0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/kernel.h>
0009 #include <linux/module.h>
0010 #include <linux/spi/spi.h>
0011 #include <linux/bitops.h>
0012 #include <linux/iio/iio.h>
0013 #include <linux/iio/sysfs.h>
0014 #include <linux/regulator/consumer.h>
0015 #include <linux/platform_data/ad5761.h>
0016
0017 #define AD5761_ADDR(addr) ((addr & 0xf) << 16)
0018 #define AD5761_ADDR_NOOP 0x0
0019 #define AD5761_ADDR_DAC_WRITE 0x3
0020 #define AD5761_ADDR_CTRL_WRITE_REG 0x4
0021 #define AD5761_ADDR_SW_DATA_RESET 0x7
0022 #define AD5761_ADDR_DAC_READ 0xb
0023 #define AD5761_ADDR_CTRL_READ_REG 0xc
0024 #define AD5761_ADDR_SW_FULL_RESET 0xf
0025
0026 #define AD5761_CTRL_USE_INTVREF BIT(5)
0027 #define AD5761_CTRL_ETS BIT(6)
0028
0029
0030
0031
0032
0033
0034
0035
0036 struct ad5761_chip_info {
0037 unsigned long int_vref;
0038 const struct iio_chan_spec channel;
0039 };
0040
0041 struct ad5761_range_params {
0042 int m;
0043 int c;
0044 };
0045
0046 enum ad5761_supported_device_ids {
0047 ID_AD5721,
0048 ID_AD5721R,
0049 ID_AD5761,
0050 ID_AD5761R,
0051 };
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063 struct ad5761_state {
0064 struct spi_device *spi;
0065 struct regulator *vref_reg;
0066 struct mutex lock;
0067
0068 bool use_intref;
0069 int vref;
0070 enum ad5761_voltage_range range;
0071
0072
0073
0074
0075
0076 union {
0077 __be32 d32;
0078 u8 d8[4];
0079 } data[3] __aligned(IIO_DMA_MINALIGN);
0080 };
0081
0082 static const struct ad5761_range_params ad5761_range_params[] = {
0083 [AD5761_VOLTAGE_RANGE_M10V_10V] = {
0084 .m = 80,
0085 .c = 40,
0086 },
0087 [AD5761_VOLTAGE_RANGE_0V_10V] = {
0088 .m = 40,
0089 .c = 0,
0090 },
0091 [AD5761_VOLTAGE_RANGE_M5V_5V] = {
0092 .m = 40,
0093 .c = 20,
0094 },
0095 [AD5761_VOLTAGE_RANGE_0V_5V] = {
0096 .m = 20,
0097 .c = 0,
0098 },
0099 [AD5761_VOLTAGE_RANGE_M2V5_7V5] = {
0100 .m = 40,
0101 .c = 10,
0102 },
0103 [AD5761_VOLTAGE_RANGE_M3V_3V] = {
0104 .m = 24,
0105 .c = 12,
0106 },
0107 [AD5761_VOLTAGE_RANGE_0V_16V] = {
0108 .m = 64,
0109 .c = 0,
0110 },
0111 [AD5761_VOLTAGE_RANGE_0V_20V] = {
0112 .m = 80,
0113 .c = 0,
0114 },
0115 };
0116
0117 static int _ad5761_spi_write(struct ad5761_state *st, u8 addr, u16 val)
0118 {
0119 st->data[0].d32 = cpu_to_be32(AD5761_ADDR(addr) | val);
0120
0121 return spi_write(st->spi, &st->data[0].d8[1], 3);
0122 }
0123
0124 static int ad5761_spi_write(struct iio_dev *indio_dev, u8 addr, u16 val)
0125 {
0126 struct ad5761_state *st = iio_priv(indio_dev);
0127 int ret;
0128
0129 mutex_lock(&st->lock);
0130 ret = _ad5761_spi_write(st, addr, val);
0131 mutex_unlock(&st->lock);
0132
0133 return ret;
0134 }
0135
0136 static int _ad5761_spi_read(struct ad5761_state *st, u8 addr, u16 *val)
0137 {
0138 int ret;
0139 struct spi_transfer xfers[] = {
0140 {
0141 .tx_buf = &st->data[0].d8[1],
0142 .bits_per_word = 8,
0143 .len = 3,
0144 .cs_change = true,
0145 }, {
0146 .tx_buf = &st->data[1].d8[1],
0147 .rx_buf = &st->data[2].d8[1],
0148 .bits_per_word = 8,
0149 .len = 3,
0150 },
0151 };
0152
0153 st->data[0].d32 = cpu_to_be32(AD5761_ADDR(addr));
0154 st->data[1].d32 = cpu_to_be32(AD5761_ADDR(AD5761_ADDR_NOOP));
0155
0156 ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
0157
0158 *val = be32_to_cpu(st->data[2].d32);
0159
0160 return ret;
0161 }
0162
0163 static int ad5761_spi_read(struct iio_dev *indio_dev, u8 addr, u16 *val)
