Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
0004  *         monitoring
0005  *
0006  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
0007  */
0008 
0009 /*
0010  * Supports following chips:
0011  *
0012  * Chip     #vin    #fanin  #pwm    #temp   wchipid vendid  i2c ISA
0013  * w83791d  10  5   5   3   0x71    0x5ca3  yes no
0014  *
0015  * The w83791d chip appears to be part way between the 83781d and the
0016  * 83792d. Thus, this file is derived from both the w83792d.c and
0017  * w83781d.c files.
0018  *
0019  * The w83791g chip is the same as the w83791d but lead-free.
0020  */
0021 
0022 #include <linux/module.h>
0023 #include <linux/init.h>
0024 #include <linux/slab.h>
0025 #include <linux/i2c.h>
0026 #include <linux/hwmon.h>
0027 #include <linux/hwmon-vid.h>
0028 #include <linux/hwmon-sysfs.h>
0029 #include <linux/err.h>
0030 #include <linux/mutex.h>
0031 #include <linux/jiffies.h>
0032 
0033 #define NUMBER_OF_VIN       10
0034 #define NUMBER_OF_FANIN     5
0035 #define NUMBER_OF_TEMPIN    3
0036 #define NUMBER_OF_PWM       5
0037 
0038 /* Addresses to scan */
0039 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
0040                         I2C_CLIENT_END };
0041 
0042 /* Insmod parameters */
0043 
0044 static unsigned short force_subclients[4];
0045 module_param_array(force_subclients, short, NULL, 0);
0046 MODULE_PARM_DESC(force_subclients,
0047          "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
0048 
0049 static bool reset;
0050 module_param(reset, bool, 0);
0051 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
0052 
0053 static bool init;
0054 module_param(init, bool, 0);
0055 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
0056 
0057 /* The W83791D registers */
0058 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
0059     0x20,           /* VCOREA in DataSheet */
0060     0x21,           /* VINR0 in DataSheet */
0061     0x22,           /* +3.3VIN in DataSheet */
0062     0x23,           /* VDD5V in DataSheet */
0063     0x24,           /* +12VIN in DataSheet */
0064     0x25,           /* -12VIN in DataSheet */
0065     0x26,           /* -5VIN in DataSheet */
0066     0xB0,           /* 5VSB in DataSheet */
0067     0xB1,           /* VBAT in DataSheet */
0068     0xB2            /* VINR1 in DataSheet */
0069 };
0070 
0071 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
0072     0x2B,           /* VCOREA High Limit in DataSheet */
0073     0x2D,           /* VINR0 High Limit in DataSheet */
0074     0x2F,           /* +3.3VIN High Limit in DataSheet */
0075     0x31,           /* VDD5V High Limit in DataSheet */
0076     0x33,           /* +12VIN High Limit in DataSheet */
0077     0x35,           /* -12VIN High Limit in DataSheet */
0078     0x37,           /* -5VIN High Limit in DataSheet */
0079     0xB4,           /* 5VSB High Limit in DataSheet */
0080     0xB6,           /* VBAT High Limit in DataSheet */
0081     0xB8            /* VINR1 High Limit in DataSheet */
0082 };
0083 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
0084     0x2C,           /* VCOREA Low Limit in DataSheet */
0085     0x2E,           /* VINR0 Low Limit in DataSheet */
0086     0x30,           /* +3.3VIN Low Limit in DataSheet */
0087     0x32,           /* VDD5V Low Limit in DataSheet */
0088     0x34,           /* +12VIN Low Limit in DataSheet */
0089     0x36,           /* -12VIN Low Limit in DataSheet */
0090     0x38,           /* -5VIN Low Limit in DataSheet */
0091     0xB5,           /* 5VSB Low Limit in DataSheet */
0092     0xB7,           /* VBAT Low Limit in DataSheet */
0093     0xB9            /* VINR1 Low Limit in DataSheet */
0094 };
0095 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
0096     0x28,           /* FAN 1 Count in DataSheet */
0097     0x29,           /* FAN 2 Count in DataSheet */
0098     0x2A,           /* FAN 3 Count in DataSheet */
0099     0xBA,           /* FAN 4 Count in DataSheet */
0100     0xBB,           /* FAN 5 Count in DataSheet */
0101 };
0102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
0103     0x3B,           /* FAN 1 Count Low Limit in DataSheet */
0104     0x3C,           /* FAN 2 Count Low Limit in DataSheet */
0105     0x3D,           /* FAN 3 Count Low Limit in DataSheet */
0106     0xBC,           /* FAN 4 Count Low Limit in DataSheet */
0107     0xBD,           /* FAN 5 Count Low Limit in DataSheet */
0108 };
0109 
0110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
0111     0x81,           /* PWM 1 duty cycle register in DataSheet */
0112     0x83,           /* PWM 2 duty cycle register in DataSheet */
0113     0x94,           /* PWM 3 duty cycle register in DataSheet */
0114     0xA0,           /* PWM 4 duty cycle register in DataSheet */
0115     0xA1,           /* PWM 5 duty cycle register in DataSheet */
0116 };
0117 
0118 static const u8 W83791D_REG_TEMP_TARGET[3] = {
0119     0x85,           /* PWM 1 target temperature for temp 1 */
0120     0x86,           /* PWM 2 target temperature for temp 2 */
0121     0x96,           /* PWM 3 target temperature for temp 3 */
0122 };
0123 
0124 static const u8 W83791D_REG_TEMP_TOL[2] = {
0125     0x87,           /* PWM 1/2 temperature tolerance */
0126     0x97,           /* PWM 3 temperature tolerance */
0127 };
0128 
0129 static const u8 W83791D_REG_FAN_CFG[2] = {
0130     0x84,           /* FAN 1/2 configuration */
0131     0x95,           /* FAN 3 configuration */
0132 };
0133 
0134 static const u8 W83791D_REG_FAN_DIV[3] = {
0135     0x47,           /* contains FAN1 and FAN2 Divisor */
0136     0x4b,           /* contains FAN3 Divisor */
0137     0x5C,           /* contains FAN4 and FAN5 Divisor */
0138 };
0139 
0140 #define W83791D_REG_BANK        0x4E
0141 #define W83791D_REG_TEMP2_CONFIG    0xC2
0142 #define W83791D_REG_TEMP3_CONFIG    0xCA
0143 
0144 static const u8 W83791D_REG_TEMP1[3] = {
