Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  w83627ehf - Driver for the hardware monitoring functionality of
0004  *      the Winbond W83627EHF Super-I/O chip
0005  *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
0006  *  Copyright (C) 2006  Yuan Mu (Winbond),
0007  *          Rudolf Marek <r.marek@assembler.cz>
0008  *          David Hubbard <david.c.hubbard@gmail.com>
0009  *          Daniel J Blueman <daniel.blueman@gmail.com>
0010  *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
0011  *
0012  *  Shamelessly ripped from the w83627hf driver
0013  *  Copyright (C) 2003  Mark Studebaker
0014  *
0015  *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
0016  *  in testing and debugging this driver.
0017  *
0018  *  This driver also supports the W83627EHG, which is the lead-free
0019  *  version of the W83627EHF.
0020  *
0021  *  Supports the following chips:
0022  *
0023  *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
0024  *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
0025  *                         0x8860 0xa1
0026  *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
0027  *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
0028  *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
0029  *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
0030  *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
0031  */
0032 
0033 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0034 
0035 #include <linux/module.h>
0036 #include <linux/init.h>
0037 #include <linux/slab.h>
0038 #include <linux/jiffies.h>
0039 #include <linux/platform_device.h>
0040 #include <linux/hwmon.h>
0041 #include <linux/hwmon-sysfs.h>
0042 #include <linux/hwmon-vid.h>
0043 #include <linux/err.h>
0044 #include <linux/mutex.h>
0045 #include <linux/acpi.h>
0046 #include <linux/io.h>
0047 #include "lm75.h"
0048 
0049 enum kinds {
0050     w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
0051     w83667hg, w83667hg_b,
0052 };
0053 
0054 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
0055 static const char * const w83627ehf_device_names[] = {
0056     "w83627ehf",
0057     "w83627dhg",
0058     "w83627dhg",
0059     "w83627uhg",
0060     "w83667hg",
0061     "w83667hg",
0062 };
0063 
0064 static unsigned short force_id;
0065 module_param(force_id, ushort, 0);
0066 MODULE_PARM_DESC(force_id, "Override the detected device ID");
0067 
0068 #define DRVNAME "w83627ehf"
0069 
0070 /*
0071  * Super-I/O constants and functions
0072  */
0073 
0074 #define W83627EHF_LD_HWM    0x0b
0075 #define W83667HG_LD_VID     0x0d
0076 
0077 #define SIO_REG_LDSEL       0x07    /* Logical device select */
0078 #define SIO_REG_DEVID       0x20    /* Device ID (2 bytes) */
0079 #define SIO_REG_EN_VRM10    0x2C    /* GPIO3, GPIO4 selection */
0080 #define SIO_REG_ENABLE      0x30    /* Logical device enable */
0081 #define SIO_REG_ADDR        0x60    /* Logical device address (2 bytes) */
0082 #define SIO_REG_VID_CTRL    0xF0    /* VID control */
0083 #define SIO_REG_VID_DATA    0xF1    /* VID data */
0084 
0085 #define SIO_W83627EHF_ID    0x8850
0086 #define SIO_W83627EHG_ID    0x8860
0087 #define SIO_W83627DHG_ID    0xa020
0088 #define SIO_W83627DHG_P_ID  0xb070
0089 #define SIO_W83627UHG_ID    0xa230
0090 #define SIO_W83667HG_ID     0xa510
0091 #define SIO_W83667HG_B_ID   0xb350
0092 #define SIO_ID_MASK     0xFFF0
0093 
0094 static inline void
0095 superio_outb(int ioreg, int reg, int val)
0096 {
0097     outb(reg, ioreg);
0098     outb(val, ioreg + 1);
0099 }
0100 
0101 static inline int
0102 superio_inb(int ioreg, int reg)
0103 {
0104     outb(reg, ioreg);
0105     return inb(ioreg + 1);
0106 }
0107 
0108 static inline void
0109 superio_select(int ioreg, int ld)
0110 {
0111     outb(SIO_REG_LDSEL, ioreg);
0112     outb(ld, ioreg + 1);
0113 }
0114 
0115 static inline int
0116 superio_enter(int ioreg)
0117 {
0118     if (!request_muxed_region(ioreg, 2, DRVNAME))
0119         return -EBUSY;
0120 
0121     outb(0x87, ioreg);
0122     outb(0x87, ioreg);
0123 
0124     return 0;
0125 }
0126 
0127 static inline void
0128 superio_exit(int ioreg)
0129 {
0130     outb(0xaa, ioreg);
0131     outb(0x02, ioreg);
0132     outb(0x02, ioreg + 1);
0133     release_region(ioreg, 2);
0134 }
0135 
0136 /*
0137  * ISA constants
0138  */
0139 
0140 #define IOREGION_ALIGNMENT  (~7)
0141 #define IOREGION_OFFSET     5
0142 #define IOREGION_LENGTH     2
0143 #define ADDR_REG_OFFSET     0
0144 #define DATA_REG_OFFSET     1
0145 
0146 #define W83627EHF_REG_BANK      0x4E
0147 #define W83627EHF_REG_CONFIG        0x40
0148 
0149 /*
0150  * Not currently used:
0151  * REG_MAN_ID has the value 0x5ca3 for all supported chips.
