0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/dmaengine.h>
0010 #include <linux/dma-mapping.h>
0011 #include <linux/iio/adc/stm32-dfsdm-adc.h>
0012 #include <linux/iio/buffer.h>
0013 #include <linux/iio/hw-consumer.h>
0014 #include <linux/iio/sysfs.h>
0015 #include <linux/iio/timer/stm32-lptim-trigger.h>
0016 #include <linux/iio/timer/stm32-timer-trigger.h>
0017 #include <linux/iio/trigger.h>
0018 #include <linux/iio/trigger_consumer.h>
0019 #include <linux/iio/triggered_buffer.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/module.h>
0022 #include <linux/of_device.h>
0023 #include <linux/platform_device.h>
0024 #include <linux/regmap.h>
0025 #include <linux/slab.h>
0026
0027 #include "stm32-dfsdm.h"
0028
0029 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
0030
0031
0032 #define DFSDM_TIMEOUT_US 100000
0033 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
0034
0035
0036 #define DFSDM_DEFAULT_OVERSAMPLING 100
0037
0038
0039 #define DFSDM_MAX_INT_OVERSAMPLING 256
0040 #define DFSDM_MAX_FL_OVERSAMPLING 1024
0041
0042
0043 #define DFSDM_DATA_MAX BIT(30)
0044
0045
0046
0047
0048
0049
0050
0051 #define DFSDM_DATA_RES 24
0052
0053
0054 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
0055 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
0056 DFSDM_CR1_JSCAN_MASK)
0057
0058 enum sd_converter_type {
0059 DFSDM_AUDIO,
0060 DFSDM_IIO,
0061 };
0062
0063 struct stm32_dfsdm_dev_data {
0064 int type;
0065 int (*init)(struct device *dev, struct iio_dev *indio_dev);
0066 unsigned int num_channels;
0067 const struct regmap_config *regmap_cfg;
0068 };
0069
0070 struct stm32_dfsdm_adc {
0071 struct stm32_dfsdm *dfsdm;
0072 const struct stm32_dfsdm_dev_data *dev_data;
0073 unsigned int fl_id;
0074 unsigned int nconv;
0075 unsigned long smask;
0076
0077
0078 unsigned int oversamp;
0079 struct iio_hw_consumer *hwc;
0080 struct completion completion;
0081 u32 *buffer;
0082
0083
0084 unsigned int spi_freq;
0085 unsigned int sample_freq;
0086 int (*cb)(const void *data, size_t size, void *cb_priv);
0087 void *cb_priv;
0088
0089
0090 u8 *rx_buf;
0091 unsigned int bufi;
0092 unsigned int buf_sz;
0093 struct dma_chan *dma_chan;
0094 dma_addr_t dma_buf;
0095 };
0096
0097 struct stm32_dfsdm_str2field {
0098 const char *name;
0099 unsigned int val;
0100 };
0101
0102
0103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
0104 { "SPI_R", 0 },
0105 { "SPI_F", 1 },
0106 { "MANCH_R", 2 },
0107 { "MANCH_F", 3 },
0108 {},
0109 };
0110
0111
0112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
0113
0114 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
0115
0116 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
0117
0118 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
0119
0120 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
0121 {},
0122 };
0123
0124 static int stm32_dfsdm_str2val(const char *str,
0125 const struct stm32_dfsdm_str2field *list)
0126 {
0127 const struct stm32_dfsdm_str2field *p = list;
0128
0129 for (p = list; p && p->name; p++)
0130 if (!strcmp(p->name, str))
0131 return p->val;
0132
0133 return -EINVAL;
0134 }
0135
0136
0137
0138
0139
0140
0141 struct stm32_dfsdm_trig_info {
0142 const char *name;
0143 unsigned int jextsel;
0144 };
0145
0146
0147 enum stm32_dfsdm_jexten {
0148 STM32_DFSDM_JEXTEN_DISABLED,
0149 STM32_DFSDM_JEXTEN_RISING_EDGE,
0150 STM32_DFSDM_JEXTEN_FALLING_EDGE,
0151 STM32_DFSDM_EXTEN_BOTH_EDGES,
0152 };
0153
0154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
0155 { TIM1_TRGO, 0 },
0156 { TIM1_TRGO2, 1 },
0157 { TIM8_TRGO, 2 },
0158 { TIM8_TRGO2, 3 },
0159 { TIM3_TRGO, 4 },
0160 { TIM4_TRGO, 5 },
0161 { TIM16_OC1, 6 },
0162 { TIM6_TRGO, 7 },
0163 { TIM7_TRGO, 8 },
0164 { LPTIM1_OUT, 26 },
0165 { LPTIM2_OUT, 27 },
0166 { LPTIM3_OUT, 28 },
0167 {},
0168 };
0169
0170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
0171 struct iio_trigger *trig)
0172 {
0173 int i;
0174
0175
0176 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
0177
0178
0179
0180
0181 if ((is_stm32_timer_trigger(trig) ||
0182 is_stm32_lptim_trigger(trig)) &&
0183 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
0184 return stm32_dfsdm_trigs[i].jextsel;
0185 }
0186 }
0187
0188 return -EINVAL;
0189 }
0190
0191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
0192 unsigned int fast, unsigned int oversamp)
0193 {
0194 unsigned int i, d, fosr, iosr;
0195 u64 res, max;
0196 int bits, shift;
0197 unsigned int m = 1;
0198 unsigned int p = fl->ford;
0199 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
0200
0201 pr_debug("Requested oversampling: %d\n", oversamp);
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211 if (fl->ford == DFSDM_FASTSINC_ORDER) {
0212 m = 2;
0213 p = 2;
0214 }
0215
0216
0217
0218
0219
0220 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
0221 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
0222 if (fast)
0223 d = fosr * iosr;
0224 else if (fl->ford == DFSDM_FASTSINC_ORDER)
0225 d = fosr * (iosr + 3) + 2;
0226 else
0227 d = fosr * (iosr - 1 + p) + p;
0228
0229 if (d > oversamp)
0230 break;
0231 else if (d != oversamp)
