0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #include <linux/clk.h>
0016 #include <linux/clk-provider.h>
0017 #include <linux/err.h>
0018 #include <linux/errno.h>
0019 #include <linux/io.h>
0020 #include <linux/module.h>
0021 #include <linux/of_platform.h>
0022 #include <linux/platform_device.h>
0023 #include <linux/regulator/consumer.h>
0024 #include <linux/reset.h>
0025 #include <linux/spinlock.h>
0026 #include <linux/types.h>
0027 #include <linux/bitfield.h>
0028 #include <linux/regmap.h>
0029 #include <linux/mfd/syscon.h>
0030
0031 #include <linux/iio/iio.h>
0032 #include <linux/iio/driver.h>
0033 #include <linux/iopoll.h>
0034
0035 #define ASPEED_RESOLUTION_BITS 10
0036 #define ASPEED_CLOCKS_PER_SAMPLE 12
0037
0038 #define ASPEED_REG_ENGINE_CONTROL 0x00
0039 #define ASPEED_REG_INTERRUPT_CONTROL 0x04
0040 #define ASPEED_REG_VGA_DETECT_CONTROL 0x08
0041 #define ASPEED_REG_CLOCK_CONTROL 0x0C
0042 #define ASPEED_REG_COMPENSATION_TRIM 0xC4
0043
0044
0045
0046
0047 #define ASPEED_REG_MAX 0xD0
0048
0049 #define ASPEED_ADC_ENGINE_ENABLE BIT(0)
0050 #define ASPEED_ADC_OP_MODE GENMASK(3, 1)
0051 #define ASPEED_ADC_OP_MODE_PWR_DOWN 0
0052 #define ASPEED_ADC_OP_MODE_STANDBY 1
0053 #define ASPEED_ADC_OP_MODE_NORMAL 7
0054 #define ASPEED_ADC_CTRL_COMPENSATION BIT(4)
0055 #define ASPEED_ADC_AUTO_COMPENSATION BIT(5)
0056
0057
0058
0059
0060 #define ASPEED_ADC_REF_VOLTAGE GENMASK(7, 6)
0061 #define ASPEED_ADC_REF_VOLTAGE_2500mV 0
0062 #define ASPEED_ADC_REF_VOLTAGE_1200mV 1
0063 #define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH 2
0064 #define ASPEED_ADC_REF_VOLTAGE_EXT_LOW 3
0065 #define ASPEED_ADC_BAT_SENSING_DIV BIT(6)
0066 #define ASPEED_ADC_BAT_SENSING_DIV_2_3 0
0067 #define ASPEED_ADC_BAT_SENSING_DIV_1_3 1
0068 #define ASPEED_ADC_CTRL_INIT_RDY BIT(8)
0069 #define ASPEED_ADC_CH7_MODE BIT(12)
0070 #define ASPEED_ADC_CH7_NORMAL 0
0071 #define ASPEED_ADC_CH7_BAT 1
0072 #define ASPEED_ADC_BAT_SENSING_ENABLE BIT(13)
0073 #define ASPEED_ADC_CTRL_CHANNEL GENMASK(31, 16)
0074 #define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch) FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
0075
0076 #define ASPEED_ADC_INIT_POLLING_TIME 500
0077 #define ASPEED_ADC_INIT_TIMEOUT 500000
0078
0079
0080
0081
0082
0083 #define ASPEED_ADC_DEF_SAMPLING_RATE 65000
0084
0085 struct aspeed_adc_trim_locate {
0086 const unsigned int offset;
0087 const unsigned int field;
0088 };
0089
0090 struct aspeed_adc_model_data {
0091 const char *model_name;
0092 unsigned int min_sampling_rate;
0093 unsigned int max_sampling_rate;
0094 unsigned int vref_fixed_mv;
0095 bool wait_init_sequence;
0096 bool need_prescaler;
0097 bool bat_sense_sup;
0098 u8 scaler_bit_width;
0099 unsigned int num_channels;
0100 const struct aspeed_adc_trim_locate *trim_locate;
0101 };
0102
0103 struct adc_gain {
0104 u8 mult;
0105 u8 div;
0106 };
0107
0108 struct aspeed_adc_data {
0109 struct device *dev;
0110 const struct aspeed_adc_model_data *model_data;
0111 struct regulator *regulator;
0112 void __iomem *base;
0113 spinlock_t clk_lock;
0114 struct clk_hw *fixed_div_clk;
0115 struct clk_hw *clk_prescaler;
0116 struct clk_hw *clk_scaler;
0117 struct reset_control *rst;
0118 int vref_mv;
0119 u32 sample_period_ns;
0120 int cv;
0121 bool battery_sensing;
0122 struct adc_gain battery_mode_gain;
0123 };
0124
0125 #define ASPEED_CHAN(_idx, _data_reg_addr) { \
0126 .type = IIO_VOLTAGE, \
0127 .indexed = 1, \
0128 .channel = (_idx), \
0129 .address = (_data_reg_addr), \
0130 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