0145     0x27,           /* TEMP 1 in DataSheet */
0146     0x39,           /* TEMP 1 Over in DataSheet */
0147     0x3A,           /* TEMP 1 Hyst in DataSheet */
0148 };
0149 
0150 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
0151     {0xC0,          /* TEMP 2 in DataSheet */
0152      0xC1,          /* TEMP 2(0.5 deg) in DataSheet */
0153      0xC5,          /* TEMP 2 Over High part in DataSheet */
0154      0xC6,          /* TEMP 2 Over Low part in DataSheet */
0155      0xC3,          /* TEMP 2 Thyst High part in DataSheet */
0156      0xC4},         /* TEMP 2 Thyst Low part in DataSheet */
0157     {0xC8,          /* TEMP 3 in DataSheet */
0158      0xC9,          /* TEMP 3(0.5 deg) in DataSheet */
0159      0xCD,          /* TEMP 3 Over High part in DataSheet */
0160      0xCE,          /* TEMP 3 Over Low part in DataSheet */
0161      0xCB,          /* TEMP 3 Thyst High part in DataSheet */
0162      0xCC}          /* TEMP 3 Thyst Low part in DataSheet */
0163 };
0164 
0165 #define W83791D_REG_BEEP_CONFIG     0x4D
0166 
0167 static const u8 W83791D_REG_BEEP_CTRL[3] = {
0168     0x56,           /* BEEP Control Register 1 */
0169     0x57,           /* BEEP Control Register 2 */
0170     0xA3,           /* BEEP Control Register 3 */
0171 };
0172 
0173 #define W83791D_REG_GPIO        0x15
0174 #define W83791D_REG_CONFIG      0x40
0175 #define W83791D_REG_VID_FANDIV      0x47
0176 #define W83791D_REG_DID_VID4        0x49
0177 #define W83791D_REG_WCHIPID     0x58
0178 #define W83791D_REG_CHIPMAN     0x4F
0179 #define W83791D_REG_PIN         0x4B
0180 #define W83791D_REG_I2C_SUBADDR     0x4A
0181 
0182 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
0183 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
0184 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
0185 
0186 #define W83791D_REG_VBAT        0x5D
0187 #define W83791D_REG_I2C_ADDR        0x48
0188 
0189 /*
0190  * The SMBus locks itself. The Winbond W83791D has a bank select register
0191  * (index 0x4e), but the driver only accesses registers in bank 0. Since
0192  * we don't switch banks, we don't need any special code to handle
0193  * locking access between bank switches
0194  */
0195 static inline int w83791d_read(struct i2c_client *client, u8 reg)
0196 {
0197     return i2c_smbus_read_byte_data(client, reg);
0198 }
0199 
0200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
0201 {
0202     return i2c_smbus_write_byte_data(client, reg, value);
0203 }
0204 
0205 /*
0206  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
0207  * in mV as would be measured on the chip input pin, need to just
0208  * multiply/divide by 16 to translate from/to register values.
0209  */
0210 #define IN_TO_REG(val)      (clamp_val((((val) + 8) / 16), 0, 255))
0211 #define IN_FROM_REG(val)    ((val) * 16)
0212 
0213 static u8 fan_to_reg(long rpm, int div)
0214 {
0215     if (rpm == 0)
0216         return 255;
0217     rpm = clamp_val(rpm, 1, 1000000);
0218     return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
0219 }
0220 
0221 #define FAN_FROM_REG(val, div)  ((val) == 0 ? -1 : \
0222                 ((val) == 255 ? 0 : \
0223                     1350000 / ((val) * (div))))
0224 
0225 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
0226 #define TEMP1_FROM_REG(val) ((val) * 1000)
0227 #define TEMP1_TO_REG(val)   ((val) <= -128000 ? -128 : \
0228                  (val) >= 127000 ? 127 : \
0229                  (val) < 0 ? ((val) - 500) / 1000 : \
0230                  ((val) + 500) / 1000)
0231 
0232 /*
0233  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
0234  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
0235  * are the fractional amount. Since we only have 0.5 degree resolution,
0236  * the bottom 7 bits will always be zero
0237  */
0238 #define TEMP23_FROM_REG(val)    ((val) / 128 * 500)
0239 #define TEMP23_TO_REG(val)  (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
0240                            127500), 500) * 128)
0241 
0242 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
0243 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
0244                           1000)
0245 
0246 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
0247 #define TOL_TEMP_TO_REG(val)    DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
0248                           1000)
0249 
0250 #define BEEP_MASK_TO_REG(val)       ((val) & 0xffffff)
0251 #define BEEP_MASK_FROM_REG(val)     ((val) & 0xffffff)
0252 
0253 #define DIV_FROM_REG(val)       (1 << (val))
0254 
0255 static u8 div_to_reg(int nr, long val)
0256 {
0257     int i;
0258 
0259     /* fan divisors max out at 128 */
0260     val = clamp_val(val, 1, 128) >> 1;
0261     for (i = 0; i < 7; i++) {
0262         if (val == 0)
0263             break;
0264         val >>= 1;
0265     }
0266     return (u8) i;
0267 }
0268 
0269 struct w83791d_data {
0270     struct device *hwmon_dev;
0271     struct mutex update_lock;
0272 
0273     bool valid;         /* true if following fields are valid */
0274     unsigned long last_updated; /* In jiffies */
0275 
0276     /* volts */
0277     u8 in[NUMBER_OF_VIN];       /* Register value */
0278     u8 in_max[NUMBER_OF_VIN];   /* Register value */
0279     u8 in_min[NUMBER_OF_VIN];   /* Register value */
0280 
0281     /* fans */
0282     u8 fan[NUMBER_OF_FANIN];    /* Register value */
0283     u8 fan_min[NUMBER_OF_FANIN];    /* Register value */
0284     u8 fan_div[NUMBER_OF_FANIN];    /* Register encoding, shifted right */
0285 
0286     /* Temperature sensors */
0287 
0288     s8 temp1[3];        /* current, over, thyst */
0289     s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
0290                  * integral part, bottom 8 bits are the
0291                  * fractional part. We only use the top
0292                  * 9 bits as the resolution is only
0293                  * to the 0.5 degree C...
