0001
0002
0003
0004
0005
0006 #include <linux/device.h>
0007 #include <linux/kernel.h>
0008 #include <linux/slab.h>
0009 #include <linux/sysfs.h>
0010 #include <linux/spi/spi.h>
0011 #include <linux/regulator/consumer.h>
0012 #include <linux/err.h>
0013 #include <linux/module.h>
0014 #include <linux/of.h>
0015
0016 #include <linux/iio/iio.h>
0017 #include <linux/iio/buffer.h>
0018 #include <linux/iio/trigger_consumer.h>
0019 #include <linux/iio/triggered_buffer.h>
0020 #include <linux/iio/sysfs.h>
0021
0022 #define ADS8688_CMD_REG(x) (x << 8)
0023 #define ADS8688_CMD_REG_NOOP 0x00
0024 #define ADS8688_CMD_REG_RST 0x85
0025 #define ADS8688_CMD_REG_MAN_CH(chan) (0xC0 | (4 * chan))
0026 #define ADS8688_CMD_DONT_CARE_BITS 16
0027
0028 #define ADS8688_PROG_REG(x) (x << 9)
0029 #define ADS8688_PROG_REG_RANGE_CH(chan) (0x05 + chan)
0030 #define ADS8688_PROG_WR_BIT BIT(8)
0031 #define ADS8688_PROG_DONT_CARE_BITS 8
0032
0033 #define ADS8688_REG_PLUSMINUS25VREF 0
0034 #define ADS8688_REG_PLUSMINUS125VREF 1
0035 #define ADS8688_REG_PLUSMINUS0625VREF 2
0036 #define ADS8688_REG_PLUS25VREF 5
0037 #define ADS8688_REG_PLUS125VREF 6
0038
0039 #define ADS8688_VREF_MV 4096
0040 #define ADS8688_REALBITS 16
0041 #define ADS8688_MAX_CHANNELS 8
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051 enum ads8688_range {
0052 ADS8688_PLUSMINUS25VREF,
0053 ADS8688_PLUSMINUS125VREF,
0054 ADS8688_PLUSMINUS0625VREF,
0055 ADS8688_PLUS25VREF,
0056 ADS8688_PLUS125VREF,
0057 };
0058
0059 struct ads8688_chip_info {
0060 const struct iio_chan_spec *channels;
0061 unsigned int num_channels;
0062 };
0063
0064 struct ads8688_state {
0065 struct mutex lock;
0066 const struct ads8688_chip_info *chip_info;
0067 struct spi_device *spi;
0068 struct regulator *reg;
0069 unsigned int vref_mv;
0070 enum ads8688_range range[8];
0071 union {
0072 __be32 d32;
0073 u8 d8[4];
0074 } data[2] __aligned(IIO_DMA_MINALIGN);
0075 };
0076
0077 enum ads8688_id {
0078 ID_ADS8684,
0079 ID_ADS8688,
0080 };
0081
0082 struct ads8688_ranges {
0083 enum ads8688_range range;
0084 unsigned int scale;
0085 int offset;
0086 u8 reg;
0087 };
0088
0089 static const struct ads8688_ranges ads8688_range_def[5] = {
0090 {
0091 .range = ADS8688_PLUSMINUS25VREF,
0092 .scale = 76295,
0093 .offset = -(1 << (ADS8688_REALBITS - 1)),
0094 .reg = ADS8688_REG_PLUSMINUS25VREF,
0095 }, {
0096 .range = ADS8688_PLUSMINUS125VREF,
0097 .scale = 38148,
0098 .offset = -(1 << (ADS8688_REALBITS - 1)),
0099 .reg = ADS8688_REG_PLUSMINUS125VREF,
0100 }, {
0101 .range = ADS8688_PLUSMINUS0625VREF,
0102 .scale = 19074,
0103 .offset = -(1 << (ADS8688_REALBITS - 1)),
0104 .reg = ADS8688_REG_PLUSMINUS0625VREF,
0105 }, {
0106 .range = ADS8688_PLUS25VREF,
0107 .scale = 38148,
0108 .offset = 0,
0109 .reg = ADS8688_REG_PLUS25VREF,
0110 }, {
0111 .range = ADS8688_PLUS125VREF,
0112 .scale = 19074,
0113 .offset = 0,
0114 .reg = ADS8688_REG_PLUS125VREF,
0115 }
0116 };
0117
0118 static ssize_t ads8688_show_scales(struct device *dev,
0119 struct device_attribute *attr, char *buf)
0120 {
0121 struct ads8688_state *st = iio_priv(dev_to_iio_dev(dev));
0122
0123 return sprintf(buf, "0.%09u 0.%09u 0.%09u\n",
0124 ads8688_range_def[0].scale * st->vref_mv,
0125 ads8688_range_def[1].scale * st->vref_mv,
0126 ads8688_range_def[2].scale * st->vref_mv);
0127 }
0128
0129 static ssize_t ads8688_show_offsets(struct device *dev,
0130 struct device_attribute *attr, char *buf)
0131 {
0132 return sprintf(buf, "%d %d\n", ads8688_range_def[0].offset,
