Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
0004  * Copyright (c) 2014, Sony Mobile Communications AB.
0005  *
0006  */
0007 
0008 #include <linux/acpi.h>
0009 #include <linux/atomic.h>
0010 #include <linux/clk.h>
0011 #include <linux/delay.h>
0012 #include <linux/dmaengine.h>
0013 #include <linux/dmapool.h>
0014 #include <linux/dma-mapping.h>
0015 #include <linux/err.h>
0016 #include <linux/i2c.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/io.h>
0019 #include <linux/module.h>
0020 #include <linux/of.h>
0021 #include <linux/platform_device.h>
0022 #include <linux/pm_runtime.h>
0023 #include <linux/scatterlist.h>
0024 
0025 /* QUP Registers */
0026 #define QUP_CONFIG      0x000
0027 #define QUP_STATE       0x004
0028 #define QUP_IO_MODE     0x008
0029 #define QUP_SW_RESET        0x00c
0030 #define QUP_OPERATIONAL     0x018
0031 #define QUP_ERROR_FLAGS     0x01c
0032 #define QUP_ERROR_FLAGS_EN  0x020
0033 #define QUP_OPERATIONAL_MASK    0x028
0034 #define QUP_HW_VERSION      0x030
0035 #define QUP_MX_OUTPUT_CNT   0x100
0036 #define QUP_OUT_FIFO_BASE   0x110
0037 #define QUP_MX_WRITE_CNT    0x150
0038 #define QUP_MX_INPUT_CNT    0x200
0039 #define QUP_MX_READ_CNT     0x208
0040 #define QUP_IN_FIFO_BASE    0x218
0041 #define QUP_I2C_CLK_CTL     0x400
0042 #define QUP_I2C_STATUS      0x404
0043 #define QUP_I2C_MASTER_GEN  0x408
0044 
0045 /* QUP States and reset values */
0046 #define QUP_RESET_STATE     0
0047 #define QUP_RUN_STATE       1
0048 #define QUP_PAUSE_STATE     3
0049 #define QUP_STATE_MASK      3
0050 
0051 #define QUP_STATE_VALID     BIT(2)
0052 #define QUP_I2C_MAST_GEN    BIT(4)
0053 #define QUP_I2C_FLUSH       BIT(6)
0054 
0055 #define QUP_OPERATIONAL_RESET   0x000ff0
0056 #define QUP_I2C_STATUS_RESET    0xfffffc
0057 
0058 /* QUP OPERATIONAL FLAGS */
0059 #define QUP_I2C_NACK_FLAG   BIT(3)
0060 #define QUP_OUT_NOT_EMPTY   BIT(4)
0061 #define QUP_IN_NOT_EMPTY    BIT(5)
0062 #define QUP_OUT_FULL        BIT(6)
0063 #define QUP_OUT_SVC_FLAG    BIT(8)
0064 #define QUP_IN_SVC_FLAG     BIT(9)
0065 #define QUP_MX_OUTPUT_DONE  BIT(10)
0066 #define QUP_MX_INPUT_DONE   BIT(11)
0067 #define OUT_BLOCK_WRITE_REQ BIT(12)
0068 #define IN_BLOCK_READ_REQ   BIT(13)
0069 
0070 /* I2C mini core related values */
0071 #define QUP_NO_INPUT        BIT(7)
0072 #define QUP_CLOCK_AUTO_GATE BIT(13)
0073 #define I2C_MINI_CORE       (2 << 8)
0074 #define I2C_N_VAL       15
0075 #define I2C_N_VAL_V2        7
0076 
0077 /* Most significant word offset in FIFO port */
0078 #define QUP_MSW_SHIFT       (I2C_N_VAL + 1)
0079 
0080 /* Packing/Unpacking words in FIFOs, and IO modes */
0081 #define QUP_OUTPUT_BLK_MODE (1 << 10)
0082 #define QUP_OUTPUT_BAM_MODE (3 << 10)
0083 #define QUP_INPUT_BLK_MODE  (1 << 12)
0084 #define QUP_INPUT_BAM_MODE  (3 << 12)
0085 #define QUP_BAM_MODE        (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
0086 #define QUP_UNPACK_EN       BIT(14)
0087 #define QUP_PACK_EN     BIT(15)
0088 
0089 #define QUP_REPACK_EN       (QUP_UNPACK_EN | QUP_PACK_EN)
0090 #define QUP_V2_TAGS_EN      1
0091 
0092 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
0093 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
0094 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
0095 #define QUP_INPUT_FIFO_SIZE(x)  (((x) >> 7) & 0x07)
0096 
0097 /* QUP tags */
0098 #define QUP_TAG_START       (1 << 8)
0099 #define QUP_TAG_DATA        (2 << 8)
0100 #define QUP_TAG_STOP        (3 << 8)
0101 #define QUP_TAG_REC     (4 << 8)
0102 #define QUP_BAM_INPUT_EOT       0x93
0103 #define QUP_BAM_FLUSH_STOP      0x96
0104 
0105 /* QUP v2 tags */
0106 #define QUP_TAG_V2_START               0x81
0107 #define QUP_TAG_V2_DATAWR              0x82
0108 #define QUP_TAG_V2_DATAWR_STOP         0x83
0109 #define QUP_TAG_V2_DATARD              0x85
0110 #define QUP_TAG_V2_DATARD_NACK         0x86
0111 #define QUP_TAG_V2_DATARD_STOP         0x87
0112 
0113 /* Status, Error flags */
0114 #define I2C_STATUS_WR_BUFFER_FULL   BIT(0)
0115 #define I2C_STATUS_BUS_ACTIVE       BIT(8)
0116 #define I2C_STATUS_ERROR_MASK       0x38000fc
0117 #define QUP_STATUS_ERROR_FLAGS      0x7c
0118 
0119 #define QUP_READ_LIMIT          256
0120 #define SET_BIT             0x1
0121 #define RESET_BIT           0x0
0122 #define ONE_BYTE            0x1
0123 #define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
0124 
0125 /* Maximum transfer length for single DMA descriptor */
0126 #define MX_TX_RX_LEN            SZ_64K
0127 #define MX_BLOCKS           (MX_TX_RX_LEN / QUP_READ_LIMIT)
0128 /* Maximum transfer length for all DMA descriptors */
0129 #define MX_DMA_TX_RX_LEN        (2 * MX_TX_RX_LEN)
0130 #define MX_DMA_BLOCKS           (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
0131 
0132 /*
0133  * Minimum transfer timeout for i2c transfers in seconds. It will be added on
0134  * the top of maximum transfer time calculated from i2c bus speed to compensate
0135  * the overheads.
0136  */
0137 #define TOUT_MIN            2
0138 
0139 /* Default values. Use these if FW query fails */
0140 #define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
0141 #define DEFAULT_SRC_CLK 20000000
0142 
0143 /*
0144  * Max tags length (start, stop and maximum 2 bytes address) for each QUP
0145  * data transfer
0146  */
0147 #define QUP_MAX_TAGS_LEN        4
0148 /* Max data length for each DATARD tags */
0149 #define RECV_MAX_DATA_LEN       254
0150 /* TAG length for DATA READ in RX FIFO  */
0151 #define READ_RX_TAGS_LEN        2
0152 
0153 static unsigned int scl_freq;
0154 module_param_named(scl_freq, scl_freq, uint, 0444);
0155 MODULE_PARM_DESC(scl_freq, "SCL frequency override");
0156 
0157 /*
0158  * count: no of blocks
0159  * pos: current block number
0160  * tx_tag_len: tx tag length for current block
0161  * rx_tag_len: rx tag length for current block
0162  * data_len: remaining data length for current message
0163  * cur_blk_len: data length for current block
0164  * total_tx_len: total tx length including tag bytes for current QUP transfer
0165  * total_rx_len: total rx length including tag bytes for current QUP transfer
0166  * tx_fifo_data_pos: current byte number in TX FIFO word
0167  * tx_fifo_free: number of free bytes in current QUP block write.
0168  * rx_fifo_data_pos: current byte number in RX FIFO word
0169  * fifo_available: number of available bytes in RX FIFO for current
0170  *         QUP block read
0171  * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
0172  *       to TX FIFO will be appended in this data and will be written to
0173  *       TX FIFO when all the 4 bytes are available.