0232 continue;
0233
0234
0235
0236
0237
0238
0239
0240
0241 res = fosr;
0242 for (i = p - 1; i > 0; i--) {
0243 res = res * (u64)fosr;
0244 if (res > DFSDM_DATA_MAX)
0245 break;
0246 }
0247 if (res > DFSDM_DATA_MAX)
0248 continue;
0249
0250 res = res * (u64)m * (u64)iosr;
0251 if (res > DFSDM_DATA_MAX)
0252 continue;
0253
0254 if (res >= flo->res) {
0255 flo->res = res;
0256 flo->fosr = fosr;
0257 flo->iosr = iosr;
0258
0259 bits = fls(flo->res);
0260
0261 max = flo->res << 8;
0262
0263
0264 if (flo->res > BIT(bits - 1))
0265 bits++;
0266 else
0267 max--;
0268
0269 shift = DFSDM_DATA_RES - bits;
0270
0271
0272
0273
0274
0275
0276 if (shift > 0) {
0277
0278 flo->rshift = 0;
0279 flo->lshift = shift;
0280 } else {
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291 flo->rshift = 1 - shift;
0292 flo->lshift = 1;
0293 max >>= flo->rshift;
0294 }
0295 flo->max = (s32)max;
0296 flo->bits = bits;
0297
0298 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
0299 fast, flo->fosr, flo->iosr,
0300 flo->res, bits, flo->rshift,
0301 flo->lshift);
0302 }
0303 }
0304 }
0305
0306 if (!flo->res)
0307 return -EINVAL;
0308
0309 return 0;
0310 }
0311
0312 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
0313 unsigned int oversamp)
0314 {
0315 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0316 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
0317 int ret0, ret1;
0318
0319 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
0320 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
0321
0322 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
0323 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
0324 if (ret0 < 0 && ret1 < 0) {
0325 dev_err(&indio_dev->dev,
0326 "Filter parameters not found: errors %d/%d\n",
0327 ret0, ret1);
0328 return -EINVAL;
0329 }
0330
0331 return 0;
0332 }
0333
0334 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
0335 {
0336 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0337 struct regmap *regmap = adc->dfsdm->regmap;
0338 const struct iio_chan_spec *chan;
0339 unsigned int bit;
0340 int ret;
0341
0342 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
0343 chan = indio_dev->channels + bit;
0344 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
0345 DFSDM_CHCFGR1_CHEN_MASK,
0346 DFSDM_CHCFGR1_CHEN(1));
0347 if (ret < 0)
0348 return ret;
0349 }
0350
0351 return 0;
0352 }
0353
0354 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
0355 {
0356 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0357 struct regmap *regmap = adc->dfsdm->regmap;
0358 const struct iio_chan_spec *chan;
0359 unsigned int bit;
0360
0361 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
0362 chan = indio_dev->channels + bit;
0363 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
0364 DFSDM_CHCFGR1_CHEN_MASK,
0365 DFSDM_CHCFGR1_CHEN(0));
0366 }
0367 }
0368
0369 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
0370 struct stm32_dfsdm_channel *ch)
0371 {
0372 unsigned int id = ch->id;
0373 struct regmap *regmap = dfsdm->regmap;
0374 int ret;
0375
0376 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
0377 DFSDM_CHCFGR1_SITP_MASK,
0378 DFSDM_CHCFGR1_SITP(ch->type));
0379 if (ret < 0)
0380 return ret;
0381 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
0382 DFSDM_CHCFGR1_SPICKSEL_MASK,
0383 DFSDM_CHCFGR1_SPICKSEL(ch->src));
0384 if (ret < 0)
0385 return ret;
0386 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
0387 DFSDM_CHCFGR1_CHINSEL_MASK,
0388 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
0389 }
0390
0391 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
0392 unsigned int fl_id,
0393 struct iio_trigger *trig)
0394 {
0395 struct stm32_dfsdm *dfsdm = adc->dfsdm;
0396 int ret;
0397
0398
0399 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
0400 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
0401 if (ret < 0)
0402 return ret;
0403
0404
0405 if (adc->nconv > 1 || trig)
0406 return 0;
0407
0408
0409 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
0410 DFSDM_CR1_RSWSTART_MASK,
0411 DFSDM_CR1_RSWSTART(1));
0412 }
0413
0414 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
0415 unsigned int fl_id)
0416 {
0417
0418 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
0419 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
0420 }
0421
0422 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
0423 unsigned int fl_id,
0424 struct iio_trigger *trig)
0425 {
0426 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0427 struct regmap *regmap = adc->dfsdm->regmap;
0428 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
0429 int ret;
0430
0431 if (trig) {
0432 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
0433 if (ret < 0)
0434 return ret;
0435
0436
0437 jextsel = ret;
0438 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
0439 }
0440
0441 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
0442 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
0443 DFSDM_CR1_JEXTSEL(jextsel) |
0444 DFSDM_CR1_JEXTEN(jexten));
0445 if (ret < 0)
0446 return ret;
0447
0448 return 0;
0449 }
0450