0152  * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
0153  * REG_MAN_ID is at port 0x4f
0154  * REG_CHIP_ID is at port 0x58
0155  */
0156 
0157 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
0158 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
0159 
0160 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
0161 #define W83627EHF_REG_IN_MAX(nr)    ((nr < 7) ? (0x2b + (nr) * 2) : \
0162                      (0x554 + (((nr) - 7) * 2)))
0163 #define W83627EHF_REG_IN_MIN(nr)    ((nr < 7) ? (0x2c + (nr) * 2) : \
0164                      (0x555 + (((nr) - 7) * 2)))
0165 #define W83627EHF_REG_IN(nr)        ((nr < 7) ? (0x20 + (nr)) : \
0166                      (0x550 + (nr) - 7))
0167 
0168 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
0169 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
0170 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
0171 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
0172 
0173 /* Fan clock dividers are spread over the following five registers */
0174 #define W83627EHF_REG_FANDIV1       0x47
0175 #define W83627EHF_REG_FANDIV2       0x4B
0176 #define W83627EHF_REG_VBAT      0x5D
0177 #define W83627EHF_REG_DIODE     0x59
0178 #define W83627EHF_REG_SMI_OVT       0x4C
0179 
0180 #define W83627EHF_REG_ALARM1        0x459
0181 #define W83627EHF_REG_ALARM2        0x45A
0182 #define W83627EHF_REG_ALARM3        0x45B
0183 
0184 #define W83627EHF_REG_CASEOPEN_DET  0x42 /* SMI STATUS #2 */
0185 #define W83627EHF_REG_CASEOPEN_CLR  0x46 /* SMI MASK #3 */
0186 
0187 /* SmartFan registers */
0188 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
0189 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
0190 
0191 /* DC or PWM output fan configuration */
0192 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
0193     0x04,           /* SYS FAN0 output mode and PWM mode */
0194     0x04,           /* CPU FAN0 output mode and PWM mode */
0195     0x12,           /* AUX FAN mode */
0196     0x62,           /* CPU FAN1 mode */
0197 };
0198 
0199 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
0200 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
0201 
0202 /* FAN Duty Cycle, be used to control */
0203 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
0204 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
0205 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
0206 
0207 /* Advanced Fan control, some values are common for all fans */
0208 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
0209 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
0210 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
0211 
0212 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
0213                         = { 0xff, 0x67, 0xff, 0x69 };
0214 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
0215                         = { 0xff, 0x68, 0xff, 0x6a };
0216 
0217 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
0218 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
0219                         = { 0x68, 0x6a, 0x6c };
0220 
0221 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
0222 
0223 static const char *const w83667hg_b_temp_label[] = {
0224     "SYSTIN",
0225     "CPUTIN",
0226     "AUXTIN",
0227     "AMDTSI",
0228     "PECI Agent 1",
0229     "PECI Agent 2",
0230     "PECI Agent 3",
0231     "PECI Agent 4"
0232 };
0233 
0234 #define NUM_REG_TEMP    ARRAY_SIZE(W83627EHF_REG_TEMP)
0235 
0236 static int is_word_sized(u16 reg)
0237 {
0238     return ((((reg & 0xff00) == 0x100
0239           || (reg & 0xff00) == 0x200)
0240          && ((reg & 0x00ff) == 0x50
0241           || (reg & 0x00ff) == 0x53
0242           || (reg & 0x00ff) == 0x55))
0243          || (reg & 0xfff0) == 0x630
0244          || reg == 0x640 || reg == 0x642
0245          || ((reg & 0xfff0) == 0x650
0246          && (reg & 0x000f) >= 0x06)
0247          || reg == 0x73 || reg == 0x75 || reg == 0x77
0248         );
0249 }
0250 
0251 /*
0252  * Conversions
0253  */
0254 
0255 /* 1 is PWM mode, output in ms */
0256 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
0257 {
0258     return mode ? 100 * reg : 400 * reg;
0259 }
0260 
0261 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