0131 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
0132 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
0133 BIT(IIO_CHAN_INFO_OFFSET), \
0134 }
0135
0136 static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
0137 ASPEED_CHAN(0, 0x10),
0138 ASPEED_CHAN(1, 0x12),
0139 ASPEED_CHAN(2, 0x14),
0140 ASPEED_CHAN(3, 0x16),
0141 ASPEED_CHAN(4, 0x18),
0142 ASPEED_CHAN(5, 0x1A),
0143 ASPEED_CHAN(6, 0x1C),
0144 ASPEED_CHAN(7, 0x1E),
0145 ASPEED_CHAN(8, 0x20),
0146 ASPEED_CHAN(9, 0x22),
0147 ASPEED_CHAN(10, 0x24),
0148 ASPEED_CHAN(11, 0x26),
0149 ASPEED_CHAN(12, 0x28),
0150 ASPEED_CHAN(13, 0x2A),
0151 ASPEED_CHAN(14, 0x2C),
0152 ASPEED_CHAN(15, 0x2E),
0153 };
0154
0155 #define ASPEED_BAT_CHAN(_idx, _data_reg_addr) { \
0156 .type = IIO_VOLTAGE, \
0157 .indexed = 1, \
0158 .channel = (_idx), \
0159 .address = (_data_reg_addr), \
0160 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
0161 BIT(IIO_CHAN_INFO_OFFSET), \
0162 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
0163 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
0164 }
0165 static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
0166 ASPEED_CHAN(0, 0x10),
0167 ASPEED_CHAN(1, 0x12),
0168 ASPEED_CHAN(2, 0x14),
0169 ASPEED_CHAN(3, 0x16),
0170 ASPEED_CHAN(4, 0x18),
0171 ASPEED_CHAN(5, 0x1A),
0172 ASPEED_CHAN(6, 0x1C),
0173 ASPEED_BAT_CHAN(7, 0x1E),
0174 };
0175
0176 static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
0177 {
0178 struct device_node *syscon;
0179 struct regmap *scu;
0180 u32 scu_otp, trimming_val;
0181 struct aspeed_adc_data *data = iio_priv(indio_dev);
0182
0183 syscon = of_find_node_by_name(NULL, "syscon");
0184 if (syscon == NULL) {
0185 dev_warn(data->dev, "Couldn't find syscon node\n");
0186 return -EOPNOTSUPP;
0187 }
0188 scu = syscon_node_to_regmap(syscon);
0189 of_node_put(syscon);
0190 if (IS_ERR(scu)) {
0191 dev_warn(data->dev, "Failed to get syscon regmap\n");
0192 return -EOPNOTSUPP;
0193 }
0194 if (data->model_data->trim_locate) {
0195 if (regmap_read(scu, data->model_data->trim_locate->offset,
0196 &scu_otp)) {
0197 dev_warn(data->dev,
0198 "Failed to get adc trimming data\n");
0199 trimming_val = 0x8;
0200 } else {
0201 trimming_val =
0202 ((scu_otp) &
0203 (data->model_data->trim_locate->field)) >>
0204 __ffs(data->model_data->trim_locate->field);
0205 }
0206 dev_dbg(data->dev,
0207 "trimming val = %d, offset = %08x, fields = %08x\n",
0208 trimming_val, data->model_data->trim_locate->offset,
0209 data->model_data->trim_locate->field);
0210 writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
0211 }
0212 return 0;
0213 }
0214
0215 static int aspeed_adc_compensation(struct iio_dev *indio_dev)
0216 {
0217 struct aspeed_adc_data *data = iio_priv(indio_dev);
0218 u32 index, adc_raw = 0;
0219 u32 adc_engine_control_reg_val;
0220
0221 adc_engine_control_reg_val =
0222 readl(data->base + ASPEED_REG_ENGINE_CONTROL);
0223 adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
0224 adc_engine_control_reg_val |=
0225 (FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
0226 ASPEED_ADC_ENGINE_ENABLE);
0227
0228
0229
0230
0231
0232
0233
0234 writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
0235 ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
0236 data->base + ASPEED_REG_ENGINE_CONTROL);
0237
0238
0239
0240
0241 mdelay(1);
0242
0243 for (index = 0; index < 16; index++) {
0244
0245
0246
0247
0248 ndelay(data->sample_period_ns);
0249 adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
0250 }
0251 adc_raw >>= 4;
0252 data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
