0001
0002
0003
0004
0005
0006
0007 #include <linux/bitfield.h>
0008 #include <linux/bitops.h>
0009 #include <linux/delay.h>
0010 #include <linux/device.h>
0011 #include <linux/gpio/consumer.h>
0012 #include <linux/iio/iio.h>
0013 #include <linux/iio/triggered_buffer.h>
0014 #include <linux/iio/trigger_consumer.h>
0015 #include <linux/module.h>
0016 #include <linux/spi/spi.h>
0017 #include <asm/unaligned.h>
0018
0019 #define AD5766_UPPER_WORD_SPI_MASK GENMASK(31, 16)
0020 #define AD5766_LOWER_WORD_SPI_MASK GENMASK(15, 0)
0021 #define AD5766_DITHER_SOURCE_MASK(ch) GENMASK(((2 * ch) + 1), (2 * ch))
0022 #define AD5766_DITHER_SOURCE(ch, source) BIT((ch * 2) + source)
0023 #define AD5766_DITHER_SCALE_MASK(x) AD5766_DITHER_SOURCE_MASK(x)
0024 #define AD5766_DITHER_SCALE(ch, scale) (scale << (ch * 2))
0025 #define AD5766_DITHER_ENABLE_MASK(ch) BIT(ch)
0026 #define AD5766_DITHER_ENABLE(ch, state) ((!state) << ch)
0027 #define AD5766_DITHER_INVERT_MASK(ch) BIT(ch)
0028 #define AD5766_DITHER_INVERT(ch, state) (state << ch)
0029
0030 #define AD5766_CMD_NOP_MUX_OUT 0x00
0031 #define AD5766_CMD_SDO_CNTRL 0x01
0032 #define AD5766_CMD_WR_IN_REG(x) (0x10 | ((x) & GENMASK(3, 0)))
0033 #define AD5766_CMD_WR_DAC_REG(x) (0x20 | ((x) & GENMASK(3, 0)))
0034 #define AD5766_CMD_SW_LDAC 0x30
0035 #define AD5766_CMD_SPAN_REG 0x40
0036 #define AD5766_CMD_WR_PWR_DITHER 0x51
0037 #define AD5766_CMD_WR_DAC_REG_ALL 0x60
0038 #define AD5766_CMD_SW_FULL_RESET 0x70
0039 #define AD5766_CMD_READBACK_REG(x) (0x80 | ((x) & GENMASK(3, 0)))
0040 #define AD5766_CMD_DITHER_SIG_1 0x90
0041 #define AD5766_CMD_DITHER_SIG_2 0xA0
0042 #define AD5766_CMD_INV_DITHER 0xB0
0043 #define AD5766_CMD_DITHER_SCALE_1 0xC0
0044 #define AD5766_CMD_DITHER_SCALE_2 0xD0
0045
0046 #define AD5766_FULL_RESET_CODE 0x1234
0047
0048 enum ad5766_type {
0049 ID_AD5766,
0050 ID_AD5767,
0051 };
0052
0053 enum ad5766_voltage_range {
0054 AD5766_VOLTAGE_RANGE_M20V_0V,
0055 AD5766_VOLTAGE_RANGE_M16V_to_0V,
0056 AD5766_VOLTAGE_RANGE_M10V_to_0V,
0057 AD5766_VOLTAGE_RANGE_M12V_to_14V,
0058 AD5766_VOLTAGE_RANGE_M16V_to_10V,
0059 AD5766_VOLTAGE_RANGE_M10V_to_6V,
0060 AD5766_VOLTAGE_RANGE_M5V_to_5V,
0061 AD5766_VOLTAGE_RANGE_M10V_to_10V,
0062 };
0063
0064
0065
0066
0067
0068
0069 struct ad5766_chip_info {
0070 unsigned int num_channels;
0071 const struct iio_chan_spec *channels;
0072 };
0073
0074 enum {
0075 AD5766_DITHER_ENABLE,
0076 AD5766_DITHER_INVERT,
0077 AD5766_DITHER_SOURCE,
0078 };
0079
0080
0081
0082
0083
0084
0085 static const char * const ad5766_dither_scales[] = {
0086 "1",
0087 "0.75",
0088 "0.5",
0089 "0.25",
0090 };
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112 struct ad5766_state {
0113 struct spi_device *spi;
0114 struct mutex lock;
0115 const struct ad5766_chip_info *chip_info;
0116 struct gpio_desc *gpio_reset;
0117 enum ad5766_voltage_range crt_range;
0118 u16 dither_enable;
0119 u16 dither_invert;
0120 u32 dither_source;
0121 u32 dither_scale;
0122 union {
0123 u32 d32;
0124 u16 w16[2];
0125 u8 b8[4];
0126 } data[3] __aligned(IIO_DMA_MINALIGN);