0164 {
0165 struct ad5761_state *st = iio_priv(indio_dev);
0166 int ret;
0167
0168 mutex_lock(&st->lock);
0169 ret = _ad5761_spi_read(st, addr, val);
0170 mutex_unlock(&st->lock);
0171
0172 return ret;
0173 }
0174
0175 static int ad5761_spi_set_range(struct ad5761_state *st,
0176 enum ad5761_voltage_range range)
0177 {
0178 u16 aux;
0179 int ret;
0180
0181 aux = (range & 0x7) | AD5761_CTRL_ETS;
0182
0183 if (st->use_intref)
0184 aux |= AD5761_CTRL_USE_INTVREF;
0185
0186 ret = _ad5761_spi_write(st, AD5761_ADDR_SW_FULL_RESET, 0);
0187 if (ret)
0188 return ret;
0189
0190 ret = _ad5761_spi_write(st, AD5761_ADDR_CTRL_WRITE_REG, aux);
0191 if (ret)
0192 return ret;
0193
0194 st->range = range;
0195
0196 return 0;
0197 }
0198
0199 static int ad5761_read_raw(struct iio_dev *indio_dev,
0200 struct iio_chan_spec const *chan,
0201 int *val,
0202 int *val2,
0203 long mask)
0204 {
0205 struct ad5761_state *st;
0206 int ret;
0207 u16 aux;
0208
0209 switch (mask) {
0210 case IIO_CHAN_INFO_RAW:
0211 ret = ad5761_spi_read(indio_dev, AD5761_ADDR_DAC_READ, &aux);
0212 if (ret)
0213 return ret;
0214 *val = aux >> chan->scan_type.shift;
0215 return IIO_VAL_INT;
0216 case IIO_CHAN_INFO_SCALE:
0217 st = iio_priv(indio_dev);
0218 *val = st->vref * ad5761_range_params[st->range].m;
0219 *val /= 10;
0220 *val2 = chan->scan_type.realbits;
0221 return IIO_VAL_FRACTIONAL_LOG2;
0222 case IIO_CHAN_INFO_OFFSET:
0223 st = iio_priv(indio_dev);
0224 *val = -(1 << chan->scan_type.realbits);
0225 *val *= ad5761_range_params[st->range].c;
0226 *val /= ad5761_range_params[st->range].m;
0227 return IIO_VAL_INT;
0228 default:
0229 return -EINVAL;
0230 }
0231 }
0232
0233 static int ad5761_write_raw(struct iio_dev *indio_dev,
0234 struct iio_chan_spec const *chan,
0235 int val,
0236 int val2,
0237 long mask)
0238 {
0239 u16 aux;
0240
0241 if (mask != IIO_CHAN_INFO_RAW)
0242 return -EINVAL;
0243
0244 if (val2 || (val << chan->scan_type.shift) > 0xffff || val < 0)
0245 return -EINVAL;
0246
0247 aux = val << chan->scan_type.shift;
0248
0249 return ad5761_spi_write(indio_dev, AD5761_ADDR_DAC_WRITE, aux);
0250 }
0251
0252 static const struct iio_info ad5761_info = {
0253 .read_raw = &ad5761_read_raw,
0254 .write_raw = &ad5761_write_raw,
0255 };
0256
0257 #define AD5761_CHAN(_bits) { \
0258 .type = IIO_VOLTAGE, \
0259 .output = 1, \
0260 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
0261 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
0262 BIT(IIO_CHAN_INFO_OFFSET), \
0263 .scan_type = { \
0264 .sign = 'u', \
0265 .realbits = (_bits), \
0266 .storagebits = 16, \
0267 .shift = 16 - (_bits), \
0268 }, \
0269 }
0270
0271 static const struct ad5761_chip_info ad5761_chip_infos[] = {
0272 [ID_AD5721] = {
0273 .int_vref = 0,
0274 .channel = AD5761_CHAN(12),
0275 },
0276 [ID_AD5721R] = {
0277 .int_vref = 2500,
0278 .channel = AD5761_CHAN(12),
0279 },
0280 [ID_AD5761] = {
0281 .int_vref = 0,
0282 .channel = AD5761_CHAN(16),
0283 },
0284 [ID_AD5761R] = {
0285 .int_vref = 2500,
0286 .channel = AD5761_CHAN(16),
0287 },
0288 };
0289
0290 static int ad5761_get_vref(struct ad5761_state *st,
0291 const struct ad5761_chip_info *chip_info)
0292 {
0293 int ret;
0294
0295 st->vref_reg = devm_regulator_get_optional(&st->spi->dev, "vref");
0296 if (PTR_ERR(st->vref_reg) == -ENODEV) {
0297
0298 if (!chip_info->int_vref) {
0299 dev_err(&st->spi->dev,