0253 writel(adc_engine_control_reg_val,
0254 data->base + ASPEED_REG_ENGINE_CONTROL);
0255 dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
0256
0257 return 0;
0258 }
0259
0260 static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
0261 {
0262 struct aspeed_adc_data *data = iio_priv(indio_dev);
0263
0264 if (rate < data->model_data->min_sampling_rate ||
0265 rate > data->model_data->max_sampling_rate)
0266 return -EINVAL;
0267
0268 clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
0269 rate = clk_get_rate(data->clk_scaler->clk);
0270 data->sample_period_ns = DIV_ROUND_UP_ULL(
0271 (u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
0272 dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
0273 data->sample_period_ns);
0274
0275 return 0;
0276 }
0277
0278 static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
0279 struct iio_chan_spec const *chan,
0280 int *val, int *val2, long mask)
0281 {
0282 struct aspeed_adc_data *data = iio_priv(indio_dev);
0283 u32 adc_engine_control_reg_val;
0284
0285 switch (mask) {
0286 case IIO_CHAN_INFO_RAW:
0287 if (data->battery_sensing && chan->channel == 7) {
0288 adc_engine_control_reg_val =
0289 readl(data->base + ASPEED_REG_ENGINE_CONTROL);
0290 writel(adc_engine_control_reg_val |
0291 FIELD_PREP(ASPEED_ADC_CH7_MODE,
0292 ASPEED_ADC_CH7_BAT) |
0293 ASPEED_ADC_BAT_SENSING_ENABLE,
0294 data->base + ASPEED_REG_ENGINE_CONTROL);
0295
0296
0297
0298
0299 mdelay(1);
0300 *val = readw(data->base + chan->address);
0301 *val = (*val * data->battery_mode_gain.mult) /
0302 data->battery_mode_gain.div;
0303
0304 writel(adc_engine_control_reg_val,
0305 data->base + ASPEED_REG_ENGINE_CONTROL);
0306 } else
0307 *val = readw(data->base + chan->address);
0308 return IIO_VAL_INT;
0309
0310 case IIO_CHAN_INFO_OFFSET:
0311 if (data->battery_sensing && chan->channel == 7)
0312 *val = (data->cv * data->battery_mode_gain.mult) /
0313 data->battery_mode_gain.div;
0314 else
0315 *val = data->cv;
0316 return IIO_VAL_INT;
0317
0318 case IIO_CHAN_INFO_SCALE:
0319 *val = data->vref_mv;
0320 *val2 = ASPEED_RESOLUTION_BITS;
0321 return IIO_VAL_FRACTIONAL_LOG2;
0322
0323 case IIO_CHAN_INFO_SAMP_FREQ:
0324 *val = clk_get_rate(data->clk_scaler->clk) /
0325 ASPEED_CLOCKS_PER_SAMPLE;
0326 return IIO_VAL_INT;
0327
0328 default:
0329 return -EINVAL;
0330 }
0331 }
0332
0333 static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
0334 struct iio_chan_spec const *chan,
0335 int val, int val2, long mask)
0336 {
0337 switch (mask) {
0338 case IIO_CHAN_INFO_SAMP_FREQ:
0339 return aspeed_adc_set_sampling_rate(indio_dev, val);
0340
0341 case IIO_CHAN_INFO_SCALE:
0342 case IIO_CHAN_INFO_RAW:
0343
0344
0345
0346
0347
0348
0349 return -EPERM;
0350
0351 default:
0352 return -EINVAL;
0353 }
0354 }
0355
0356 static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
0357 unsigned int reg, unsigned int writeval,
0358 unsigned int *readval)
0359 {
0360 struct aspeed_adc_data *data = iio_priv(indio_dev);
0361
0362 if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
0363 return -EINVAL;
0364
0365 *readval = readl(data->base + reg);
0366
0367 return 0;
0368 }
0369
0370 static const struct iio_info aspeed_adc_iio_info = {
0371 .read_raw = aspeed_adc_read_raw,
0372 .write_raw = aspeed_adc_write_raw,
0373 .debugfs_reg_access = aspeed_adc_reg_access,
0374 };
0375
0376 static void aspeed_adc_unregister_fixed_divider(void *data)
0377 {
0378 struct clk_hw *clk = data;
0379
0380 clk_hw_unregister_fixed_factor(clk);
0381 }
0382
0383 static void aspeed_adc_reset_assert(void *data)
0384 {
