0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/bitfield.h>
0009 #include <linux/bits.h>
0010 #include <linux/device.h>
0011 #include <linux/iio/iio.h>
0012 #include <linux/module.h>
0013 #include <linux/regmap.h>
0014 #include <linux/regulator/consumer.h>
0015 #include <linux/spi/spi.h>
0016
0017 #include <asm/unaligned.h>
0018
0019
0020 #define ADA4250_REG_GAIN_MUX 0x00
0021 #define ADA4250_REG_REFBUF_EN 0x01
0022 #define ADA4250_REG_RESET 0x02
0023 #define ADA4250_REG_SNSR_CAL_VAL 0x04
0024 #define ADA4250_REG_SNSR_CAL_CNFG 0x05
0025 #define ADA4250_REG_DIE_REV 0x18
0026 #define ADA4250_REG_CHIP_ID 0x19
0027
0028
0029 #define ADA4250_GAIN_MUX_MSK GENMASK(2, 0)
0030
0031
0032 #define ADA4250_REFBUF_MSK BIT(0)
0033
0034
0035 #define ADA4250_RESET_MSK BIT(0)
0036
0037
0038 #define ADA4250_CAL_CFG_BIAS_MSK GENMASK(7, 0)
0039
0040
0041 #define ADA4250_BIAS_SET_MSK GENMASK(3, 2)
0042 #define ADA4250_RANGE_SET_MSK GENMASK(1, 0)
0043
0044
0045 #define ADA4250_CHIP_ID 0x4250
0046 #define ADA4250_RANGE1 0
0047 #define ADA4250_RANGE4 3
0048
0049
0050 enum ada4250_current_bias {
0051 ADA4250_BIAS_DISABLED,
0052 ADA4250_BIAS_BANDGAP,
0053 ADA4250_BIAS_AVDD,
0054 };
0055
0056 struct ada4250_state {
0057 struct spi_device *spi;
0058 struct regmap *regmap;
0059 struct regulator *reg;
0060
0061 struct mutex lock;
0062 u8 bias;
0063 u8 gain;
0064 int offset_uv;
0065 bool refbuf_en;
0066 };
0067
0068
0069 static const int calibbias_table[] = {0, 1, 2};
0070
0071
0072 static const int hwgain_table[] = {1, 2, 4, 8, 16, 32, 64, 128};
0073
0074 static const struct regmap_config ada4250_regmap_config = {
0075 .reg_bits = 8,
0076 .val_bits = 8,
0077 .read_flag_mask = BIT(7),
0078 .max_register = 0x1A,
0079 };
0080
0081 static int ada4250_set_offset_uv(struct iio_dev *indio_dev,
0082 const struct iio_chan_spec *chan,
0083 int offset_uv)
0084 {
0085 struct ada4250_state *st = iio_priv(indio_dev);
0086
0087 int i, ret, x[8], max_vos, min_vos, voltage_v, vlsb = 0;
0088 u8 offset_raw, range = ADA4250_RANGE1;
0089 u32 lsb_coeff[6] = {1333, 2301, 4283, 8289, 16311, 31599};
0090
0091 if (st->bias == 0 || st->bias == 3)
0092 return -EINVAL;
0093
0094 voltage_v = regulator_get_voltage(st->reg);
0095 voltage_v = DIV_ROUND_CLOSEST(voltage_v, 1000000);
0096
0097 if (st->bias == ADA4250_BIAS_AVDD)
0098 x[0] = voltage_v;
0099 else
0100 x[0] = 5;
0101
0102 x[1] = 126 * (x[0] - 1);
0103
0104 for (i = 0; i < 6; i++)
0105 x[i + 2] = DIV_ROUND_CLOSEST(x[1] * 1000, lsb_coeff[i]);
0106
0107 if (st->gain == 0)
0108 return -EINVAL;
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123 for (i = ADA4250_RANGE1; i <= ADA4250_RANGE4; i++) {
0124 max_vos = x[st->gain] * 127 * ((1 << (i + 1)) - 1);
0125 min_vos = -1 * max_vos;
0126 if (offset_uv > min_vos && offset_uv < max_vos) {
0127 range = i;
0128 vlsb = x[st->gain] * ((1 << (i + 1)) - 1);
0129 break;
0130 }
0131 }
0132
0133 if (vlsb <= 0)
0134 return -EINVAL;
0135
0136 offset_raw = DIV_ROUND_CLOSEST(abs(offset_uv), vlsb);
0137
0138 mutex_lock(&st->lock);
0139 ret = regmap_update_bits(st->regmap, ADA4250_REG_SNSR_CAL_CNFG,
0140 ADA4250_RANGE_SET_MSK,
0141 FIELD_PREP(ADA4250_RANGE_SET_MSK, range));
0142 if (ret)
0143 goto exit;
0144
0145 st->offset_uv = offset_raw * vlsb;
0146
0147
0148
0149
0150
0151