0451 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
0452 unsigned int fl_id,
0453 struct iio_trigger *trig)
0454 {
0455 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0456 struct regmap *regmap = adc->dfsdm->regmap;
0457 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
0458 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
0459 const struct iio_chan_spec *chan;
0460 unsigned int bit;
0461 int ret;
0462
0463 fl->fast = 0;
0464
0465
0466
0467
0468
0469 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
0470 if (fl->flo[1].res >= fl->flo[0].res) {
0471 fl->fast = 1;
0472 flo = &fl->flo[1];
0473 }
0474 }
0475
0476 if (!flo->res)
0477 return -EINVAL;
0478
0479 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
0480 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
0481
0482 for_each_set_bit(bit, &adc->smask,
0483 sizeof(adc->smask) * BITS_PER_BYTE) {
0484 chan = indio_dev->channels + bit;
0485
0486 ret = regmap_update_bits(regmap,
0487 DFSDM_CHCFGR2(chan->channel),
0488 DFSDM_CHCFGR2_DTRBS_MASK,
0489 DFSDM_CHCFGR2_DTRBS(flo->rshift));
0490 if (ret)
0491 return ret;
0492 }
0493
0494 return 0;
0495 }
0496
0497 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
0498 unsigned int fl_id,
0499 struct iio_trigger *trig)
0500 {
0501 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0502 struct regmap *regmap = adc->dfsdm->regmap;
0503 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
0504 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
0505 u32 cr1;
0506 const struct iio_chan_spec *chan;
0507 unsigned int bit, jchg = 0;
0508 int ret;
0509
0510
0511 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
0512 DFSDM_FCR_IOSR(flo->iosr - 1));
0513 if (ret)
0514 return ret;
0515
0516
0517 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
0518 DFSDM_FCR_FOSR(flo->fosr - 1));
0519 if (ret)
0520 return ret;
0521
0522 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
0523 DFSDM_FCR_FORD(fl->ford));
0524 if (ret)
0525 return ret;
0526
0527 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
0528 if (ret)
0529 return ret;
0530
0531 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
0532 DFSDM_CR1_FAST_MASK,
0533 DFSDM_CR1_FAST(fl->fast));
0534 if (ret)
0535 return ret;
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556 if (adc->nconv == 1 && !trig) {
0557 bit = __ffs(adc->smask);
0558 chan = indio_dev->channels + bit;
0559
0560
0561 cr1 = DFSDM_CR1_RCH(chan->channel);
0562
0563
0564 if (iio_buffer_enabled(indio_dev))
0565 cr1 |= DFSDM_CR1_RCONT(1);
0566
0567 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
0568 } else {
0569
0570 for_each_set_bit(bit, &adc->smask,
0571 sizeof(adc->smask) * BITS_PER_BYTE) {
0572 chan = indio_dev->channels + bit;
0573 jchg |= BIT(chan->channel);
0574 }
0575 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
0576 if (ret < 0)
0577 return ret;
0578
0579
0580 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
0581
0582
0583
0584
0585
0586
0587
0588 if (!fl->sync_mode && !trig)
0589 return -EINVAL;
0590 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
0591 }
0592
0593 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
0594 cr1);
0595 }
0596
0597 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
0598 struct iio_dev *indio_dev,
0599 struct iio_chan_spec *ch)
0600 {
0601 struct stm32_dfsdm_channel *df_ch;
0602 const char *of_str;
0603 int chan_idx = ch->scan_index;
0604 int ret, val;
0605
0606 ret = of_property_read_u32_index(indio_dev->dev.of_node,
0607 "st,adc-channels", chan_idx,
0608 &ch->channel);
0609 if (ret < 0) {
0610 dev_err(&indio_dev->dev,
0611 " Error parsing 'st,adc-channels' for idx %d\n",
0612 chan_idx);
0613 return ret;
0614 }
0615 if (ch->channel >= dfsdm->num_chs) {
0616 dev_err(&indio_dev->dev,
0617 " Error bad channel number %d (max = %d)\n",
0618 ch->channel, dfsdm->num_chs);
0619 return -EINVAL;
0620 }
0621
0622 ret = of_property_read_string_index(indio_dev->dev.of_node,
0623 "st,adc-channel-names", chan_idx,
0624 &ch->datasheet_name);
0625 if (ret < 0) {
0626 dev_err(&indio_dev->dev,
0627 " Error parsing 'st,adc-channel-names' for idx %d\n",
0628 chan_idx);
0629 return ret;
0630 }
0631
0632 df_ch = &dfsdm->ch_list[ch->channel];
0633 df_ch->id = ch->channel;
0634
0635 ret = of_property_read_string_index(indio_dev->dev.of_node,
0636 "st,adc-channel-types", chan_idx,
0637 &of_str);
0638 if (!ret) {
0639 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
0640 if (val < 0)
0641 return val;
0642 } else {
0643 val = 0;
0644 }
0645 df_ch->type = val;
0646
0647 ret = of_property_read_string_index(indio_dev->dev.of_node,
0648 "st,adc-channel-clk-src", chan_idx,
0649 &of_str);
0650 if (!ret) {
0651 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
0652 if (val < 0)
0653 return val;
0654 } else {
0655 val = 0;
0656 }
0657 df_ch->src = val;
0658
0659 ret = of_property_read_u32_index(indio_dev->dev.of_node,
0660 "st,adc-alt-channel", chan_idx,
0661 &df_ch->alt_si);
0662 if (ret < 0)
0663 df_ch->alt_si = 0;
0664
0665 return 0;
0666 }
0667
0668 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