0262 {
0263     return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
0264              1, 255);
0265 }
0266 
0267 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
0268 {
0269     if (reg == 0 || reg == 255)
0270         return 0;
0271     return 1350000U / (reg << divreg);
0272 }
0273 
0274 static inline unsigned int
0275 div_from_reg(u8 reg)
0276 {
0277     return 1 << reg;
0278 }
0279 
0280 /*
0281  * Some of the voltage inputs have internal scaling, the tables below
0282  * contain 8 (the ADC LSB in mV) * scaling factor * 100
0283  */
0284 static const u16 scale_in_common[10] = {
0285     800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
0286 };
0287 static const u16 scale_in_w83627uhg[9] = {
0288     800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
0289 };
0290 
0291 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
0292 {
0293     return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
0294 }
0295 
0296 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
0297 {
0298     return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
0299 }
0300 
0301 /*
0302  * Data structures and manipulation thereof
0303  */
0304 
0305 struct w83627ehf_data {
0306     int addr;   /* IO base of hw monitor block */
0307     const char *name;
0308 
0309     struct mutex lock;
0310 
0311     u16 reg_temp[NUM_REG_TEMP];
0312     u16 reg_temp_over[NUM_REG_TEMP];
0313     u16 reg_temp_hyst[NUM_REG_TEMP];
0314     u16 reg_temp_config[NUM_REG_TEMP];
0315     u8 temp_src[NUM_REG_TEMP];
0316     const char * const *temp_label;
0317 
0318     const u16 *REG_FAN_MAX_OUTPUT;
0319     const u16 *REG_FAN_STEP_OUTPUT;
0320     const u16 *scale_in;
0321 
0322     struct mutex update_lock;
0323     bool valid;     /* true if following fields are valid */
0324     unsigned long last_updated; /* In jiffies */
0325 
0326     /* Register values */
0327     u8 bank;        /* current register bank */
0328     u8 in_num;      /* number of in inputs we have */
0329     u8 in[10];      /* Register value */
0330     u8 in_max[10];      /* Register value */
0331     u8 in_min[10];      /* Register value */
0332     unsigned int rpm[5];
0333     u16 fan_min[5];
0334     u8 fan_div[5];
0335     u8 has_fan;     /* some fan inputs can be disabled */
0336     u8 has_fan_min;     /* some fans don't have min register */
0337     u8 temp_type[3];
0338     s8 temp_offset[3];
0339     s16 temp[9];
0340     s16 temp_max[9];
0341     s16 temp_max_hyst[9];
0342     u32 alarms;
0343     u8 caseopen;
0344 
0345     u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
0346     u8 pwm_enable[4]; /* 1->manual
0347                * 2->thermal cruise mode (also called SmartFan I)
0348                * 3->fan speed cruise mode
0349                * 4->variable thermal cruise (also called
0350                * SmartFan III)
0351                * 5->enhanced variable thermal cruise (also called
0352                * SmartFan IV)
0353                */
0354     u8 pwm_enable_orig[4];  /* original value of pwm_enable */
0355     u8 pwm_num;     /* number of pwm */
0356     u8 pwm[4];
0357     u8 target_temp[4];
0358     u8 tolerance[4];
0359 
0360     u8 fan_start_output[4]; /* minimum fan speed when spinning up */
0361     u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
0362     u8 fan_stop_time[4]; /* time at minimum before disabling fan */
0363     u8 fan_max_output[4]; /* maximum fan speed */
0364     u8 fan_step_output[4]; /* rate of change output value */
0365 
0366     u8 vid;
0367     u8 vrm;
0368 
0369     u16 have_temp;
0370     u16 have_temp_offset;
0371     u8 in6_skip:1;
0372     u8 temp3_val_only:1;
0373     u8 have_vid:1;
0374 
0375     /* Remember extra register values over suspend/resume */
0376     u8 vbat;
0377     u8 fandiv1;
0378     u8 fandiv2;
0379 };
0380 
0381 struct w83627ehf_sio_data {
0382     int sioreg;
0383     enum kinds kind;
0384 };
0385 
0386 /*
0387  * On older chips, only registers 0x50-0x5f are banked.
0388  * On more recent chips, all registers are banked.
0389  * Assume that is the case and set the bank number for each access.
0390  * Cache the bank number so it only needs to be set if it changes.