0127 };
0128
0129 struct ad5766_span_tbl {
0130 int min;
0131 int max;
0132 };
0133
0134 static const struct ad5766_span_tbl ad5766_span_tbl[] = {
0135 [AD5766_VOLTAGE_RANGE_M20V_0V] = {-20, 0},
0136 [AD5766_VOLTAGE_RANGE_M16V_to_0V] = {-16, 0},
0137 [AD5766_VOLTAGE_RANGE_M10V_to_0V] = {-10, 0},
0138 [AD5766_VOLTAGE_RANGE_M12V_to_14V] = {-12, 14},
0139 [AD5766_VOLTAGE_RANGE_M16V_to_10V] = {-16, 10},
0140 [AD5766_VOLTAGE_RANGE_M10V_to_6V] = {-10, 6},
0141 [AD5766_VOLTAGE_RANGE_M5V_to_5V] = {-5, 5},
0142 [AD5766_VOLTAGE_RANGE_M10V_to_10V] = {-10, 10},
0143 };
0144
0145 static int __ad5766_spi_read(struct ad5766_state *st, u8 dac, int *val)
0146 {
0147 int ret;
0148 struct spi_transfer xfers[] = {
0149 {
0150 .tx_buf = &st->data[0].d32,
0151 .bits_per_word = 8,
0152 .len = 3,
0153 .cs_change = 1,
0154 }, {
0155 .tx_buf = &st->data[1].d32,
0156 .rx_buf = &st->data[2].d32,
0157 .bits_per_word = 8,
0158 .len = 3,
0159 },
0160 };
0161
0162 st->data[0].d32 = AD5766_CMD_READBACK_REG(dac);
0163 st->data[1].d32 = AD5766_CMD_NOP_MUX_OUT;
0164
0165 ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
0166 if (ret)
0167 return ret;
0168
0169 *val = st->data[2].w16[1];
0170
0171 return ret;
0172 }
0173
0174 static int __ad5766_spi_write(struct ad5766_state *st, u8 command, u16 data)
0175 {
0176 st->data[0].b8[0] = command;
0177 put_unaligned_be16(data, &st->data[0].b8[1]);
0178
0179 return spi_write(st->spi, &st->data[0].b8[0], 3);
0180 }
0181
0182 static int ad5766_read(struct iio_dev *indio_dev, u8 dac, int *val)
0183 {
0184 struct ad5766_state *st = iio_priv(indio_dev);
0185 int ret;
0186
0187 mutex_lock(&st->lock);
0188 ret = __ad5766_spi_read(st, dac, val);
0189 mutex_unlock(&st->lock);
0190
0191 return ret;
0192 }
0193
0194 static int ad5766_write(struct iio_dev *indio_dev, u8 dac, u16 data)
0195 {
0196 struct ad5766_state *st = iio_priv(indio_dev);
0197 int ret;
0198
0199 mutex_lock(&st->lock);
0200 ret = __ad5766_spi_write(st, AD5766_CMD_WR_DAC_REG(dac), data);
0201 mutex_unlock(&st->lock);
0202
0203 return ret;
0204 }
0205
0206 static int ad5766_reset(struct ad5766_state *st)
0207 {
0208 int ret;
0209
0210 if (st->gpio_reset) {
0211 gpiod_set_value_cansleep(st->gpio_reset, 1);
0212 ndelay(100);
0213 gpiod_set_value_cansleep(st->gpio_reset, 0);
0214 } else {
0215 ret = __ad5766_spi_write(st, AD5766_CMD_SW_FULL_RESET,
0216 AD5766_FULL_RESET_CODE);
0217 if (ret < 0)
0218 return ret;
0219 }
0220
0221
0222
0223
0224
0225 ndelay(25);
0226
0227 return 0;
0228 }
0229
0230 static int ad5766_read_raw(struct iio_dev *indio_dev,
0231 struct iio_chan_spec const *chan,
0232 int *val,
0233 int *val2,
0234 long m)
0235 {
0236 struct ad5766_state *st = iio_priv(indio_dev);
0237 int ret;
0238
0239 switch (m) {
0240 case IIO_CHAN_INFO_RAW:
0241 ret = ad5766_read(indio_dev, chan->address, val);
0242 if (ret)
0243 return ret;
0244
0245 return IIO_VAL_INT;
0246 case IIO_CHAN_INFO_OFFSET:
0247 *val = ad5766_span_tbl[st->crt_range].min;
0248
0249 return IIO_VAL_INT;
0250 case IIO_CHAN_INFO_SCALE:
0251 *val = ad5766_span_tbl[st->crt_range].max -
0252 ad5766_span_tbl[st->crt_range].min;
0253 *val2 = st->chip_info->channels[0].scan_type.realbits;
0254
0255 return IIO_VAL_FRACTIONAL_LOG2;
0256 default:
0257 return -EINVAL;
0258 }
0259 }
0260
0261 static int ad5766_write_raw(struct iio_dev *indio_dev,
0262 struct iio_chan_spec const *chan,
0263 int val,
0264 int val2,
0265 long info)
0266 {
0267 switch (info) {
0268 case IIO_CHAN_INFO_RAW:
0269 {
0270 const int max_val = GENMASK(chan->scan_type.realbits - 1, 0);
0271
0272 if (val > max_val || val < 0)
0273 return -EINVAL;
0274 val <<= chan->scan_type.shift;
0275 return ad5766_write(indio_dev, chan->address, val);
0276 }
0277 default:
0278 return -EINVAL;
0279 }
0280 }
0281
0282 static const struct iio_info ad5766_info = {
0283 .read_raw = ad5766_read_raw,
0284 .write_raw = ad5766_write_raw,
0285 };
0286
0287 static int ad5766_get_dither_source(struct iio_dev *dev,
0288 const struct iio_chan_spec *chan)
0289 {
0290 struct ad5766_state *st = iio_priv(dev);
0291 u32 source;
0292
0293 source = st->dither_source & AD5766_DITHER_SOURCE_MASK(chan->channel);
0294 source = source >> (chan->channel * 2);
0295 source -= 1;
0296
0297 return source;
0298 }
0299
0300 static int ad5766_set_dither_source(struct iio_dev *dev,
0301 const struct iio_chan_spec *chan,
0302 unsigned int source)
0303 {
0304 struct ad5766_state *st = iio_priv(dev);
0305 uint16_t val;
0306 int ret;
0307
0308 st->dither_source &= ~AD5766_DITHER_SOURCE_MASK(chan->channel);
0309 st->dither_source |= AD5766_DITHER_SOURCE(chan->channel, source);
0310
0311 val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_source);
0312 ret = ad5766_write(dev, AD5766_CMD_DITHER_SIG_1, val);
0313 if (ret)
0314 return ret;
0315
0316 val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_source);
0317
0318 return ad5766_write(dev, AD5766_CMD_DITHER_SIG_2, val);
0319 }
0320
0321 static int ad5766_get_dither_scale(struct iio_dev *dev,
0322 const struct iio_chan_spec *chan)
0323 {
0324 struct ad5766_state *st = iio_priv(dev);
0325 u32 scale;
0326
0327 scale = st->dither_scale & AD5766_DITHER_SCALE_MASK(chan->channel);
0328
0329 return (scale >> (chan->channel * 2));
0330 }
0331
0332 static int ad5766_set_dither_scale(struct iio_dev *dev,
0333 const struct iio_chan_spec *chan,
0334 unsigned int scale)
0335 {
0336 int ret;
0337 struct ad5766_state *st = iio_priv(dev);
0338 uint16_t val;
0339
0340 st->dither_scale &= ~AD5766_DITHER_SCALE_MASK(chan->channel);
0341 st->dither_scale |= AD5766_DITHER_SCALE(chan->channel, scale);
0342
0343 val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_scale);
0344 ret = ad5766_write(dev, AD5766_CMD_DITHER_SCALE_1, val);
0345 if (ret)
0346 return ret;
0347 val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_scale);
0348
0349 return ad5766_write(dev, AD5766_CMD_DITHER_SCALE_2, val);
0350 }
0351
0352 static const struct iio_enum ad5766_dither_scale_enum = {
0353 .items = ad5766_dither_scales,
0354 .num_items = ARRAY_SIZE(ad5766_dither_scales),