0669 uintptr_t priv,
0670 const struct iio_chan_spec *chan,
0671 char *buf)
0672 {
0673 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0674
0675 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
0676 }
0677
0678 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
0679 unsigned int sample_freq,
0680 unsigned int spi_freq)
0681 {
0682 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0683 unsigned int oversamp;
0684 int ret;
0685
0686 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
0687 if (spi_freq % sample_freq)
0688 dev_dbg(&indio_dev->dev,
0689 "Rate not accurate. requested (%u), actual (%u)\n",
0690 sample_freq, spi_freq / oversamp);
0691
0692 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
0693 if (ret < 0)
0694 return ret;
0695
0696 adc->sample_freq = spi_freq / oversamp;
0697 adc->oversamp = oversamp;
0698
0699 return 0;
0700 }
0701
0702 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
0703 uintptr_t priv,
0704 const struct iio_chan_spec *chan,
0705 const char *buf, size_t len)
0706 {
0707 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0708 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
0709 unsigned int sample_freq = adc->sample_freq;
0710 unsigned int spi_freq;
0711 int ret;
0712
0713 dev_err(&indio_dev->dev, "enter %s\n", __func__);
0714
0715 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
0716 return -EPERM;
0717
0718 ret = kstrtoint(buf, 0, &spi_freq);
0719 if (ret)
0720 return ret;
0721
0722 if (!spi_freq)
0723 return -EINVAL;
0724
0725 if (sample_freq) {
0726 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
0727 if (ret < 0)
0728 return ret;
0729 }
0730 adc->spi_freq = spi_freq;
0731
0732 return len;
0733 }
0734
0735 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
0736 struct iio_trigger *trig)
0737 {
0738 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0739 struct regmap *regmap = adc->dfsdm->regmap;
0740 int ret;
0741
0742 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
0743 if (ret < 0)
0744 return ret;
0745
0746 ret = stm32_dfsdm_start_channel(indio_dev);
0747 if (ret < 0)
0748 return ret;
0749
0750 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
0751 if (ret < 0)
0752 goto stop_channels;
0753
0754 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
0755 if (ret < 0)
0756 goto filter_unconfigure;
0757
0758 return 0;
0759
0760 filter_unconfigure:
0761 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
0762 DFSDM_CR1_CFG_MASK, 0);
0763 stop_channels:
0764 stm32_dfsdm_stop_channel(indio_dev);
0765
0766 return ret;
0767 }
0768
0769 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
0770 {
0771 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0772 struct regmap *regmap = adc->dfsdm->regmap;
0773
0774 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
0775
0776 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
0777 DFSDM_CR1_CFG_MASK, 0);
0778
0779 stm32_dfsdm_stop_channel(indio_dev);
0780 }
0781
0782 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
0783 unsigned int val)
0784 {
0785 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0786 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
0787 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
0788
0789
0790
0791
0792
0793
0794
0795 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
0796 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
0797
0798 return 0;
0799 }
0800
0801 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
0802 {
0803 struct dma_tx_state state;
0804 enum dma_status status;
0805
0806 status = dmaengine_tx_status(adc->dma_chan,
0807 adc->dma_chan->cookie,
0808 &state);
0809 if (status == DMA_IN_PROGRESS) {
0810
0811 unsigned int i = adc->buf_sz - state.residue;
0812 unsigned int size;
0813
0814
0815 if (i >= adc->bufi)
0816 size = i - adc->bufi;
0817 else
0818 size = adc->buf_sz + i - adc->bufi;
0819
0820 return size;
0821 }
0822
0823 return 0;
0824 }
0825
0826 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
0827 s32 *buffer)
0828 {
0829 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
0830 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
0831 unsigned int i = adc->nconv;
0832 s32 *ptr = buffer;
0833
0834 while (i--) {
0835
0836 *ptr &= 0xFFFFFF00;
0837
0838 if (*ptr > flo->max)
0839 *ptr -= 1;
0840
0841
0842
0843
0844 *ptr <<= flo->lshift;
0845
0846 ptr++;
0847 }
0848 }
0849
0850 static void stm32_dfsdm_dma_buffer_done(void *data)
0851 {
0852 struct iio_dev *indio_dev = data;
0853 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0854 int available = stm32_dfsdm_adc_dma_residue(adc);
0855 size_t old_pos;
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
0867 adc->bufi, available);
0868 old_pos = adc->bufi;
0869
0870 while (available >= indio_dev->scan_bytes) {
0871 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
0872
0873 stm32_dfsdm_process_data(adc, buffer);
0874
0875 available -= indio_dev->scan_bytes;
0876 adc->bufi += indio_dev->scan_bytes;
0877 if (adc->bufi >= adc->buf_sz) {
0878 if (adc->cb)
0879 adc->cb(&adc->rx_buf[old_pos],