0294                  * two sensors with three values
0295                  * (cur, over, hyst)
0296                  */
0297 
0298     /* PWMs */
0299     u8 pwm[5];      /* pwm duty cycle */
0300     u8 pwm_enable[3];   /* pwm enable status for fan 1-3
0301                  * (fan 4-5 only support manual mode)
0302                  */
0303 
0304     u8 temp_target[3];  /* pwm 1-3 target temperature */
0305     u8 temp_tolerance[3];   /* pwm 1-3 temperature tolerance */
0306 
0307     /* Misc */
0308     u32 alarms;     /* realtime status register encoding,combined */
0309     u8 beep_enable;     /* Global beep enable */
0310     u32 beep_mask;      /* Mask off specific beeps */
0311     u8 vid;         /* Register encoding, combined */
0312     u8 vrm;         /* hwmon-vid */
0313 };
0314 
0315 static int w83791d_probe(struct i2c_client *client);
0316 static int w83791d_detect(struct i2c_client *client,
0317               struct i2c_board_info *info);
0318 static int w83791d_remove(struct i2c_client *client);
0319 
0320 static int w83791d_read(struct i2c_client *client, u8 reg);
0321 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
0322 static struct w83791d_data *w83791d_update_device(struct device *dev);
0323 
0324 #ifdef DEBUG
0325 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
0326 #endif
0327 
0328 static void w83791d_init_client(struct i2c_client *client);
0329 
0330 static const struct i2c_device_id w83791d_id[] = {
0331     { "w83791d", 0 },
0332     { }
0333 };
0334 MODULE_DEVICE_TABLE(i2c, w83791d_id);
0335 
0336 static struct i2c_driver w83791d_driver = {
0337     .class      = I2C_CLASS_HWMON,
0338     .driver = {
0339         .name = "w83791d",
0340     },
0341     .probe_new  = w83791d_probe,
0342     .remove     = w83791d_remove,
0343     .id_table   = w83791d_id,
0344     .detect     = w83791d_detect,
0345     .address_list   = normal_i2c,
0346 };
0347 
0348 /* following are the sysfs callback functions */
0349 #define show_in_reg(reg) \
0350 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0351             char *buf) \
0352 { \
0353     struct sensor_device_attribute *sensor_attr = \
0354                         to_sensor_dev_attr(attr); \
0355     struct w83791d_data *data = w83791d_update_device(dev); \
0356     int nr = sensor_attr->index; \
0357     return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
0358 }
0359 
0360 show_in_reg(in);
0361 show_in_reg(in_min);
0362 show_in_reg(in_max);
0363 
0364 #define store_in_reg(REG, reg) \
0365 static ssize_t store_in_##reg(struct device *dev, \
0366                 struct device_attribute *attr, \
0367                 const char *buf, size_t count) \
0368 { \
0369     struct sensor_device_attribute *sensor_attr = \
0370                         to_sensor_dev_attr(attr); \
0371     struct i2c_client *client = to_i2c_client(dev); \
0372     struct w83791d_data *data = i2c_get_clientdata(client); \
0373     int nr = sensor_attr->index; \
0374     unsigned long val; \
0375     int err = kstrtoul(buf, 10, &val); \
0376     if (err) \
0377         return err; \
0378     mutex_lock(&data->update_lock); \
0379     data->in_##reg[nr] = IN_TO_REG(val); \
0380     w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
0381     mutex_unlock(&data->update_lock); \
0382      \
0383     return count; \
0384 }
0385 store_in_reg(MIN, min);
0386 store_in_reg(MAX, max);
0387 
0388 static struct sensor_device_attribute sda_in_input[] = {
0389     SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
0390     SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
0391     SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
0392     SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
0393     SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
0394     SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
0395     SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
0396     SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
0397     SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
0398     SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
0399 };
0400 
0401 static struct sensor_device_attribute sda_in_min[] = {
0402     SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
0403     SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
0404     SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
0405     SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
0406     SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
0407     SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
0408     SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
0409     SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
0410     SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
0411     SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
0412 };
0413 
0414 static struct sensor_device_attribute sda_in_max[] = {
0415     SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
0416     SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
0417     SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
0418     SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
0419     SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
0420     SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
0421     SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
0422     SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
0423     SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
0424     SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
0425 };
0426 
0427 
0428 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
0429             char *buf)
0430 {
0431     struct sensor_device_attribute *sensor_attr =
0432                         to_sensor_dev_attr(attr);
0433     struct w83791d_data *data = w83791d_update_device(dev);
0434     int bitnr = sensor_attr->index;
0435 
0436     return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
0437 }
0438 
0439 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
0440             const char *buf, size_t count)
0441 {
0442     struct sensor_device_attribute *sensor_attr =
0443                         to_sensor_dev_attr(attr);
0444     struct i2c_client *client = to_i2c_client(dev);
0445     struct w83791d_data *data = i2c_get_clientdata(client);
0446     int bitnr = sensor_attr->index;
0447     int bytenr = bitnr / 8;
0448     unsigned long val;
0449     int err;
0450 
0451     err = kstrtoul(buf, 10, &val);
0452     if (err)
0453         return err;
0454 
0455     val = val ? 1 : 0;
0456 
0457     mutex_lock(&data->update_lock);
0458 
0459     data->beep_mask &= ~(0xff << (bytenr * 8));
0460     data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
0461         << (bytenr * 8);
0462 
0463     data->beep_mask &= ~(1 << bitnr);
0464     data->beep_mask |= val << bitnr;
0465 
0466     w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
0467         (data->beep_mask >> (bytenr * 8)) & 0xff);
0468 
0469     mutex_unlock(&data->update_lock);
0470 
0471     return count;
0472 }
0473 
0474 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
0475             char *buf)
0476 {
0477     struct sensor_device_attribute *sensor_attr =
0478                         to_sensor_dev_attr(attr);
0479     struct w83791d_data *data = w83791d_update_device(dev);
0480     int bitnr = sensor_attr->index;
0481 
0482     return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
0483 }
0484 
0485 /*
0486  * Note: The bitmask for the beep enable/disable is different than
0487  * the bitmask for the alarm.
0488  */
0489 static struct sensor_device_attribute sda_in_beep[] = {
0490     SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
0491     SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
0492     SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
0493     SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
0494     SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
0495     SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
0496     SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
0497     SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
0498     SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
0499     SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
0500 };
0501 
0502 static struct sensor_device_attribute sda_in_alarm[] = {
0503     SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
0504     SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
0505     SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
0506     SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
0507     SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
0508     SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
0509     SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
0510     SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
0511     SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
0512     SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
0513 };
0514 
0515 #define show_fan_reg(reg) \
0516 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0517                 char *buf) \
0518 { \
0519     struct sensor_device_attribute *sensor_attr = \
0520                         to_sensor_dev_attr(attr); \
0521     struct w83791d_data *data = w83791d_update_device(dev); \
0522     int nr = sensor_attr->index; \
0523     return sprintf(buf, "%d\n", \
0524         FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
0525 }
0526 
0527 show_fan_reg(fan);
0528 show_fan_reg(fan_min);
0529 
0530 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
0531                 const char *buf, size_t count)
0532 {
0533     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0534     struct i2c_client *client = to_i2c_client(dev);
0535     struct w83791d_data *data = i2c_get_clientdata(client);
0536     int nr = sensor_attr->index;
0537     unsigned long val;
0538     int err;
0539 
0540     err = kstrtoul(buf, 10, &val);
0541     if (err)
0542         return err;
0543 
0544     mutex_lock(&data->update_lock);
0545     data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
0546     w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
0547     mutex_unlock(&data->update_lock);
0548 
0549     return count;
0550 }
0551 
0552 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
0553                 char *buf)
0554 {
0555     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0556     int nr = sensor_attr->index;
0557     struct w83791d_data *data = w83791d_update_device(dev);
0558     return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
0559 }
0560 
0561 /*
0562  * Note: we save and restore the fan minimum here, because its value is
0563  * determined in part by the fan divisor.  This follows the principle of
0564  * least surprise; the user doesn't expect the fan minimum to change just
0565  * because the divisor changed.
