0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027 #include <linux/delay.h>
0028 #include <linux/crc8.h>
0029 #include <linux/module.h>
0030 #include <linux/mutex.h>
0031 #include <linux/i2c.h>
0032 #include <linux/iio/iio.h>
0033
0034
0035
0036
0037
0038 #define SGP40_CALC_POWER 14
0039
0040 #define SGP40_CRC8_POLYNOMIAL 0x31
0041 #define SGP40_CRC8_INIT 0xff
0042
0043 DECLARE_CRC8_TABLE(sgp40_crc8_table);
0044
0045 struct sgp40_data {
0046 struct device *dev;
0047 struct i2c_client *client;
0048 int rht;
0049 int temp;
0050 int res_calibbias;
0051
0052 struct mutex lock;
0053 };
0054
0055 struct sgp40_tg_measure {
0056 u8 command[2];
0057 __be16 rht_ticks;
0058 u8 rht_crc;
0059 __be16 temp_ticks;
0060 u8 temp_crc;
0061 } __packed;
0062
0063 struct sgp40_tg_result {
0064 __be16 res_ticks;
0065 u8 res_crc;
0066 } __packed;
0067
0068 static const struct iio_chan_spec sgp40_channels[] = {
0069 {
0070 .type = IIO_CONCENTRATION,
0071 .channel2 = IIO_MOD_VOC,
0072 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
0073 },
0074 {
0075 .type = IIO_RESISTANCE,
0076 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
0077 BIT(IIO_CHAN_INFO_CALIBBIAS),
0078 },
0079 {
0080 .type = IIO_TEMP,
0081 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0082 .output = 1,
0083 },
0084 {
0085 .type = IIO_HUMIDITYRELATIVE,
0086 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
0087 .output = 1,
0088 },
0089 };
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101 static u32 sgp40_exp(int exp, u32 power, u32 rounds)
0102 {
0103 u32 x, y, xp;
0104 u32 factorial, divider, xmax;
0105 int sign = 1;
0106 int i;
0107
0108 if (exp == 0)
0109 return 1 << power;
0110 else if (exp < 0) {
0111 sign = -1;
0112 exp *= -1;
0113 }
0114
0115 xmax = 0x7FFFFFFF / exp;
0116 x = exp;
0117 xp = 1;
0118 factorial = 1;
0119 y = 1 << power;
0120 divider = 0;
0121
0122 for (i = 1; i <= rounds; i++) {
0123 xp *= x;
0124 factorial *= i;
0125 y += (xp >> divider) / factorial;
0126 divider += power;
0127
0128 if (xp >= xmax) {
0129 xp >>= power;
0130 divider -= power;
0131 }
0132 }
0133
0134 if (sign == -1)
0135 return (1 << (power * 2)) / y;
0136 else
0137 return y;
0138 }
0139
0140 static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc)
0141 {
0142 int x;
0143 u32 exp = 0;
0144
0145
0146 mutex_lock(&data->lock);
0147 x = ((int)resistance_raw - data->res_calibbias) * 106;
0148 mutex_unlock(&data->lock);
0149
0150
0151 exp = sgp40_exp(x, SGP40_CALC_POWER, 18);
0152 *voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp));
0153
0154 dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n",
0155 resistance_raw, data->res_calibbias, x, exp, *voc);
0156
0157 return 0;
0158 }
0159
0160 static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw)
0161 {
0162 int ret;
0163 struct i2c_client *client = data->client;
0164 u32 ticks;
0165 u16 ticks16;
0166 u8 crc;
0167 struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}};
0168 struct sgp40_tg_result tgres;
0169
0170 mutex_lock(&data->lock);
0171
0172 ticks = (data->rht / 10) * 65535 / 10000;
0173 ticks16 = (u16)clamp(ticks, 0u, 65535u);
0174 tg.rht_ticks = cpu_to_be16(ticks16);
0175 tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT);
0176
0177 ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500;
0178 ticks16 = (u16)clamp(ticks, 0u, 65535u);
0179 tg.temp_ticks = cpu_to_be16(ticks16);
0180 tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT);
0181
0182 mutex_unlock(&data->lock);
0183
0184 ret = i2c_master_send(client, (const char *)&tg, sizeof(tg));
0185 if (ret != sizeof(tg)) {
0186 dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg));
0187 return -EIO;
0188 }
0189 msleep(30);
0190
0191 ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres));
0192 if (ret < 0)
0193 return ret;
0194 if (ret != sizeof(tgres)) {
0195 dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres));
0196 return -EIO;
0197 }
0198
0199 crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT);
0200 if (crc != tgres.res_crc) {
0201 dev_err(data->dev, "CRC error while measure-raw\n");
0202 return -EIO;
0203 }
0204
0205 *resistance_raw = be16_to_cpu(tgres.res_ticks);
0206
0207 return 0;
0208 }
0209