0880 adc->buf_sz - old_pos, adc->cb_priv);
0881 adc->bufi = 0;
0882 old_pos = 0;
0883 }
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893 if (adc->dev_data->type == DFSDM_IIO)
0894 iio_push_to_buffers(indio_dev, buffer);
0895 }
0896 if (adc->cb)
0897 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
0898 adc->cb_priv);
0899 }
0900
0901 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
0902 {
0903 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0904
0905
0906
0907
0908
0909 struct dma_slave_config config = {
0910 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
0911 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
0912 };
0913 struct dma_async_tx_descriptor *desc;
0914 dma_cookie_t cookie;
0915 int ret;
0916
0917 if (!adc->dma_chan)
0918 return -EINVAL;
0919
0920 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
0921 adc->buf_sz, adc->buf_sz / 2);
0922
0923 if (adc->nconv == 1 && !indio_dev->trig)
0924 config.src_addr += DFSDM_RDATAR(adc->fl_id);
0925 else
0926 config.src_addr += DFSDM_JDATAR(adc->fl_id);
0927 ret = dmaengine_slave_config(adc->dma_chan, &config);
0928 if (ret)
0929 return ret;
0930
0931
0932 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
0933 adc->dma_buf,
0934 adc->buf_sz, adc->buf_sz / 2,
0935 DMA_DEV_TO_MEM,
0936 DMA_PREP_INTERRUPT);
0937 if (!desc)
0938 return -EBUSY;
0939
0940 desc->callback = stm32_dfsdm_dma_buffer_done;
0941 desc->callback_param = indio_dev;
0942
0943 cookie = dmaengine_submit(desc);
0944 ret = dma_submit_error(cookie);
0945 if (ret)
0946 goto err_stop_dma;
0947
0948
0949 dma_async_issue_pending(adc->dma_chan);
0950
0951 if (adc->nconv == 1 && !indio_dev->trig) {
0952
0953 ret = regmap_update_bits(adc->dfsdm->regmap,
0954 DFSDM_CR1(adc->fl_id),
0955 DFSDM_CR1_RDMAEN_MASK,
0956 DFSDM_CR1_RDMAEN_MASK);
0957 } else {
0958
0959 ret = regmap_update_bits(adc->dfsdm->regmap,
0960 DFSDM_CR1(adc->fl_id),
0961 DFSDM_CR1_JDMAEN_MASK,
0962 DFSDM_CR1_JDMAEN_MASK);
0963 }
0964
0965 if (ret < 0)
0966 goto err_stop_dma;
0967
0968 return 0;
0969
0970 err_stop_dma:
0971 dmaengine_terminate_all(adc->dma_chan);
0972
0973 return ret;
0974 }
0975
0976 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
0977 {
0978 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0979
0980 if (!adc->dma_chan)
0981 return;
0982
0983 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
0984 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
0985 dmaengine_terminate_all(adc->dma_chan);
0986 }
0987
0988 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
0989 const unsigned long *scan_mask)
0990 {
0991 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
0992
0993 adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
0994 adc->smask = *scan_mask;
0995
0996 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
0997
0998 return 0;
0999 }
1000
1001 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1002 {
1003 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1004 int ret;
1005
1006
1007 adc->bufi = 0;
1008
1009 if (adc->hwc) {
1010 ret = iio_hw_consumer_enable(adc->hwc);
1011 if (ret < 0)
1012 return ret;
1013 }
1014
1015 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1016 if (ret < 0)
1017 goto err_stop_hwc;
1018
1019 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1020 if (ret) {
1021 dev_err(&indio_dev->dev, "Can't start DMA\n");
1022 goto stop_dfsdm;
1023 }
1024
1025 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1026 if (ret) {
1027 dev_err(&indio_dev->dev, "Can't start conversion\n");
1028 goto err_stop_dma;
1029 }
1030
1031 return 0;
1032
1033 err_stop_dma:
1034 stm32_dfsdm_adc_dma_stop(indio_dev);
1035 stop_dfsdm:
1036 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1037 err_stop_hwc:
1038 if (adc->hwc)
1039 iio_hw_consumer_disable(adc->hwc);
1040
1041 return ret;
1042 }
1043
1044 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1045 {
1046 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1047
1048 stm32_dfsdm_stop_conv(indio_dev);
1049
1050 stm32_dfsdm_adc_dma_stop(indio_dev);
1051
1052 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1053
1054 if (adc->hwc)
1055 iio_hw_consumer_disable(adc->hwc);
1056
1057 return 0;
1058 }
1059
1060 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1061 .postenable = &stm32_dfsdm_postenable,
1062 .predisable = &stm32_dfsdm_predisable,
1063 };
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1077 int (*cb)(const void *data, size_t size,
1078 void *private),
1079 void *private)
1080 {
1081 struct stm32_dfsdm_adc *adc;
1082
1083 if (!iio_dev)
1084 return -EINVAL;
1085 adc = iio_priv(iio_dev);
1086
1087 adc->cb = cb;
1088 adc->cb_priv = private;
1089
1090 return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1093
1094
1095
1096
1097
1098
1099 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1100 {
1101 struct stm32_dfsdm_adc *adc;
1102
1103 if (!iio_dev)
1104 return -EINVAL;
1105 adc = iio_priv(iio_dev);
1106
1107 adc->cb = NULL;
1108 adc->cb_priv = NULL;
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1113