0566  */
0567 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
0568                 const char *buf, size_t count)
0569 {
0570     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0571     struct i2c_client *client = to_i2c_client(dev);
0572     struct w83791d_data *data = i2c_get_clientdata(client);
0573     int nr = sensor_attr->index;
0574     unsigned long min;
0575     u8 tmp_fan_div;
0576     u8 fan_div_reg;
0577     u8 vbat_reg;
0578     int indx = 0;
0579     u8 keep_mask = 0;
0580     u8 new_shift = 0;
0581     unsigned long val;
0582     int err;
0583 
0584     err = kstrtoul(buf, 10, &val);
0585     if (err)
0586         return err;
0587 
0588     /* Save fan_min */
0589     min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
0590 
0591     mutex_lock(&data->update_lock);
0592     data->fan_div[nr] = div_to_reg(nr, val);
0593 
0594     switch (nr) {
0595     case 0:
0596         indx = 0;
0597         keep_mask = 0xcf;
0598         new_shift = 4;
0599         break;
0600     case 1:
0601         indx = 0;
0602         keep_mask = 0x3f;
0603         new_shift = 6;
0604         break;
0605     case 2:
0606         indx = 1;
0607         keep_mask = 0x3f;
0608         new_shift = 6;
0609         break;
0610     case 3:
0611         indx = 2;
0612         keep_mask = 0xf8;
0613         new_shift = 0;
0614         break;
0615     case 4:
0616         indx = 2;
0617         keep_mask = 0x8f;
0618         new_shift = 4;
0619         break;
0620 #ifdef DEBUG
0621     default:
0622         dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
0623         count = -EINVAL;
0624         goto err_exit;
0625 #endif
0626     }
0627 
0628     fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
0629             & keep_mask;
0630     tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
0631 
0632     w83791d_write(client, W83791D_REG_FAN_DIV[indx],
0633                 fan_div_reg | tmp_fan_div);
0634 
0635     /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
0636     if (nr < 3) {
0637         keep_mask = ~(1 << (nr + 5));
0638         vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
0639                 & keep_mask;
0640         tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
0641         w83791d_write(client, W83791D_REG_VBAT,
0642                 vbat_reg | tmp_fan_div);
0643     }
0644 
0645     /* Restore fan_min */
0646     data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
0647     w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
0648 
0649 #ifdef DEBUG
0650 err_exit:
0651 #endif
0652     mutex_unlock(&data->update_lock);
0653 
0654     return count;
0655 }
0656 
0657 static struct sensor_device_attribute sda_fan_input[] = {
0658     SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
0659     SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
0660     SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
0661     SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
0662     SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
0663 };
0664 
0665 static struct sensor_device_attribute sda_fan_min[] = {
0666     SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
0667             show_fan_min, store_fan_min, 0),
0668     SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
0669             show_fan_min, store_fan_min, 1),
0670     SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
0671             show_fan_min, store_fan_min, 2),
0672     SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
0673             show_fan_min, store_fan_min, 3),
0674     SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
0675             show_fan_min, store_fan_min, 4),
0676 };
0677 
0678 static struct sensor_device_attribute sda_fan_div[] = {
0679     SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
0680             show_fan_div, store_fan_div, 0),
0681     SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
0682             show_fan_div, store_fan_div, 1),
0683     SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
0684             show_fan_div, store_fan_div, 2),
0685     SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
0686             show_fan_div, store_fan_div, 3),
0687     SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
0688             show_fan_div, store_fan_div, 4),
0689 };
0690 
0691 static struct sensor_device_attribute sda_fan_beep[] = {
0692     SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
0693     SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
0694     SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
0695     SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
0696     SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
0697 };
0698 
0699 static struct sensor_device_attribute sda_fan_alarm[] = {
0700     SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
0701     SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
0702     SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
0703     SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
0704     SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
0705 };
0706 
0707 /* read/write PWMs */
0708 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
0709                 char *buf)
0710 {
0711     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0712     int nr = sensor_attr->index;
0713     struct w83791d_data *data = w83791d_update_device(dev);
0714     return sprintf(buf, "%u\n", data->pwm[nr]);
0715 }
0716 
0717 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
0718         const char *buf, size_t count)
0719 {
0720     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0721     struct i2c_client *client = to_i2c_client(dev);
0722     struct w83791d_data *data = i2c_get_clientdata(client);
0723     int nr = sensor_attr->index;
0724     unsigned long val;
0725 
0726     if (kstrtoul(buf, 10, &val))
0727         return -EINVAL;
0728 
0729     mutex_lock(&data->update_lock);
0730     data->pwm[nr] = clamp_val(val, 0, 255);
0731     w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
0732     mutex_unlock(&data->update_lock);
0733     return count;
0734 }
0735 
0736 static struct sensor_device_attribute sda_pwm[] = {
0737     SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
0738             show_pwm, store_pwm, 0),
0739     SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
0740             show_pwm, store_pwm, 1),
0741     SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
0742             show_pwm, store_pwm, 2),
0743     SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
0744             show_pwm, store_pwm, 3),
0745     SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
0746             show_pwm, store_pwm, 4),
0747 };
0748 
0749 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
0750                 char *buf)
0751 {
0752     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0753     int nr = sensor_attr->index;
0754     struct w83791d_data *data = w83791d_update_device(dev);
0755     return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
0756 }
0757 
0758 static ssize_t store_pwmenable(struct device *dev,
0759         struct device_attribute *attr, const char *buf, size_t count)
0760 {
0761     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0762     struct i2c_client *client = to_i2c_client(dev);
0763     struct w83791d_data *data = i2c_get_clientdata(client);
0764     int nr = sensor_attr->index;
0765     unsigned long val;
0766     u8 reg_cfg_tmp;
0767     u8 reg_idx = 0;
0768     u8 val_shift = 0;
0769     u8 keep_mask = 0;
0770 
0771     int ret = kstrtoul(buf, 10, &val);
0772 
0773     if (ret || val < 1 || val > 3)
0774         return -EINVAL;
0775 
0776     mutex_lock(&data->update_lock);
0777     data->pwm_enable[nr] = val - 1;
0778     switch (nr) {
0779     case 0:
0780         reg_idx = 0;
0781         val_shift = 2;
0782         keep_mask = 0xf3;
0783         break;
0784     case 1:
0785         reg_idx = 0;
0786         val_shift = 4;
0787         keep_mask = 0xcf;
0788         break;
0789     case 2:
0790         reg_idx = 1;
0791         val_shift = 2;
0792         keep_mask = 0xf3;
0793         break;
0794     }
0795 
0796     reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
0797     reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