0174  * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
0175  *       contains the 4 bytes of RX data.
0176  * cur_data: pointer to tell cur data position for current message
0177  * cur_tx_tags: pointer to tell cur position in tags
0178  * tx_tags_sent: all tx tag bytes have been written in FIFO word
0179  * send_last_word: for tx FIFO, last word send is pending in current block
0180  * rx_bytes_read: if all the bytes have been read from rx FIFO.
0181  * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
0182  * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
0183  * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
0184  * tags: contains tx tag bytes for current QUP transfer
0185  */
0186 struct qup_i2c_block {
0187     int     count;
0188     int     pos;
0189     int     tx_tag_len;
0190     int     rx_tag_len;
0191     int     data_len;
0192     int     cur_blk_len;
0193     int     total_tx_len;
0194     int     total_rx_len;
0195     int     tx_fifo_data_pos;
0196     int     tx_fifo_free;
0197     int     rx_fifo_data_pos;
0198     int     fifo_available;
0199     u32     tx_fifo_data;
0200     u32     rx_fifo_data;
0201     u8      *cur_data;
0202     u8      *cur_tx_tags;
0203     bool        tx_tags_sent;
0204     bool        send_last_word;
0205     bool        rx_tags_fetched;
0206     bool        rx_bytes_read;
0207     bool        is_tx_blk_mode;
0208     bool        is_rx_blk_mode;
0209     u8      tags[6];
0210 };
0211 
0212 struct qup_i2c_tag {
0213     u8 *start;
0214     dma_addr_t addr;
0215 };
0216 
0217 struct qup_i2c_bam {
0218     struct  qup_i2c_tag tag;
0219     struct  dma_chan *dma;
0220     struct  scatterlist *sg;
0221     unsigned int sg_cnt;
0222 };
0223 
0224 struct qup_i2c_dev {
0225     struct device       *dev;
0226     void __iomem        *base;
0227     int         irq;
0228     struct clk      *clk;
0229     struct clk      *pclk;
0230     struct i2c_adapter  adap;
0231 
0232     int         clk_ctl;
0233     int         out_fifo_sz;
0234     int         in_fifo_sz;
0235     int         out_blk_sz;
0236     int         in_blk_sz;
0237 
0238     int         blk_xfer_limit;
0239     unsigned long       one_byte_t;
0240     unsigned long       xfer_timeout;
0241     struct qup_i2c_block    blk;
0242 
0243     struct i2c_msg      *msg;
0244     /* Current posion in user message buffer */
0245     int         pos;
0246     /* I2C protocol errors */
0247     u32         bus_err;
0248     /* QUP core errors */
0249     u32         qup_err;
0250 
0251     /* To check if this is the last msg */
0252     bool            is_last;
0253     bool            is_smbus_read;
0254 
0255     /* To configure when bus is in run state */
0256     u32         config_run;
0257 
0258     /* dma parameters */
0259     bool            is_dma;
0260     /* To check if the current transfer is using DMA */
0261     bool            use_dma;
0262     unsigned int        max_xfer_sg_len;
0263     unsigned int        tag_buf_pos;
0264     /* The threshold length above which block mode will be used */
0265     unsigned int        blk_mode_threshold;
0266     struct          dma_pool *dpool;
0267     struct          qup_i2c_tag start_tag;
0268     struct          qup_i2c_bam brx;
0269     struct          qup_i2c_bam btx;
0270 
0271     struct completion   xfer;
0272     /* function to write data in tx fifo */
0273     void (*write_tx_fifo)(struct qup_i2c_dev *qup);
0274     /* function to read data from rx fifo */
0275     void (*read_rx_fifo)(struct qup_i2c_dev *qup);
0276     /* function to write tags in tx fifo for i2c read transfer */
0277     void (*write_rx_tags)(struct qup_i2c_dev *qup);
0278 };
0279 
0280 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
0281 {
0282     struct qup_i2c_dev *qup = dev;
0283     struct qup_i2c_block *blk = &qup->blk;
0284     u32 bus_err;
0285     u32 qup_err;
0286     u32 opflags;
0287 
0288     bus_err = readl(qup->base + QUP_I2C_STATUS);
0289     qup_err = readl(qup->base + QUP_ERROR_FLAGS);
0290     opflags = readl(qup->base + QUP_OPERATIONAL);
0291 
0292     if (!qup->msg) {
0293         /* Clear Error interrupt */
0294         writel(QUP_RESET_STATE, qup->base + QUP_STATE);
0295         return IRQ_HANDLED;
0296     }
0297 
0298     bus_err &= I2C_STATUS_ERROR_MASK;
0299     qup_err &= QUP_STATUS_ERROR_FLAGS;
0300 
0301     /* Clear the error bits in QUP_ERROR_FLAGS */
0302     if (qup_err)
0303         writel(qup_err, qup->base + QUP_ERROR_FLAGS);
0304 
0305     /* Clear the error bits in QUP_I2C_STATUS */
0306     if (bus_err)
0307         writel(bus_err, qup->base + QUP_I2C_STATUS);
0308 
0309     /*
0310      * Check for BAM mode and returns if already error has come for current
0311      * transfer. In Error case, sometimes, QUP generates more than one
0312      * interrupt.
0313      */
0314     if (qup->use_dma && (qup->qup_err || qup->bus_err))
0315         return IRQ_HANDLED;
0316 
0317     /* Reset the QUP State in case of error */
0318     if (qup_err || bus_err) {
0319         /*
0320          * Don’t reset the QUP state in case of BAM mode. The BAM
0321          * flush operation needs to be scheduled in transfer function
0322          * which will clear the remaining schedule descriptors in BAM
0323          * HW FIFO and generates the BAM interrupt.
0324          */
0325         if (!qup->use_dma)
0326             writel(QUP_RESET_STATE, qup->base + QUP_STATE);
0327         goto done;
0328     }
0329 
0330     if (opflags & QUP_OUT_SVC_FLAG) {
0331         writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
0332 
0333         if (opflags & OUT_BLOCK_WRITE_REQ) {
0334             blk->tx_fifo_free += qup->out_blk_sz;
0335             if (qup->msg->flags & I2C_M_RD)
0336                 qup->write_rx_tags(qup);
0337             else
0338                 qup->write_tx_fifo(qup);
0339         }
0340     }
0341 
0342     if (opflags & QUP_IN_SVC_FLAG) {
0343         writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
0344 
0345         if (!blk->is_rx_blk_mode) {
0346             blk->fifo_available += qup->in_fifo_sz;
0347             qup->read_rx_fifo(qup);
0348         } else if (opflags & IN_BLOCK_READ_REQ) {
0349             blk->fifo_available += qup->in_blk_sz;
0350             qup->read_rx_fifo(qup);
0351         }
0352     }
0353 
0354     if (qup->msg->flags & I2C_M_RD) {
0355         if (!blk->rx_bytes_read)
0356             return IRQ_HANDLED;
0357     } else {
0358         /*
0359          * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
0360          * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
0361          * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
0362          * of interrupt for write message in FIFO mode is
0363          * QUP_MAX_OUTPUT_DONE_FLAG condition.
0364          */
0365         if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
0366             return IRQ_HANDLED;
0367     }
0368 
0369 done:
0370     qup->qup_err = qup_err;
0371     qup->bus_err = bus_err;
0372     complete(&qup->xfer);
0373     return IRQ_HANDLED;
0374 }
0375 
0376 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
0377                    u32 req_state, u32 req_mask)
0378 {
0379     int retries = 1;
0380     u32 state;
0381 
0382     /*
0383      * State transition takes 3 AHB clocks cycles + 3 I2C master clock
0384      * cycles. So retry once after a 1uS delay.