0355 .set = ad5766_set_dither_scale,
0356 .get = ad5766_get_dither_scale,
0357 };
0358
0359 static ssize_t ad5766_read_ext(struct iio_dev *indio_dev,
0360 uintptr_t private,
0361 const struct iio_chan_spec *chan,
0362 char *buf)
0363 {
0364 struct ad5766_state *st = iio_priv(indio_dev);
0365
0366 switch (private) {
0367 case AD5766_DITHER_ENABLE:
0368 return sprintf(buf, "%u\n",
0369 !(st->dither_enable & BIT(chan->channel)));
0370 break;
0371 case AD5766_DITHER_INVERT:
0372 return sprintf(buf, "%u\n",
0373 !!(st->dither_invert & BIT(chan->channel)));
0374 break;
0375 case AD5766_DITHER_SOURCE:
0376 return sprintf(buf, "%d\n",
0377 ad5766_get_dither_source(indio_dev, chan));
0378 default:
0379 return -EINVAL;
0380 }
0381 }
0382
0383 static ssize_t ad5766_write_ext(struct iio_dev *indio_dev,
0384 uintptr_t private,
0385 const struct iio_chan_spec *chan,
0386 const char *buf, size_t len)
0387 {
0388 struct ad5766_state *st = iio_priv(indio_dev);
0389 bool readin;
0390 int ret;
0391
0392 ret = kstrtobool(buf, &readin);
0393 if (ret)
0394 return ret;
0395
0396 switch (private) {
0397 case AD5766_DITHER_ENABLE:
0398 st->dither_enable &= ~AD5766_DITHER_ENABLE_MASK(chan->channel);
0399 st->dither_enable |= AD5766_DITHER_ENABLE(chan->channel,
0400 readin);
0401 ret = ad5766_write(indio_dev, AD5766_CMD_WR_PWR_DITHER,
0402 st->dither_enable);
0403 break;
0404 case AD5766_DITHER_INVERT:
0405 st->dither_invert &= ~AD5766_DITHER_INVERT_MASK(chan->channel);
0406 st->dither_invert |= AD5766_DITHER_INVERT(chan->channel,
0407 readin);
0408 ret = ad5766_write(indio_dev, AD5766_CMD_INV_DITHER,
0409 st->dither_invert);
0410 break;
0411 case AD5766_DITHER_SOURCE:
0412 ret = ad5766_set_dither_source(indio_dev, chan, readin);
0413 break;
0414 default:
0415 return -EINVAL;
0416 }
0417
0418 return ret ? ret : len;
0419 }
0420
0421 #define _AD5766_CHAN_EXT_INFO(_name, _what, _shared) { \
0422 .name = _name, \
0423 .read = ad5766_read_ext, \
0424 .write = ad5766_write_ext, \
0425 .private = _what, \
0426 .shared = _shared, \
0427 }
0428
0429 static const struct iio_chan_spec_ext_info ad5766_ext_info[] = {
0430
0431 _AD5766_CHAN_EXT_INFO("dither_enable", AD5766_DITHER_ENABLE,
0432 IIO_SEPARATE),
0433 _AD5766_CHAN_EXT_INFO("dither_invert", AD5766_DITHER_INVERT,
0434 IIO_SEPARATE),
0435 _AD5766_CHAN_EXT_INFO("dither_source", AD5766_DITHER_SOURCE,
0436 IIO_SEPARATE),
0437 IIO_ENUM("dither_scale", IIO_SEPARATE, &ad5766_dither_scale_enum),
0438 IIO_ENUM_AVAILABLE("dither_scale", IIO_SEPARATE,
0439 &ad5766_dither_scale_enum),
0440 {}
0441 };
0442
0443 #define AD576x_CHANNEL(_chan, _bits) { \
0444 .type = IIO_VOLTAGE, \
0445 .indexed = 1, \
0446 .output = 1, \
0447 .channel = (_chan), \
0448 .address = (_chan), \
0449 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
0450 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | \
0451 BIT(IIO_CHAN_INFO_SCALE), \
0452 .scan_index = (_chan), \
0453 .scan_type = { \
0454 .sign = 'u', \
0455 .realbits = (_bits), \
0456 .storagebits = 16, \
0457 .shift = 16 - (_bits), \
0458 }, \