0133 ads8688_range_def[3].offset);
0134 }
0135
0136 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO,
0137 ads8688_show_scales, NULL, 0);
0138 static IIO_DEVICE_ATTR(in_voltage_offset_available, S_IRUGO,
0139 ads8688_show_offsets, NULL, 0);
0140
0141 static struct attribute *ads8688_attributes[] = {
0142 &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
0143 &iio_dev_attr_in_voltage_offset_available.dev_attr.attr,
0144 NULL,
0145 };
0146
0147 static const struct attribute_group ads8688_attribute_group = {
0148 .attrs = ads8688_attributes,
0149 };
0150
0151 #define ADS8688_CHAN(index) \
0152 { \
0153 .type = IIO_VOLTAGE, \
0154 .indexed = 1, \
0155 .channel = index, \
0156 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
0157 | BIT(IIO_CHAN_INFO_SCALE) \
0158 | BIT(IIO_CHAN_INFO_OFFSET), \
0159 .scan_index = index, \
0160 .scan_type = { \
0161 .sign = 'u', \
0162 .realbits = 16, \
0163 .storagebits = 16, \
0164 .endianness = IIO_BE, \
0165 }, \
0166 }
0167
0168 static const struct iio_chan_spec ads8684_channels[] = {
0169 ADS8688_CHAN(0),
0170 ADS8688_CHAN(1),
0171 ADS8688_CHAN(2),
0172 ADS8688_CHAN(3),
0173 };
0174
0175 static const struct iio_chan_spec ads8688_channels[] = {
0176 ADS8688_CHAN(0),
0177 ADS8688_CHAN(1),
0178 ADS8688_CHAN(2),
0179 ADS8688_CHAN(3),
0180 ADS8688_CHAN(4),
0181 ADS8688_CHAN(5),
0182 ADS8688_CHAN(6),
0183 ADS8688_CHAN(7),
0184 };
0185
0186 static int ads8688_prog_write(struct iio_dev *indio_dev, unsigned int addr,
0187 unsigned int val)
0188 {
0189 struct ads8688_state *st = iio_priv(indio_dev);
0190 u32 tmp;
0191
0192 tmp = ADS8688_PROG_REG(addr) | ADS8688_PROG_WR_BIT | val;
0193 tmp <<= ADS8688_PROG_DONT_CARE_BITS;
0194 st->data[0].d32 = cpu_to_be32(tmp);
0195
0196 return spi_write(st->spi, &st->data[0].d8[1], 3);
0197 }
0198
0199 static int ads8688_reset(struct iio_dev *indio_dev)
0200 {
0201 struct ads8688_state *st = iio_priv(indio_dev);
0202 u32 tmp;
0203
0204 tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_RST);
0205 tmp <<= ADS8688_CMD_DONT_CARE_BITS;
0206 st->data[0].d32 = cpu_to_be32(tmp);
0207
0208 return spi_write(st->spi, &st->data[0].d8[0], 4);
0209 }
0210
0211 static int ads8688_read(struct iio_dev *indio_dev, unsigned int chan)
0212 {
0213 struct ads8688_state *st = iio_priv(indio_dev);
0214 int ret;
0215 u32 tmp;
0216 struct spi_transfer t[] = {
0217 {
0218 .tx_buf = &st->data[0].d8[0],
0219 .len = 4,
0220 .cs_change = 1,
0221 }, {
0222 .tx_buf = &st->data[1].d8[0],
0223 .rx_buf = &st->data[1].d8[0],
0224 .len = 4,
0225 },
0226 };
0227
0228 tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_MAN_CH(chan));
0229 tmp <<= ADS8688_CMD_DONT_CARE_BITS;
0230 st->data[0].d32 = cpu_to_be32(tmp);
0231
0232 tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_NOOP);
0233 tmp <<= ADS8688_CMD_DONT_CARE_BITS;
0234 st->data[1].d32 = cpu_to_be32(tmp);
0235
0236 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
0237 if (ret < 0)
0238 return ret;
0239
0240 return be32_to_cpu(st->data[1].d32) & 0xffff;
0241 }
0242
0243 static int ads8688_read_raw(struct iio_dev *indio_dev,
0244 struct iio_chan_spec const *chan,
0245 int *val, int *val2, long m)
0246 {
0247 int ret, offset;
0248 unsigned long scale_mv;
0249
0250 struct ads8688_state *st = iio_priv(indio_dev);
0251
0252 mutex_lock(&st->lock);
0253 switch (m) {
0254 case IIO_CHAN_INFO_RAW:
0255 ret = ads8688_read(indio_dev, chan->channel);
0256 mutex_unlock(&st->lock);