0385      */
0386     do {
0387         state = readl(qup->base + QUP_STATE);
0388 
0389         if (state & QUP_STATE_VALID &&
0390             (state & req_mask) == req_state)
0391             return 0;
0392 
0393         udelay(1);
0394     } while (retries--);
0395 
0396     return -ETIMEDOUT;
0397 }
0398 
0399 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
0400 {
0401     return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
0402 }
0403 
0404 static void qup_i2c_flush(struct qup_i2c_dev *qup)
0405 {
0406     u32 val = readl(qup->base + QUP_STATE);
0407 
0408     val |= QUP_I2C_FLUSH;
0409     writel(val, qup->base + QUP_STATE);
0410 }
0411 
0412 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
0413 {
0414     return qup_i2c_poll_state_mask(qup, 0, 0);
0415 }
0416 
0417 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
0418 {
0419     return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
0420 }
0421 
0422 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
0423 {
0424     if (qup_i2c_poll_state_valid(qup) != 0)
0425         return -EIO;
0426 
0427     writel(state, qup->base + QUP_STATE);
0428 
0429     if (qup_i2c_poll_state(qup, state) != 0)
0430         return -EIO;
0431     return 0;
0432 }
0433 
0434 /* Check if I2C bus returns to IDLE state */
0435 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
0436 {
0437     unsigned long timeout;
0438     u32 status;
0439     int ret = 0;
0440 
0441     timeout = jiffies + len * 4;
0442     for (;;) {
0443         status = readl(qup->base + QUP_I2C_STATUS);
0444         if (!(status & I2C_STATUS_BUS_ACTIVE))
0445             break;
0446 
0447         if (time_after(jiffies, timeout))
0448             ret = -ETIMEDOUT;
0449 
0450         usleep_range(len, len * 2);
0451     }
0452 
0453     return ret;
0454 }
0455 
0456 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
0457 {
0458     struct qup_i2c_block *blk = &qup->blk;
0459     struct i2c_msg *msg = qup->msg;
0460     u32 addr = i2c_8bit_addr_from_msg(msg);
0461     u32 qup_tag;
0462     int idx;
0463     u32 val;
0464 
0465     if (qup->pos == 0) {
0466         val = QUP_TAG_START | addr;
0467         idx = 1;
0468         blk->tx_fifo_free--;
0469     } else {
0470         val = 0;
0471         idx = 0;
0472     }
0473 
0474     while (blk->tx_fifo_free && qup->pos < msg->len) {
0475         if (qup->pos == msg->len - 1)
0476             qup_tag = QUP_TAG_STOP;
0477         else
0478             qup_tag = QUP_TAG_DATA;
0479 
0480         if (idx & 1)
0481             val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
0482         else
0483             val = qup_tag | msg->buf[qup->pos];
0484 
0485         /* Write out the pair and the last odd value */
0486         if (idx & 1 || qup->pos == msg->len - 1)
0487             writel(val, qup->base + QUP_OUT_FIFO_BASE);
0488 
0489         qup->pos++;
0490         idx++;
0491         blk->tx_fifo_free--;
0492     }
0493 }
0494 
0495 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
0496                  struct i2c_msg *msg)
0497 {
0498     qup->blk.pos = 0;
0499     qup->blk.data_len = msg->len;
0500     qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
0501 }
0502 
0503 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
0504 {
0505     int data_len;
0506 
0507     if (qup->blk.data_len > qup->blk_xfer_limit)
0508         data_len = qup->blk_xfer_limit;
0509     else
0510         data_len = qup->blk.data_len;
0511 
0512     return data_len;
0513 }
0514 
0515 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
0516 {
0517     return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
0518 }
0519 
0520 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
0521             struct i2c_msg *msg)
0522 {
0523     int len = 0;
0524 
0525     if (qup->is_smbus_read) {
0526         tags[len++] = QUP_TAG_V2_DATARD_STOP;
0527         tags[len++] = qup_i2c_get_data_len(qup);
0528     } else {
0529         tags[len++] = QUP_TAG_V2_START;
0530         tags[len++] = addr & 0xff;
0531 
0532         if (msg->flags & I2C_M_TEN)
0533             tags[len++] = addr >> 8;
0534 
0535         tags[len++] = QUP_TAG_V2_DATARD;
0536         /* Read 1 byte indicating the length of the SMBus message */
0537         tags[len++] = 1;
0538     }
0539     return len;
0540 }
0541 
0542 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
0543                 struct i2c_msg *msg)
0544 {
0545     u16 addr = i2c_8bit_addr_from_msg(msg);
0546     int len = 0;
0547     int data_len;
0548 
0549     int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
0550 
0551     /* Handle tags for SMBus block read */
0552     if (qup_i2c_check_msg_len(msg))
0553         return qup_i2c_set_tags_smb(addr, tags, qup, msg);
0554 
0555     if (qup->blk.pos == 0) {
0556         tags[len++] = QUP_TAG_V2_START;
0557         tags[len++] = addr & 0xff;
0558 
0559         if (msg->flags & I2C_M_TEN)
0560             tags[len++] = addr >> 8;
0561     }
0562 
0563     /* Send _STOP commands for the last block */
0564     if (last) {
0565         if (msg->flags & I2C_M_RD)
0566             tags[len++] = QUP_TAG_V2_DATARD_STOP;
0567         else
0568             tags[len++] = QUP_TAG_V2_DATAWR_STOP;
0569     } else {
0570         if (msg->flags & I2C_M_RD)
0571             tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
0572                       QUP_TAG_V2_DATARD_NACK :
0573                       QUP_TAG_V2_DATARD;
0574         else
0575             tags[len++] = QUP_TAG_V2_DATAWR;
0576     }
0577 
0578     data_len = qup_i2c_get_data_len(qup);
0579 
0580     /* 0 implies 256 bytes */
0581     if (data_len == QUP_READ_LIMIT)
0582         tags[len++] = 0;
0583     else
0584         tags[len++] = data_len;
0585 
0586     return len;
0587 }
0588 
0589 
0590 static void qup_i2c_bam_cb(void *data)
0591 {
0592     struct qup_i2c_dev *qup = data;
0593 
0594     complete(&qup->xfer);
0595 }
0596 
0597 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
0598               unsigned int buflen, struct qup_i2c_dev *qup,
0599               int dir)
0600 {
0601     int ret;
0602 
0603     sg_set_buf(sg, buf, buflen);
0604     ret = dma_map_sg(qup->dev, sg, 1, dir);
0605     if (!ret)
0606         return -EINVAL;
0607 
0608     return 0;
0609 }
0610 
0611 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
0612 {
0613     if (qup->btx.dma)
0614         dma_release_channel(qup->btx.dma);
0615     if (qup->brx.dma)
0616         dma_release_channel(qup->brx.dma);
0617     qup->btx.dma = NULL;
0618     qup->brx.dma = NULL;
0619 }
0620 
0621 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
0622 {
0623     int err;
0624 
0625     if (!qup->btx.dma) {
0626         qup->btx.dma = dma_request_chan(qup->dev, "tx");
0627         if (IS_ERR(qup->btx.dma)) {
0628             err = PTR_ERR(qup->btx.dma);
0629             qup->btx.dma = NULL;
0630             dev_err(qup->dev, "\n tx channel not available");
0631             return err;
0632         }
0633     }
0634 
0635     if (!qup->brx.dma) {
0636         qup->brx.dma = dma_request_chan(qup->dev, "rx");
0637         if (IS_ERR(qup->brx.dma)) {
0638             dev_err(qup->dev, "\n rx channel not available");
0639             err = PTR_ERR(qup->brx.dma);
0640             qup->brx.dma = NULL;
0641             qup_i2c_rel_dma(qup);
0642             return err;
0643         }
0644     }
0645     return 0;
0646 }
0647 
0648 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
0649 {
0650     int ret = 0, limit = QUP_READ_LIMIT;
0651     u32 len = 0, blocks, rem;
0652     u32 i = 0, tlen, tx_len = 0;