0798                     data->pwm_enable[nr] << val_shift;
0799 
0800     w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
0801     mutex_unlock(&data->update_lock);
0802 
0803     return count;
0804 }
0805 static struct sensor_device_attribute sda_pwmenable[] = {
0806     SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
0807             show_pwmenable, store_pwmenable, 0),
0808     SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
0809             show_pwmenable, store_pwmenable, 1),
0810     SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
0811             show_pwmenable, store_pwmenable, 2),
0812 };
0813 
0814 /* For Smart Fan I / Thermal Cruise */
0815 static ssize_t show_temp_target(struct device *dev,
0816             struct device_attribute *attr, char *buf)
0817 {
0818     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0819     struct w83791d_data *data = w83791d_update_device(dev);
0820     int nr = sensor_attr->index;
0821     return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
0822 }
0823 
0824 static ssize_t store_temp_target(struct device *dev,
0825         struct device_attribute *attr, const char *buf, size_t count)
0826 {
0827     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0828     struct i2c_client *client = to_i2c_client(dev);
0829     struct w83791d_data *data = i2c_get_clientdata(client);
0830     int nr = sensor_attr->index;
0831     long val;
0832     u8 target_mask;
0833 
0834     if (kstrtol(buf, 10, &val))
0835         return -EINVAL;
0836 
0837     mutex_lock(&data->update_lock);
0838     data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
0839     target_mask = w83791d_read(client,
0840                 W83791D_REG_TEMP_TARGET[nr]) & 0x80;
0841     w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
0842                 data->temp_target[nr] | target_mask);
0843     mutex_unlock(&data->update_lock);
0844     return count;
0845 }
0846 
0847 static struct sensor_device_attribute sda_temp_target[] = {
0848     SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
0849             show_temp_target, store_temp_target, 0),
0850     SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
0851             show_temp_target, store_temp_target, 1),
0852     SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
0853             show_temp_target, store_temp_target, 2),
0854 };
0855 
0856 static ssize_t show_temp_tolerance(struct device *dev,
0857             struct device_attribute *attr, char *buf)
0858 {
0859     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0860     struct w83791d_data *data = w83791d_update_device(dev);
0861     int nr = sensor_attr->index;
0862     return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
0863 }
0864 
0865 static ssize_t store_temp_tolerance(struct device *dev,
0866         struct device_attribute *attr, const char *buf, size_t count)
0867 {
0868     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0869     struct i2c_client *client = to_i2c_client(dev);
0870     struct w83791d_data *data = i2c_get_clientdata(client);
0871     int nr = sensor_attr->index;
0872     unsigned long val;
0873     u8 target_mask;
0874     u8 reg_idx = 0;
0875     u8 val_shift = 0;
0876     u8 keep_mask = 0;
0877 
0878     if (kstrtoul(buf, 10, &val))
0879         return -EINVAL;
0880 
0881     switch (nr) {
0882     case 0:
0883         reg_idx = 0;
0884         val_shift = 0;
0885         keep_mask = 0xf0;
0886         break;
0887     case 1:
0888         reg_idx = 0;
0889         val_shift = 4;
0890         keep_mask = 0x0f;
0891         break;
0892     case 2:
0893         reg_idx = 1;
0894         val_shift = 0;
0895         keep_mask = 0xf0;
0896         break;
0897     }
0898 
0899     mutex_lock(&data->update_lock);
0900     data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
0901     target_mask = w83791d_read(client,
0902             W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
0903     w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
0904             (data->temp_tolerance[nr] << val_shift) | target_mask);
0905     mutex_unlock(&data->update_lock);
0906     return count;
0907 }
0908 
0909 static struct sensor_device_attribute sda_temp_tolerance[] = {
0910     SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
0911             show_temp_tolerance, store_temp_tolerance, 0),
0912     SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
0913             show_temp_tolerance, store_temp_tolerance, 1),
0914     SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
0915             show_temp_tolerance, store_temp_tolerance, 2),
0916 };
0917 
0918 /* read/write the temperature1, includes measured value and limits */
0919 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
0920                 char *buf)
0921 {
0922     struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
0923     struct w83791d_data *data = w83791d_update_device(dev);
0924     return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
0925 }
0926 
0927 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
0928                 const char *buf, size_t count)
0929 {
0930     struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
0931     struct i2c_client *client = to_i2c_client(dev);
0932     struct w83791d_data *data = i2c_get_clientdata(client);
0933     int nr = attr->index;
0934     long val;
0935     int err;
0936 
0937     err = kstrtol(buf, 10, &val);
0938     if (err)
0939         return err;
0940 
0941     mutex_lock(&data->update_lock);
0942     data->temp1[nr] = TEMP1_TO_REG(val);
0943     w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
0944     mutex_unlock(&data->update_lock);
0945     return count;
0946 }
0947 
0948 /* read/write temperature2-3, includes measured value and limits */
0949 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
0950                 char *buf)
0951 {
0952     struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
0953     struct w83791d_data *data = w83791d_update_device(dev);
0954     int nr = attr->nr;
0955     int index = attr->index;
0956     return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
0957 }
0958 
0959 static ssize_t store_temp23(struct device *dev,
0960                 struct device_attribute *devattr,
0961                 const char *buf, size_t count)
0962 {
0963     struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
0964     struct i2c_client *client = to_i2c_client(dev);
0965     struct w83791d_data *data = i2c_get_clientdata(client);
0966     long val;
0967     int err;
0968     int nr = attr->nr;
0969     int index = attr->index;
0970 
0971     err = kstrtol(buf, 10, &val);
0972     if (err)
0973         return err;
0974 
0975     mutex_lock(&data->update_lock);
0976     data->temp_add[nr][index] = TEMP23_TO_REG(val);
0977     w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
0978                 data->temp_add[nr][index] >> 8);
0979     w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
0980                 data->temp_add[nr][index] & 0x80);
0981     mutex_unlock(&data->update_lock);
0982 
0983     return count;
0984 }
0985 
0986 static struct sensor_device_attribute_2 sda_temp_input[] = {
0987     SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
0988     SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
0989     SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
0990 };
0991 
0992 static struct sensor_device_attribute_2 sda_temp_max[] = {
0993     SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
0994             show_temp1, store_temp1, 0, 1),
0995     SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
0996             show_temp23, store_temp23, 0, 1),
0997     SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
0998             show_temp23, store_temp23, 1, 1),
0999 };
1000 
1001 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1002     SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1003             show_temp1, store_temp1, 0, 2),
1004     SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1005             show_temp23, store_temp23, 0, 2),
1006     SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1007             show_temp23, store_temp23, 1, 2),
1008 };
1009 
1010 /*
1011  * Note: The bitmask for the beep enable/disable is different than
1012  * the bitmask for the alarm.