1114 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1115 const struct iio_chan_spec *chan, int *res)
1116 {
1117 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1118 long timeout;
1119 int ret;
1120
1121 reinit_completion(&adc->completion);
1122
1123 adc->buffer = res;
1124
1125 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1126 if (ret < 0)
1127 return ret;
1128
1129 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1130 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1131 if (ret < 0)
1132 goto stop_dfsdm;
1133
1134 adc->nconv = 1;
1135 adc->smask = BIT(chan->scan_index);
1136 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1137 if (ret < 0) {
1138 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1139 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1140 goto stop_dfsdm;
1141 }
1142
1143 timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1144 DFSDM_TIMEOUT);
1145
1146
1147 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1148 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1149
1150 if (timeout == 0)
1151 ret = -ETIMEDOUT;
1152 else if (timeout < 0)
1153 ret = timeout;
1154 else
1155 ret = IIO_VAL_INT;
1156
1157 stm32_dfsdm_stop_conv(indio_dev);
1158
1159 stm32_dfsdm_process_data(adc, res);
1160
1161 stop_dfsdm:
1162 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1163
1164 return ret;
1165 }
1166
1167 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1168 struct iio_chan_spec const *chan,
1169 int val, int val2, long mask)
1170 {
1171 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1172 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1173 unsigned int spi_freq;
1174 int ret = -EINVAL;
1175
1176 switch (ch->src) {
1177 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1178 spi_freq = adc->dfsdm->spi_master_freq;
1179 break;
1180 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1181 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1182 spi_freq = adc->dfsdm->spi_master_freq / 2;
1183 break;
1184 default:
1185 spi_freq = adc->spi_freq;
1186 }
1187
1188 switch (mask) {
1189 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1190 ret = iio_device_claim_direct_mode(indio_dev);
1191 if (ret)
1192 return ret;
1193
1194 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1195 if (!ret) {
1196 dev_dbg(&indio_dev->dev,
1197 "Sampling rate changed from (%u) to (%u)\n",
1198 adc->sample_freq, spi_freq / val);
1199 adc->oversamp = val;
1200 adc->sample_freq = spi_freq / val;
1201 }
1202 iio_device_release_direct_mode(indio_dev);
1203 return ret;
1204
1205 case IIO_CHAN_INFO_SAMP_FREQ:
1206 if (!val)
1207 return -EINVAL;
1208
1209 ret = iio_device_claim_direct_mode(indio_dev);
1210 if (ret)
1211 return ret;
1212
1213 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1214 iio_device_release_direct_mode(indio_dev);
1215 return ret;
1216 }
1217
1218 return -EINVAL;
1219 }
1220
1221 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1222 struct iio_chan_spec const *chan, int *val,
1223 int *val2, long mask)
1224 {
1225 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1226 int ret;
1227
1228 switch (mask) {
1229 case IIO_CHAN_INFO_RAW:
1230 ret = iio_device_claim_direct_mode(indio_dev);
1231 if (ret)
1232 return ret;
1233 ret = iio_hw_consumer_enable(adc->hwc);
1234 if (ret < 0) {
1235 dev_err(&indio_dev->dev,
1236 "%s: IIO enable failed (channel %d)\n",
1237 __func__, chan->channel);
1238 iio_device_release_direct_mode(indio_dev);
1239 return ret;
1240 }
1241 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1242 iio_hw_consumer_disable(adc->hwc);
1243 if (ret < 0) {
1244 dev_err(&indio_dev->dev,
1245 "%s: Conversion failed (channel %d)\n",
1246 __func__, chan->channel);
1247 iio_device_release_direct_mode(indio_dev);
1248 return ret;
1249 }
1250 iio_device_release_direct_mode(indio_dev);
1251 return IIO_VAL_INT;
1252
1253 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1254 *val = adc->oversamp;
1255
1256 return IIO_VAL_INT;
1257
1258 case IIO_CHAN_INFO_SAMP_FREQ:
1259 *val = adc->sample_freq;
1260
1261 return IIO_VAL_INT;
1262 }
1263
1264 return -EINVAL;
1265 }
1266
1267 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1268 struct iio_trigger *trig)
1269 {
1270 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1271 }
1272
1273 static const struct iio_info stm32_dfsdm_info_audio = {
1274 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1275 .read_raw = stm32_dfsdm_read_raw,
1276 .write_raw = stm32_dfsdm_write_raw,
1277 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1278 };
1279
1280 static const struct iio_info stm32_dfsdm_info_adc = {
1281 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1282 .read_raw = stm32_dfsdm_read_raw,
1283 .write_raw = stm32_dfsdm_write_raw,
1284 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1285 .validate_trigger = stm32_dfsdm_validate_trigger,
1286 };
1287
1288 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1289 {
1290 struct iio_dev *indio_dev = arg;
1291 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1292 struct regmap *regmap = adc->dfsdm->regmap;
1293 unsigned int status, int_en;