0653     u8 *tags;
0654 
0655     qup->blk_xfer_limit = QUP_READ_LIMIT;
0656     qup_i2c_set_blk_data(qup, msg);
0657 
0658     blocks = qup->blk.count;
0659     rem = msg->len - (blocks - 1) * limit;
0660 
0661     if (msg->flags & I2C_M_RD) {
0662         while (qup->blk.pos < blocks) {
0663             tlen = (i == (blocks - 1)) ? rem : limit;
0664             tags = &qup->start_tag.start[qup->tag_buf_pos + len];
0665             len += qup_i2c_set_tags(tags, qup, msg);
0666             qup->blk.data_len -= tlen;
0667 
0668             /* scratch buf to read the start and len tags */
0669             ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
0670                          &qup->brx.tag.start[0],
0671                          2, qup, DMA_FROM_DEVICE);
0672 
0673             if (ret)
0674                 return ret;
0675 
0676             ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
0677                          &msg->buf[limit * i],
0678                          tlen, qup,
0679                          DMA_FROM_DEVICE);
0680             if (ret)
0681                 return ret;
0682 
0683             i++;
0684             qup->blk.pos = i;
0685         }
0686         ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
0687                      &qup->start_tag.start[qup->tag_buf_pos],
0688                      len, qup, DMA_TO_DEVICE);
0689         if (ret)
0690             return ret;
0691 
0692         qup->tag_buf_pos += len;
0693     } else {
0694         while (qup->blk.pos < blocks) {
0695             tlen = (i == (blocks - 1)) ? rem : limit;
0696             tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
0697             len = qup_i2c_set_tags(tags, qup, msg);
0698             qup->blk.data_len -= tlen;
0699 
0700             ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
0701                          tags, len,
0702                          qup, DMA_TO_DEVICE);
0703             if (ret)
0704                 return ret;
0705 
0706             tx_len += len;
0707             ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
0708                          &msg->buf[limit * i],
0709                          tlen, qup, DMA_TO_DEVICE);
0710             if (ret)
0711                 return ret;
0712             i++;
0713             qup->blk.pos = i;
0714         }
0715 
0716         qup->tag_buf_pos += tx_len;
0717     }
0718 
0719     return 0;
0720 }
0721 
0722 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
0723 {
0724     struct dma_async_tx_descriptor *txd, *rxd = NULL;
0725     int ret = 0;
0726     dma_cookie_t cookie_rx, cookie_tx;
0727     u32 len = 0;
0728     u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
0729 
0730     /* schedule the EOT and FLUSH I2C tags */
0731     len = 1;
0732     if (rx_cnt) {
0733         qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
0734         len++;
0735 
0736         /* scratch buf to read the BAM EOT FLUSH tags */
0737         ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
0738                      &qup->brx.tag.start[0],
0739                      1, qup, DMA_FROM_DEVICE);
0740         if (ret)
0741             return ret;
0742     }
0743 
0744     qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
0745     ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
0746                  len, qup, DMA_TO_DEVICE);
0747     if (ret)
0748         return ret;
0749 
0750     txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
0751                       DMA_MEM_TO_DEV,
0752                       DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
0753     if (!txd) {
0754         dev_err(qup->dev, "failed to get tx desc\n");
0755         ret = -EINVAL;
0756         goto desc_err;
0757     }
0758 
0759     if (!rx_cnt) {
0760         txd->callback = qup_i2c_bam_cb;
0761         txd->callback_param = qup;
0762     }
0763 
0764     cookie_tx = dmaengine_submit(txd);
0765     if (dma_submit_error(cookie_tx)) {
0766         ret = -EINVAL;
0767         goto desc_err;
0768     }
0769 
0770     dma_async_issue_pending(qup->btx.dma);
0771 
0772     if (rx_cnt) {
0773         rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
0774                           rx_cnt, DMA_DEV_TO_MEM,
0775                           DMA_PREP_INTERRUPT);
0776         if (!rxd) {
0777             dev_err(qup->dev, "failed to get rx desc\n");
0778             ret = -EINVAL;
0779 
0780             /* abort TX descriptors */
0781             dmaengine_terminate_sync(qup->btx.dma);
0782             goto desc_err;
0783         }
0784 
0785         rxd->callback = qup_i2c_bam_cb;
0786         rxd->callback_param = qup;
0787         cookie_rx = dmaengine_submit(rxd);
0788         if (dma_submit_error(cookie_rx)) {
0789             ret = -EINVAL;
0790             goto desc_err;
0791         }
0792 
0793         dma_async_issue_pending(qup->brx.dma);
0794     }
0795 
0796     if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
0797         dev_err(qup->dev, "normal trans timed out\n");
0798         ret = -ETIMEDOUT;
0799     }
0800 
0801     if (ret || qup->bus_err || qup->qup_err) {
0802         reinit_completion(&qup->xfer);
0803 
0804         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
0805         if (ret) {
0806             dev_err(qup->dev, "change to run state timed out");
0807             goto desc_err;
0808         }
0809 
0810         qup_i2c_flush(qup);
0811 
0812         /* wait for remaining interrupts to occur */
0813         if (!wait_for_completion_timeout(&qup->xfer, HZ))
0814             dev_err(qup->dev, "flush timed out\n");
0815 
0816         ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
0817     }
0818 
0819 desc_err:
0820     dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
0821 
0822     if (rx_cnt)
0823         dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
0824                  DMA_FROM_DEVICE);
0825 
0826     return ret;
0827 }
0828 
0829 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
0830 {
0831     qup->btx.sg_cnt = 0;
0832     qup->brx.sg_cnt = 0;
0833     qup->tag_buf_pos = 0;
0834 }
0835 
0836 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
0837                 int num)
0838 {
0839     struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
0840     int ret = 0;
0841     int idx = 0;
0842 
0843     enable_irq(qup->irq);
0844     ret = qup_i2c_req_dma(qup);
0845 
0846     if (ret)
0847         goto out;
0848 
0849     writel(0, qup->base + QUP_MX_INPUT_CNT);
0850     writel(0, qup->base + QUP_MX_OUTPUT_CNT);
0851 
0852     /* set BAM mode */
0853     writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
0854 
0855     /* mask fifo irqs */
0856     writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
0857 
0858     /* set RUN STATE */
0859     ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
0860     if (ret)
0861         goto out;
0862 
0863     writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
0864     qup_i2c_bam_clear_tag_buffers(qup);
0865 
0866     for (idx = 0; idx < num; idx++) {
0867         qup->msg = msg + idx;
0868         qup->is_last = idx == (num - 1);
0869 
0870         ret = qup_i2c_bam_make_desc(qup, qup->msg);
0871         if (ret)
0872             break;
0873 
0874         /*
0875          * Make DMA descriptor and schedule the BAM transfer if its
0876          * already crossed the maximum length. Since the memory for all
0877          * tags buffers have been taken for 2 maximum possible
0878          * transfers length so it will never cross the buffer actual
0879          * length.