0459 .ext_info = ad5766_ext_info, \
0460 }
0461
0462 #define DECLARE_AD576x_CHANNELS(_name, _bits) \
0463 const struct iio_chan_spec _name[] = { \
0464 AD576x_CHANNEL(0, (_bits)), \
0465 AD576x_CHANNEL(1, (_bits)), \
0466 AD576x_CHANNEL(2, (_bits)), \
0467 AD576x_CHANNEL(3, (_bits)), \
0468 AD576x_CHANNEL(4, (_bits)), \
0469 AD576x_CHANNEL(5, (_bits)), \
0470 AD576x_CHANNEL(6, (_bits)), \
0471 AD576x_CHANNEL(7, (_bits)), \
0472 AD576x_CHANNEL(8, (_bits)), \
0473 AD576x_CHANNEL(9, (_bits)), \
0474 AD576x_CHANNEL(10, (_bits)), \
0475 AD576x_CHANNEL(11, (_bits)), \
0476 AD576x_CHANNEL(12, (_bits)), \
0477 AD576x_CHANNEL(13, (_bits)), \
0478 AD576x_CHANNEL(14, (_bits)), \
0479 AD576x_CHANNEL(15, (_bits)), \
0480 }
0481
0482 static DECLARE_AD576x_CHANNELS(ad5766_channels, 16);
0483 static DECLARE_AD576x_CHANNELS(ad5767_channels, 12);
0484
0485 static const struct ad5766_chip_info ad5766_chip_infos[] = {
0486 [ID_AD5766] = {
0487 .num_channels = ARRAY_SIZE(ad5766_channels),
0488 .channels = ad5766_channels,
0489 },
0490 [ID_AD5767] = {
0491 .num_channels = ARRAY_SIZE(ad5767_channels),
0492 .channels = ad5767_channels,
0493 },
0494 };
0495
0496 static int ad5766_get_output_range(struct ad5766_state *st)
0497 {
0498 int i, ret, min, max, tmp[2];
0499
0500 ret = device_property_read_u32_array(&st->spi->dev,
0501 "output-range-microvolts",
0502 tmp, 2);
0503 if (ret)
0504 return ret;
0505
0506 min = tmp[0] / 1000000;
0507 max = tmp[1] / 1000000;
0508 for (i = 0; i < ARRAY_SIZE(ad5766_span_tbl); i++) {
0509 if (ad5766_span_tbl[i].min != min ||
0510 ad5766_span_tbl[i].max != max)
0511 continue;
0512
0513 st->crt_range = i;
0514
0515 return 0;
0516 }
0517
0518 return -EINVAL;
0519 }
0520
0521 static int ad5766_default_setup(struct ad5766_state *st)
0522 {
0523 uint16_t val;
0524 int ret, i;
0525
0526
0527 ret = ad5766_reset(st);
0528 if (ret)
0529 return ret;
0530
0531 ret = ad5766_get_output_range(st);
0532 if (ret)
0533 return ret;
0534
0535
0536 st->dither_enable = GENMASK(15, 0);
0537 ret = __ad5766_spi_write(st, AD5766_CMD_WR_PWR_DITHER,
0538 st->dither_enable);
0539 if (ret)
0540 return ret;
0541
0542 st->dither_source = 0;
0543 for (i = 0; i < ARRAY_SIZE(ad5766_channels); i++)
0544 st->dither_source |= AD5766_DITHER_SOURCE(i, 0);
0545 val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_source);
0546 ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SIG_1, val);
0547 if (ret)
0548 return ret;
0549
0550 val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_source);
0551 ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SIG_2, val);
0552 if (ret)
0553 return ret;
0554
0555 st->dither_scale = 0;
0556 val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_scale);
0557 ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SCALE_1, val);
0558 if (ret)
0559 return ret;
0560
0561 val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_scale);
0562 ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SCALE_2, val);
0563 if (ret)
0564 return ret;
0565
0566 st->dither_invert = 0;
