0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/interrupt.h>
0009 #include <linux/module.h>
0010 #include <linux/pm.h>
0011 #include <linux/pm_runtime.h>
0012 #include <linux/property.h>
0013 #include <linux/regmap.h>
0014 #include <linux/regulator/consumer.h>
0015
0016 #include <linux/iio/events.h>
0017 #include <linux/iio/iio.h>
0018 #include <linux/iio/buffer.h>
0019 #include <linux/iio/sysfs.h>
0020 #include <linux/iio/trigger.h>
0021 #include <linux/iio/trigger_consumer.h>
0022 #include <linux/iio/triggered_buffer.h>
0023
0024 #include "fxas21002c.h"
0025
0026 #define FXAS21002C_CHIP_ID_1 0xD6
0027 #define FXAS21002C_CHIP_ID_2 0xD7
0028
0029 enum fxas21002c_mode_state {
0030 FXAS21002C_MODE_STANDBY,
0031 FXAS21002C_MODE_READY,
0032 FXAS21002C_MODE_ACTIVE,
0033 };
0034
0035 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62
0036 #define FXAS21002C_READY_ACTIVE_TIME_MS 7
0037
0038 #define FXAS21002C_ODR_LIST_MAX 10
0039
0040 #define FXAS21002C_SCALE_FRACTIONAL 32
0041 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000
0042
0043 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
0044
0045 static const struct reg_field fxas21002c_reg_fields[] = {
0046 [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
0047 [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
0048 [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
0049 [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
0050 [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
0051 [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
0052 [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
0053 [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
0054 [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
0055 [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
0056 [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
0057 [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
0058 [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
0059 [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
0060 [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
0061 [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
0062 [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
0063 [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
0064 [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
0065 [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
0066 [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
0067 [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
0068 [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
0069 [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
0070 [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
0071 [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
0072 [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
0073 [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
0074 [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
0075 [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
0076 [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
0077 [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
0078 [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
0079 [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
0080 [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
0081 [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
0082 [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
0083 [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
0084 [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
0085 [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
0086 [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
0087 [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
0088 [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
0089 [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
0090 [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
0091 [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
0092 [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
0093 [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