0880          */
0881         if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
0882             qup->brx.sg_cnt > qup->max_xfer_sg_len ||
0883             qup->is_last) {
0884             ret = qup_i2c_bam_schedule_desc(qup);
0885             if (ret)
0886                 break;
0887 
0888             qup_i2c_bam_clear_tag_buffers(qup);
0889         }
0890     }
0891 
0892 out:
0893     disable_irq(qup->irq);
0894 
0895     qup->msg = NULL;
0896     return ret;
0897 }
0898 
0899 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
0900                      struct i2c_msg *msg)
0901 {
0902     unsigned long left;
0903     int ret = 0;
0904 
0905     left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
0906     if (!left) {
0907         writel(1, qup->base + QUP_SW_RESET);
0908         ret = -ETIMEDOUT;
0909     }
0910 
0911     if (qup->bus_err || qup->qup_err)
0912         ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
0913 
0914     return ret;
0915 }
0916 
0917 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
0918 {
0919     struct qup_i2c_block *blk = &qup->blk;
0920     struct i2c_msg *msg = qup->msg;
0921     u32 val = 0;
0922     int idx = 0;
0923 
0924     while (blk->fifo_available && qup->pos < msg->len) {
0925         if ((idx & 1) == 0) {
0926             /* Reading 2 words at time */
0927             val = readl(qup->base + QUP_IN_FIFO_BASE);
0928             msg->buf[qup->pos++] = val & 0xFF;
0929         } else {
0930             msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
0931         }
0932         idx++;
0933         blk->fifo_available--;
0934     }
0935 
0936     if (qup->pos == msg->len)
0937         blk->rx_bytes_read = true;
0938 }
0939 
0940 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
0941 {
0942     struct i2c_msg *msg = qup->msg;
0943     u32 addr, len, val;
0944 
0945     addr = i2c_8bit_addr_from_msg(msg);
0946 
0947     /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
0948     len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
0949 
0950     val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
0951     writel(val, qup->base + QUP_OUT_FIFO_BASE);
0952 }
0953 
0954 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
0955 {
0956     struct qup_i2c_block *blk = &qup->blk;
0957     u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
0958     u32 io_mode = QUP_REPACK_EN;
0959 
0960     blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
0961     blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
0962 
0963     if (blk->is_tx_blk_mode) {
0964         io_mode |= QUP_OUTPUT_BLK_MODE;
0965         writel(0, qup->base + QUP_MX_WRITE_CNT);
0966         writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
0967     } else {
0968         writel(0, qup->base + QUP_MX_OUTPUT_CNT);
0969         writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
0970     }
0971 
0972     if (blk->total_rx_len) {
0973         if (blk->is_rx_blk_mode) {
0974             io_mode |= QUP_INPUT_BLK_MODE;
0975             writel(0, qup->base + QUP_MX_READ_CNT);
0976             writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
0977         } else {
0978             writel(0, qup->base + QUP_MX_INPUT_CNT);
0979             writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
0980         }
0981     } else {
0982         qup_config |= QUP_NO_INPUT;
0983     }
0984 
0985     writel(qup_config, qup->base + QUP_CONFIG);
0986     writel(io_mode, qup->base + QUP_IO_MODE);
0987 }
0988 
0989 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
0990 {
0991     blk->tx_fifo_free = 0;
0992     blk->fifo_available = 0;
0993     blk->rx_bytes_read = false;
0994 }
0995 
0996 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
0997 {
0998     struct qup_i2c_block *blk = &qup->blk;
0999     int ret;
1000 
1001     qup_i2c_clear_blk_v1(blk);
1002     qup_i2c_conf_v1(qup);
1003     ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1004     if (ret)
1005         return ret;
1006 
1007     writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1008 
1009     ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1010     if (ret)
1011         return ret;
1012 
1013     reinit_completion(&qup->xfer);
1014     enable_irq(qup->irq);
1015     if (!blk->is_tx_blk_mode) {
1016         blk->tx_fifo_free = qup->out_fifo_sz;
1017 
1018         if (is_rx)
1019             qup_i2c_write_rx_tags_v1(qup);
1020         else
1021             qup_i2c_write_tx_fifo_v1(qup);
1022     }
1023 
1024     ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1025     if (ret)
1026         goto err;
1027 
1028     ret = qup_i2c_wait_for_complete(qup, qup->msg);
1029     if (ret)
1030         goto err;
1031 
1032     ret = qup_i2c_bus_active(qup, ONE_BYTE);
1033 
1034 err:
1035     disable_irq(qup->irq);
1036     return ret;
1037 }
1038 
1039 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1040 {
1041     struct i2c_msg *msg = qup->msg;
1042     struct qup_i2c_block *blk = &qup->blk;
1043 
1044     qup->pos = 0;
1045     blk->total_tx_len = msg->len + 1;
1046     blk->total_rx_len = 0;
1047 
1048     return qup_i2c_conf_xfer_v1(qup, false);
1049 }
1050 
1051 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1052 {
1053     struct qup_i2c_block *blk = &qup->blk;
1054 
1055     qup->pos = 0;
1056     blk->total_tx_len = 2;
1057     blk->total_rx_len = qup->msg->len;
1058 
1059     return qup_i2c_conf_xfer_v1(qup, true);
1060 }
1061 
1062 static int qup_i2c_xfer(struct i2c_adapter *adap,
1063             struct i2c_msg msgs[],
1064             int num)
1065 {
1066     struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1067     int ret, idx;
1068 
1069     ret = pm_runtime_get_sync(qup->dev);
1070     if (ret < 0)
1071         goto out;
1072 
1073     qup->bus_err = 0;
1074     qup->qup_err = 0;
1075 
1076     writel(1, qup->base + QUP_SW_RESET);
1077     ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1078     if (ret)
1079         goto out;
1080 
1081     /* Configure QUP as I2C mini core */
1082     writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1083 
1084     for (idx = 0; idx < num; idx++) {
1085         if (qup_i2c_poll_state_i2c_master(qup)) {
1086             ret = -EIO;
1087             goto out;
1088         }
1089 
1090         if (qup_i2c_check_msg_len(&msgs[idx])) {
1091             ret = -EINVAL;
1092             goto out;
1093         }
1094 
1095         qup->msg = &msgs[idx];
1096         if (msgs[idx].flags & I2C_M_RD)
1097             ret = qup_i2c_read_one(qup);
1098         else
1099             ret = qup_i2c_write_one(qup);
1100 
1101         if (ret)
1102             break;
1103 
1104         ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1105         if (ret)
1106             break;
1107     }
1108 
1109     if (ret == 0)
1110         ret = num;
1111 out:
1112 
1113     pm_runtime_mark_last_busy(qup->dev);
1114     pm_runtime_put_autosuspend(qup->dev);
1115 
1116     return ret;
1117 }
1118 
1119 /*
1120  * Configure registers related with reconfiguration during run and call it
1121  * before each i2c sub transfer.
1122  */
1123 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1124 {
1125     struct qup_i2c_block *blk = &qup->blk;
1126     u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1127 
1128     if (blk->is_tx_blk_mode)
1129         writel(qup->config_run | blk->total_tx_len,
1130                qup->base + QUP_MX_OUTPUT_CNT);
1131     else
1132         writel(qup->config_run | blk->total_tx_len,
1133                qup->base + QUP_MX_WRITE_CNT);
1134 
1135     if (blk->total_rx_len) {
1136         if (blk->is_rx_blk_mode)
1137             writel(qup->config_run | blk->total_rx_len,
1138                    qup->base + QUP_MX_INPUT_CNT);
1139         else
1140             writel(qup->config_run | blk->total_rx_len,
1141                    qup->base + QUP_MX_READ_CNT);
1142     } else {
1143         qup_config |= QUP_NO_INPUT;
1144     }
1145 
1146     writel(qup_config, qup->base + QUP_CONFIG);
1147 }
1148 
1149 /*
1150  * Configure registers related with transfer mode (FIFO/Block)
1151  * before starting of i2c transfer. It will be called only once in
1152  * QUP RESET state.
1153  */
1154 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1155 {
1156     struct qup_i2c_block *blk = &qup->blk;
1157     u32 io_mode = QUP_REPACK_EN;
1158 
1159     if (blk->is_tx_blk_mode) {
1160         io_mode |= QUP_OUTPUT_BLK_MODE;
1161         writel(0, qup->base + QUP_MX_WRITE_CNT);
1162     } else {
1163         writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1164     }
1165 
1166     if (blk->is_rx_blk_mode) {
1167         io_mode |= QUP_INPUT_BLK_MODE;
1168         writel(0, qup->base + QUP_MX_READ_CNT);
1169     } else {
1170         writel(0, qup->base + QUP_MX_INPUT_CNT);
1171     }
1172 
1173     writel(io_mode, qup->base + QUP_IO_MODE);
1174 }
1175 
1176 /* Clear required variables before starting of any QUP v2 sub transfer. */
1177 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1178 {
1179     blk->send_last_word = false;
1180     blk->tx_tags_sent = false;
1181     blk->tx_fifo_data = 0;
1182     blk->tx_fifo_data_pos = 0;
1183     blk->tx_fifo_free = 0;
1184 
1185     blk->rx_tags_fetched = false;
1186     blk->rx_bytes_read = false;
1187     blk->rx_fifo_data = 0;
1188     blk->rx_fifo_data_pos = 0;
1189     blk->fifo_available = 0;
1190 }
1191 
1192 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1193 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1194 {
1195     struct qup_i2c_block *blk = &qup->blk;
1196     int j;
1197 
1198     for (j = blk->rx_fifo_data_pos;
1199          blk->cur_blk_len && blk->fifo_available;
1200          blk->cur_blk_len--, blk->fifo_available--) {
1201         if (j == 0)
1202             blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1203 
1204         *(blk->cur_data++) = blk->rx_fifo_data;
1205         blk->rx_fifo_data >>= 8;
1206 
1207         if (j == 3)
1208             j = 0;
1209         else
1210             j++;
1211     }
1212 
1213     blk->rx_fifo_data_pos = j;
1214 }
1215 
1216 /* Receive tags for read message in QUP v2 i2c transfer. */
1217 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1218 {
1219     struct qup_i2c_block *blk = &qup->blk;
1220 
1221     blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1222     blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1223     blk->rx_fifo_data_pos = blk->rx_tag_len;
1224     blk->fifo_available -= blk->rx_tag_len;
1225 }
1226 
1227 /*
1228  * Read the data and tags from RX FIFO. Since in read case, the tags will be
1229  * preceded by received data bytes so
1230  * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1231  *    all tag bytes and discard that.
