0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/bitfield.h>
0010 #include <linux/bitops.h>
0011 #include <linux/delay.h>
0012 #include <linux/device.h>
0013 #include <linux/kernel.h>
0014 #include <linux/module.h>
0015 #include <linux/spi/spi.h>
0016
0017 #include <linux/iio/buffer.h>
0018 #include <linux/iio/iio.h>
0019 #include <linux/iio/sysfs.h>
0020 #include <linux/iio/trigger.h>
0021 #include <linux/iio/triggered_buffer.h>
0022 #include <linux/iio/trigger_consumer.h>
0023
0024 #define ADXRS290_ADI_ID 0xAD
0025 #define ADXRS290_MEMS_ID 0x1D
0026 #define ADXRS290_DEV_ID 0x92
0027
0028 #define ADXRS290_REG_ADI_ID 0x00
0029 #define ADXRS290_REG_MEMS_ID 0x01
0030 #define ADXRS290_REG_DEV_ID 0x02
0031 #define ADXRS290_REG_REV_ID 0x03
0032 #define ADXRS290_REG_SN0 0x04
0033 #define ADXRS290_REG_DATAX0 0x08
0034 #define ADXRS290_REG_DATAY0 0x0A
0035 #define ADXRS290_REG_TEMP0 0x0C
0036 #define ADXRS290_REG_POWER_CTL 0x10
0037 #define ADXRS290_REG_FILTER 0x11
0038 #define ADXRS290_REG_DATA_RDY 0x12
0039
0040 #define ADXRS290_READ BIT(7)
0041 #define ADXRS290_TSM BIT(0)
0042 #define ADXRS290_MEASUREMENT BIT(1)
0043 #define ADXRS290_DATA_RDY_OUT BIT(0)
0044 #define ADXRS290_SYNC_MASK GENMASK(1, 0)
0045 #define ADXRS290_SYNC(x) FIELD_PREP(ADXRS290_SYNC_MASK, x)
0046 #define ADXRS290_LPF_MASK GENMASK(2, 0)
0047 #define ADXRS290_LPF(x) FIELD_PREP(ADXRS290_LPF_MASK, x)
0048 #define ADXRS290_HPF_MASK GENMASK(7, 4)
0049 #define ADXRS290_HPF(x) FIELD_PREP(ADXRS290_HPF_MASK, x)
0050
0051 #define ADXRS290_READ_REG(reg) (ADXRS290_READ | (reg))
0052
0053 #define ADXRS290_MAX_TRANSITION_TIME_MS 100
0054
0055 enum adxrs290_mode {
0056 ADXRS290_MODE_STANDBY,
0057 ADXRS290_MODE_MEASUREMENT,
0058 };
0059
0060 enum adxrs290_scan_index {
0061 ADXRS290_IDX_X,
0062 ADXRS290_IDX_Y,
0063 ADXRS290_IDX_TEMP,
0064 ADXRS290_IDX_TS,
0065 };
0066
0067 struct adxrs290_state {
0068 struct spi_device *spi;
0069
0070 struct mutex lock;
0071 enum adxrs290_mode mode;
0072 unsigned int lpf_3db_freq_idx;
0073 unsigned int hpf_3db_freq_idx;
0074 struct iio_trigger *dready_trig;
0075
0076 struct {
0077 s16 channels[3];
0078 s64 ts __aligned(8);
0079 } buffer;
0080 };
0081
0082
0083
0084
0085
0086 static const int adxrs290_lpf_3db_freq_hz_table[][2] = {
0087 [0] = {480, 0},
0088 [1] = {320, 0},
0089 [2] = {160, 0},
0090 [3] = {80, 0},
0091 [4] = {56, 600000},
0092 [5] = {40, 0},
0093 [6] = {28, 300000},
0094 [7] = {20, 0},
0095 };
0096
0097
0098
0099
0100
0101 static const int adxrs290_hpf_3db_freq_hz_table[][2] = {
0102 [0] = {0, 0},
0103 [1] = {0, 11000},
0104 [2] = {0, 22000},
0105 [3] = {0, 44000},
0106 [4] = {0, 87000},
0107 [5] = {0, 175000},
0108 [6] = {0, 350000},
0109 [7] = {0, 700000},
0110 [8] = {1, 400000},
0111 [9] = {2, 800000},
0112 [10] = {11, 300000},
0113 };
0114
0115 static int adxrs290_get_rate_data(struct iio_dev *indio_dev, const u8 cmd, int *val)
0116 {
0117 struct adxrs290_state *st = iio_priv(indio_dev);
0118 int ret = 0;
0119 int temp;
0120
0121 mutex_lock(&st->lock);
0122 temp = spi_w8r16(st->spi, cmd);
0123 if (temp < 0) {
0124 ret = temp;