0152 if (offset_uv < 0) {
0153 offset_raw |= BIT(7);
0154 st->offset_uv *= (-1);
0155 }
0156
0157 ret = regmap_write(st->regmap, ADA4250_REG_SNSR_CAL_VAL, offset_raw);
0158
0159 exit:
0160 mutex_unlock(&st->lock);
0161
0162 return ret;
0163 }
0164
0165 static int ada4250_read_raw(struct iio_dev *indio_dev,
0166 struct iio_chan_spec const *chan,
0167 int *val, int *val2, long info)
0168 {
0169 struct ada4250_state *st = iio_priv(indio_dev);
0170 int ret;
0171
0172 switch (info) {
0173 case IIO_CHAN_INFO_HARDWAREGAIN:
0174 ret = regmap_read(st->regmap, ADA4250_REG_GAIN_MUX, val);
0175 if (ret)
0176 return ret;
0177
0178 *val = BIT(*val);
0179
0180 return IIO_VAL_INT;
0181 case IIO_CHAN_INFO_OFFSET:
0182 *val = st->offset_uv;
0183
0184 return IIO_VAL_INT;
0185 case IIO_CHAN_INFO_CALIBBIAS:
0186 ret = regmap_read(st->regmap, ADA4250_REG_SNSR_CAL_CNFG, val);
0187 if (ret)
0188 return ret;
0189
0190 *val = FIELD_GET(ADA4250_BIAS_SET_MSK, *val);
0191
0192 return IIO_VAL_INT;
0193 case IIO_CHAN_INFO_SCALE:
0194 *val = 1;
0195 *val2 = 1000000;
0196
0197 return IIO_VAL_FRACTIONAL;
0198 default:
0199 return -EINVAL;
0200 }
0201 }
0202
0203 static int ada4250_write_raw(struct iio_dev *indio_dev,
0204 struct iio_chan_spec const *chan,
0205 int val, int val2, long info)
0206 {
0207 struct ada4250_state *st = iio_priv(indio_dev);
0208 int ret;
0209
0210 switch (info) {
0211 case IIO_CHAN_INFO_HARDWAREGAIN:
0212 ret = regmap_write(st->regmap, ADA4250_REG_GAIN_MUX,
0213 FIELD_PREP(ADA4250_GAIN_MUX_MSK, ilog2(val)));
0214 if (ret)
0215 return ret;
0216
0217 st->gain = ilog2(val);
0218
0219 return ret;
0220 case IIO_CHAN_INFO_OFFSET:
0221 return ada4250_set_offset_uv(indio_dev, chan, val);
0222 case IIO_CHAN_INFO_CALIBBIAS:
0223 ret = regmap_update_bits(st->regmap, ADA4250_REG_SNSR_CAL_CNFG,
0224 ADA4250_BIAS_SET_MSK,
0225 FIELD_PREP(ADA4250_BIAS_SET_MSK, val));
0226 if (ret)
0227 return ret;
0228
0229 st->bias = val;
0230
0231 return ret;
0232 default:
0233 return -EINVAL;
0234 }
0235 }
0236
0237 static int ada4250_read_avail(struct iio_dev *indio_dev,
0238 struct iio_chan_spec const *chan,
0239 const int **vals, int *type, int *length,
0240 long mask)
0241 {
0242 switch (mask) {
0243 case IIO_CHAN_INFO_CALIBBIAS:
0244 *vals = calibbias_table;
0245 *type = IIO_VAL_INT;
0246 *length = ARRAY_SIZE(calibbias_table);
0247
0248 return IIO_AVAIL_LIST;
0249 case IIO_CHAN_INFO_HARDWAREGAIN:
0250 *vals = hwgain_table;
0251 *type = IIO_VAL_INT;
0252 *length = ARRAY_SIZE(hwgain_table);
0253
0254 return IIO_AVAIL_LIST;
0255 default:
0256 return -EINVAL;
0257 }
0258 }
0259
0260 static int ada4250_reg_access(struct iio_dev *indio_dev,
0261 unsigned int reg,
0262 unsigned int write_val,
0263 unsigned int *read_val)
0264 {
0265 struct ada4250_state *st = iio_priv(indio_dev);
0266
0267 if (read_val)
0268 return regmap_read(st->regmap, reg, read_val);
0269 else
0270 return regmap_write(st->regmap, reg, write_val);
0271 }
0272
0273 static const struct iio_info ada4250_info = {
0274 .read_raw = ada4250_read_raw,
0275 .write_raw = ada4250_write_raw,
0276 .read_avail = &ada4250_read_avail,
0277 .debugfs_reg_access = &ada4250_reg_access,
0278 };
0279
0280 static const struct iio_chan_spec ada4250_channels[] = {
0281 {
0282 .type = IIO_VOLTAGE,
0283 .output = 1,