1013  */
1014 static struct sensor_device_attribute sda_temp_beep[] = {
1015     SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1016     SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1017     SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1018 };
1019 
1020 static struct sensor_device_attribute sda_temp_alarm[] = {
1021     SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1022     SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1023     SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1024 };
1025 
1026 /* get realtime status of all sensors items: voltage, temp, fan */
1027 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
1028                char *buf)
1029 {
1030     struct w83791d_data *data = w83791d_update_device(dev);
1031     return sprintf(buf, "%u\n", data->alarms);
1032 }
1033 
1034 static DEVICE_ATTR_RO(alarms);
1035 
1036 /* Beep control */
1037 
1038 #define GLOBAL_BEEP_ENABLE_SHIFT    15
1039 #define GLOBAL_BEEP_ENABLE_MASK     (1 << GLOBAL_BEEP_ENABLE_SHIFT)
1040 
1041 static ssize_t show_beep_enable(struct device *dev,
1042                 struct device_attribute *attr, char *buf)
1043 {
1044     struct w83791d_data *data = w83791d_update_device(dev);
1045     return sprintf(buf, "%d\n", data->beep_enable);
1046 }
1047 
1048 static ssize_t show_beep_mask(struct device *dev,
1049                 struct device_attribute *attr, char *buf)
1050 {
1051     struct w83791d_data *data = w83791d_update_device(dev);
1052     return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1053 }
1054 
1055 
1056 static ssize_t store_beep_mask(struct device *dev,
1057                 struct device_attribute *attr,
1058                 const char *buf, size_t count)
1059 {
1060     struct i2c_client *client = to_i2c_client(dev);
1061     struct w83791d_data *data = i2c_get_clientdata(client);
1062     int i;
1063     long val;
1064     int err;
1065 
1066     err = kstrtol(buf, 10, &val);
1067     if (err)
1068         return err;
1069 
1070     mutex_lock(&data->update_lock);
1071 
1072     /*
1073      * The beep_enable state overrides any enabling request from
1074      * the masks
1075      */
1076     data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1077     data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1078 
1079     val = data->beep_mask;
1080 
1081     for (i = 0; i < 3; i++) {
1082         w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1083         val >>= 8;
1084     }
1085 
1086     mutex_unlock(&data->update_lock);
1087 
1088     return count;
1089 }
1090 
1091 static ssize_t store_beep_enable(struct device *dev,
1092                 struct device_attribute *attr,
1093                 const char *buf, size_t count)
1094 {
1095     struct i2c_client *client = to_i2c_client(dev);
1096     struct w83791d_data *data = i2c_get_clientdata(client);
1097     long val;
1098     int err;
1099 
1100     err = kstrtol(buf, 10, &val);
1101     if (err)
1102         return err;
1103 
1104     mutex_lock(&data->update_lock);
1105 
1106     data->beep_enable = val ? 1 : 0;
1107 
1108     /* Keep the full mask value in sync with the current enable */
1109     data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1110     data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1111 
1112     /*
1113      * The global control is in the second beep control register
1114      * so only need to update that register
1115      */
1116     val = (data->beep_mask >> 8) & 0xff;
1117 
1118     w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1119 
1120     mutex_unlock(&data->update_lock);
1121 
1122     return count;
1123 }
1124 
1125 static struct sensor_device_attribute sda_beep_ctrl[] = {
1126     SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1127             show_beep_enable, store_beep_enable, 0),
1128     SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1129             show_beep_mask, store_beep_mask, 1)
1130 };
1131 
1132 /* cpu voltage regulation information */
1133 static ssize_t cpu0_vid_show(struct device *dev,
1134                  struct device_attribute *attr, char *buf)
1135 {
1136     struct w83791d_data *data = w83791d_update_device(dev);
1137     return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1138 }
1139 
1140 static DEVICE_ATTR_RO(cpu0_vid);
1141 
1142 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
1143             char *buf)
1144 {
1145     struct w83791d_data *data = dev_get_drvdata(dev);
1146     return sprintf(buf, "%d\n", data->vrm);
1147 }
1148 
1149 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
1150              const char *buf, size_t count)
1151 {
1152     struct w83791d_data *data = dev_get_drvdata(dev);
1153     unsigned long val;
1154     int err;
1155 
1156     /*
1157      * No lock needed as vrm is internal to the driver
1158      * (not read from a chip register) and so is not
1159      * updated in w83791d_update_device()
1160      */
1161 
1162     err = kstrtoul(buf, 10, &val);
1163     if (err)
1164         return err;
1165 
1166     if (val > 255)
1167         return -EINVAL;
1168 
1169     data->vrm = val;
1170     return count;
1171 }
1172 
1173 static DEVICE_ATTR_RW(vrm);
1174 
1175 #define IN_UNIT_ATTRS(X) \
1176     &sda_in_input[X].dev_attr.attr, \
1177     &sda_in_min[X].dev_attr.attr,   \
1178     &sda_in_max[X].dev_attr.attr,   \
1179     &sda_in_beep[X].dev_attr.attr,  \
1180     &sda_in_alarm[X].dev_attr.attr
1181 
1182 #define FAN_UNIT_ATTRS(X) \
1183     &sda_fan_input[X].dev_attr.attr,    \
1184     &sda_fan_min[X].dev_attr.attr,      \
1185     &sda_fan_div[X].dev_attr.attr,      \
1186     &sda_fan_beep[X].dev_attr.attr,     \
1187     &sda_fan_alarm[X].dev_attr.attr
1188 
1189 #define TEMP_UNIT_ATTRS(X) \
1190     &sda_temp_input[X].dev_attr.attr,   \
1191     &sda_temp_max[X].dev_attr.attr,     \
1192     &sda_temp_max_hyst[X].dev_attr.attr,    \
1193     &sda_temp_beep[X].dev_attr.attr,    \
1194     &sda_temp_alarm[X].dev_attr.attr
1195 
1196 static struct attribute *w83791d_attributes[] = {
1197     IN_UNIT_ATTRS(0),
1198     IN_UNIT_ATTRS(1),
1199     IN_UNIT_ATTRS(2),
1200     IN_UNIT_ATTRS(3),
1201     IN_UNIT_ATTRS(4),
1202     IN_UNIT_ATTRS(5),
1203     IN_UNIT_ATTRS(6),
1204     IN_UNIT_ATTRS(7),
1205     IN_UNIT_ATTRS(8),
1206     IN_UNIT_ATTRS(9),
1207     FAN_UNIT_ATTRS(0),
1208     FAN_UNIT_ATTRS(1),
1209     FAN_UNIT_ATTRS(2),
1210     TEMP_UNIT_ATTRS(0),
1211     TEMP_UNIT_ATTRS(1),
1212     TEMP_UNIT_ATTRS(2),
1213     &dev_attr_alarms.attr,
1214     &sda_beep_ctrl[0].dev_attr.attr,
1215     &sda_beep_ctrl[1].dev_attr.attr,
1216     &dev_attr_cpu0_vid.attr,
1217     &dev_attr_vrm.attr,
1218     &sda_pwm[0].dev_attr.attr,
1219     &sda_pwm[1].dev_attr.attr,
1220     &sda_pwm[2].dev_attr.attr,
1221     &sda_pwmenable[0].dev_attr.attr,
1222     &sda_pwmenable[1].dev_attr.attr,
1223     &sda_pwmenable[2].dev_attr.attr,
1224     &sda_temp_target[0].dev_attr.attr,
1225     &sda_temp_target[1].dev_attr.attr,