0094 [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
0095 [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
0096 [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
0097 [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
0098 [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
0099 [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
0100 [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
0101 [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
0102 [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
0103 [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
0104 [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
0105 [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
0106 [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
0107 [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
0108 [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
0109 };
0110
0111 static const int fxas21002c_odr_values[] = {
0112 800, 400, 200, 100, 50, 25, 12, 12
0113 };
0114
0115
0116
0117
0118
0119
0120 static const int fxas21002c_lpf_values[] = {
0121 32, 16, 8
0122 };
0123
0124
0125
0126
0127
0128
0129 static const int fxas21002c_hpf_values[] = {
0130 18750, 9625, 4875, 2475
0131 };
0132
0133 static const int fxas21002c_range_values[] = {
0134 4000, 2000, 1000, 500, 250
0135 };
0136
0137 struct fxas21002c_data {
0138 u8 chip_id;
0139 enum fxas21002c_mode_state mode;
0140 enum fxas21002c_mode_state prev_mode;
0141
0142 struct mutex lock;
0143 struct regmap *regmap;
0144 struct regmap_field *regmap_fields[F_MAX_FIELDS];
0145 struct iio_trigger *dready_trig;
0146 s64 timestamp;
0147 int irq;
0148
0149 struct regulator *vdd;
0150 struct regulator *vddio;
0151
0152
0153
0154
0155
0156 s16 buffer[8] __aligned(IIO_DMA_MINALIGN);
0157 };
0158
0159 enum fxas21002c_channel_index {
0160 CHANNEL_SCAN_INDEX_X,
0161 CHANNEL_SCAN_INDEX_Y,
0162 CHANNEL_SCAN_INDEX_Z,
0163 CHANNEL_SCAN_MAX,
0164 };
0165
0166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
0167 {
0168 int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
0169
0170 value = min_t(u8, value, odr_value_max);
0171
0172 return fxas21002c_odr_values[value];
0173 }
0174
0175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
0176 unsigned int hz)
0177 {
0178 int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
0179 int i;
0180
0181 for (i = 0; i < odr_table_size; i++)
0182 if (fxas21002c_odr_values[i] == hz)
0183 return i;
0184
0185 return -EINVAL;
0186 }
0187
0188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
0189 {
0190 int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
0191
0192 value = min_t(u8, value, lpf_value_max);
0193
0194 return fxas21002c_lpf_values[value];
0195 }
0196
0197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
0198 unsigned int hz)
0199 {
0200 int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
0201 int i;
0202
0203 for (i = 0; i < lpf_table_size; i++)
0204 if (fxas21002c_lpf_values[i] == hz)
0205 return i;
0206
0207 return -EINVAL;
0208 }
0209
0210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
0211 {
0212 int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
0213
0214 value = min_t(u8, value, hpf_value_max);
0215
0216 return fxas21002c_hpf_values[value];
0217 }
0218
0219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
0220 unsigned int hz)
0221 {
0222 int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
0223 int i;
0224
0225 for (i = 0; i < hpf_table_size; i++)
0226 if (fxas21002c_hpf_values[i] == hz)
0227 return i;
0228
0229 return -EINVAL;
0230 }
0231
0232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
0233 u8 value)
0234 {
0235 int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
0236 unsigned int fs_double;
0237 int ret;
0238
0239
0240 ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
0241 if (ret < 0)
0242 return ret;
0243
0244 if (!fs_double)
0245 value += 1;
0246
0247 value = min_t(u8, value, range_value_max);
0248
0249 return fxas21002c_range_values[value];
0250 }
0251
0252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
0253 unsigned int range)
0254 {
