAN_INFO_CALIBBIAS:
0611         *vals = inv_icm42600_gyro_calibbias;
0612         *type = IIO_VAL_INT_PLUS_NANO;
0613         return IIO_AVAIL_RANGE;
0614     default:
0615         return -EINVAL;
0616     }
0617 }
0618 
0619 static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev,
0620                        struct iio_chan_spec const *chan,
0621                        int val, int val2, long mask)
0622 {
0623     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0624     int ret;
0625 
0626     if (chan->type != IIO_ANGL_VEL)
0627         return -EINVAL;
0628 
0629     switch (mask) {
0630     case IIO_CHAN_INFO_SCALE:
0631         ret = iio_device_claim_direct_mode(indio_dev);
0632         if (ret)
0633             return ret;
0634         ret = inv_icm42600_gyro_write_scale(st, val, val2);
0635         iio_device_release_direct_mode(indio_dev);
0636         return ret;
0637     case IIO_CHAN_INFO_SAMP_FREQ:
0638         return inv_icm42600_gyro_write_odr(indio_dev, val, val2);
0639     case IIO_CHAN_INFO_CALIBBIAS:
0640         ret = iio_device_claim_direct_mode(indio_dev);
0641         if (ret)
0642             return ret;
0643         ret = inv_icm42600_gyro_write_offset(st, chan, val, val2);
0644         iio_device_release_direct_mode(indio_dev);
0645         return ret;
0646     default:
0647         return -EINVAL;
0648     }
0649 }
0650 
0651 static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev,
0652                            struct iio_chan_spec const *chan,
0653                            long mask)
0654 {
0655     if (chan->type != IIO_ANGL_VEL)
0656         return -EINVAL;
0657 
0658     switch (mask) {
0659     case IIO_CHAN_INFO_SCALE:
0660         return IIO_VAL_INT_PLUS_NANO;
0661     case IIO_CHAN_INFO_SAMP_FREQ:
0662         return IIO_VAL_INT_PLUS_MICRO;
0663     case IIO_CHAN_INFO_CALIBBIAS:
0664         return IIO_VAL_INT_PLUS_NANO;
0665     default:
0666         return -EINVAL;
0667     }
0668 }
0669 
0670 static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev,
0671                           unsigned int val)
0672 {
0673     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0674     int ret;
0675 
0676     mutex_lock(&st->lock);
0677 
0678     st->fifo.watermark.gyro = val;
0679     ret = inv_icm42600_buffer_update_watermark(st);
0680 
0681     mutex_unlock(&st->lock);
0682 
0683     return ret;
0684 }
0685 
0686 static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev,
0687                       unsigned int count)
0688 {
0689     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0690     int ret;
0691 
0692     if (count == 0)
0693         return 0;
0694 
0695     mutex_lock(&st->lock);
0696 
0697     ret = inv_icm42600_buffer_hwfifo_flush(st, count);
0698     if (!ret)
0699         ret = st->fifo.nb.gyro;
0700 
0701     mutex_unlock(&st->lock);
0702 
0703     return ret;
0704 }
0705 
0706 static const struct iio_info inv_icm42600_gyro_info = {
0707     .read_raw = inv_icm42600_gyro_read_raw,
0708     .read_avail = inv_icm42600_gyro_read_avail,
0709     .write_raw = inv_icm42600_gyro_write_raw,
0710     .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt,
0711     .debugfs_reg_access = inv_icm42600_debugfs_reg,
0712     .update_scan_mode = inv_icm42600_gyro_update_scan_mode,
0713     .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark,
0714     .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush,
0715 };
0716 
0717 struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st)
0718 {
0719     struct device *dev = regmap_get_device(st->map);
0720     const char *name;
0721     struct inv_icm42600_timestamp *ts;
0722     struct iio_dev *indio_dev;
0723     int ret;
0724 
0725     name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name);
0726     if (!name)
0727         return ERR_PTR(-ENOMEM);
0728 
0729     indio_dev = devm_iio_device_alloc(dev, sizeof(*ts));
0730     if (!indio_dev)
0731         return ERR_PTR(-ENOMEM);
0732 
0733     ts = iio_priv(indio_dev);
0734     inv_icm42600_timestamp_init(ts, inv_icm42600_odr_to_period(st->conf.gyro.odr));
0735 
0736     iio_device_set_drvdata(indio_dev, st);
0737     indio_dev->name = name;
0738     indio_dev->info = &inv_icm42600_gyro_info;
0739     indio_dev->modes = INDIO_DIRECT_MODE;
0740     indio_dev->channels = inv_icm42600_gyro_channels;
0741     indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels);
0742     indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks;
0743     indio_dev->setup_ops = &inv_icm42600_buffer_ops;
0744 
0745     ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
0746                       &inv_icm42600_buffer_ops);
0747     if (ret)
0748         return ERR_PTR(ret);
0749 
0750     ret = devm_iio_device_register(dev, indio_dev);
0751     if (ret)
0752         return ERR_PTR(ret);
0753 
0754     return indio_dev;
0755 }
0756 
0757 int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev)
0758 {
0759     struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
0760     struct inv_icm42600_timestamp *ts = iio_priv(indio_dev);
0761     ssize_t i, size;
0762     unsigned int no;
0763     const void *accel, *gyro, *timestamp;
0764     const int8_t *temp;
0765     unsigned int odr;
0766     int64_t ts_val;
0767     struct inv_icm42600_gyro_buffer buffer;
0768 
0769     /* parse all fifo packets */
0770     for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) {
0771         size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
0772                 &accel, &gyro, &temp, &timestamp, &odr);
0773         /* quit if error or FIFO is empty */
0774         if (size <= 0)
0775             return size;
0776 
0777         /* skip packet if no gyro data or data is invalid */
0778         if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro))
0779             continue;
0780 
0781         /* update odr */
0782         if (odr & INV_ICM42600_SENSOR_GYRO)
0783             inv_icm42600_timestamp_apply_odr(ts, st->fifo.period,
0784                              st->fifo.nb.total, no);
0785 
0786         /* buffer is copied to userspace, zeroing it to avoid any data leak */
0787         memset(&buffer, 0, sizeof(buffer));
0788         memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro));
0789         /* convert 8 bits FIFO temperature in high resolution format */
0790         buffer.temp = temp ? (*temp * 64) : 0;
0791         ts_val = inv_icm42600_timestamp_pop(ts);
0792         iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val);
0793     }
0794 
0795     return 0;
0796 }