0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/delay.h>
0012 #include <linux/device.h>
0013 #include <linux/err.h>
0014 #include <linux/init.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/kernel.h>
0017 #include <linux/module.h>
0018 #include <linux/mod_devicetable.h>
0019 #include <linux/platform_device.h>
0020 #include <linux/property.h>
0021 #include <linux/regmap.h>
0022
0023 #include <linux/iio/buffer.h>
0024 #include <linux/iio/driver.h>
0025 #include <linux/iio/iio.h>
0026 #include <linux/iio/kfifo_buf.h>
0027 #include <linux/mfd/motorola-cpcap.h>
0028
0029
0030 #define CPCAP_BIT_ADEN_AUTO_CLR BIT(15)
0031 #define CPCAP_BIT_CAL_MODE BIT(14)
0032 #define CPCAP_BIT_ADC_CLK_SEL1 BIT(13)
0033 #define CPCAP_BIT_ADC_CLK_SEL0 BIT(12)
0034 #define CPCAP_BIT_ATOX BIT(11)
0035 #define CPCAP_BIT_ATO3 BIT(10)
0036 #define CPCAP_BIT_ATO2 BIT(9)
0037 #define CPCAP_BIT_ATO1 BIT(8)
0038 #define CPCAP_BIT_ATO0 BIT(7)
0039 #define CPCAP_BIT_ADA2 BIT(6)
0040 #define CPCAP_BIT_ADA1 BIT(5)
0041 #define CPCAP_BIT_ADA0 BIT(4)
0042 #define CPCAP_BIT_AD_SEL1 BIT(3)
0043 #define CPCAP_BIT_RAND1 BIT(2)
0044 #define CPCAP_BIT_RAND0 BIT(1)
0045 #define CPCAP_BIT_ADEN BIT(0)
0046
0047 #define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \
0048 CPCAP_BIT_ADC_CLK_SEL0 | \
0049 CPCAP_BIT_RAND1)
0050
0051
0052 #define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15)
0053 #define CPCAP_BIT_BATDETB_EN BIT(14)
0054 #define CPCAP_BIT_ADTRIG_ONESHOT BIT(13)
0055 #define CPCAP_BIT_ASC BIT(12)
0056 #define CPCAP_BIT_ATOX_PS_FACTOR BIT(11)
0057 #define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10)
0058 #define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9)
0059 #define CPCAP_BIT_AD4_SELECT BIT(8)
0060 #define CPCAP_BIT_ADC_BUSY BIT(7)
0061 #define CPCAP_BIT_THERMBIAS_EN BIT(6)
0062 #define CPCAP_BIT_ADTRIG_DIS BIT(5)
0063 #define CPCAP_BIT_LIADC BIT(4)
0064 #define CPCAP_BIT_TS_REFEN BIT(3)
0065 #define CPCAP_BIT_TS_M2 BIT(2)
0066 #define CPCAP_BIT_TS_M1 BIT(1)
0067 #define CPCAP_BIT_TS_M0 BIT(0)
0068
0069 #define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \
0070 CPCAP_BIT_ADTRIG_DIS | \
0071 CPCAP_BIT_LIADC | \
0072 CPCAP_BIT_TS_M2 | \
0073 CPCAP_BIT_TS_M1)
0074
0075 #define CPCAP_MAX_TEMP_LVL 27
0076 #define CPCAP_FOUR_POINT_TWO_ADC 801
0077 #define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530
0078 #define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494
0079 #define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530
0080 #define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494
0081 #define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3
0082
0083 #define CPCAP_ADC_MAX_RETRIES 5
0084
0085
0086
0087
0088
0089
0090
0091 struct cpcap_adc_ato {
0092 unsigned short ato_in;
0093 unsigned short atox_in;
0094 unsigned short adc_ps_factor_in;
0095 unsigned short atox_ps_factor_in;
0096 unsigned short ato_out;
0097 unsigned short atox_out;
0098 unsigned short adc_ps_factor_out;
0099 unsigned short atox_ps_factor_out;
0100 };
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113 struct cpcap_adc {
0114 struct regmap *reg;
0115 struct device *dev;
0116 u16 vendor;
0117 int irq;
0118 struct mutex lock;
0119 const struct cpcap_adc_ato *ato;
0120 wait_queue_head_t wq_data_avail;
0121 bool done;
0122 };
0123
0124
0125
0126
0127 enum cpcap_adc_channel {
0128
0129 CPCAP_ADC_AD0,
0130 CPCAP_ADC_BATTP,
0131 CPCAP_ADC_VBUS,
0132 CPCAP_ADC_AD3,
0133 CPCAP_ADC_BPLUS_AD4,
0134 CPCAP_ADC_CHG_ISENSE,
0135 CPCAP_ADC_BATTI,
0136 CPCAP_ADC_USB_ID,
0137
0138
0139 CPCAP_ADC_AD8,
0140 CPCAP_ADC_AD9,
0141 CPCAP_ADC_LICELL,
0142 CPCAP_ADC_HV_BATTP,
0143 CPCAP_ADC_TSX1_AD12,
0144 CPCAP_ADC_TSX2_AD13,
0145 CPCAP_ADC_TSY1_AD14,
0146 CPCAP_ADC_TSY2_AD15,
0147
0148
0149 CPCAP_ADC_BATTP_PI16,
0150 CPCAP_ADC_BATTI_PI17,
0151
0152 CPCAP_ADC_CHANNEL_NUM,
0153 };
0154
0155
0156
0157
0158
0159
0160