1226     &sda_temp_target[2].dev_attr.attr,
1227     &sda_temp_tolerance[0].dev_attr.attr,
1228     &sda_temp_tolerance[1].dev_attr.attr,
1229     &sda_temp_tolerance[2].dev_attr.attr,
1230     NULL
1231 };
1232 
1233 static const struct attribute_group w83791d_group = {
1234     .attrs = w83791d_attributes,
1235 };
1236 
1237 /*
1238  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1239  * in use for GPIO in which case their sysfs-interface should not be made
1240  * available
1241  */
1242 static struct attribute *w83791d_attributes_fanpwm45[] = {
1243     FAN_UNIT_ATTRS(3),
1244     FAN_UNIT_ATTRS(4),
1245     &sda_pwm[3].dev_attr.attr,
1246     &sda_pwm[4].dev_attr.attr,
1247     NULL
1248 };
1249 
1250 static const struct attribute_group w83791d_group_fanpwm45 = {
1251     .attrs = w83791d_attributes_fanpwm45,
1252 };
1253 
1254 static int w83791d_detect_subclients(struct i2c_client *client)
1255 {
1256     struct i2c_adapter *adapter = client->adapter;
1257     int address = client->addr;
1258     int i, id;
1259     u8 val;
1260 
1261     id = i2c_adapter_id(adapter);
1262     if (force_subclients[0] == id && force_subclients[1] == address) {
1263         for (i = 2; i <= 3; i++) {
1264             if (force_subclients[i] < 0x48 ||
1265                 force_subclients[i] > 0x4f) {
1266                 dev_err(&client->dev,
1267                     "invalid subclient "
1268                     "address %d; must be 0x48-0x4f\n",
1269                     force_subclients[i]);
1270                 return -ENODEV;
1271             }
1272         }
1273         w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1274                     (force_subclients[2] & 0x07) |
1275                     ((force_subclients[3] & 0x07) << 4));
1276     }
1277 
1278     val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1279 
1280     if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) {
1281         dev_err(&client->dev,
1282             "duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7));
1283         return -ENODEV;
1284     }
1285 
1286     if (!(val & 0x08))
1287         devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7));
1288 
1289     if (!(val & 0x80))
1290         devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7));
1291 
1292     return 0;
1293 }
1294 
1295 
1296 /* Return 0 if detection is successful, -ENODEV otherwise */
1297 static int w83791d_detect(struct i2c_client *client,
1298               struct i2c_board_info *info)
1299 {
1300     struct i2c_adapter *adapter = client->adapter;
1301     int val1, val2;
1302     unsigned short address = client->addr;
1303 
1304     if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1305         return -ENODEV;
1306 
1307     if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1308         return -ENODEV;
1309 
1310     val1 = w83791d_read(client, W83791D_REG_BANK);
1311     val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1312     /* Check for Winbond ID if in bank 0 */
1313     if (!(val1 & 0x07)) {
1314         if ((!(val1 & 0x80) && val2 != 0xa3) ||
1315             ((val1 & 0x80) && val2 != 0x5c)) {
1316             return -ENODEV;
1317         }
1318     }
1319     /*
1320      * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1321      * should match
1322      */
1323     if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1324         return -ENODEV;
1325 
1326     /* We want bank 0 and Vendor ID high byte */
1327     val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1328     w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1329 
1330     /* Verify it is a Winbond w83791d */
1331     val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1332     val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1333     if (val1 != 0x71 || val2 != 0x5c)
1334         return -ENODEV;
1335 
1336     strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1337 
1338     return 0;
1339 }
1340 
1341 static int w83791d_probe(struct i2c_client *client)
1342 {
1343     struct w83791d_data *data;
1344     struct device *dev = &client->dev;
1345     int i, err;
1346     u8 has_fanpwm45;
1347 
1348 #ifdef DEBUG
1349     int val1;
1350     val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1351     dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1352             (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1353 #endif
1354 
1355     data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1356                 GFP_KERNEL);
1357     if (!data)
1358         return -ENOMEM;
1359 
1360     i2c_set_clientdata(client, data);
1361     mutex_init(&data->update_lock);
1362 
1363     err = w83791d_detect_subclients(client);
1364     if (err)
1365         return err;
1366 
1367     /* Initialize the chip */
1368     w83791d_init_client(client);
1369 
1370     /*
1371      * If the fan_div is changed, make sure there is a rational
1372      * fan_min in place
1373      */
1374     for (i = 0; i < NUMBER_OF_FANIN; i++)
1375         data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1376 
1377     /* Register sysfs hooks */
1378     err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1379     if (err)
1380         return err;
1381 
1382     /* Check if pins of fan/pwm 4-5 are in use as GPIO */
1383     has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1384     if (has_fanpwm45) {
1385         err = sysfs_create_group(&client->dev.kobj,
1386                      &w83791d_group_fanpwm45);
1387         if (err)
1388             goto error4;
1389     }
1390 
1391     /* Everything is ready, now register the working device */
1392     data->hwmon_dev = hwmon_device_register(dev);
1393     if (IS_ERR(data->hwmon_dev)) {
1394         err = PTR_ERR(data->hwmon_dev);
1395         goto error5;
1396     }
1397 
1398     return 0;
1399 
1400 error5:
1401     if (has_fanpwm45)
1402         sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1403 error4:
1404     sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1405     return err;
1406 }
1407 
1408 static int w83791d_remove(struct i2c_client *client)
1409 {
1410     struct w83791d_data *data = i2c_get_clientdata(client);
1411 
1412     hwmon_device_unregister(data->hwmon_dev);
1413     sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1414 
1415     return 0;
1416 }
1417 
1418 static void w83791d_init_client(struct i2c_client *client)
1419 {
1420     struct w83791d_data *data = i2c_get_clientdata(client);
1421     u8 tmp;
1422     u8 old_beep;
1423 
1424     /*
1425      * The difference between reset and init is that reset
1426      * does a hard reset of the chip via index 0x40, bit 7,
1427      * but init simply forces certain registers to have "sane"
1428      * values. The hope is that the BIOS has done the right
1429      * thing (which is why the default is reset=0, init=0),
1430      * but if not, reset is the hard hammer and init
1431      * is the soft mallet both of which are trying to whack
1432      * things into place...