0125 goto err_unlock;
0126 }
0127
0128 *val = sign_extend32(temp, 15);
0129
0130 err_unlock:
0131 mutex_unlock(&st->lock);
0132 return ret;
0133 }
0134
0135 static int adxrs290_get_temp_data(struct iio_dev *indio_dev, int *val)
0136 {
0137 const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_TEMP0);
0138 struct adxrs290_state *st = iio_priv(indio_dev);
0139 int ret = 0;
0140 int temp;
0141
0142 mutex_lock(&st->lock);
0143 temp = spi_w8r16(st->spi, cmd);
0144 if (temp < 0) {
0145 ret = temp;
0146 goto err_unlock;
0147 }
0148
0149
0150 *val = sign_extend32(temp, 11);
0151
0152 err_unlock:
0153 mutex_unlock(&st->lock);
0154 return ret;
0155 }
0156
0157 static int adxrs290_get_3db_freq(struct iio_dev *indio_dev, u8 *val, u8 *val2)
0158 {
0159 const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_FILTER);
0160 struct adxrs290_state *st = iio_priv(indio_dev);
0161 int ret = 0;
0162 short temp;
0163
0164 mutex_lock(&st->lock);
0165 temp = spi_w8r8(st->spi, cmd);
0166 if (temp < 0) {
0167 ret = temp;
0168 goto err_unlock;
0169 }
0170
0171 *val = FIELD_GET(ADXRS290_LPF_MASK, temp);
0172 *val2 = FIELD_GET(ADXRS290_HPF_MASK, temp);
0173
0174 err_unlock:
0175 mutex_unlock(&st->lock);
0176 return ret;
0177 }
0178
0179 static int adxrs290_spi_write_reg(struct spi_device *spi, const u8 reg,
0180 const u8 val)
0181 {
0182 u8 buf[2];
0183
0184 buf[0] = reg;
0185 buf[1] = val;
0186
0187 return spi_write_then_read(spi, buf, ARRAY_SIZE(buf), NULL, 0);
0188 }
0189
0190 static int adxrs290_find_match(const int (*freq_tbl)[2], const int n,
0191 const int val, const int val2)
0192 {
0193 int i;
0194
0195 for (i = 0; i < n; i++) {
0196 if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
0197 return i;
0198 }
0199
0200 return -EINVAL;
0201 }
0202
0203 static int adxrs290_set_filter_freq(struct iio_dev *indio_dev,
0204 const unsigned int lpf_idx,
0205 const unsigned int hpf_idx)
0206 {
0207 struct adxrs290_state *st = iio_priv(indio_dev);
0208 u8 val;
0209
0210 val = ADXRS290_HPF(hpf_idx) | ADXRS290_LPF(lpf_idx);
0211
0212 return adxrs290_spi_write_reg(st->spi, ADXRS290_REG_FILTER, val);
0213 }
0214
0215 static int adxrs290_set_mode(struct iio_dev *indio_dev, enum adxrs290_mode mode)
0216 {
0217 struct adxrs290_state *st = iio_priv(indio_dev);
0218 int val, ret;
0219
0220 if (st->mode == mode)
0221 return 0;
0222
0223 mutex_lock(&st->lock);
0224
0225 ret = spi_w8r8(st->spi, ADXRS290_READ_REG(ADXRS290_REG_POWER_CTL));
0226 if (ret < 0)
0227 goto out_unlock;
0228
0229 val = ret;
0230
0231 switch (mode) {
0232 case ADXRS290_MODE_STANDBY:
0233 val &= ~ADXRS290_MEASUREMENT;
0234 break;
0235 case ADXRS290_MODE_MEASUREMENT:
0236 val |= ADXRS290_MEASUREMENT;
0237 break;
0238 default:
0239 ret = -EINVAL;
0240 goto out_unlock;
0241 }
0242
0243 ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_POWER_CTL, val);
0244 if (ret < 0) {
0245 dev_err(&st->spi->dev, "unable to set mode: %d\n", ret);
0246 goto out_unlock;
0247 }
0248
0249
0250 st->mode = mode;
0251
0252 out_unlock:
0253 mutex_unlock(&st->lock);
0254 return ret;
0255 }
0256