1232  * 2. Read the data from RX FIFO. When all the data bytes have been read then
1233  *    set rx_bytes_read to true.
1234  */
1235 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1236 {
1237     struct qup_i2c_block *blk = &qup->blk;
1238 
1239     if (!blk->rx_tags_fetched) {
1240         qup_i2c_recv_tags(qup);
1241         blk->rx_tags_fetched = true;
1242     }
1243 
1244     qup_i2c_recv_data(qup);
1245     if (!blk->cur_blk_len)
1246         blk->rx_bytes_read = true;
1247 }
1248 
1249 /*
1250  * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1251  * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1252  * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1253  */
1254 static void
1255 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1256 {
1257     struct qup_i2c_block *blk = &qup->blk;
1258     unsigned int j;
1259 
1260     for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1261          (*len)--, blk->tx_fifo_free--) {
1262         blk->tx_fifo_data |= *(*data)++ << (j * 8);
1263         if (j == 3) {
1264             writel(blk->tx_fifo_data,
1265                    qup->base + QUP_OUT_FIFO_BASE);
1266             blk->tx_fifo_data = 0x0;
1267             j = 0;
1268         } else {
1269             j++;
1270         }
1271     }
1272 
1273     blk->tx_fifo_data_pos = j;
1274 }
1275 
1276 /* Transfer tags for read message in QUP v2 i2c transfer. */
1277 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1278 {
1279     struct qup_i2c_block *blk = &qup->blk;
1280 
1281     qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1282     if (blk->tx_fifo_data_pos)
1283         writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1284 }
1285 
1286 /*
1287  * Write the data and tags in TX FIFO. Since in write case, both tags and data
1288  * need to be written and QUP write tags can have maximum 256 data length, so
1289  *
1290  * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1291  *    tags to TX FIFO and set tx_tags_sent to true.
1292  * 2. Check if send_last_word is true. It will be set when last few data bytes
1293  *    (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1294  *    space. All this data bytes are available in tx_fifo_data so write this
1295  *    in FIFO.
1296  * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1297  *    then more data is pending otherwise following 3 cases can be possible
1298  *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1299  *       have been written in TX FIFO so nothing else is required.
1300  *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1301  *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1302  *   in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1303  *       will be always greater than or equal to 4 bytes.
1304  *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1305  *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1306  *       FIFO full so make send_last_word true.
1307  */
1308 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1309 {
1310     struct qup_i2c_block *blk = &qup->blk;
1311 
1312     if (!blk->tx_tags_sent) {
1313         qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1314                        &blk->tx_tag_len);
1315         blk->tx_tags_sent = true;
1316     }
1317 
1318     if (blk->send_last_word)
1319         goto send_last_word;
1320 
1321     qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1322     if (!blk->cur_blk_len) {
1323         if (!blk->tx_fifo_data_pos)
1324             return;
1325 
1326         if (blk->tx_fifo_free)
1327             goto send_last_word;
1328 
1329         blk->send_last_word = true;
1330     }
1331 
1332     return;
1333 
1334 send_last_word:
1335     writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1336 }
1337 
1338 /*
1339  * Main transfer function which read or write i2c data.
1340  * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1341  * transfers can be scheduled.
1342  */
1343 static int
1344 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1345              bool change_pause_state)
1346 {
1347     struct qup_i2c_block *blk = &qup->blk;
1348     struct i2c_msg *msg = qup->msg;
1349     int ret;
1350 
1351     /*
1352      * Check if its SMBus Block read for which the top level read will be
1353      * done into 2 QUP reads. One with message length 1 while other one is
1354      * with actual length.
1355      */
1356     if (qup_i2c_check_msg_len(msg)) {
1357         if (qup->is_smbus_read) {
1358             /*
1359              * If the message length is already read in
1360              * the first byte of the buffer, account for
1361              * that by setting the offset
1362              */
1363             blk->cur_data += 1;
1364             is_first = false;
1365         } else {
1366             change_pause_state = false;
1367         }
1368     }
1369 
1370     qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1371 
1372     qup_i2c_clear_blk_v2(blk);
1373     qup_i2c_conf_count_v2(qup);
1374 
1375     /* If it is first sub transfer, then configure i2c bus clocks */
1376     if (is_first) {
1377         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1378         if (ret)
1379             return ret;
1380 
1381         writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1382 
1383         ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1384         if (ret)
1385             return ret;
1386     }
1387 
1388     reinit_completion(&qup->xfer);
1389     enable_irq(qup->irq);
1390     /*
1391      * In FIFO mode, tx FIFO can be written directly while in block mode the
1392      * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1393      */
1394     if (!blk->is_tx_blk_mode) {
1395         blk->tx_fifo_free = qup->out_fifo_sz;
1396 
1397         if (is_rx)
1398             qup_i2c_write_rx_tags_v2(qup);
1399         else
1400             qup_i2c_write_tx_fifo_v2(qup);
1401     }
1402 
1403     ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1404     if (ret)
1405         goto err;
1406 
1407     ret = qup_i2c_wait_for_complete(qup, msg);
1408     if (ret)
1409         goto err;
1410 
1411     /* Move to pause state for all the transfers, except last one */
1412     if (change_pause_state) {
1413         ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1414         if (ret)
1415             goto err;
1416     }
1417 
1418 err:
1419     disable_irq(qup->irq);
1420     return ret;
1421 }
1422 
1423 /*
1424  * Transfer one read/write message in i2c transfer. It splits the message into
1425  * multiple of blk_xfer_limit data length blocks and schedule each
1426  * QUP block individually.
1427  */
1428 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1429 {
1430     int ret = 0;
1431     unsigned int data_len, i;
1432     struct i2c_msg *msg = qup->msg;
1433     struct qup_i2c_block *blk = &qup->blk;
1434     u8 *msg_buf = msg->buf;
1435 
1436     qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1437     qup_i2c_set_blk_data(qup, msg);
1438 
1439     for (i = 0; i < blk->count; i++) {
1440         data_len =  qup_i2c_get_data_len(qup);
1441         blk->pos = i;
1442         blk->cur_tx_tags = blk->tags;
1443         blk->cur_blk_len = data_len;
1444         blk->tx_tag_len =
1445             qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1446 
1447         blk->cur_data = msg_buf;
1448 
1449         if (is_rx) {
1450             blk->total_tx_len = blk->tx_tag_len;
1451             blk->rx_tag_len = 2;
1452             blk->total_rx_len = blk->rx_tag_len + data_len;
1453         } else {
1454             blk->total_tx_len = blk->tx_tag_len + data_len;
1455             blk->total_rx_len = 0;
1456         }
1457 
1458         ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1459                        !qup->is_last || i < blk->count - 1);
1460         if (ret)
1461             return ret;
1462 
1463         /* Handle SMBus block read length */
1464         if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1465             !qup->is_smbus_read) {
1466             if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1467                 return -EPROTO;
1468 
1469             msg->len = msg->buf[0];
1470             qup->is_smbus_read = true;
1471             ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1472             qup->is_smbus_read = false;
1473             if (ret)
1474                 return ret;
1475 
1476             msg->len += 1;
1477         }
1478 
1479         msg_buf += data_len;
1480         blk->data_len -= qup->blk_xfer_limit;
1481     }
1482 
1483     return ret;
1484 }
1485 
1486 /*
1487  * QUP v2 supports 3 modes
1488  * Programmed IO using FIFO mode : Less than FIFO size
1489  * Programmed IO using Block mode : Greater than FIFO size
1490  * DMA using BAM : Appropriate for any transaction size but the address should
1491  *         be DMA applicable
1492  *
1493  * This function determines the mode which will be used for this transfer. An
1494  * i2c transfer contains multiple message. Following are the rules to determine
1495  * the mode used.