0255 int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
0256 bool found = false;
0257 int fs_double = 0;
0258 int ret;
0259 int i;
0260
0261 for (i = 0; i < range_table_size; i++)
0262 if (fxas21002c_range_values[i] == range) {
0263 found = true;
0264 break;
0265 }
0266
0267 if (!found)
0268 return -EINVAL;
0269
0270 if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
0271 fs_double = 1;
0272
0273 ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
0274 if (ret < 0)
0275 return ret;
0276
0277 return i;
0278 }
0279
0280 static int fxas21002c_mode_get(struct fxas21002c_data *data)
0281 {
0282 unsigned int active;
0283 unsigned int ready;
0284 int ret;
0285
0286 ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
0287 if (ret < 0)
0288 return ret;
0289 if (active)
0290 return FXAS21002C_MODE_ACTIVE;
0291
0292 ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
0293 if (ret < 0)
0294 return ret;
0295 if (ready)
0296 return FXAS21002C_MODE_READY;
0297
0298 return FXAS21002C_MODE_STANDBY;
0299 }
0300
0301 static int fxas21002c_mode_set(struct fxas21002c_data *data,
0302 enum fxas21002c_mode_state mode)
0303 {
0304 int ret;
0305
0306 if (mode == data->mode)
0307 return 0;
0308
0309 if (mode == FXAS21002C_MODE_READY)
0310 ret = regmap_field_write(data->regmap_fields[F_READY], 1);
0311 else
0312 ret = regmap_field_write(data->regmap_fields[F_READY], 0);
0313 if (ret < 0)
0314 return ret;
0315
0316 if (mode == FXAS21002C_MODE_ACTIVE)
0317 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
0318 else
0319 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
0320 if (ret < 0)
0321 return ret;
0322
0323
0324 if (mode == FXAS21002C_MODE_ACTIVE &&
0325 data->mode == FXAS21002C_MODE_STANDBY)
0326 msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
0327
0328 if (data->mode == FXAS21002C_MODE_READY)
0329 msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
0330
0331 data->prev_mode = data->mode;
0332 data->mode = mode;
0333
0334 return ret;
0335 }
0336
0337 static int fxas21002c_write(struct fxas21002c_data *data,
0338 enum fxas21002c_fields field, int bits)
0339 {
0340 int actual_mode;
0341 int ret;
0342
0343 mutex_lock(&data->lock);
0344
0345 actual_mode = fxas21002c_mode_get(data);
0346 if (actual_mode < 0) {
0347 ret = actual_mode;
0348 goto out_unlock;
0349 }
0350
0351 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
0352 if (ret < 0)
0353 goto out_unlock;
0354
0355 ret = regmap_field_write(data->regmap_fields[field], bits);
0356 if (ret < 0)
0357 goto out_unlock;
0358
0359 ret = fxas21002c_mode_set(data, data->prev_mode);
0360
0361 out_unlock:
0362 mutex_unlock(&data->lock);
0363
0364 return ret;
0365 }
0366
0367 static int fxas21002c_pm_get(struct fxas21002c_data *data)
0368 {
0369 return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
0370 }
0371
0372 static int fxas21002c_pm_put(struct fxas21002c_data *data)
0373 {
0374 struct device *dev = regmap_get_device(data->regmap);
0375
0376 pm_runtime_mark_last_busy(dev);
0377
0378 return pm_runtime_put_autosuspend(dev);
0379 }
0380
0381 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
0382 {
0383 struct device *dev = regmap_get_device(data->regmap);
0384 unsigned int temp;
0385 int ret;
0386
0387 mutex_lock(&data->lock);
0388 ret = fxas21002c_pm_get(data);
0389 if (ret < 0)
0390 goto data_unlock;
0391
0392 ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
0393 if (ret < 0) {
0394 dev_err(dev, "failed to read temp: %d\n", ret);
0395 fxas21002c_pm_put(data);
0396 goto data_unlock;
0397 }
0398
0399 *val = sign_extend32(temp, 7);
0400
0401 ret = fxas21002c_pm_put(data);
0402 if (ret < 0)
0403 goto data_unlock;
0404
0405 ret = IIO_VAL_INT;
0406
0407 data_unlock:
0408 mutex_unlock(&data->lock);
0409
0410 return ret;
0411 }
0412
0413 static int fxas21002c_axis_get(struct fxas21002c_data *data,
0414 int index, int *val)
0415 {
0416 struct device *dev = regmap_get_device(data->regmap);
0417 __be16 axis_be;
0418 int ret;
0419
0420 mutex_lock(&data->lock);
0421 ret = fxas21002c_pm_get(data);
0422 if (ret < 0)
0423 goto data_unlock;
0424