0161 enum cpcap_adc_timing {
0162 CPCAP_ADC_TIMING_IMM,
0163 CPCAP_ADC_TIMING_IN,
0164 CPCAP_ADC_TIMING_OUT,
0165 };
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175 struct cpcap_adc_phasing_tbl {
0176 short offset;
0177 unsigned short multiplier;
0178 unsigned short divider;
0179 short min;
0180 short max;
0181 };
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192 struct cpcap_adc_conversion_tbl {
0193 enum iio_chan_info_enum conv_type;
0194 int align_offset;
0195 int conv_offset;
0196 int cal_offset;
0197 int multiplier;
0198 int divider;
0199 };
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210 struct cpcap_adc_request {
0211 int channel;
0212 const struct cpcap_adc_phasing_tbl *phase_tbl;
0213 const struct cpcap_adc_conversion_tbl *conv_tbl;
0214 int bank_index;
0215 enum cpcap_adc_timing timing;
0216 int result;
0217 };
0218
0219
0220 static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
0221
0222 [CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023},
0223 [CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023},
0224 [CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023},
0225 [CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023},
0226 [CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023},
0227 [CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511},
0228 [CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511},
0229 [CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023},
0230
0231
0232 [CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023},
0233 [CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023},
0234 [CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023},
0235 [CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023},
0236 [CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023},
0237 [CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023},
0238 [CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023},
0239 [CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023},
0240 };
0241
0242
0243
0244
0245
0246 static struct cpcap_adc_conversion_tbl bank_conversion[] = {
0247
0248 [CPCAP_ADC_AD0] = {
0249 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
0250 },
0251 [CPCAP_ADC_BATTP] = {
0252 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
0253 },
0254 [CPCAP_ADC_VBUS] = {
0255 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023,
0256 },
0257 [CPCAP_ADC_AD3] = {
0258 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
0259 },
0260 [CPCAP_ADC_BPLUS_AD4] = {
0261 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
0262 },
0263 [CPCAP_ADC_CHG_ISENSE] = {
0264 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
0265 },
0266 [CPCAP_ADC_BATTI] = {
0267 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
0268 },
0269 [CPCAP_ADC_USB_ID] = {
0270 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0271 },
0272
0273
0274 [CPCAP_ADC_AD8] = {
0275 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0276 },
0277 [CPCAP_ADC_AD9] = {
0278 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0279 },
0280 [CPCAP_ADC_LICELL] = {
0281 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023,
0282 },
0283 [CPCAP_ADC_HV_BATTP] = {
0284 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0285 },
0286 [CPCAP_ADC_TSX1_AD12] = {
0287 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0288 },
0289 [CPCAP_ADC_TSX2_AD13] = {
0290 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0291 },
0292 [CPCAP_ADC_TSY1_AD14] = {
0293 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0294 },
0295 [CPCAP_ADC_TSY2_AD15] = {
0296 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
0297 },
0298 };
0299
0300
0301
0302
0303
0304 static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
0305 { 0x03ff, -40000 },
0306 { 0x03ff, -35000 },
0307 { 0x03ef, -30000 },
0308 { 0x03b2, -25000 },
0309 { 0x036c, -20000 },
0310 { 0x0320, -15000 },