0300 "Voltage reference not found\n");
0301 return -EIO;
0302 }
0303
0304 st->use_intref = true;
0305 st->vref = chip_info->int_vref;
0306 return 0;
0307 }
0308
0309 if (IS_ERR(st->vref_reg)) {
0310 dev_err(&st->spi->dev,
0311 "Error getting voltage reference regulator\n");
0312 return PTR_ERR(st->vref_reg);
0313 }
0314
0315 ret = regulator_enable(st->vref_reg);
0316 if (ret) {
0317 dev_err(&st->spi->dev,
0318 "Failed to enable voltage reference\n");
0319 return ret;
0320 }
0321
0322 ret = regulator_get_voltage(st->vref_reg);
0323 if (ret < 0) {
0324 dev_err(&st->spi->dev,
0325 "Failed to get voltage reference value\n");
0326 goto disable_regulator_vref;
0327 }
0328
0329 if (ret < 2000000 || ret > 3000000) {
0330 dev_warn(&st->spi->dev,
0331 "Invalid external voltage ref. value %d uV\n", ret);
0332 ret = -EIO;
0333 goto disable_regulator_vref;
0334 }
0335
0336 st->vref = ret / 1000;
0337 st->use_intref = false;
0338
0339 return 0;
0340
0341 disable_regulator_vref:
0342 regulator_disable(st->vref_reg);
0343 st->vref_reg = NULL;
0344 return ret;
0345 }
0346
0347 static int ad5761_probe(struct spi_device *spi)
0348 {
0349 struct iio_dev *iio_dev;
0350 struct ad5761_state *st;
0351 int ret;
0352 const struct ad5761_chip_info *chip_info =
0353 &ad5761_chip_infos[spi_get_device_id(spi)->driver_data];
0354 enum ad5761_voltage_range voltage_range = AD5761_VOLTAGE_RANGE_0V_5V;
0355 struct ad5761_platform_data *pdata = dev_get_platdata(&spi->dev);
0356
0357 iio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
0358 if (!iio_dev)
0359 return -ENOMEM;
0360
0361 st = iio_priv(iio_dev);
0362
0363 st->spi = spi;
0364 spi_set_drvdata(spi, iio_dev);
0365
0366 ret = ad5761_get_vref(st, chip_info);
0367 if (ret)
0368 return ret;
0369
0370 if (pdata)
0371 voltage_range = pdata->voltage_range;
0372
0373 mutex_init(&st->lock);
0374
0375 ret = ad5761_spi_set_range(st, voltage_range);
0376 if (ret)
0377 goto disable_regulator_err;
0378
0379 iio_dev->info = &ad5761_info;
0380 iio_dev->modes = INDIO_DIRECT_MODE;
0381 iio_dev->channels = &chip_info->channel;
0382 iio_dev->num_channels = 1;
0383 iio_dev->name = spi_get_device_id(st->spi)->name;
0384 ret = iio_device_register(iio_dev);
0385 if (ret)
0386 goto disable_regulator_err;
0387
0388 return 0;
0389
0390 disable_regulator_err:
0391 if (!IS_ERR_OR_NULL(st->vref_reg))
0392 regulator_disable(st->vref_reg);
0393
0394 return ret;
0395 }
0396
0397 static void ad5761_remove(struct spi_device *spi)
0398 {
0399 struct iio_dev *iio_dev = spi_get_drvdata(spi);
0400 struct ad5761_state *st = iio_priv(iio_dev);
0401
0402 iio_device_unregister(iio_dev);
0403
0404 if (!IS_ERR_OR_NULL(st->vref_reg))
0405 regulator_disable(st->vref_reg);
0406 }
0407
0408 static const struct spi_device_id ad5761_id[] = {
0409 {"ad5721", ID_AD5721},
0410 {"ad5721r", ID_AD5721R},
0411 {"ad5761", ID_AD5761},
0412 {"ad5761r", ID_AD5761R},
0413 {}
0414 };
0415 MODULE_DEVICE_TABLE(spi, ad5761_id);
0416
0417 static struct spi_driver ad5761_driver = {
0418 .driver = {
0419 .name = "ad5761",
0420 },
0421 .probe = ad5761_probe,
0422 .remove = ad5761_remove,
0423 .id_table = ad5761_id,
0424 };
0425 module_spi_driver(ad5761_driver);
0426
0427 MODULE_AUTHOR("Ricardo Ribalda <ribalda@kernel.org>");
0428 MODULE_DESCRIPTION("Analog Devices AD5721, AD5721R, AD5761, AD5761R driver");
0429 MODULE_LICENSE("GPL v2");