0425 ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
0426 &axis_be, sizeof(axis_be));
0427 if (ret < 0) {
0428 dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
0429 fxas21002c_pm_put(data);
0430 goto data_unlock;
0431 }
0432
0433 *val = sign_extend32(be16_to_cpu(axis_be), 15);
0434
0435 ret = fxas21002c_pm_put(data);
0436 if (ret < 0)
0437 goto data_unlock;
0438
0439 ret = IIO_VAL_INT;
0440
0441 data_unlock:
0442 mutex_unlock(&data->lock);
0443
0444 return ret;
0445 }
0446
0447 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
0448 {
0449 unsigned int odr_bits;
0450 int ret;
0451
0452 mutex_lock(&data->lock);
0453 ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
0454 if (ret < 0)
0455 goto data_unlock;
0456
0457 *odr = fxas21002c_odr_hz_from_value(data, odr_bits);
0458
0459 ret = IIO_VAL_INT;
0460
0461 data_unlock:
0462 mutex_unlock(&data->lock);
0463
0464 return ret;
0465 }
0466
0467 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
0468 {
0469 int odr_bits;
0470
0471 odr_bits = fxas21002c_odr_value_from_hz(data, odr);
0472 if (odr_bits < 0)
0473 return odr_bits;
0474
0475 return fxas21002c_write(data, F_DR, odr_bits);
0476 }
0477
0478 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
0479 {
0480 unsigned int bw_bits;
0481 int ret;
0482
0483 mutex_lock(&data->lock);
0484 ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
0485 if (ret < 0)
0486 goto data_unlock;
0487
0488 *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
0489
0490 ret = IIO_VAL_INT_PLUS_MICRO;
0491
0492 data_unlock:
0493 mutex_unlock(&data->lock);
0494
0495 return ret;
0496 }
0497
0498 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
0499 {
0500 int bw_bits;
0501 int odr;
0502 int ret;
0503
0504 bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
0505 if (bw_bits < 0)
0506 return bw_bits;
0507
0508
0509
0510
0511
0512 ret = fxas21002c_odr_get(data, &odr);
0513 if (ret < 0)
0514 return -EINVAL;
0515
0516 if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
0517 return -EINVAL;
0518
0519 return fxas21002c_write(data, F_BW, bw_bits);
0520 }
0521
0522 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
0523 {
0524 unsigned int sel_bits;
0525 int ret;
0526
0527 mutex_lock(&data->lock);
0528 ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
0529 if (ret < 0)
0530 goto data_unlock;
0531
0532 *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
0533
0534 ret = IIO_VAL_INT_PLUS_MICRO;
0535
0536 data_unlock:
0537 mutex_unlock(&data->lock);
0538
0539 return ret;
0540 }
0541
0542 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
0543 {
0544 int sel_bits;
0545
0546 sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
0547 if (sel_bits < 0)
0548 return sel_bits;
0549
0550 return fxas21002c_write(data, F_SEL, sel_bits);
0551 }
0552
0553 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
0554 {
0555 int fs_bits;
0556 int scale;
0557 int ret;
0558
0559 mutex_lock(&data->lock);
0560 ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
0561 if (ret < 0)
0562 goto data_unlock;
0563
0564 scale = fxas21002c_range_fs_from_value(data, fs_bits);
0565 if (scale < 0) {
0566 ret = scale;
0567 goto data_unlock;
0568 }
0569
0570 *val = scale;
0571
0572 data_unlock:
0573 mutex_unlock(&data->lock);
0574
0575 return ret;
0576 }
0577
0578 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
0579 {
0580 int fs_bits;
0581
0582 fs_bits = fxas21002c_range_value_from_fs(data, range);
0583 if (fs_bits < 0)
0584 return fs_bits;
0585
0586 return fxas21002c_write(data, F_FS, fs_bits);
0587 }
0588
0589 static int fxas21002c_read_raw(struct iio_dev *indio_dev,
0590 struct iio_chan_spec const *chan, int *val,
0591 int *val2, long mask)
0592 {
0593 struct fxas21002c_data *data = iio_priv(indio_dev);
0594 int ret;
0595
0596 switch (mask) {
0597 case IIO_CHAN_INFO_RAW:
0598 switch (chan->type) {
0599 case IIO_TEMP:
0600 return fxas21002c_temp_get(data, val);
0601 case IIO_ANGL_VEL:
0602 return fxas21002c_axis_get(data, chan->scan_index, val);
0603 default:
0604 return -EINVAL;
0605 }
0606 case IIO_CHAN_INFO_SCALE:
0607 switch (chan->type) {
0608 case IIO_ANGL_VEL:
0609 *val2 = FXAS21002C_SCALE_FRACTIONAL;
0610 ret = fxas21002c_scale_get(data, val);
0611 if (ret < 0)
0612 return ret;
0613
0614 return IIO_VAL_FRACTIONAL;
0615 default:
0616 return -EINVAL;
0617 }
0618 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
0619 *val = 0;
0620 return fxas21002c_lpf_get(data, val2);
0621 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
0622 *val = 0;
0623 return fxas21002c_hpf_get(data, val2);
0624 case IIO_CHAN_INFO_SAMP_FREQ:
0625 *val2 = 0;
0626 return fxas21002c_odr_get(data, val);
0627 default:
0628 return -EINVAL;
0629 }
0630 }
0631
0632 static int fxas21002c_write_raw(struct iio_dev *indio_dev,
0633 struct iio_chan_spec const *chan, int val,
0634 int val2, long mask)
0635 {
0636 struct fxas21002c_data *data = iio_priv(indio_dev);
0637 int range;
0638
0639 switch (mask) {
0640 case IIO_CHAN_INFO_SAMP_FREQ:
0641 if (val2)
0642 return -EINVAL;
0643
0644 return fxas21002c_odr_set(data, val);
0645 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
0646 if (val)
0647 return -EINVAL;
0648
0649 val2 = val2 / 10000;
0650 return fxas21002c_lpf_set(data, val2);
0651 case IIO_CHAN_INFO_SCALE:
0652 switch (chan->type) {
0653 case IIO_ANGL_VEL:
0654 range = (((val * 1000 + val2 / 1000) *
0655 FXAS21002C_SCALE_FRACTIONAL) / 1000);
0656 return fxas21002c_scale_set(data, range);
0657 default:
0658 return -EINVAL;
0659 }
0660 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
0661 return fxas21002c_hpf_set(data, val2);
0662 default:
0663 return -EINVAL;
0664 }
0665 }
0666
0667 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
0668
0669 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
0670 "0.32 0.16 0.08");
0671
0672 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
0673 "0.018750 0.009625 0.004875 0.002475");
0674
0675 static IIO_CONST_ATTR(in_anglvel_scale_available,
0676 "125.0 62.5 31.25 15.625 7.8125");
0677
0678 static struct attribute *fxas21002c_attributes[] = {
0679 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
0680 &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
0681 &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
0682 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
0683 NULL,
0684 };
0685
0686 static const struct attribute_group fxas21002c_attrs_group = {
0687 .attrs = fxas21002c_attributes,
0688 };
0689
0690 #define FXAS21002C_CHANNEL(_axis) { \
0691 .type = IIO_ANGL_VEL, \
0692 .modified = 1, \
0693 .channel2 = IIO_MOD_##_axis, \
0694 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
0695 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
0696 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
0697 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \
0698 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
0699 .scan_index = CHANNEL_SCAN_INDEX_##_axis, \
0700 .scan_type = { \
0701 .sign = 's', \
0702 .realbits = 16, \
0703 .storagebits = 16, \
0704 .endianness = IIO_BE, \
0705 }, \
0706 }
0707
0708 static const struct iio_chan_spec fxas21002c_channels[] = {
0709 {
0710 .type = IIO_TEMP,
0711 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0712 .scan_index = -1,
0713 },
0714 FXAS21002C_CHANNEL(X),
0715 FXAS21002C_CHANNEL(Y),
0716 FXAS21002C_CHANNEL(Z),
0717 };
0718
0719 static const struct iio_info fxas21002c_info = {
0720 .attrs = &fxas21002c_attrs_group,
0721 .read_raw = &fxas21002c_read_raw,
0722 .write_raw = &fxas21002c_write_raw,
0723 };
0724
0725 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
0726 {
0727 struct iio_poll_func *pf = p;
0728 struct iio_dev *indio_dev = pf->indio_dev;
0729 struct fxas21002c_data *data = iio_priv(indio_dev);
0730 int ret;
0731
0732 mutex_lock(&data->lock);
0733 ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
0734 data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
0735 if (ret < 0)
0736 goto out_unlock;
0737
0738 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
0739 data->timestamp);
0740
0741 out_unlock:
0742 mutex_unlock(&data->lock);
0743
0744 iio_trigger_notify_done(indio_dev->trig);
0745
0746 return IRQ_HANDLED;
0747 }
0748