0567 ret = __ad5766_spi_write(st, AD5766_CMD_INV_DITHER, st->dither_invert);
0568 if (ret)
0569 return ret;
0570
0571 return __ad5766_spi_write(st, AD5766_CMD_SPAN_REG, st->crt_range);
0572 }
0573
0574 static irqreturn_t ad5766_trigger_handler(int irq, void *p)
0575 {
0576 struct iio_poll_func *pf = p;
0577 struct iio_dev *indio_dev = pf->indio_dev;
0578 struct iio_buffer *buffer = indio_dev->buffer;
0579 struct ad5766_state *st = iio_priv(indio_dev);
0580 int ret, ch, i;
0581 u16 data[ARRAY_SIZE(ad5766_channels)];
0582
0583 ret = iio_pop_from_buffer(buffer, data);
0584 if (ret)
0585 goto done;
0586
0587 i = 0;
0588 mutex_lock(&st->lock);
0589 for_each_set_bit(ch, indio_dev->active_scan_mask,
0590 st->chip_info->num_channels - 1)
0591 __ad5766_spi_write(st, AD5766_CMD_WR_IN_REG(ch), data[i++]);
0592
0593 __ad5766_spi_write(st, AD5766_CMD_SW_LDAC,
0594 *indio_dev->active_scan_mask);
0595 mutex_unlock(&st->lock);
0596
0597 done:
0598 iio_trigger_notify_done(indio_dev->trig);
0599
0600 return IRQ_HANDLED;
0601 }
0602
0603 static int ad5766_probe(struct spi_device *spi)
0604 {
0605 enum ad5766_type type;
0606 struct iio_dev *indio_dev;
0607 struct ad5766_state *st;
0608 int ret;
0609
0610 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
0611 if (!indio_dev)
0612 return -ENOMEM;
0613
0614 st = iio_priv(indio_dev);
0615 mutex_init(&st->lock);
0616
0617 st->spi = spi;
0618 type = spi_get_device_id(spi)->driver_data;
0619 st->chip_info = &ad5766_chip_infos[type];
0620
0621 indio_dev->channels = st->chip_info->channels;
0622 indio_dev->num_channels = st->chip_info->num_channels;
0623 indio_dev->info = &ad5766_info;
0624 indio_dev->name = spi_get_device_id(spi)->name;
0625 indio_dev->modes = INDIO_DIRECT_MODE;
0626
0627 st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset",
0628 GPIOD_OUT_LOW);
0629 if (IS_ERR(st->gpio_reset))
0630 return PTR_ERR(st->gpio_reset);
0631
0632 ret = ad5766_default_setup(st);
0633 if (ret)
0634 return ret;
0635
0636
0637 ret = devm_iio_triggered_buffer_setup_ext(&spi->dev, indio_dev, NULL,
0638 ad5766_trigger_handler,
0639 IIO_BUFFER_DIRECTION_OUT,
0640 NULL,
0641 NULL);
0642 if (ret)
0643 return ret;
0644
0645 return devm_iio_device_register(&spi->dev, indio_dev);
0646 }
0647
0648 static const struct of_device_id ad5766_dt_match[] = {
0649 { .compatible = "adi,ad5766" },
0650 { .compatible = "adi,ad5767" },
0651 {}
0652 };
0653 MODULE_DEVICE_TABLE(of, ad5766_dt_match);
0654
0655 static const struct spi_device_id ad5766_spi_ids[] = {
0656 { "ad5766", ID_AD5766 },
0657 { "ad5767", ID_AD5767 },
0658 {}
0659 };
0660 MODULE_DEVICE_TABLE(spi, ad5766_spi_ids);
0661
0662 static struct spi_driver ad5766_driver = {
0663 .driver = {
0664 .name = "ad5766",
0665 .of_match_table = ad5766_dt_match,
0666 },
0667 .probe = ad5766_probe,
0668 .id_table = ad5766_spi_ids,
0669 };
0670 module_spi_driver(ad5766_driver);
0671
0672 MODULE_AUTHOR("Denis-Gabriel Gheorghescu <denis.gheorghescu@analog.com>");
0673 MODULE_DESCRIPTION("Analog Devices AD5766/AD5767 DACs");
0674 MODULE_LICENSE("GPL v2");