1496  * 1. Determine complete length, maximum tx and rx length for complete transfer.
1497  * 2. If complete transfer length is greater than fifo size then use the DMA
1498  *    mode.
1499  * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1500  *    for maximum tx and rx length to determine mode.
1501  */
1502 static int
1503 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1504               struct i2c_msg msgs[], int num)
1505 {
1506     int idx;
1507     bool no_dma = false;
1508     unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1509 
1510     /* All i2c_msgs should be transferred using either dma or cpu */
1511     for (idx = 0; idx < num; idx++) {
1512         if (msgs[idx].flags & I2C_M_RD)
1513             max_rx_len = max_t(unsigned int, max_rx_len,
1514                        msgs[idx].len);
1515         else
1516             max_tx_len = max_t(unsigned int, max_tx_len,
1517                        msgs[idx].len);
1518 
1519         if (is_vmalloc_addr(msgs[idx].buf))
1520             no_dma = true;
1521 
1522         total_len += msgs[idx].len;
1523     }
1524 
1525     if (!no_dma && qup->is_dma &&
1526         (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1527         qup->use_dma = true;
1528     } else {
1529         qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1530             QUP_MAX_TAGS_LEN;
1531         qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1532             READ_RX_TAGS_LEN;
1533     }
1534 
1535     return 0;
1536 }
1537 
1538 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1539                struct i2c_msg msgs[],
1540                int num)
1541 {
1542     struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1543     int ret, idx = 0;
1544 
1545     qup->bus_err = 0;
1546     qup->qup_err = 0;
1547 
1548     ret = pm_runtime_get_sync(qup->dev);
1549     if (ret < 0)
1550         goto out;
1551 
1552     ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1553     if (ret)
1554         goto out;
1555 
1556     writel(1, qup->base + QUP_SW_RESET);
1557     ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1558     if (ret)
1559         goto out;
1560 
1561     /* Configure QUP as I2C mini core */
1562     writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1563     writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1564 
1565     if (qup_i2c_poll_state_i2c_master(qup)) {
1566         ret = -EIO;
1567         goto out;
1568     }
1569 
1570     if (qup->use_dma) {
1571         reinit_completion(&qup->xfer);
1572         ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1573         qup->use_dma = false;
1574     } else {
1575         qup_i2c_conf_mode_v2(qup);
1576 
1577         for (idx = 0; idx < num; idx++) {
1578             qup->msg = &msgs[idx];
1579             qup->is_last = idx == (num - 1);
1580 
1581             ret = qup_i2c_xfer_v2_msg(qup, idx,
1582                     !!(msgs[idx].flags & I2C_M_RD));
1583             if (ret)
1584                 break;
1585         }
1586         qup->msg = NULL;
1587     }
1588 
1589     if (!ret)
1590         ret = qup_i2c_bus_active(qup, ONE_BYTE);
1591 
1592     if (!ret)
1593         qup_i2c_change_state(qup, QUP_RESET_STATE);
1594 
1595     if (ret == 0)
1596         ret = num;
1597 out:
1598     pm_runtime_mark_last_busy(qup->dev);
1599     pm_runtime_put_autosuspend(qup->dev);
1600 
1601     return ret;
1602 }
1603 
1604 static u32 qup_i2c_func(struct i2c_adapter *adap)
1605 {
1606     return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1607 }
1608 
1609 static const struct i2c_algorithm qup_i2c_algo = {
1610     .master_xfer    = qup_i2c_xfer,
1611     .functionality  = qup_i2c_func,
1612 };
1613 
1614 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1615     .master_xfer    = qup_i2c_xfer_v2,
1616     .functionality  = qup_i2c_func,
1617 };
1618 
1619 /*
1620  * The QUP block will issue a NACK and STOP on the bus when reaching
1621  * the end of the read, the length of the read is specified as one byte
1622  * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1623  */
1624 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1625     .flags = I2C_AQ_NO_ZERO_LEN,
1626     .max_read_len = QUP_READ_LIMIT,
1627 };
1628 
1629 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1630     .flags = I2C_AQ_NO_ZERO_LEN,
1631 };
1632 
1633 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1634 {
1635     clk_prepare_enable(qup->clk);
1636     clk_prepare_enable(qup->pclk);
1637 }
1638 
1639 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1640 {
1641     u32 config;
1642 
1643     qup_i2c_change_state(qup, QUP_RESET_STATE);
1644     clk_disable_unprepare(qup->clk);
1645     config = readl(qup->base + QUP_CONFIG);
1646     config |= QUP_CLOCK_AUTO_GATE;
1647     writel(config, qup->base + QUP_CONFIG);
1648     clk_disable_unprepare(qup->pclk);
1649 }
1650 
1651 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1652     { "QCOM8010"},
1653     { },
1654 };
1655 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1656 
1657 static int qup_i2c_probe(struct platform_device *pdev)
1658 {
1659     static const int blk_sizes[] = {4, 16, 32};
1660     struct qup_i2c_dev *qup;
1661     unsigned long one_bit_t;
1662     u32 io_mode, hw_ver, size;
1663     int ret, fs_div, hs_div;
1664     u32 src_clk_freq = DEFAULT_SRC_CLK;
1665     u32 clk_freq = DEFAULT_CLK_FREQ;
1666     int blocks;
1667     bool is_qup_v1;
1668 
1669     qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1670     if (!qup)
1671         return -ENOMEM;
1672 
1673     qup->dev = &pdev->dev;
1674     init_completion(&qup->xfer);
1675     platform_set_drvdata(pdev, qup);
1676 
1677     if (scl_freq) {
1678         dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1679         clk_freq = scl_freq;
1680     } else {
1681         ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1682         if (ret) {
1683             dev_notice(qup->dev, "using default clock-frequency %d",
1684                 DEFAULT_CLK_FREQ);
1685         }
1686     }
1687 
1688     if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1689         qup->adap.algo = &qup_i2c_algo;
1690         qup->adap.quirks = &qup_i2c_quirks;
1691         is_qup_v1 = true;
1692     } else {
1693         qup->adap.algo = &qup_i2c_algo_v2;
1694         qup->adap.quirks = &qup_i2c_quirks_v2;
1695         is_qup_v1 = false;
1696         if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1697             goto nodma;
1698         else
1699             ret = qup_i2c_req_dma(qup);
1700 
1701         if (ret == -EPROBE_DEFER)
1702             goto fail_dma;
1703         else if (ret != 0)
1704             goto nodma;
1705 
1706         qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1707         blocks = (MX_DMA_BLOCKS << 1) + 1;
1708         qup->btx.sg = devm_kcalloc(&pdev->dev,
1709                        blocks, sizeof(*qup->btx.sg),
1710                        GFP_KERNEL);
1711         if (!qup->btx.sg) {
1712             ret = -ENOMEM;
1713             goto fail_dma;
1714         }
1715         sg_init_table(qup->btx.sg, blocks);
1716 
1717         qup->brx.sg = devm_kcalloc(&pdev->dev,
1718                        blocks, sizeof(*qup->brx.sg),
1719                        GFP_KERNEL);
1720         if (!qup->brx.sg) {
1721             ret = -ENOMEM;
1722             goto fail_dma;
1723         }
1724         sg_init_table(qup->brx.sg, blocks);
1725 
1726         /* 2 tag bytes for each block + 5 for start, stop tags */
1727         size = blocks * 2 + 5;
1728 
1729         qup->start_tag.start = devm_kzalloc(&pdev->dev,
1730                             size, GFP_KERNEL);
1731         if (!qup->start_tag.start) {
1732             ret = -ENOMEM;
1733             goto fail_dma;
1734         }
1735 
1736         qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1737         if (!qup->brx.tag.start) {
1738             ret = -ENOMEM;
1739             goto fail_dma;
1740         }
1741 
1742         qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1743         if (!qup->btx.tag.start) {
1744             ret = -ENOMEM;
1745             goto fail_dma;
1746         }
1747         qup->is_dma = true;
1748     }
1749 
1750 nodma:
1751     /* We support frequencies up to FAST Mode Plus (1MHz) */
1752     if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1753         dev_err(qup->dev, "clock frequency not supported %d\n",
1754             clk_freq);
1755         return -EINVAL;
1756     }
1757 
1758     qup->base = devm_platform_ioremap_resource(pdev, 0);
1759     if (IS_ERR(qup->base))
1760         return PTR_ERR(qup->base);
1761 
1762     qup->irq = platform_get_irq(pdev, 0);
1763     if (qup->irq < 0)
1764         return qup->irq;
1765 
1766     if (has_acpi_companion(qup->dev)) {
1767         ret = device_property_read_u32(qup->dev,
1768                 "src-clock-hz", &src_clk_freq);
1769         if (ret) {
1770             dev_notice(qup->dev, "using default src-clock-hz %d",
1771                 DEFAULT_SRC_CLK);
1772         }
1773         ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1774     } else {
1775         qup->clk = devm_clk_get(qup->dev, "core");
1776         if (IS_ERR(qup->clk)) {
1777             dev_err(qup->dev, "Could not get core clock\n");
1778             return PTR_ERR(qup->clk);
1779         }
1780 
1781         qup->pclk = devm_clk_get(qup->dev, "iface");
1782         if (IS_ERR(qup->pclk)) {
1783             dev_err(qup->dev, "Could not get iface clock\n");
1784             return PTR_ERR(qup->pclk);
1785         }
1786         qup_i2c_enable_clocks(qup);
1787         src_clk_freq = clk_get_rate(qup->clk);
1788     }
1789 
1790     /*
1791      * Bootloaders might leave a pending interrupt on certain QUP's,
1792      * so we reset the core before registering for interrupts.