0257 static void adxrs290_chip_off_action(void *data)
0258 {
0259 struct iio_dev *indio_dev = data;
0260
0261 adxrs290_set_mode(indio_dev, ADXRS290_MODE_STANDBY);
0262 }
0263
0264 static int adxrs290_initial_setup(struct iio_dev *indio_dev)
0265 {
0266 struct adxrs290_state *st = iio_priv(indio_dev);
0267 struct spi_device *spi = st->spi;
0268 int ret;
0269
0270 ret = adxrs290_spi_write_reg(spi, ADXRS290_REG_POWER_CTL,
0271 ADXRS290_MEASUREMENT | ADXRS290_TSM);
0272 if (ret < 0)
0273 return ret;
0274
0275 st->mode = ADXRS290_MODE_MEASUREMENT;
0276
0277 return devm_add_action_or_reset(&spi->dev, adxrs290_chip_off_action,
0278 indio_dev);
0279 }
0280
0281 static int adxrs290_read_raw(struct iio_dev *indio_dev,
0282 struct iio_chan_spec const *chan,
0283 int *val,
0284 int *val2,
0285 long mask)
0286 {
0287 struct adxrs290_state *st = iio_priv(indio_dev);
0288 unsigned int t;
0289 int ret;
0290
0291 switch (mask) {
0292 case IIO_CHAN_INFO_RAW:
0293 ret = iio_device_claim_direct_mode(indio_dev);
0294 if (ret)
0295 return ret;
0296
0297 switch (chan->type) {
0298 case IIO_ANGL_VEL:
0299 ret = adxrs290_get_rate_data(indio_dev,
0300 ADXRS290_READ_REG(chan->address),
0301 val);
0302 if (ret < 0)
0303 break;
0304
0305 ret = IIO_VAL_INT;
0306 break;
0307 case IIO_TEMP:
0308 ret = adxrs290_get_temp_data(indio_dev, val);
0309 if (ret < 0)
0310 break;
0311
0312 ret = IIO_VAL_INT;
0313 break;
0314 default:
0315 ret = -EINVAL;
0316 break;
0317 }
0318
0319 iio_device_release_direct_mode(indio_dev);
0320 return ret;
0321 case IIO_CHAN_INFO_SCALE:
0322 switch (chan->type) {
0323 case IIO_ANGL_VEL:
0324
0325 *val = 0;
0326 *val2 = 87266;
0327 return IIO_VAL_INT_PLUS_NANO;
0328 case IIO_TEMP:
0329
0330 *val = 100;
0331 return IIO_VAL_INT;
0332 default:
0333 return -EINVAL;
0334 }
0335 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
0336 switch (chan->type) {
0337 case IIO_ANGL_VEL:
0338 t = st->lpf_3db_freq_idx;
0339 *val = adxrs290_lpf_3db_freq_hz_table[t][0];
0340 *val2 = adxrs290_lpf_3db_freq_hz_table[t][1];
0341 return IIO_VAL_INT_PLUS_MICRO;
0342 default:
0343 return -EINVAL;
0344 }
0345 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
0346 switch (chan->type) {
0347 case IIO_ANGL_VEL:
0348 t = st->hpf_3db_freq_idx;
0349 *val = adxrs290_hpf_3db_freq_hz_table[t][0];
0350 *val2 = adxrs290_hpf_3db_freq_hz_table[t][1];
0351 return IIO_VAL_INT_PLUS_MICRO;
0352 default:
0353 return -EINVAL;
0354 }
0355 }
0356
0357 return -EINVAL;
0358 }
0359
0360 static int adxrs290_write_raw(struct iio_dev *indio_dev,
0361 struct iio_chan_spec const *chan,
0362 int val,
0363 int val2,
0364 long mask)
0365 {
0366 struct adxrs290_state *st = iio_priv(indio_dev);
0367 int ret, lpf_idx, hpf_idx;
0368
0369 ret = iio_device_claim_direct_mode(indio_dev);
0370 if (ret)
0371 return ret;
0372
0373 switch (mask) {
0374 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
0375 lpf_idx = adxrs290_find_match(adxrs290_lpf_3db_freq_hz_table,
0376 ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table),
0377 val, val2);
0378 if (lpf_idx < 0) {
0379 ret = -EINVAL;
0380 break;
0381 }
0382
0383