0210 static int sgp40_read_raw(struct iio_dev *indio_dev,
0211 struct iio_chan_spec const *chan, int *val,
0212 int *val2, long mask)
0213 {
0214 struct sgp40_data *data = iio_priv(indio_dev);
0215 int ret, voc;
0216 u16 resistance_raw;
0217
0218 switch (mask) {
0219 case IIO_CHAN_INFO_RAW:
0220 switch (chan->type) {
0221 case IIO_RESISTANCE:
0222 ret = sgp40_measure_resistance_raw(data, &resistance_raw);
0223 if (ret)
0224 return ret;
0225
0226 *val = resistance_raw;
0227 return IIO_VAL_INT;
0228 case IIO_TEMP:
0229 mutex_lock(&data->lock);
0230 *val = data->temp;
0231 mutex_unlock(&data->lock);
0232 return IIO_VAL_INT;
0233 case IIO_HUMIDITYRELATIVE:
0234 mutex_lock(&data->lock);
0235 *val = data->rht;
0236 mutex_unlock(&data->lock);
0237 return IIO_VAL_INT;
0238 default:
0239 return -EINVAL;
0240 }
0241 case IIO_CHAN_INFO_PROCESSED:
0242 ret = sgp40_measure_resistance_raw(data, &resistance_raw);
0243 if (ret)
0244 return ret;
0245
0246 ret = sgp40_calc_voc(data, resistance_raw, &voc);
0247 if (ret)
0248 return ret;
0249
0250 *val = voc / (1 << SGP40_CALC_POWER);
0251
0252
0253
0254
0255
0256 *val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12));
0257 dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2);
0258 return IIO_VAL_INT_PLUS_MICRO;
0259 case IIO_CHAN_INFO_CALIBBIAS:
0260 mutex_lock(&data->lock);
0261 *val = data->res_calibbias;
0262 mutex_unlock(&data->lock);
0263 return IIO_VAL_INT;
0264 default:
0265 return -EINVAL;
0266 }
0267 }
0268
0269 static int sgp40_write_raw(struct iio_dev *indio_dev,
0270 struct iio_chan_spec const *chan, int val,
0271 int val2, long mask)
0272 {
0273 struct sgp40_data *data = iio_priv(indio_dev);
0274
0275 switch (mask) {
0276 case IIO_CHAN_INFO_RAW:
0277 switch (chan->type) {
0278 case IIO_TEMP:
0279 if ((val < -45000) || (val > 130000))
0280 return -EINVAL;
0281
0282 mutex_lock(&data->lock);
0283 data->temp = val;
0284 mutex_unlock(&data->lock);
0285 return 0;
0286 case IIO_HUMIDITYRELATIVE:
0287 if ((val < 0) || (val > 100000))
0288 return -EINVAL;
0289
0290 mutex_lock(&data->lock);
0291 data->rht = val;
0292 mutex_unlock(&data->lock);
0293 return 0;
0294 default:
0295 return -EINVAL;
0296 }
0297 case IIO_CHAN_INFO_CALIBBIAS:
0298 if ((val < 20000) || (val > 52768))
0299 return -EINVAL;
0300
0301 mutex_lock(&data->lock);
0302 data->res_calibbias = val;
0303 mutex_unlock(&data->lock);
0304 return 0;
0305 }
0306 return -EINVAL;
0307 }
0308
0309 static const struct iio_info sgp40_info = {
0310 .read_raw = sgp40_read_raw,
0311 .write_raw = sgp40_write_raw,
0312 };
0313
0314 static int sgp40_probe(struct i2c_client *client,
0315 const struct i2c_device_id *id)
0316 {
0317 struct device *dev = &client->dev;
0318 struct iio_dev *indio_dev;
0319 struct sgp40_data *data;
0320 int ret;
0321
0322 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
0323 if (!indio_dev)
0324 return -ENOMEM;
0325
0326 data = iio_priv(indio_dev);
0327 data->client = client;
0328 data->dev = dev;
0329
0330 crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL);
0331
0332 mutex_init(&data->lock);
0333
0334
0335 data->rht = 50000;
0336 data->temp = 25000;
0337 data->res_calibbias = 30000;
0338
0339 indio_dev->info = &sgp40_info;
0340 indio_dev->name = id->name;
0341 indio_dev->modes = INDIO_DIRECT_MODE;
0342 indio_dev->channels = sgp40_channels;
0343 indio_dev->num_channels = ARRAY_SIZE(sgp40_channels);
0344
0345 ret = devm_iio_device_register(dev, indio_dev);
0346 if (ret)
0347 dev_err(dev, "failed to register iio device\n");
0348
0349 return ret;
0350 }
0351
0352 static const struct i2c_device_id sgp40_id[] = {
0353 { "sgp40" },
0354 { }
0355 };
0356
0357 MODULE_DEVICE_TABLE(i2c, sgp40_id);
0358
0359 static const struct of_device_id sgp40_dt_ids[] = {
0360 { .compatible = "sensirion,sgp40" },
0361 { }
0362 };
0363
0364 MODULE_DEVICE_TABLE(of, sgp40_dt_ids);
0365
0366 static struct i2c_driver sgp40_driver = {
0367 .driver = {
0368 .name = "sgp40",
0369 .of_match_table = sgp40_dt_ids,
0370 },
0371 .probe = sgp40_probe,
0372 .id_table = sgp40_id,
0373 };
0374 module_i2c_driver(sgp40_driver);
0375
0376 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
0377 MODULE_DESCRIPTION("Sensirion SGP40 gas sensor");
0378 MODULE_LICENSE("GPL v2");