1793      */
1794     writel(1, qup->base + QUP_SW_RESET);
1795     ret = qup_i2c_poll_state_valid(qup);
1796     if (ret)
1797         goto fail;
1798 
1799     ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1800                    IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1801                    "i2c_qup", qup);
1802     if (ret) {
1803         dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1804         goto fail;
1805     }
1806 
1807     hw_ver = readl(qup->base + QUP_HW_VERSION);
1808     dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1809 
1810     io_mode = readl(qup->base + QUP_IO_MODE);
1811 
1812     /*
1813      * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1814      * associated with each byte written/received
1815      */
1816     size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1817     if (size >= ARRAY_SIZE(blk_sizes)) {
1818         ret = -EIO;
1819         goto fail;
1820     }
1821     qup->out_blk_sz = blk_sizes[size];
1822 
1823     size = QUP_INPUT_BLOCK_SIZE(io_mode);
1824     if (size >= ARRAY_SIZE(blk_sizes)) {
1825         ret = -EIO;
1826         goto fail;
1827     }
1828     qup->in_blk_sz = blk_sizes[size];
1829 
1830     if (is_qup_v1) {
1831         /*
1832          * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1833          * single transfer but the block size is in bytes so divide the
1834          * in_blk_sz and out_blk_sz by 2
1835          */
1836         qup->in_blk_sz /= 2;
1837         qup->out_blk_sz /= 2;
1838         qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1839         qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1840         qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1841     } else {
1842         qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1843         qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1844         qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1845     }
1846 
1847     size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1848     qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1849 
1850     size = QUP_INPUT_FIFO_SIZE(io_mode);
1851     qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1852 
1853     hs_div = 3;
1854     if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1855         fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1856         qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1857     } else {
1858         /* 33%/66% duty cycle */
1859         fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1860         qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1861     }
1862 
1863     /*
1864      * Time it takes for a byte to be clocked out on the bus.
1865      * Each byte takes 9 clock cycles (8 bits + 1 ack).
1866      */
1867     one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1868     qup->one_byte_t = one_bit_t * 9;
1869     qup->xfer_timeout = TOUT_MIN * HZ +
1870         usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1871 
1872     dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1873         qup->in_blk_sz, qup->in_fifo_sz,
1874         qup->out_blk_sz, qup->out_fifo_sz);
1875 
1876     i2c_set_adapdata(&qup->adap, qup);
1877     qup->adap.dev.parent = qup->dev;
1878     qup->adap.dev.of_node = pdev->dev.of_node;
1879     qup->is_last = true;
1880 
1881     strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1882 
1883     pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1884     pm_runtime_use_autosuspend(qup->dev);
1885     pm_runtime_set_active(qup->dev);
1886     pm_runtime_enable(qup->dev);
1887 
1888     ret = i2c_add_adapter(&qup->adap);
1889     if (ret)
1890         goto fail_runtime;
1891 
1892     return 0;
1893 
1894 fail_runtime:
1895     pm_runtime_disable(qup->dev);
1896     pm_runtime_set_suspended(qup->dev);
1897 fail:
1898     qup_i2c_disable_clocks(qup);
1899 fail_dma:
1900     if (qup->btx.dma)
1901         dma_release_channel(qup->btx.dma);
1902     if (qup->brx.dma)
1903         dma_release_channel(qup->brx.dma);
1904     return ret;
1905 }
1906 
1907 static int qup_i2c_remove(struct platform_device *pdev)
1908 {
1909     struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1910 
1911     if (qup->is_dma) {
1912         dma_release_channel(qup->btx.dma);
1913         dma_release_channel(qup->brx.dma);
1914     }
1915 
1916     disable_irq(qup->irq);
1917     qup_i2c_disable_clocks(qup);
1918     i2c_del_adapter(&qup->adap);
1919     pm_runtime_disable(qup->dev);
1920     pm_runtime_set_suspended(qup->dev);
1921     return 0;
1922 }
1923 
1924 #ifdef CONFIG_PM
1925 static int qup_i2c_pm_suspend_runtime(struct device *device)
1926 {
1927     struct qup_i2c_dev *qup = dev_get_drvdata(device);
1928 
1929     dev_dbg(device, "pm_runtime: suspending...\n");
1930     qup_i2c_disable_clocks(qup);
1931     return 0;
1932 }
1933 
1934 static int qup_i2c_pm_resume_runtime(struct device *device)
1935 {
1936     struct qup_i2c_dev *qup = dev_get_drvdata(device);
1937 
1938     dev_dbg(device, "pm_runtime: resuming...\n");
1939     qup_i2c_enable_clocks(qup);
1940     return 0;
1941 }
1942 #endif
1943 
1944 #ifdef CONFIG_PM_SLEEP
1945 static int qup_i2c_suspend(struct device *device)
1946 {
1947     if (!pm_runtime_suspended(device))
1948         return qup_i2c_pm_suspend_runtime(device);
1949     return 0;
1950 }
1951 
1952 static int qup_i2c_resume(struct device *device)
1953 {
1954     qup_i2c_pm_resume_runtime(device);
1955     pm_runtime_mark_last_busy(device);
1956     pm_request_autosuspend(device);
1957     return 0;
1958 }
1959 #endif
1960 
1961 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1962     SET_SYSTEM_SLEEP_PM_OPS(
1963         qup_i2c_suspend,
1964         qup_i2c_resume)
1965     SET_RUNTIME_PM_OPS(
1966         qup_i2c_pm_suspend_runtime,
1967         qup_i2c_pm_resume_runtime,
1968         NULL)
1969 };
1970 
1971 static const struct of_device_id qup_i2c_dt_match[] = {
1972     { .compatible = "qcom,i2c-qup-v1.1.1" },
1973     { .compatible = "qcom,i2c-qup-v2.1.1" },
1974     { .compatible = "qcom,i2c-qup-v2.2.1" },
1975     {}
1976 };
1977 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1978 
1979 static struct platform_driver qup_i2c_driver = {
1980     .probe  = qup_i2c_probe,
1981     .remove = qup_i2c_remove,
1982     .driver = {
1983         .name = "i2c_qup",
1984         .pm = &qup_i2c_qup_pm_ops,
1985         .of_match_table = qup_i2c_dt_match,
1986         .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1987     },
1988 };
1989 
1990 module_platform_driver(qup_i2c_driver);
1991 
1992 MODULE_LICENSE("GPL v2");
1993 MODULE_ALIAS("platform:i2c_qup");