0384 st->lpf_3db_freq_idx = lpf_idx;
0385
0386 hpf_idx = st->hpf_3db_freq_idx;
0387 ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
0388 break;
0389
0390 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
0391 hpf_idx = adxrs290_find_match(adxrs290_hpf_3db_freq_hz_table,
0392 ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table),
0393 val, val2);
0394 if (hpf_idx < 0) {
0395 ret = -EINVAL;
0396 break;
0397 }
0398
0399
0400 st->hpf_3db_freq_idx = hpf_idx;
0401
0402 lpf_idx = st->lpf_3db_freq_idx;
0403 ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
0404 break;
0405
0406 default:
0407 ret = -EINVAL;
0408 break;
0409 }
0410
0411 iio_device_release_direct_mode(indio_dev);
0412 return ret;
0413 }
0414
0415 static int adxrs290_read_avail(struct iio_dev *indio_dev,
0416 struct iio_chan_spec const *chan,
0417 const int **vals, int *type, int *length,
0418 long mask)
0419 {
0420 switch (mask) {
0421 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
0422 *vals = (const int *)adxrs290_lpf_3db_freq_hz_table;
0423 *type = IIO_VAL_INT_PLUS_MICRO;
0424
0425 *length = ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table) * 2;
0426
0427 return IIO_AVAIL_LIST;
0428 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
0429 *vals = (const int *)adxrs290_hpf_3db_freq_hz_table;
0430 *type = IIO_VAL_INT_PLUS_MICRO;
0431
0432 *length = ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table) * 2;
0433
0434 return IIO_AVAIL_LIST;
0435 default:
0436 return -EINVAL;
0437 }
0438 }
0439
0440 static int adxrs290_reg_access_rw(struct spi_device *spi, unsigned int reg,
0441 unsigned int *readval)
0442 {
0443 int ret;
0444
0445 ret = spi_w8r8(spi, ADXRS290_READ_REG(reg));
0446 if (ret < 0)
0447 return ret;
0448
0449 *readval = ret;
0450
0451 return 0;
0452 }
0453
0454 static int adxrs290_reg_access(struct iio_dev *indio_dev, unsigned int reg,
0455 unsigned int writeval, unsigned int *readval)
0456 {
0457 struct adxrs290_state *st = iio_priv(indio_dev);
0458
0459 if (readval)
0460 return adxrs290_reg_access_rw(st->spi, reg, readval);
0461 else
0462 return adxrs290_spi_write_reg(st->spi, reg, writeval);
0463 }
0464
0465 static int adxrs290_data_rdy_trigger_set_state(struct iio_trigger *trig,
0466 bool state)
0467 {
0468 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
0469 struct adxrs290_state *st = iio_priv(indio_dev);
0470 int ret;
0471 u8 val;
0472
0473 val = state ? ADXRS290_SYNC(ADXRS290_DATA_RDY_OUT) : 0;
0474
0475 ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_DATA_RDY, val);
0476 if (ret < 0)
0477 dev_err(&st->spi->dev, "failed to start data rdy interrupt\n");
0478
0479 return ret;
0480 }
0481
0482 static void adxrs290_reset_trig(struct iio_trigger *trig)
0483 {
0484 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
0485 int val;
0486
0487
0488
0489
0490
0491
0492
0493 adxrs290_get_rate_data(indio_dev,
0494 ADXRS290_READ_REG(ADXRS290_REG_DATAY0), &val);
0495 }
0496
0497 static const struct iio_trigger_ops adxrs290_trigger_ops = {
0498 .set_trigger_state = &adxrs290_data_rdy_trigger_set_state,