0749 static int fxas21002c_chip_init(struct fxas21002c_data *data)
0750 {
0751 struct device *dev = regmap_get_device(data->regmap);
0752 unsigned int chip_id;
0753 int ret;
0754
0755 ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
0756 if (ret < 0)
0757 return ret;
0758
0759 if (chip_id != FXAS21002C_CHIP_ID_1 &&
0760 chip_id != FXAS21002C_CHIP_ID_2) {
0761 dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
0762 return -EINVAL;
0763 }
0764
0765 data->chip_id = chip_id;
0766
0767 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
0768 if (ret < 0)
0769 return ret;
0770
0771
0772 ret = fxas21002c_odr_set(data, 200);
0773 if (ret < 0)
0774 dev_err(dev, "failed to set ODR: %d\n", ret);
0775
0776 return ret;
0777 }
0778
0779 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
0780 bool state)
0781 {
0782 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
0783 struct fxas21002c_data *data = iio_priv(indio_dev);
0784
0785 return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
0786 }
0787
0788 static const struct iio_trigger_ops fxas21002c_trigger_ops = {
0789 .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
0790 };
0791
0792 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
0793 {
0794 struct iio_dev *indio_dev = private;
0795 struct fxas21002c_data *data = iio_priv(indio_dev);
0796
0797 data->timestamp = iio_get_time_ns(indio_dev);
0798
0799 return IRQ_WAKE_THREAD;
0800 }
0801
0802 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
0803 {
0804 struct iio_dev *indio_dev = private;
0805 struct fxas21002c_data *data = iio_priv(indio_dev);
0806 unsigned int data_ready;
0807 int ret;
0808
0809 ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
0810 if (ret < 0)
0811 return IRQ_NONE;
0812
0813 if (!data_ready)
0814 return IRQ_NONE;
0815
0816 iio_trigger_poll_chained(data->dready_trig);
0817
0818 return IRQ_HANDLED;
0819 }
0820
0821 static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
0822 {
0823 struct device *dev = regmap_get_device(data->regmap);
0824 struct iio_dev *indio_dev = dev_get_drvdata(dev);
0825 unsigned long irq_trig;
0826 bool irq_open_drain;
0827 int irq1;
0828 int ret;
0829
0830 if (!data->irq)
0831 return 0;
0832
0833 irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
0834 if (irq1 == data->irq) {
0835 dev_info(dev, "using interrupt line INT1\n");
0836 ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
0837 1);
0838 if (ret < 0)
0839 return ret;
0840 }
0841
0842 dev_info(dev, "using interrupt line INT2\n");
0843
0844 irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
0845
0846 data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
0847 indio_dev->name,
0848 iio_device_id(indio_dev));
0849 if (!data->dready_trig)
0850 return -ENOMEM;
0851
0852 irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
0853
0854 if (irq_trig == IRQF_TRIGGER_RISING) {
0855 ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
0856 if (ret < 0)
0857 return ret;
0858 }
0859
0860 if (irq_open_drain)
0861 irq_trig |= IRQF_SHARED;
0862
0863 ret = devm_request_threaded_irq(dev, data->irq,
0864 fxas21002c_data_rdy_handler,
0865 fxas21002c_data_rdy_thread,
0866 irq_trig, "fxas21002c_data_ready",
0867 indio_dev);
0868 if (ret < 0)
0869 return ret;
0870
0871 data->dready_trig->ops = &fxas21002c_trigger_ops;
0872 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
0873
0874 return devm_iio_trigger_register(dev, data->dready_trig);
0875 }
0876
0877 static int fxas21002c_power_enable(struct fxas21002c_data *data)
0878 {
0879 int ret;
0880
0881 ret = regulator_enable(data->vdd);
0882 if (ret < 0)
0883 return ret;
0884
0885 ret = regulator_enable(data->vddio);
0886 if (ret < 0) {
0887 regulator_disable(data->vdd);
0888 return ret;
0889 }
0890
0891 return 0;
0892 }
0893
0894 static void fxas21002c_power_disable(struct fxas21002c_data *data)
0895 {
0896 regulator_disable(data->vdd);
0897 regulator_disable(data->vddio);
0898 }
0899
0900 static void fxas21002c_power_disable_action(void *_data)
0901 {
0902 struct fxas21002c_data *data = _data;
0903
0904 fxas21002c_power_disable(data);
0905 }
0906