0385 struct reset_control *rst = data;
0386
0387 reset_control_assert(rst);
0388 }
0389
0390 static void aspeed_adc_clk_disable_unprepare(void *data)
0391 {
0392 struct clk *clk = data;
0393
0394 clk_disable_unprepare(clk);
0395 }
0396
0397 static void aspeed_adc_power_down(void *data)
0398 {
0399 struct aspeed_adc_data *priv_data = data;
0400
0401 writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
0402 priv_data->base + ASPEED_REG_ENGINE_CONTROL);
0403 }
0404
0405 static void aspeed_adc_reg_disable(void *data)
0406 {
0407 struct regulator *reg = data;
0408
0409 regulator_disable(reg);
0410 }
0411
0412 static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
0413 {
0414 struct aspeed_adc_data *data = iio_priv(indio_dev);
0415 int ret;
0416 u32 adc_engine_control_reg_val;
0417
0418 if (data->model_data->vref_fixed_mv) {
0419 data->vref_mv = data->model_data->vref_fixed_mv;
0420 return 0;
0421 }
0422 adc_engine_control_reg_val =
0423 readl(data->base + ASPEED_REG_ENGINE_CONTROL);
0424 data->regulator = devm_regulator_get_optional(data->dev, "vref");
0425 if (!IS_ERR(data->regulator)) {
0426 ret = regulator_enable(data->regulator);
0427 if (ret)
0428 return ret;
0429 ret = devm_add_action_or_reset(
0430 data->dev, aspeed_adc_reg_disable, data->regulator);
0431 if (ret)
0432 return ret;
0433 data->vref_mv = regulator_get_voltage(data->regulator);
0434
0435 data->vref_mv /= 1000;
0436 if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
0437 writel(adc_engine_control_reg_val |
0438 FIELD_PREP(
0439 ASPEED_ADC_REF_VOLTAGE,
0440 ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
0441 data->base + ASPEED_REG_ENGINE_CONTROL);
0442 else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
0443 writel(adc_engine_control_reg_val |
0444 FIELD_PREP(
0445 ASPEED_ADC_REF_VOLTAGE,
0446 ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
0447 data->base + ASPEED_REG_ENGINE_CONTROL);
0448 else {
0449 dev_err(data->dev, "Regulator voltage %d not support",
0450 data->vref_mv);
0451 return -EOPNOTSUPP;
0452 }
0453 } else {
0454 if (PTR_ERR(data->regulator) != -ENODEV)
0455 return PTR_ERR(data->regulator);
0456 data->vref_mv = 2500000;
0457 of_property_read_u32(data->dev->of_node,
0458 "aspeed,int-vref-microvolt",
0459 &data->vref_mv);
0460
0461 data->vref_mv /= 1000;
0462 if (data->vref_mv == 2500)
0463 writel(adc_engine_control_reg_val |
0464 FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
0465 ASPEED_ADC_REF_VOLTAGE_2500mV),
0466 data->base + ASPEED_REG_ENGINE_CONTROL);
0467 else if (data->vref_mv == 1200)
0468 writel(adc_engine_control_reg_val |
0469 FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
0470 ASPEED_ADC_REF_VOLTAGE_1200mV),
0471 data->base + ASPEED_REG_ENGINE_CONTROL);
0472 else {
0473 dev_err(data->dev, "Voltage %d not support", data->vref_mv);
0474 return -EOPNOTSUPP;
0475 }
0476 }
0477
0478 return 0;
0479 }
0480
0481 static int aspeed_adc_probe(struct platform_device *pdev)
0482 {
0483 struct iio_dev *indio_dev;
0484 struct aspeed_adc_data *data;
0485 int ret;
0486 u32 adc_engine_control_reg_val;
0487 unsigned long scaler_flags = 0;
0488 char clk_name[32], clk_parent_name[32];
0489
0490 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
0491 if (!indio_dev)
0492 return -ENOMEM;
0493
0494 data = iio_priv(indio_dev);
0495 data->dev = &pdev->dev;
0496 data->model_data = of_device_get_match_data(&pdev->dev);
0497 platform_set_drvdata(pdev, indio_dev);
0498
0499 data->base = devm_platform_ioremap_resource(pdev, 0);
0500 if (IS_ERR(data->base))
0501 return PTR_ERR(data->base);
0502
0503