0499 .validate_device = &iio_trigger_validate_own_device,
0500 .reenable = &adxrs290_reset_trig,
0501 };
0502
0503 static irqreturn_t adxrs290_trigger_handler(int irq, void *p)
0504 {
0505 struct iio_poll_func *pf = p;
0506 struct iio_dev *indio_dev = pf->indio_dev;
0507 struct adxrs290_state *st = iio_priv(indio_dev);
0508 u8 tx = ADXRS290_READ_REG(ADXRS290_REG_DATAX0);
0509 int ret;
0510
0511 mutex_lock(&st->lock);
0512
0513
0514 ret = spi_write_then_read(st->spi, &tx, sizeof(tx), st->buffer.channels,
0515 sizeof(st->buffer.channels));
0516 if (ret < 0)
0517 goto out_unlock_notify;
0518
0519 iio_push_to_buffers_with_timestamp(indio_dev, &st->buffer,
0520 pf->timestamp);
0521
0522 out_unlock_notify:
0523 mutex_unlock(&st->lock);
0524 iio_trigger_notify_done(indio_dev->trig);
0525
0526 return IRQ_HANDLED;
0527 }
0528
0529 #define ADXRS290_ANGL_VEL_CHANNEL(reg, axis) { \
0530 .type = IIO_ANGL_VEL, \
0531 .address = reg, \
0532 .modified = 1, \
0533 .channel2 = IIO_MOD_##axis, \
0534 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
0535 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
0536 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
0537 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
0538 .info_mask_shared_by_type_available = \
0539 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
0540 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
0541 .scan_index = ADXRS290_IDX_##axis, \
0542 .scan_type = { \
0543 .sign = 's', \
0544 .realbits = 16, \
0545 .storagebits = 16, \
0546 .endianness = IIO_LE, \
0547 }, \
0548 }
0549
0550 static const struct iio_chan_spec adxrs290_channels[] = {
0551 ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAX0, X),
0552 ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAY0, Y),
0553 {
0554 .type = IIO_TEMP,
0555 .address = ADXRS290_REG_TEMP0,
0556 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
0557 BIT(IIO_CHAN_INFO_SCALE),
0558 .scan_index = ADXRS290_IDX_TEMP,
0559 .scan_type = {
0560 .sign = 's',
0561 .realbits = 12,
0562 .storagebits = 16,
0563 .endianness = IIO_LE,
0564 },
0565 },
0566 IIO_CHAN_SOFT_TIMESTAMP(ADXRS290_IDX_TS),
0567 };
0568
0569 static const unsigned long adxrs290_avail_scan_masks[] = {
0570 BIT(ADXRS290_IDX_X) | BIT(ADXRS290_IDX_Y) | BIT(ADXRS290_IDX_TEMP),
0571 0
0572 };
0573
0574 static const struct iio_info adxrs290_info = {
0575 .read_raw = &adxrs290_read_raw,
0576 .write_raw = &adxrs290_write_raw,
0577 .read_avail = &adxrs290_read_avail,
0578 .debugfs_reg_access = &adxrs290_reg_access,
0579 };
0580
0581 static int adxrs290_probe_trigger(struct iio_dev *indio_dev)
0582 {
0583 struct adxrs290_state *st = iio_priv(indio_dev);
0584 int ret;
0585
0586 if (!st->spi->irq) {
0587 dev_info(&st->spi->dev, "no irq, using polling\n");
0588 return 0;
0589 }
0590
0591 st->dready_trig = devm_iio_trigger_alloc(&st->spi->dev, "%s-dev%d",
0592 indio_dev->name,
0593 iio_device_id(indio_dev));
0594 if (!st->dready_trig)
0595 return -ENOMEM;
0596
0597 st->dready_trig->ops = &adxrs290_trigger_ops;
0598 iio_trigger_set_drvdata(st->dready_trig, indio_dev);
0599