0311 { 0x02d0, -10000 },
0312 { 0x027f, -5000 },
0313 { 0x022f, 0 },
0314 { 0x01e4, 5000 },
0315 { 0x019f, 10000 },
0316 { 0x0161, 15000 },
0317 { 0x012b, 20000 },
0318 { 0x00fc, 25000 },
0319 { 0x00d4, 30000 },
0320 { 0x00b2, 35000 },
0321 { 0x0095, 40000 },
0322 { 0x007d, 45000 },
0323 { 0x0069, 50000 },
0324 { 0x0059, 55000 },
0325 { 0x004b, 60000 },
0326 { 0x003f, 65000 },
0327 { 0x0036, 70000 },
0328 { 0x002e, 75000 },
0329 { 0x0027, 80000 },
0330 { 0x0022, 85000 },
0331 { 0x001d, 90000 },
0332 };
0333
0334 #define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \
0335 .type = (_type), \
0336 .address = (_address), \
0337 .indexed = 1, \
0338 .channel = (_index), \
0339 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
0340 BIT(IIO_CHAN_INFO_PROCESSED), \
0341 .scan_index = (_index), \
0342 .scan_type = { \
0343 .sign = 'u', \
0344 .realbits = 10, \
0345 .storagebits = 16, \
0346 .endianness = IIO_CPU, \
0347 }, \
0348 .datasheet_name = (_datasheet_name), \
0349 }
0350
0351
0352
0353
0354
0355
0356 static const struct iio_chan_spec cpcap_adc_channels[] = {
0357
0358 CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"),
0359 CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"),
0360 CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"),
0361 CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"),
0362 CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"),
0363 CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"),
0364 CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"),
0365 CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"),
0366
0367
0368 CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"),
0369 CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"),
0370 CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
0371 CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
0372 CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
0373 CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
0374 CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
0375 CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
0376
0377
0378 CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
0379 CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
0380 };
0381
0382 static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
0383 {
0384 struct iio_dev *indio_dev = data;
0385 struct cpcap_adc *ddata = iio_priv(indio_dev);
0386 int error;
0387
0388 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0389 CPCAP_BIT_ADTRIG_DIS,
0390 CPCAP_BIT_ADTRIG_DIS);
0391 if (error)
0392 return IRQ_NONE;
0393
0394 ddata->done = true;
0395 wake_up_interruptible(&ddata->wq_data_avail);
0396
0397 return IRQ_HANDLED;
0398 }
0399
0400
0401 static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
0402 enum cpcap_adc_channel chan)
0403 {
0404 unsigned int value = 0;
0405 unsigned long timeout = jiffies + msecs_to_jiffies(3000);
0406 int error;
0407
0408 if ((chan != CPCAP_ADC_CHG_ISENSE) &&
0409 (chan != CPCAP_ADC_BATTI))
0410 return;
0411
0412 value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
0413 value |= ((chan << 4) &
0414 (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
0415
0416 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
0417 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
0418 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
0419 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
0420 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
0421 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
0422 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
0423 value);
0424 if (error)
0425 return;
0426
0427 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0428 CPCAP_BIT_ATOX_PS_FACTOR |
0429 CPCAP_BIT_ADC_PS_FACTOR1 |
0430 CPCAP_BIT_ADC_PS_FACTOR0,
0431 0);
0432 if (error)
0433 return;
0434
0435 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0436 CPCAP_BIT_ADTRIG_DIS,