0504 spin_lock_init(&data->clk_lock);
0505 snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
0506 of_clk_get_parent_name(pdev->dev.of_node, 0));
0507 snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
0508 data->model_data->model_name);
0509 data->fixed_div_clk = clk_hw_register_fixed_factor(
0510 &pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
0511 if (IS_ERR(data->fixed_div_clk))
0512 return PTR_ERR(data->fixed_div_clk);
0513
0514 ret = devm_add_action_or_reset(data->dev,
0515 aspeed_adc_unregister_fixed_divider,
0516 data->fixed_div_clk);
0517 if (ret)
0518 return ret;
0519 snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
0520
0521 if (data->model_data->need_prescaler) {
0522 snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
0523 data->model_data->model_name);
0524 data->clk_prescaler = devm_clk_hw_register_divider(
0525 &pdev->dev, clk_name, clk_parent_name, 0,
0526 data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
0527 &data->clk_lock);
0528 if (IS_ERR(data->clk_prescaler))
0529 return PTR_ERR(data->clk_prescaler);
0530 snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
0531 clk_name);
0532 scaler_flags = CLK_SET_RATE_PARENT;
0533 }
0534
0535
0536
0537
0538 snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
0539 data->model_data->model_name);
0540 data->clk_scaler = devm_clk_hw_register_divider(
0541 &pdev->dev, clk_name, clk_parent_name, scaler_flags,
0542 data->base + ASPEED_REG_CLOCK_CONTROL, 0,
0543 data->model_data->scaler_bit_width,
0544 data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
0545 &data->clk_lock);
0546 if (IS_ERR(data->clk_scaler))
0547 return PTR_ERR(data->clk_scaler);
0548
0549 data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
0550 if (IS_ERR(data->rst)) {
0551 dev_err(&pdev->dev,
0552 "invalid or missing reset controller device tree entry");
0553 return PTR_ERR(data->rst);
0554 }
0555 reset_control_deassert(data->rst);
0556
0557 ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
0558 data->rst);
0559 if (ret)
0560 return ret;
0561
0562 ret = aspeed_adc_vref_config(indio_dev);
0563 if (ret)
0564 return ret;
0565
0566 if (of_find_property(data->dev->of_node, "aspeed,trim-data-valid",
0567 NULL)) {
0568 ret = aspeed_adc_set_trim_data(indio_dev);
0569 if (ret)
0570 return ret;
0571 }
0572
0573 if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
0574 NULL)) {
0575 if (data->model_data->bat_sense_sup) {
0576 data->battery_sensing = 1;
0577 if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
0578 ASPEED_ADC_BAT_SENSING_DIV) {
0579 data->battery_mode_gain.mult = 3;
0580 data->battery_mode_gain.div = 1;
0581 } else {
0582 data->battery_mode_gain.mult = 3;
0583 data->battery_mode_gain.div = 2;
0584 }
0585 } else
0586 dev_warn(&pdev->dev,
0587 "Failed to enable battery-sensing mode\n");
0588 }
0589
0590 ret = clk_prepare_enable(data->clk_scaler->clk);
0591 if (ret)
0592 return ret;
0593 ret = devm_add_action_or_reset(data->dev,
0594 aspeed_adc_clk_disable_unprepare,
0595 data->clk_scaler->clk);
0596 if (ret)
0597 return ret;
0598 ret = aspeed_adc_set_sampling_rate(indio_dev,
0599 ASPEED_ADC_DEF_SAMPLING_RATE);
0600 if (ret)
0601 return ret;
0602
0603 adc_engine_control_reg_val =
0604 readl(data->base + ASPEED_REG_ENGINE_CONTROL);
0605 adc_engine_control_reg_val |=
0606 FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
0607 ASPEED_ADC_ENGINE_ENABLE;
0608
0609 writel(adc_engine_control_reg_val,
0610 data->base + ASPEED_REG_ENGINE_CONTROL);
0611
0612 ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
0613 data);