0391  */
0392 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
0393 {
0394     u8 bank = reg >> 8;
0395     if (data->bank != bank) {
0396         outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
0397         outb_p(bank, data->addr + DATA_REG_OFFSET);
0398         data->bank = bank;
0399     }
0400 }
0401 
0402 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
0403 {
0404     int res, word_sized = is_word_sized(reg);
0405 
0406     mutex_lock(&data->lock);
0407 
0408     w83627ehf_set_bank(data, reg);
0409     outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
0410     res = inb_p(data->addr + DATA_REG_OFFSET);
0411     if (word_sized) {
0412         outb_p((reg & 0xff) + 1,
0413                data->addr + ADDR_REG_OFFSET);
0414         res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
0415     }
0416 
0417     mutex_unlock(&data->lock);
0418     return res;
0419 }
0420 
0421 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
0422                  u16 value)
0423 {
0424     int word_sized = is_word_sized(reg);
0425 
0426     mutex_lock(&data->lock);
0427 
0428     w83627ehf_set_bank(data, reg);
0429     outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
0430     if (word_sized) {
0431         outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
0432         outb_p((reg & 0xff) + 1,
0433                data->addr + ADDR_REG_OFFSET);
0434     }
0435     outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
0436 
0437     mutex_unlock(&data->lock);
0438     return 0;
0439 }
0440 
0441 /* We left-align 8-bit temperature values to make the code simpler */
0442 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
0443 {
0444     u16 res;
0445 
0446     res = w83627ehf_read_value(data, reg);
0447     if (!is_word_sized(reg))
0448         res <<= 8;
0449 
0450     return res;
0451 }
0452 
0453 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
0454                        u16 value)
0455 {
0456     if (!is_word_sized(reg))
0457         value >>= 8;
0458     return w83627ehf_write_value(data, reg, value);
0459 }
0460 
0461 /* This function assumes that the caller holds data->update_lock */
0462 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
0463 {
0464     u8 reg;
0465 
0466     switch (nr) {
0467     case 0:
0468         reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
0469             | ((data->fan_div[0] & 0x03) << 4);
0470         /* fan5 input control bit is write only, compute the value */
0471         reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
0472         w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
0473         reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
0474             | ((data->fan_div[0] & 0x04) << 3);
0475         w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
0476         break;
0477     case 1:
0478         reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
0479             | ((data->fan_div[1] & 0x03) << 6);
0480         /* fan5 input control bit is write only, compute the value */
0481         reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
0482         w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
0483         reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
0484             | ((data->fan_div[1] & 0x04) << 4);
0485         w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
0486         break;
0487     case 2:
0488         reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
0489             | ((data->fan_div[2] & 0x03) << 6);
0490         w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
0491         reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
0492             | ((data->fan_div[2] & 0x04) << 5);
0493         w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
0494         break;
0495     case 3:
0496         reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
0497             | (data->fan_div[3] & 0x03);
0498         w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
0499         reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
0500             | ((data->fan_div[3] & 0x04) << 5);
0501         w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
0502         break;
0503     case 4:
0504         reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
0505             | ((data->fan_div[4] & 0x03) << 2)
0506             | ((data->fan_div[4] & 0x04) << 5);
0507         w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
0508         break;
0509     }
0510 }
0511 
0512 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
0513 {
0514     int i;
0515 
0516     i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
0517     data->fan_div[0] = (i >> 4) & 0x03;
0518     data->fan_div[1] = (i >> 6) & 0x03;
0519     i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
0520     data->fan_div[2] = (i >> 6) & 0x03;
0521     i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
0522     data->fan_div[0] |= (i >> 3) & 0x04;
0523     data->fan_div[1] |= (i >> 4) & 0x04;
0524     data->fan_div[2] |= (i >> 5) & 0x04;
0525     if (data->has_fan & ((1 << 3) | (1 << 4))) {
0526         i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
0527         data->fan_div[3] = i & 0x03;
0528         data->fan_div[4] = ((i >> 2) & 0x03)
0529                  | ((i >> 5) & 0x04);
0530     }
0531     if (data->has_fan & (1 << 3)) {
0532         i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