0437 CPCAP_BIT_ADTRIG_DIS);
0438 if (error)
0439 return;
0440
0441 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0442 CPCAP_BIT_ASC,
0443 CPCAP_BIT_ASC);
0444 if (error)
0445 return;
0446
0447 do {
0448 schedule_timeout_uninterruptible(1);
0449 error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
0450 if (error)
0451 return;
0452 } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
0453
0454 if (value & CPCAP_BIT_ASC)
0455 dev_err(ddata->dev,
0456 "Timeout waiting for calibration to complete\n");
0457
0458 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
0459 CPCAP_BIT_CAL_MODE, 0);
0460 if (error)
0461 return;
0462 }
0463
0464 static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
0465 int channel,
0466 u16 calibration_register,
0467 int lower_threshold,
0468 int upper_threshold)
0469 {
0470 unsigned int calibration_data[2];
0471 unsigned short cal_data_diff;
0472 int i, error;
0473
0474 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
0475 calibration_data[0] = 0;
0476 calibration_data[1] = 0;
0477
0478 cpcap_adc_setup_calibrate(ddata, channel);
0479 error = regmap_read(ddata->reg, calibration_register,
0480 &calibration_data[0]);
0481 if (error)
0482 return error;
0483 cpcap_adc_setup_calibrate(ddata, channel);
0484 error = regmap_read(ddata->reg, calibration_register,
0485 &calibration_data[1]);
0486 if (error)
0487 return error;
0488
0489 if (calibration_data[0] > calibration_data[1])
0490 cal_data_diff =
0491 calibration_data[0] - calibration_data[1];
0492 else
0493 cal_data_diff =
0494 calibration_data[1] - calibration_data[0];
0495
0496 if (((calibration_data[1] >= lower_threshold) &&
0497 (calibration_data[1] <= upper_threshold) &&
0498 (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
0499 (ddata->vendor == CPCAP_VENDOR_TI)) {
0500 bank_conversion[channel].cal_offset =
0501 ((short)calibration_data[1] * -1) + 512;
0502 dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
0503 channel, bank_conversion[channel].cal_offset);
0504 break;
0505 }
0506 usleep_range(5000, 10000);
0507 }
0508
0509 return 0;
0510 }
0511
0512 static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
0513 {
0514 int error;
0515
0516 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
0517 CPCAP_REG_ADCAL1,
0518 ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
0519 ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
0520 if (error)
0521 return error;
0522
0523 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
0524 CPCAP_REG_ADCAL2,
0525 ST_ADC_CAL_BATTI_LOW_THRESHOLD,
0526 ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
0527 if (error)
0528 return error;
0529
0530 return 0;
0531 }
0532
0533
0534 static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
0535 struct cpcap_adc_request *req)
0536 {
0537 const struct cpcap_adc_ato *ato = ddata->ato;
0538 unsigned short value1 = 0;
0539 unsigned short value2 = 0;
0540 int error;
0541
0542 if (!ato)
0543 return;
0544
0545 switch (req->channel) {
0546 case CPCAP_ADC_AD0:
0547 value2 |= CPCAP_BIT_THERMBIAS_EN;
0548 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0549 CPCAP_BIT_THERMBIAS_EN,
0550 value2);
0551 if (error)
0552 return;
0553 usleep_range(800, 1000);
0554 break;
0555 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
0556 value1 |= CPCAP_BIT_AD_SEL1;
0557 break;
0558 case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
0559 value1 |= CPCAP_BIT_RAND1;
0560 break;
0561 default:
0562 break;
0563 }
0564
0565 switch (req->timing) {
0566 case CPCAP_ADC_TIMING_IN:
0567 value1 |= ato->ato_in;
0568 value1 |= ato->atox_in;
0569 value2 |= ato->adc_ps_factor_in;
0570 value2 |= ato->atox_ps_factor_in;
0571 break;
0572 case CPCAP_ADC_TIMING_OUT:
0573 value1 |= ato->ato_out;
0574 value1 |= ato->atox_out;
0575 value2 |= ato->adc_ps_factor_out;
0576 value2 |= ato->atox_ps_factor_out;
0577 break;
0578