0614 if (ret)
0615 return ret;
0616
0617 if (data->model_data->wait_init_sequence) {
0618
0619 ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
0620 adc_engine_control_reg_val,
0621 adc_engine_control_reg_val &
0622 ASPEED_ADC_CTRL_INIT_RDY,
0623 ASPEED_ADC_INIT_POLLING_TIME,
0624 ASPEED_ADC_INIT_TIMEOUT);
0625 if (ret)
0626 return ret;
0627 }
0628
0629 aspeed_adc_compensation(indio_dev);
0630
0631 adc_engine_control_reg_val =
0632 readl(data->base + ASPEED_REG_ENGINE_CONTROL);
0633 adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
0634 writel(adc_engine_control_reg_val,
0635 data->base + ASPEED_REG_ENGINE_CONTROL);
0636
0637 indio_dev->name = data->model_data->model_name;
0638 indio_dev->info = &aspeed_adc_iio_info;
0639 indio_dev->modes = INDIO_DIRECT_MODE;
0640 indio_dev->channels = data->battery_sensing ?
0641 aspeed_adc_iio_bat_channels :
0642 aspeed_adc_iio_channels;
0643 indio_dev->num_channels = data->model_data->num_channels;
0644
0645 ret = devm_iio_device_register(data->dev, indio_dev);
0646 return ret;
0647 }
0648
0649 static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
0650 .offset = 0x154,
0651 .field = GENMASK(31, 28),
0652 };
0653
0654 static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
0655 .offset = 0x5d0,
0656 .field = GENMASK(3, 0),
0657 };
0658
0659 static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
0660 .offset = 0x5d0,
0661 .field = GENMASK(7, 4),
0662 };
0663
0664 static const struct aspeed_adc_model_data ast2400_model_data = {
0665 .model_name = "ast2400-adc",
0666 .vref_fixed_mv = 2500,
0667 .min_sampling_rate = 10000,
0668 .max_sampling_rate = 500000,
0669 .need_prescaler = true,
0670 .scaler_bit_width = 10,
0671 .num_channels = 16,
0672 };
0673
0674 static const struct aspeed_adc_model_data ast2500_model_data = {
0675 .model_name = "ast2500-adc",
0676 .vref_fixed_mv = 1800,
0677 .min_sampling_rate = 1,
0678 .max_sampling_rate = 1000000,
0679 .wait_init_sequence = true,
0680 .need_prescaler = true,
0681 .scaler_bit_width = 10,
0682 .num_channels = 16,
0683 .trim_locate = &ast2500_adc_trim,
0684 };
0685
0686 static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
0687 .model_name = "ast2600-adc0",
0688 .min_sampling_rate = 10000,
0689 .max_sampling_rate = 500000,
0690 .wait_init_sequence = true,
0691 .bat_sense_sup = true,
0692 .scaler_bit_width = 16,
0693 .num_channels = 8,
0694 .trim_locate = &ast2600_adc0_trim,
0695 };
0696
0697 static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
0698 .model_name = "ast2600-adc1",
0699 .min_sampling_rate = 10000,
0700 .max_sampling_rate = 500000,
0701 .wait_init_sequence = true,
0702 .bat_sense_sup = true,
0703 .scaler_bit_width = 16,
0704 .num_channels = 8,
0705 .trim_locate = &ast2600_adc1_trim,
0706 };
0707
0708 static const struct of_device_id aspeed_adc_matches[] = {
0709 { .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
0710 { .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
0711 { .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
0712 { .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
0713 {},
0714 };
0715 MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
0716
0717 static struct platform_driver aspeed_adc_driver = {
0718 .probe = aspeed_adc_probe,
0719 .driver = {
0720 .name = KBUILD_MODNAME,
0721 .of_match_table = aspeed_adc_matches,
0722 }
0723 };
0724
0725 module_platform_driver(aspeed_adc_driver);
0726
0727 MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
0728 MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
0729 MODULE_LICENSE("GPL");