0257 if (ret < 0)
0258 return ret;
0259 *val = ret;
0260 return IIO_VAL_INT;
0261 case IIO_CHAN_INFO_SCALE:
0262 scale_mv = st->vref_mv;
0263 scale_mv *= ads8688_range_def[st->range[chan->channel]].scale;
0264 *val = 0;
0265 *val2 = scale_mv;
0266 mutex_unlock(&st->lock);
0267 return IIO_VAL_INT_PLUS_NANO;
0268 case IIO_CHAN_INFO_OFFSET:
0269 offset = ads8688_range_def[st->range[chan->channel]].offset;
0270 *val = offset;
0271 mutex_unlock(&st->lock);
0272 return IIO_VAL_INT;
0273 }
0274 mutex_unlock(&st->lock);
0275
0276 return -EINVAL;
0277 }
0278
0279 static int ads8688_write_reg_range(struct iio_dev *indio_dev,
0280 struct iio_chan_spec const *chan,
0281 enum ads8688_range range)
0282 {
0283 unsigned int tmp;
0284
0285 tmp = ADS8688_PROG_REG_RANGE_CH(chan->channel);
0286
0287 return ads8688_prog_write(indio_dev, tmp, range);
0288 }
0289
0290 static int ads8688_write_raw(struct iio_dev *indio_dev,
0291 struct iio_chan_spec const *chan,
0292 int val, int val2, long mask)
0293 {
0294 struct ads8688_state *st = iio_priv(indio_dev);
0295 unsigned int scale = 0;
0296 int ret = -EINVAL, i, offset = 0;
0297
0298 mutex_lock(&st->lock);
0299 switch (mask) {
0300 case IIO_CHAN_INFO_SCALE:
0301
0302 offset = ads8688_range_def[st->range[chan->channel]].offset;
0303 if (offset == 0 && val2 == ads8688_range_def[0].scale * st->vref_mv) {
0304 mutex_unlock(&st->lock);
0305 return -EINVAL;
0306 }
0307
0308
0309 for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++)
0310 if (val2 == ads8688_range_def[i].scale * st->vref_mv &&
0311 offset == ads8688_range_def[i].offset) {
0312 ret = ads8688_write_reg_range(indio_dev, chan,
0313 ads8688_range_def[i].reg);
0314 break;
0315 }
0316 break;
0317 case IIO_CHAN_INFO_OFFSET:
0318
0319
0320
0321
0322 if (!(ads8688_range_def[0].offset == val ||
0323 ads8688_range_def[3].offset == val)) {
0324 mutex_unlock(&st->lock);
0325 return -EINVAL;
0326 }
0327
0328
0329
0330
0331
0332 if (val == 0 &&
0333 st->range[chan->channel] == ADS8688_PLUSMINUS25VREF) {
0334 mutex_unlock(&st->lock);
0335 return -EINVAL;
0336 }
0337
0338 scale = ads8688_range_def[st->range[chan->channel]].scale;
0339
0340
0341 for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++)
0342 if (val == ads8688_range_def[i].offset &&
0343 scale == ads8688_range_def[i].scale) {
0344 ret = ads8688_write_reg_range(indio_dev, chan,
0345 ads8688_range_def[i].reg);
0346 break;
0347 }
0348 break;
0349 }
0350
0351 if (!ret)
0352 st->range[chan->channel] = ads8688_range_def[i].range;
0353
0354 mutex_unlock(&st->lock);
0355
0356 return ret;
0357 }
0358
0359 static int ads8688_write_raw_get_fmt(struct iio_dev *indio_dev,
0360 struct iio_chan_spec const *chan,
0361 long mask)
0362 {
0363 switch (mask) {
0364 case IIO_CHAN_INFO_SCALE:
0365 return IIO_VAL_INT_PLUS_NANO;
0366 case IIO_CHAN_INFO_OFFSET:
0367 return IIO_VAL_INT;
0368 }
0369
0370 return -EINVAL;
0371 }
0372
0373 static const struct iio_info ads8688_info = {
0374 .read_raw = &ads8688_read_raw,
0375 .write_raw = &ads8688_write_raw,
0376 .write_raw_get_fmt = &ads8688_write_raw_get_fmt,
0377 .attrs = &ads8688_attribute_group,
0378 };
0379
0380 static irqreturn_t ads8688_trigger_handler(int irq, void *p)
0381 {
0382 struct iio_poll_func *pf = p;
0383 struct iio_dev *indio_dev = pf->indio_dev;
0384
0385 u16 buffer[ADS8688_MAX_CHANNELS + sizeof(s64)/sizeof(u16)] __aligned(8);
0386 int i, j = 0;
0387
0388 for (i = 0; i < indio_dev->masklength; i++) {