0284 .indexed = 1,
0285 .channel = 0,
0286 .info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN) |
0287 BIT(IIO_CHAN_INFO_OFFSET) |
0288 BIT(IIO_CHAN_INFO_CALIBBIAS) |
0289 BIT(IIO_CHAN_INFO_SCALE),
0290 .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS) |
0291 BIT(IIO_CHAN_INFO_HARDWAREGAIN),
0292 }
0293 };
0294
0295 static void ada4250_reg_disable(void *data)
0296 {
0297 regulator_disable(data);
0298 }
0299
0300 static int ada4250_init(struct ada4250_state *st)
0301 {
0302 int ret;
0303 u16 chip_id;
0304 u8 data[2] __aligned(8) = {};
0305 struct spi_device *spi = st->spi;
0306
0307 st->refbuf_en = device_property_read_bool(&spi->dev, "adi,refbuf-enable");
0308
0309 st->reg = devm_regulator_get(&spi->dev, "avdd");
0310 if (IS_ERR(st->reg))
0311 return dev_err_probe(&spi->dev, PTR_ERR(st->reg),
0312 "failed to get the AVDD voltage\n");
0313
0314 ret = regulator_enable(st->reg);
0315 if (ret) {
0316 dev_err(&spi->dev, "Failed to enable specified AVDD supply\n");
0317 return ret;
0318 }
0319
0320 ret = devm_add_action_or_reset(&spi->dev, ada4250_reg_disable, st->reg);
0321 if (ret)
0322 return ret;
0323
0324 ret = regmap_write(st->regmap, ADA4250_REG_RESET,
0325 FIELD_PREP(ADA4250_RESET_MSK, 1));
0326 if (ret)
0327 return ret;
0328
0329 ret = regmap_bulk_read(st->regmap, ADA4250_REG_CHIP_ID, data, 2);
0330 if (ret)
0331 return ret;
0332
0333 chip_id = get_unaligned_le16(data);
0334
0335 if (chip_id != ADA4250_CHIP_ID) {
0336 dev_err(&spi->dev, "Invalid chip ID.\n");
0337 return -EINVAL;
0338 }
0339
0340 return regmap_write(st->regmap, ADA4250_REG_REFBUF_EN,
0341 FIELD_PREP(ADA4250_REFBUF_MSK, st->refbuf_en));
0342 }
0343
0344 static int ada4250_probe(struct spi_device *spi)
0345 {
0346 struct iio_dev *indio_dev;
0347 struct regmap *regmap;
0348 struct ada4250_state *st;
0349 int ret;
0350
0351 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
0352 if (!indio_dev)
0353 return -ENOMEM;
0354
0355 regmap = devm_regmap_init_spi(spi, &ada4250_regmap_config);
0356 if (IS_ERR(regmap))
0357 return PTR_ERR(regmap);
0358
0359 st = iio_priv(indio_dev);
0360 st->regmap = regmap;
0361 st->spi = spi;
0362
0363 indio_dev->info = &ada4250_info;
0364 indio_dev->name = "ada4250";
0365 indio_dev->channels = ada4250_channels;
0366 indio_dev->num_channels = ARRAY_SIZE(ada4250_channels);
0367
0368 mutex_init(&st->lock);
0369
0370 ret = ada4250_init(st);
0371 if (ret) {
0372 dev_err(&spi->dev, "ADA4250 init failed\n");
0373 return ret;
0374 }
0375
0376 return devm_iio_device_register(&spi->dev, indio_dev);
0377 }
0378
0379 static const struct spi_device_id ada4250_id[] = {
0380 { "ada4250", 0 },
0381 {}
0382 };
0383 MODULE_DEVICE_TABLE(spi, ada4250_id);
0384
0385 static const struct of_device_id ada4250_of_match[] = {
0386 { .compatible = "adi,ada4250" },
0387 {},
0388 };
0389 MODULE_DEVICE_TABLE(of, ada4250_of_match);
0390
0391 static struct spi_driver ada4250_driver = {
0392 .driver = {
0393 .name = "ada4250",
0394 .of_match_table = ada4250_of_match,
0395 },
0396 .probe = ada4250_probe,
0397 .id_table = ada4250_id,
0398 };
0399 module_spi_driver(ada4250_driver);
0400
0401 MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com");
0402 MODULE_DESCRIPTION("Analog Devices ADA4250");
0403 MODULE_LICENSE("GPL v2");