0907 static int fxas21002c_regulators_get(struct fxas21002c_data *data)
0908 {
0909 struct device *dev = regmap_get_device(data->regmap);
0910
0911 data->vdd = devm_regulator_get(dev->parent, "vdd");
0912 if (IS_ERR(data->vdd))
0913 return PTR_ERR(data->vdd);
0914
0915 data->vddio = devm_regulator_get(dev->parent, "vddio");
0916
0917 return PTR_ERR_OR_ZERO(data->vddio);
0918 }
0919
0920 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
0921 const char *name)
0922 {
0923 struct fxas21002c_data *data;
0924 struct iio_dev *indio_dev;
0925 struct regmap_field *f;
0926 int i;
0927 int ret;
0928
0929 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
0930 if (!indio_dev)
0931 return -ENOMEM;
0932
0933 data = iio_priv(indio_dev);
0934 dev_set_drvdata(dev, indio_dev);
0935 data->irq = irq;
0936 data->regmap = regmap;
0937
0938 for (i = 0; i < F_MAX_FIELDS; i++) {
0939 f = devm_regmap_field_alloc(dev, data->regmap,
0940 fxas21002c_reg_fields[i]);
0941 if (IS_ERR(f))
0942 return PTR_ERR(f);
0943
0944 data->regmap_fields[i] = f;
0945 }
0946
0947 mutex_init(&data->lock);
0948
0949 ret = fxas21002c_regulators_get(data);
0950 if (ret < 0)
0951 return ret;
0952
0953 ret = fxas21002c_power_enable(data);
0954 if (ret < 0)
0955 return ret;
0956
0957 ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
0958 data);
0959 if (ret < 0)
0960 return ret;
0961
0962 ret = fxas21002c_chip_init(data);
0963 if (ret < 0)
0964 return ret;
0965
0966 indio_dev->channels = fxas21002c_channels;
0967 indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
0968 indio_dev->name = name;
0969 indio_dev->modes = INDIO_DIRECT_MODE;
0970 indio_dev->info = &fxas21002c_info;
0971
0972 ret = fxas21002c_trigger_probe(data);
0973 if (ret < 0)
0974 return ret;
0975
0976 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
0977 fxas21002c_trigger_handler, NULL);
0978 if (ret < 0)
0979 return ret;
0980
0981 ret = pm_runtime_set_active(dev);
0982 if (ret)
0983 return ret;
0984
0985 pm_runtime_enable(dev);
0986 pm_runtime_set_autosuspend_delay(dev, 2000);
0987 pm_runtime_use_autosuspend(dev);
0988
0989 ret = iio_device_register(indio_dev);
0990 if (ret < 0)
0991 goto pm_disable;
0992
0993 return 0;
0994
0995 pm_disable:
0996 pm_runtime_disable(dev);
0997 pm_runtime_set_suspended(dev);
0998
0999 return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(fxas21002c_core_probe);
1002
1003 void fxas21002c_core_remove(struct device *dev)
1004 {
1005 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1006
1007 iio_device_unregister(indio_dev);
1008
1009 pm_runtime_disable(dev);
1010 pm_runtime_set_suspended(dev);
1011 }
1012 EXPORT_SYMBOL_GPL(fxas21002c_core_remove);
1013
1014 static int __maybe_unused fxas21002c_suspend(struct device *dev)
1015 {
1016 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1017
1018 fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
1019 fxas21002c_power_disable(data);
1020
1021 return 0;
1022 }
1023
1024 static int __maybe_unused fxas21002c_resume(struct device *dev)
1025 {
1026 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1027 int ret;
1028
1029 ret = fxas21002c_power_enable(data);
1030 if (ret < 0)
1031 return ret;
1032
1033 return fxas21002c_mode_set(data, data->prev_mode);
1034 }
1035
1036 static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev)
1037 {
1038 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1039
1040 return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
1041 }
1042
1043 static int __maybe_unused fxas21002c_runtime_resume(struct device *dev)
1044 {
1045 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1046
1047 return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
1048 }
1049
1050 const struct dev_pm_ops fxas21002c_pm_ops = {
1051 SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
1052 SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend,
1053 fxas21002c_runtime_resume, NULL)
1054 };
1055 EXPORT_SYMBOL_GPL(fxas21002c_pm_ops);
1056
1057 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
1058 MODULE_LICENSE("GPL v2");
1059 MODULE_DESCRIPTION("FXAS21002C Gyro driver");