1294
1295 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1296 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1297
1298 if (status & DFSDM_ISR_REOCF_MASK) {
1299
1300 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1301 complete(&adc->completion);
1302 }
1303
1304 if (status & DFSDM_ISR_ROVRF_MASK) {
1305 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1306 dev_warn(&indio_dev->dev, "Overrun detected\n");
1307 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1308 DFSDM_ICR_CLRROVRF_MASK,
1309 DFSDM_ICR_CLRROVRF_MASK);
1310 }
1311
1312 return IRQ_HANDLED;
1313 }
1314
1315
1316
1317
1318
1319 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1320
1321 {
1322 .name = "spi_clk_freq",
1323 .shared = IIO_SHARED_BY_TYPE,
1324 .read = dfsdm_adc_audio_get_spiclk,
1325 .write = dfsdm_adc_audio_set_spiclk,
1326 },
1327 {},
1328 };
1329
1330 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1331 {
1332 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1333
1334 if (adc->dma_chan) {
1335 dma_free_coherent(adc->dma_chan->device->dev,
1336 DFSDM_DMA_BUFFER_SIZE,
1337 adc->rx_buf, adc->dma_buf);
1338 dma_release_channel(adc->dma_chan);
1339 }
1340 }
1341
1342 static int stm32_dfsdm_dma_request(struct device *dev,
1343 struct iio_dev *indio_dev)
1344 {
1345 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1346
1347 adc->dma_chan = dma_request_chan(dev, "rx");
1348 if (IS_ERR(adc->dma_chan)) {
1349 int ret = PTR_ERR(adc->dma_chan);
1350
1351 adc->dma_chan = NULL;
1352 return ret;
1353 }
1354
1355 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1356 DFSDM_DMA_BUFFER_SIZE,
1357 &adc->dma_buf, GFP_KERNEL);
1358 if (!adc->rx_buf) {
1359 dma_release_channel(adc->dma_chan);
1360 return -ENOMEM;
1361 }
1362
1363 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1364 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1365
1366 return 0;
1367 }
1368
1369 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1370 struct iio_chan_spec *ch)
1371 {
1372 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1373 int ret;
1374
1375 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1376 if (ret < 0)
1377 return ret;
1378
1379 ch->type = IIO_VOLTAGE;
1380 ch->indexed = 1;
1381
1382
1383
1384
1385
1386 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1387 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1388 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1389
1390 if (adc->dev_data->type == DFSDM_AUDIO) {
1391 ch->ext_info = dfsdm_adc_audio_ext_info;
1392 } else {
1393 ch->scan_type.shift = 8;
1394 }
1395 ch->scan_type.sign = 's';
1396 ch->scan_type.realbits = 24;
1397 ch->scan_type.storagebits = 32;
1398
1399 return stm32_dfsdm_chan_configure(adc->dfsdm,
1400 &adc->dfsdm->ch_list[ch->channel]);
1401 }
1402
1403 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1404 {
1405 struct iio_chan_spec *ch;
1406 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1407 struct stm32_dfsdm_channel *d_ch;
1408 int ret;
1409
1410 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1411 if (!ch)
1412 return -ENOMEM;
1413
1414 ch->scan_index = 0;
1415
1416 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1417 if (ret < 0) {
1418 dev_err(&indio_dev->dev, "Channels init failed\n");
1419 return ret;
1420 }
1421 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1422
1423 d_ch = &adc->dfsdm->ch_list[ch->channel];
1424 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1425 adc->spi_freq = adc->dfsdm->spi_master_freq;
1426
1427 indio_dev->num_channels = 1;
1428 indio_dev->channels = ch;
1429
1430 return stm32_dfsdm_dma_request(dev, indio_dev);
1431 }
1432
1433 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1434 {
1435 struct iio_chan_spec *ch;
1436 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1437 int num_ch;
1438 int ret, chan_idx;
1439
1440 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1441 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1442 if (ret < 0)
1443 return ret;
1444
1445 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1446 "st,adc-channels");
1447 if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1448 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1449 return num_ch < 0 ? num_ch : -EINVAL;
1450 }
1451
1452
1453 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1454 if (IS_ERR(adc->hwc))
1455 return -EPROBE_DEFER;
1456
1457 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1458 GFP_KERNEL);
1459 if (!ch)
1460 return -ENOMEM;
1461
1462 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1463 ch[chan_idx].scan_index = chan_idx;
1464 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1465 if (ret < 0) {
1466 dev_err(&indio_dev->dev, "Channels init failed\n");
1467 return ret;
1468 }
1469 }
1470
1471 indio_dev->num_channels = num_ch;
1472 indio_dev->channels = ch;
1473
1474 init_completion(&adc->completion);
1475
1476
1477 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1478 if (ret) {
1479 if (ret != -ENODEV)
1480 return dev_err_probe(dev, ret,
1481 "DMA channel request failed with\n");
1482