0579 case CPCAP_ADC_TIMING_IMM:
0580 default:
0581 break;
0582 }
0583
0584 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
0585 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
0586 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
0587 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
0588 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
0589 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
0590 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
0591 value1);
0592 if (error)
0593 return;
0594
0595 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0596 CPCAP_BIT_ATOX_PS_FACTOR |
0597 CPCAP_BIT_ADC_PS_FACTOR1 |
0598 CPCAP_BIT_ADC_PS_FACTOR0 |
0599 CPCAP_BIT_THERMBIAS_EN,
0600 value2);
0601 if (error)
0602 return;
0603
0604 if (req->timing == CPCAP_ADC_TIMING_IMM) {
0605 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0606 CPCAP_BIT_ADTRIG_DIS,
0607 CPCAP_BIT_ADTRIG_DIS);
0608 if (error)
0609 return;
0610
0611 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0612 CPCAP_BIT_ASC,
0613 CPCAP_BIT_ASC);
0614 if (error)
0615 return;
0616 } else {
0617 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0618 CPCAP_BIT_ADTRIG_ONESHOT,
0619 CPCAP_BIT_ADTRIG_ONESHOT);
0620 if (error)
0621 return;
0622
0623 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0624 CPCAP_BIT_ADTRIG_DIS, 0);
0625 if (error)
0626 return;
0627 }
0628 }
0629
0630 static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
0631 struct cpcap_adc_request *req)
0632 {
0633 int i, error;
0634
0635 req->timing = CPCAP_ADC_TIMING_IMM;
0636 ddata->done = false;
0637
0638 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
0639 cpcap_adc_setup_bank(ddata, req);
0640 error = wait_event_interruptible_timeout(ddata->wq_data_avail,
0641 ddata->done,
0642 msecs_to_jiffies(50));
0643 if (error > 0)
0644 return 0;
0645
0646 if (error == 0) {
0647 error = -ETIMEDOUT;
0648 continue;
0649 }
0650
0651 if (error < 0)
0652 return error;
0653 }
0654
0655 return error;
0656 }
0657
0658 static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
0659 {
0660 int error;
0661
0662 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
0663 0xffff,
0664 CPCAP_REG_ADCC1_DEFAULTS);
0665 if (error)
0666 return error;
0667
0668 return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0669 0xffff,
0670 CPCAP_REG_ADCC2_DEFAULTS);
0671 }
0672
0673 static void cpcap_adc_phase(struct cpcap_adc_request *req)
0674 {
0675 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
0676 const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
0677 int index = req->channel;
0678
0679
0680 switch (req->channel) {
0681 case CPCAP_ADC_BATTP:
0682 case CPCAP_ADC_BATTP_PI16:
0683 index = req->bank_index;
0684 req->result -= phase_tbl[index].offset;
0685 req->result -= CPCAP_FOUR_POINT_TWO_ADC;
0686 req->result *= phase_tbl[index].multiplier;
0687 if (phase_tbl[index].divider == 0)
0688 return;
0689 req->result /= phase_tbl[index].divider;
0690 req->result += CPCAP_FOUR_POINT_TWO_ADC;
0691 break;
0692 case CPCAP_ADC_BATTI_PI17:
0693 index = req->bank_index;
0694 fallthrough;
0695 default:
0696 req->result += conv_tbl[index].cal_offset;
0697 req->result += conv_tbl[index].align_offset;
0698 req->result *= phase_tbl[index].multiplier;
0699 if (phase_tbl[index].divider == 0)
0700 return;
0701 req->result /= phase_tbl[index].divider;
0702 req->result += phase_tbl[index].offset;
0703 break;
0704 }
0705
0706 if (req->result < phase_tbl[index].min)
0707 req->result = phase_tbl[index].min;
0708 else if (req->result > phase_tbl[index].max)
0709 req->result = phase_tbl[index].max;
0710 }
0711
0712
0713 static int cpcap_adc_table_to_millicelcius(unsigned short value)
0714 {
0715 int i, result = 0, alpha;
0716
0717 if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
0718 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
0719
0720 if (value >= temp_map[0][0])