1433      * NOTE: The data sheet makes a distinction between
1434      * "power on defaults" and "reset by MR". As far as I can tell,
1435      * the hard reset puts everything into a power-on state so I'm
1436      * not sure what "reset by MR" means or how it can happen.
1437      */
1438     if (reset || init) {
1439         /* keep some BIOS settings when we... */
1440         old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1441 
1442         if (reset) {
1443             /* ... reset the chip and ... */
1444             w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1445         }
1446 
1447         /* ... disable power-on abnormal beep */
1448         w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1449 
1450         /* disable the global beep (not done by hard reset) */
1451         tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1452         w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1453 
1454         if (init) {
1455             /* Make sure monitoring is turned on for add-ons */
1456             tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1457             if (tmp & 1) {
1458                 w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1459                     tmp & 0xfe);
1460             }
1461 
1462             tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1463             if (tmp & 1) {
1464                 w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1465                     tmp & 0xfe);
1466             }
1467 
1468             /* Start monitoring */
1469             tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1470             w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1471         }
1472     }
1473 
1474     data->vrm = vid_which_vrm();
1475 }
1476 
1477 static struct w83791d_data *w83791d_update_device(struct device *dev)
1478 {
1479     struct i2c_client *client = to_i2c_client(dev);
1480     struct w83791d_data *data = i2c_get_clientdata(client);
1481     int i, j;
1482     u8 reg_array_tmp[3];
1483     u8 vbat_reg;
1484 
1485     mutex_lock(&data->update_lock);
1486 
1487     if (time_after(jiffies, data->last_updated + (HZ * 3))
1488             || !data->valid) {
1489         dev_dbg(dev, "Starting w83791d device update\n");
1490 
1491         /* Update the voltages measured value and limits */
1492         for (i = 0; i < NUMBER_OF_VIN; i++) {
1493             data->in[i] = w83791d_read(client,
1494                         W83791D_REG_IN[i]);
1495             data->in_max[i] = w83791d_read(client,
1496                         W83791D_REG_IN_MAX[i]);
1497             data->in_min[i] = w83791d_read(client,
1498                         W83791D_REG_IN_MIN[i]);
1499         }
1500 
1501         /* Update the fan counts and limits */
1502         for (i = 0; i < NUMBER_OF_FANIN; i++) {
1503             /* Update the Fan measured value and limits */
1504             data->fan[i] = w83791d_read(client,
1505                         W83791D_REG_FAN[i]);
1506             data->fan_min[i] = w83791d_read(client,
1507                         W83791D_REG_FAN_MIN[i]);
1508         }
1509 
1510         /* Update the fan divisor */
1511         for (i = 0; i < 3; i++) {
1512             reg_array_tmp[i] = w83791d_read(client,
1513                         W83791D_REG_FAN_DIV[i]);
1514         }
1515         data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1516         data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1517         data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1518         data->fan_div[3] = reg_array_tmp[2] & 0x07;
1519         data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1520 
1521         /*
1522          * The fan divisor for fans 0-2 get bit 2 from
1523          * bits 5-7 respectively of vbat register
1524          */
1525         vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1526         for (i = 0; i < 3; i++)
1527             data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1528 
1529         /* Update PWM duty cycle */
1530         for (i = 0; i < NUMBER_OF_PWM; i++) {
1531             data->pwm[i] =  w83791d_read(client,
1532                         W83791D_REG_PWM[i]);
1533         }
1534 
1535         /* Update PWM enable status */
1536         for (i = 0; i < 2; i++) {
1537             reg_array_tmp[i] = w83791d_read(client,
1538                         W83791D_REG_FAN_CFG[i]);
1539         }
1540         data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1541         data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1542         data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1543 
1544         /* Update PWM target temperature */
1545         for (i = 0; i < 3; i++) {
1546             data->temp_target[i] = w83791d_read(client,
1547                 W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1548         }
1549 
1550         /* Update PWM temperature tolerance */
1551         for (i = 0; i < 2; i++) {
1552             reg_array_tmp[i] = w83791d_read(client,
1553                     W83791D_REG_TEMP_TOL[i]);
1554         }
1555         data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1556         data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1557         data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1558 
1559         /* Update the first temperature sensor */
1560         for (i = 0; i < 3; i++) {
1561             data->temp1[i] = w83791d_read(client,
1562                         W83791D_REG_TEMP1[i]);
1563         }
1564 
1565         /* Update the rest of the temperature sensors */
1566         for (i = 0; i < 2; i++) {
1567             for (j = 0; j < 3; j++) {
1568                 data->temp_add[i][j] =
1569                     (w83791d_read(client,
1570                     W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1571                     w83791d_read(client,
1572                     W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1573             }
1574         }
1575 
1576         /* Update the realtime status */
1577         data->alarms =
1578             w83791d_read(client, W83791D_REG_ALARM1) +
1579             (w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1580             (w83791d_read(client, W83791D_REG_ALARM3) << 16);
1581 
1582         /* Update the beep configuration information */
1583         data->beep_mask =
1584             w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1585             (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1586             (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1587 
1588         /* Extract global beep enable flag */
1589         data->beep_enable =
1590             (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1591 
1592         /* Update the cpu voltage information */
1593         i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1594         data->vid = i & 0x0f;
1595         data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1596                 << 4;
1597 
1598         data->last_updated = jiffies;
1599         data->valid = true;
1600     }
1601 
1602     mutex_unlock(&data->update_lock);
1603 
1604 #ifdef DEBUG
1605     w83791d_print_debug(data, dev);
1606 #endif
1607 
1608     return data;
1609 }
1610 
1611 #ifdef DEBUG
1612 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1613 {
1614     int i = 0, j = 0;
1615 
1616     dev_dbg(dev, "======Start of w83791d debug values======\n");
1617     dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1618     for (i = 0; i < NUMBER_OF_VIN; i++) {
1619         dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
1620         dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1621         dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1622     }
1623     dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1624     for (i = 0; i < NUMBER_OF_FANIN; i++) {
1625         dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
1626         dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1627         dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1628     }
1629 
1630     /*
1631      * temperature math is signed, but only print out the
1632      * bits that matter
1633      */
1634     dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1635     for (i = 0; i < 3; i++)
1636         dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1637     for (i = 0; i < 2; i++) {
1638         for (j = 0; j < 3; j++) {
1639             dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1640                 (u16) data->temp_add[i][j]);
1641         }
1642     }
1643 
1644     dev_dbg(dev, "Misc Information: ===>\n");
1645     dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
1646     dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1647     dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1648     dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1649     dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1650     dev_dbg(dev, "=======End of w83791d debug values========\n");
1651     dev_dbg(dev, "\n");
1652 }
1653 #endif
1654 
1655 module_i2c_driver(w83791d_driver);
1656 
1657 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1658 MODULE_DESCRIPTION("W83791D driver");
1659 MODULE_LICENSE("GPL");