1483 dev_dbg(dev, "No DMA support\n");
1484 return 0;
1485 }
1486
1487 ret = iio_triggered_buffer_setup(indio_dev,
1488 &iio_pollfunc_store_time, NULL,
1489 &stm32_dfsdm_buffer_setup_ops);
1490 if (ret) {
1491 stm32_dfsdm_dma_release(indio_dev);
1492 dev_err(&indio_dev->dev, "buffer setup failed\n");
1493 return ret;
1494 }
1495
1496
1497 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1498
1499 return 0;
1500 }
1501
1502 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1503 .type = DFSDM_IIO,
1504 .init = stm32_dfsdm_adc_init,
1505 };
1506
1507 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1508 .type = DFSDM_AUDIO,
1509 .init = stm32_dfsdm_audio_init,
1510 };
1511
1512 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1513 {
1514 .compatible = "st,stm32-dfsdm-adc",
1515 .data = &stm32h7_dfsdm_adc_data,
1516 },
1517 {
1518 .compatible = "st,stm32-dfsdm-dmic",
1519 .data = &stm32h7_dfsdm_audio_data,
1520 },
1521 {}
1522 };
1523
1524 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1525 {
1526 struct device *dev = &pdev->dev;
1527 struct stm32_dfsdm_adc *adc;
1528 struct device_node *np = dev->of_node;
1529 const struct stm32_dfsdm_dev_data *dev_data;
1530 struct iio_dev *iio;
1531 char *name;
1532 int ret, irq, val;
1533
1534 dev_data = of_device_get_match_data(dev);
1535 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1536 if (!iio) {
1537 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1538 return -ENOMEM;
1539 }
1540
1541 adc = iio_priv(iio);
1542 adc->dfsdm = dev_get_drvdata(dev->parent);
1543
1544 iio->dev.of_node = np;
1545 iio->modes = INDIO_DIRECT_MODE;
1546
1547 platform_set_drvdata(pdev, iio);
1548
1549 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1550 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1551 dev_err(dev, "Missing or bad reg property\n");
1552 return -EINVAL;
1553 }
1554
1555 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1556 if (!name)
1557 return -ENOMEM;
1558 if (dev_data->type == DFSDM_AUDIO) {
1559 iio->info = &stm32_dfsdm_info_audio;
1560 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1561 } else {
1562 iio->info = &stm32_dfsdm_info_adc;
1563 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1564 }
1565 iio->name = name;
1566
1567
1568
1569
1570
1571 irq = platform_get_irq(pdev, 0);
1572 if (irq < 0)
1573 return irq;
1574
1575 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1576 0, pdev->name, iio);
1577 if (ret < 0) {
1578 dev_err(dev, "Failed to request IRQ\n");
1579 return ret;
1580 }
1581
1582 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1583 if (ret < 0) {
1584 dev_err(dev, "Failed to set filter order\n");
1585 return ret;
1586 }
1587
1588 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1589
1590 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1591 if (!ret)
1592 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1593
1594 adc->dev_data = dev_data;
1595 ret = dev_data->init(dev, iio);
1596 if (ret < 0)
1597 return ret;
1598
1599 ret = iio_device_register(iio);
1600 if (ret < 0)
1601 goto err_cleanup;
1602
1603 if (dev_data->type == DFSDM_AUDIO) {
1604 ret = of_platform_populate(np, NULL, NULL, dev);
1605 if (ret < 0) {
1606 dev_err(dev, "Failed to find an audio DAI\n");
1607 goto err_unregister;
1608 }
1609 }
1610
1611 return 0;
1612
1613 err_unregister:
1614 iio_device_unregister(iio);
1615 err_cleanup:
1616 stm32_dfsdm_dma_release(iio);
1617
1618 return ret;
1619 }
1620
1621 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1622 {
1623 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1624 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1625
1626 if (adc->dev_data->type == DFSDM_AUDIO)
1627 of_platform_depopulate(&pdev->dev);
1628 iio_device_unregister(indio_dev);
1629 stm32_dfsdm_dma_release(indio_dev);
1630
1631 return 0;
1632 }
1633
1634 static int stm32_dfsdm_adc_suspend(struct device *dev)
1635 {
1636 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1637
1638 if (iio_buffer_enabled(indio_dev))
1639 stm32_dfsdm_predisable(indio_dev);
1640
1641 return 0;
1642 }
1643
1644 static int stm32_dfsdm_adc_resume(struct device *dev)
1645 {
1646 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648 const struct iio_chan_spec *chan;
1649 struct stm32_dfsdm_channel *ch;
1650 int i, ret;
1651
1652
1653 for (i = 0; i < indio_dev->num_channels; i++) {
1654 chan = indio_dev->channels + i;
1655 ch = &adc->dfsdm->ch_list[chan->channel];
1656 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1657 if (ret)
1658 return ret;
1659 }
1660
1661 if (iio_buffer_enabled(indio_dev))
1662 stm32_dfsdm_postenable(indio_dev);
1663
1664 return 0;
1665 }
1666
1667 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1668 stm32_dfsdm_adc_suspend,
1669 stm32_dfsdm_adc_resume);
1670
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672 .driver = {
1673 .name = "stm32-dfsdm-adc",
1674 .of_match_table = stm32_dfsdm_adc_match,
1675 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1676 },
1677 .probe = stm32_dfsdm_adc_probe,
1678 .remove = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");