0721 return temp_map[0][1];
0722
0723 for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
0724 if ((value <= temp_map[i][0]) &&
0725 (value >= temp_map[i + 1][0])) {
0726 if (value == temp_map[i][0]) {
0727 result = temp_map[i][1];
0728 } else if (value == temp_map[i + 1][0]) {
0729 result = temp_map[i + 1][1];
0730 } else {
0731 alpha = ((value - temp_map[i][0]) * 1000) /
0732 (temp_map[i + 1][0] - temp_map[i][0]);
0733
0734 result = temp_map[i][1] +
0735 ((alpha * (temp_map[i + 1][1] -
0736 temp_map[i][1])) / 1000);
0737 }
0738 break;
0739 }
0740 }
0741
0742 return result;
0743 }
0744
0745 static void cpcap_adc_convert(struct cpcap_adc_request *req)
0746 {
0747 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
0748 int index = req->channel;
0749
0750
0751 switch (req->channel) {
0752 case CPCAP_ADC_BATTP_PI16:
0753 index = CPCAP_ADC_BATTP;
0754 break;
0755 case CPCAP_ADC_BATTI_PI17:
0756 index = CPCAP_ADC_BATTI;
0757 break;
0758 default:
0759 break;
0760 }
0761
0762
0763 if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
0764 return;
0765
0766
0767 if ((req->channel == CPCAP_ADC_AD0) ||
0768 (req->channel == CPCAP_ADC_AD3)) {
0769 req->result =
0770 cpcap_adc_table_to_millicelcius(req->result);
0771
0772 return;
0773 }
0774
0775
0776 req->result *= conv_tbl[index].multiplier;
0777 if (conv_tbl[index].divider == 0)
0778 return;
0779 req->result /= conv_tbl[index].divider;
0780 req->result += conv_tbl[index].conv_offset;
0781 }
0782
0783
0784
0785
0786
0787 static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
0788 struct cpcap_adc_request *req)
0789 {
0790 int calibration_data, error, addr;
0791
0792 if (ddata->vendor == CPCAP_VENDOR_TI) {
0793 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
0794 &calibration_data);
0795 if (error)
0796 return error;
0797 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
0798 ((short)calibration_data * -1) + 512;
0799
0800 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
0801 &calibration_data);
0802 if (error)
0803 return error;
0804 bank_conversion[CPCAP_ADC_BATTI].cal_offset =
0805 ((short)calibration_data * -1) + 512;
0806 }
0807
0808 addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
0809
0810 error = regmap_read(ddata->reg, addr, &req->result);
0811 if (error)
0812 return error;
0813
0814 req->result &= 0x3ff;
0815 cpcap_adc_phase(req);
0816 cpcap_adc_convert(req);
0817
0818 return 0;
0819 }
0820
0821 static int cpcap_adc_init_request(struct cpcap_adc_request *req,
0822 int channel)
0823 {
0824 req->channel = channel;
0825 req->phase_tbl = bank_phasing;
0826 req->conv_tbl = bank_conversion;
0827
0828 switch (channel) {
0829 case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
0830 req->bank_index = channel;
0831 break;
0832 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
0833 req->bank_index = channel - 8;
0834 break;
0835 case CPCAP_ADC_BATTP_PI16:
0836 req->bank_index = CPCAP_ADC_BATTP;
0837 break;
0838 case CPCAP_ADC_BATTI_PI17:
0839 req->bank_index = CPCAP_ADC_BATTI;
0840 break;
0841 default:
0842 return -EINVAL;
0843 }
0844
0845 return 0;
0846 }
0847
0848 static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
0849 int addr, int *val)
0850 {
0851 int error;
0852
0853 error = regmap_read(ddata->reg, addr, val);
0854 if (error)
0855 return error;
0856
0857 *val -= 282;
0858 *val *= 114;
0859 *val += 25000;
0860
0861 return 0;
0862 }
0863
0864 static int cpcap_adc_read(struct iio_dev *indio_dev,
0865 struct iio_chan_spec const *chan,
0866 int *val, int *val2, long mask)
0867 {
0868 struct cpcap_adc *ddata = iio_priv(indio_dev);
0869 struct cpcap_adc_request req;
0870 int error;
0871
0872 error = cpcap_adc_init_request(&req, chan->channel);
0873 if (error)
0874 return error;
0875
0876 switch (mask) {
0877 case IIO_CHAN_INFO_RAW:
0878 mutex_lock(&ddata->lock);
0879 error = cpcap_adc_start_bank(ddata, &req);
0880 if (error)