0600 ret = devm_request_irq(&st->spi->dev, st->spi->irq,
0601 &iio_trigger_generic_data_rdy_poll,
0602 IRQF_ONESHOT, "adxrs290_irq", st->dready_trig);
0603 if (ret < 0)
0604 return dev_err_probe(&st->spi->dev, ret,
0605 "request irq %d failed\n", st->spi->irq);
0606
0607 ret = devm_iio_trigger_register(&st->spi->dev, st->dready_trig);
0608 if (ret) {
0609 dev_err(&st->spi->dev, "iio trigger register failed\n");
0610 return ret;
0611 }
0612
0613 indio_dev->trig = iio_trigger_get(st->dready_trig);
0614
0615 return 0;
0616 }
0617
0618 static int adxrs290_probe(struct spi_device *spi)
0619 {
0620 struct iio_dev *indio_dev;
0621 struct adxrs290_state *st;
0622 u8 val, val2;
0623 int ret;
0624
0625 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
0626 if (!indio_dev)
0627 return -ENOMEM;
0628
0629 st = iio_priv(indio_dev);
0630 st->spi = spi;
0631
0632 indio_dev->name = "adxrs290";
0633 indio_dev->modes = INDIO_DIRECT_MODE;
0634 indio_dev->channels = adxrs290_channels;
0635 indio_dev->num_channels = ARRAY_SIZE(adxrs290_channels);
0636 indio_dev->info = &adxrs290_info;
0637 indio_dev->available_scan_masks = adxrs290_avail_scan_masks;
0638
0639 mutex_init(&st->lock);
0640
0641 val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_ADI_ID));
0642 if (val != ADXRS290_ADI_ID) {
0643 dev_err(&spi->dev, "Wrong ADI ID 0x%02x\n", val);
0644 return -ENODEV;
0645 }
0646
0647 val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_MEMS_ID));
0648 if (val != ADXRS290_MEMS_ID) {
0649 dev_err(&spi->dev, "Wrong MEMS ID 0x%02x\n", val);
0650 return -ENODEV;
0651 }
0652
0653 val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_DEV_ID));
0654 if (val != ADXRS290_DEV_ID) {
0655 dev_err(&spi->dev, "Wrong DEV ID 0x%02x\n", val);
0656 return -ENODEV;
0657 }
0658
0659
0660 st->mode = ADXRS290_MODE_STANDBY;
0661
0662
0663 ret = adxrs290_initial_setup(indio_dev);
0664 if (ret < 0)
0665 return ret;
0666
0667
0668 msleep(ADXRS290_MAX_TRANSITION_TIME_MS);
0669
0670 ret = adxrs290_get_3db_freq(indio_dev, &val, &val2);
0671 if (ret < 0)
0672 return ret;
0673
0674 st->lpf_3db_freq_idx = val;
0675 st->hpf_3db_freq_idx = val2;
0676
0677 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
0678 &iio_pollfunc_store_time,
0679 &adxrs290_trigger_handler, NULL);
0680 if (ret < 0)
0681 return dev_err_probe(&spi->dev, ret,
0682 "iio triggered buffer setup failed\n");
0683
0684 ret = adxrs290_probe_trigger(indio_dev);
0685 if (ret < 0)
0686 return ret;
0687
0688 return devm_iio_device_register(&spi->dev, indio_dev);
0689 }
0690
0691 static const struct of_device_id adxrs290_of_match[] = {
0692 { .compatible = "adi,adxrs290" },
0693 { }
0694 };
0695 MODULE_DEVICE_TABLE(of, adxrs290_of_match);
0696
0697 static struct spi_driver adxrs290_driver = {
0698 .driver = {
0699 .name = "adxrs290",
0700 .of_match_table = adxrs290_of_match,
0701 },
0702 .probe = adxrs290_probe,
0703 };
0704 module_spi_driver(adxrs290_driver);
0705
0706 MODULE_AUTHOR("Nishant Malpani <nish.malpani25@gmail.com>");
0707 MODULE_DESCRIPTION("Analog Devices ADXRS290 Gyroscope SPI driver");
0708 MODULE_LICENSE("GPL");