0389 if (!test_bit(i, indio_dev->active_scan_mask))
0390 continue;
0391 buffer[j] = ads8688_read(indio_dev, i);
0392 j++;
0393 }
0394
0395 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
0396 iio_get_time_ns(indio_dev));
0397
0398 iio_trigger_notify_done(indio_dev->trig);
0399
0400 return IRQ_HANDLED;
0401 }
0402
0403 static const struct ads8688_chip_info ads8688_chip_info_tbl[] = {
0404 [ID_ADS8684] = {
0405 .channels = ads8684_channels,
0406 .num_channels = ARRAY_SIZE(ads8684_channels),
0407 },
0408 [ID_ADS8688] = {
0409 .channels = ads8688_channels,
0410 .num_channels = ARRAY_SIZE(ads8688_channels),
0411 },
0412 };
0413
0414 static int ads8688_probe(struct spi_device *spi)
0415 {
0416 struct ads8688_state *st;
0417 struct iio_dev *indio_dev;
0418 int ret;
0419
0420 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
0421 if (indio_dev == NULL)
0422 return -ENOMEM;
0423
0424 st = iio_priv(indio_dev);
0425
0426 st->reg = devm_regulator_get_optional(&spi->dev, "vref");
0427 if (!IS_ERR(st->reg)) {
0428 ret = regulator_enable(st->reg);
0429 if (ret)
0430 return ret;
0431
0432 ret = regulator_get_voltage(st->reg);
0433 if (ret < 0)
0434 goto err_regulator_disable;
0435
0436 st->vref_mv = ret / 1000;
0437 } else {
0438
0439 st->vref_mv = ADS8688_VREF_MV;
0440 }
0441
0442 st->chip_info = &ads8688_chip_info_tbl[spi_get_device_id(spi)->driver_data];
0443
0444 spi->mode = SPI_MODE_1;
0445
0446 spi_set_drvdata(spi, indio_dev);
0447
0448 st->spi = spi;
0449
0450 indio_dev->name = spi_get_device_id(spi)->name;
0451 indio_dev->modes = INDIO_DIRECT_MODE;
0452 indio_dev->channels = st->chip_info->channels;
0453 indio_dev->num_channels = st->chip_info->num_channels;
0454 indio_dev->info = &ads8688_info;
0455
0456 ads8688_reset(indio_dev);
0457
0458 mutex_init(&st->lock);
0459
0460 ret = iio_triggered_buffer_setup(indio_dev, NULL, ads8688_trigger_handler, NULL);
0461 if (ret < 0) {
0462 dev_err(&spi->dev, "iio triggered buffer setup failed\n");
0463 goto err_regulator_disable;
0464 }
0465
0466 ret = iio_device_register(indio_dev);
0467 if (ret)
0468 goto err_buffer_cleanup;
0469
0470 return 0;
0471
0472 err_buffer_cleanup:
0473 iio_triggered_buffer_cleanup(indio_dev);
0474
0475 err_regulator_disable:
0476 if (!IS_ERR(st->reg))
0477 regulator_disable(st->reg);
0478
0479 return ret;
0480 }
0481
0482 static void ads8688_remove(struct spi_device *spi)
0483 {
0484 struct iio_dev *indio_dev = spi_get_drvdata(spi);
0485 struct ads8688_state *st = iio_priv(indio_dev);
0486
0487 iio_device_unregister(indio_dev);
0488 iio_triggered_buffer_cleanup(indio_dev);
0489
0490 if (!IS_ERR(st->reg))
0491 regulator_disable(st->reg);
0492 }
0493
0494 static const struct spi_device_id ads8688_id[] = {
0495 {"ads8684", ID_ADS8684},
0496 {"ads8688", ID_ADS8688},
0497 {}
0498 };
0499 MODULE_DEVICE_TABLE(spi, ads8688_id);
0500
0501 static const struct of_device_id ads8688_of_match[] = {
0502 { .compatible = "ti,ads8684" },
0503 { .compatible = "ti,ads8688" },
0504 { }
0505 };
0506 MODULE_DEVICE_TABLE(of, ads8688_of_match);
0507
0508 static struct spi_driver ads8688_driver = {
0509 .driver = {
0510 .name = "ads8688",
0511 .of_match_table = ads8688_of_match,
0512 },
0513 .probe = ads8688_probe,
0514 .remove = ads8688_remove,
0515 .id_table = ads8688_id,
0516 };
0517 module_spi_driver(ads8688_driver);
0518
0519 MODULE_AUTHOR("Sean Nyekjaer <sean@geanix.dk>");
0520 MODULE_DESCRIPTION("Texas Instruments ADS8688 driver");
0521 MODULE_LICENSE("GPL v2");