0881 goto err_unlock;
0882 error = regmap_read(ddata->reg, chan->address, val);
0883 if (error)
0884 goto err_unlock;
0885 error = cpcap_adc_stop_bank(ddata);
0886 if (error)
0887 goto err_unlock;
0888 mutex_unlock(&ddata->lock);
0889 break;
0890 case IIO_CHAN_INFO_PROCESSED:
0891 mutex_lock(&ddata->lock);
0892 error = cpcap_adc_start_bank(ddata, &req);
0893 if (error)
0894 goto err_unlock;
0895 if ((ddata->vendor == CPCAP_VENDOR_ST) &&
0896 (chan->channel == CPCAP_ADC_AD3)) {
0897 error = cpcap_adc_read_st_die_temp(ddata,
0898 chan->address,
0899 &req.result);
0900 if (error)
0901 goto err_unlock;
0902 } else {
0903 error = cpcap_adc_read_bank_scaled(ddata, &req);
0904 if (error)
0905 goto err_unlock;
0906 }
0907 error = cpcap_adc_stop_bank(ddata);
0908 if (error)
0909 goto err_unlock;
0910 mutex_unlock(&ddata->lock);
0911 *val = req.result;
0912 break;
0913 default:
0914 return -EINVAL;
0915 }
0916
0917 return IIO_VAL_INT;
0918
0919 err_unlock:
0920 mutex_unlock(&ddata->lock);
0921 dev_err(ddata->dev, "error reading ADC: %i\n", error);
0922
0923 return error;
0924 }
0925
0926 static const struct iio_info cpcap_adc_info = {
0927 .read_raw = &cpcap_adc_read,
0928 };
0929
0930
0931
0932
0933
0934 static const struct cpcap_adc_ato mapphone_adc = {
0935 .ato_in = 0x0480,
0936 .atox_in = 0,
0937 .adc_ps_factor_in = 0x0200,
0938 .atox_ps_factor_in = 0,
0939 .ato_out = 0,
0940 .atox_out = 0,
0941 .adc_ps_factor_out = 0,
0942 .atox_ps_factor_out = 0,
0943 };
0944
0945 static const struct of_device_id cpcap_adc_id_table[] = {
0946 {
0947 .compatible = "motorola,cpcap-adc",
0948 },
0949 {
0950 .compatible = "motorola,mapphone-cpcap-adc",
0951 .data = &mapphone_adc,
0952 },
0953 { },
0954 };
0955 MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
0956
0957 static int cpcap_adc_probe(struct platform_device *pdev)
0958 {
0959 struct cpcap_adc *ddata;
0960 struct iio_dev *indio_dev;
0961 int error;
0962
0963 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
0964 if (!indio_dev) {
0965 dev_err(&pdev->dev, "failed to allocate iio device\n");
0966
0967 return -ENOMEM;
0968 }
0969 ddata = iio_priv(indio_dev);
0970 ddata->ato = device_get_match_data(&pdev->dev);
0971 if (!ddata->ato)
0972 return -ENODEV;
0973 ddata->dev = &pdev->dev;
0974
0975 mutex_init(&ddata->lock);
0976 init_waitqueue_head(&ddata->wq_data_avail);
0977
0978 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
0979 indio_dev->channels = cpcap_adc_channels;
0980 indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
0981 indio_dev->name = dev_name(&pdev->dev);
0982 indio_dev->info = &cpcap_adc_info;
0983
0984 ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
0985 if (!ddata->reg)
0986 return -ENODEV;
0987
0988 error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
0989 if (error)
0990 return error;
0991
0992 platform_set_drvdata(pdev, indio_dev);
0993
0994 ddata->irq = platform_get_irq_byname(pdev, "adcdone");
0995 if (ddata->irq < 0)
0996 return -ENODEV;
0997
0998 error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
0999 cpcap_adc_irq_thread,
1000 IRQF_TRIGGER_NONE | IRQF_ONESHOT,
1001 "cpcap-adc", indio_dev);
1002 if (error) {
1003 dev_err(&pdev->dev, "could not get irq: %i\n",
1004 error);
1005
1006 return error;
1007 }
1008
1009 error = cpcap_adc_calibrate(ddata);
1010 if (error)
1011 return error;
1012
1013 dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1014
1015 return devm_iio_device_register(&pdev->dev, indio_dev);
1016 }
1017
1018 static struct platform_driver cpcap_adc_driver = {
1019 .driver = {
1020 .name = "cpcap_adc",
1021 .of_match_table = cpcap_adc_id_table,
1022 },
1023 .probe = cpcap_adc_probe,
1024 };
1025
1026 module_platform_driver(cpcap_adc_driver);
1027
1028 MODULE_ALIAS("platform:cpcap_adc");
1029 MODULE_DESCRIPTION("CPCAP ADC driver");
1030 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1031 MODULE_LICENSE("GPL v2");