0533         data->fan_div[3] |= (i >> 5) & 0x04;
0534     }
0535 }
0536 
0537 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
0538 {
0539     int i;
0540     int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
0541 
0542     for (i = 0; i < data->pwm_num; i++) {
0543         if (!(data->has_fan & (1 << i)))
0544             continue;
0545 
0546         /* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
0547         if (i != 1) {
0548             pwmcfg = w83627ehf_read_value(data,
0549                     W83627EHF_REG_PWM_ENABLE[i]);
0550             tolerance = w83627ehf_read_value(data,
0551                     W83627EHF_REG_TOLERANCE[i]);
0552         }
0553         data->pwm_mode[i] =
0554             ((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
0555         data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
0556                        & 3) + 1;
0557         data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
0558 
0559         data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
0560     }
0561 }
0562 
0563 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
0564 {
0565     struct w83627ehf_data *data = dev_get_drvdata(dev);
0566     int i;
0567 
0568     mutex_lock(&data->update_lock);
0569 
0570     if (time_after(jiffies, data->last_updated + HZ + HZ/2)
0571      || !data->valid) {
0572         /* Fan clock dividers */
0573         w83627ehf_update_fan_div(data);
0574 
0575         /* Measured voltages and limits */
0576         for (i = 0; i < data->in_num; i++) {
0577             if ((i == 6) && data->in6_skip)
0578                 continue;
0579 
0580             data->in[i] = w83627ehf_read_value(data,
0581                       W83627EHF_REG_IN(i));
0582             data->in_min[i] = w83627ehf_read_value(data,
0583                       W83627EHF_REG_IN_MIN(i));
0584             data->in_max[i] = w83627ehf_read_value(data,
0585                       W83627EHF_REG_IN_MAX(i));
0586         }
0587 
0588         /* Measured fan speeds and limits */
0589         for (i = 0; i < 5; i++) {
0590             u16 reg;
0591 
0592             if (!(data->has_fan & (1 << i)))
0593                 continue;
0594 
0595             reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
0596             data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
0597 
0598             if (data->has_fan_min & (1 << i))
0599                 data->fan_min[i] = w83627ehf_read_value(data,
0600                        W83627EHF_REG_FAN_MIN[i]);
0601 
0602             /*
0603              * If we failed to measure the fan speed and clock
0604              * divider can be increased, let's try that for next
0605              * time
0606              */
0607             if (reg >= 0xff && data->fan_div[i] < 0x07) {
0608                 dev_dbg(dev,
0609                     "Increasing fan%d clock divider from %u to %u\n",
0610                     i + 1, div_from_reg(data->fan_div[i]),
0611                     div_from_reg(data->fan_div[i] + 1));
0612                 data->fan_div[i]++;
0613                 w83627ehf_write_fan_div(data, i);
0614                 /* Preserve min limit if possible */
0615                 if ((data->has_fan_min & (1 << i))
0616                  && data->fan_min[i] >= 2
0617                  && data->fan_min[i] != 255)
0618                     w83627ehf_write_value(data,
0619                         W83627EHF_REG_FAN_MIN[i],
0620                         (data->fan_min[i] /= 2));
0621             }
0622         }
0623 
0624         w83627ehf_update_pwm(data);
0625 
0626         for (i = 0; i < data->pwm_num; i++) {
0627             if (!(data->has_fan & (1 << i)))
0628                 continue;
0629 
0630             data->fan_start_output[i] =
0631               w83627ehf_read_value(data,
0632                          W83627EHF_REG_FAN_START_OUTPUT[i]);
0633             data->fan_stop_output[i] =
0634               w83627ehf_read_value(data,
0635                          W83627EHF_REG_FAN_STOP_OUTPUT[i]);
0636             data->fan_stop_time[i] =
0637               w83627ehf_read_value(data,
0638                            W83627EHF_REG_FAN_STOP_TIME[i]);
0639 
0640             if (data->REG_FAN_MAX_OUTPUT &&
0641                 data->REG_FAN_MAX_OUTPUT[i] != 0xff)
0642                 data->fan_max_output[i] =
0643                   w83627ehf_read_value(data,
0644                         data->REG_FAN_MAX_OUTPUT[i]);
0645 
0646             if (data->REG_FAN_STEP_OUTPUT &&
0647                 data->REG_FAN_STEP_OUTPUT[i] != 0xff)
0648                 data->fan_step_output[i] =
0649                   w83627ehf_read_value(data,
0650                         data->REG_FAN_STEP_OUTPUT[i]);
0651 
0652             data->target_temp[i] =
0653                 w83627ehf_read_value(data,
0654                     W83627EHF_REG_TARGET[i]) &
0655                     (data->pwm_mode[i] == 1 ? 0x7f : 0xff);
0656         }
0657 
0658         /* Measured temperatures and limits */
0659         for (i = 0; i < NUM_REG_TEMP; i++) {
0660             if (!(data->have_temp & (1 << i)))
0661                 continue;
0662             data->temp[i] = w83627ehf_read_temp(data,
0663                         data->reg_temp[i]);
0664             if (data->reg_temp_over[i])
0665                 data->temp_max[i]
0666                   = w83627ehf_read_temp(data,
0667                         data->reg_temp_over[i]);
0668             if (data->reg_temp_hyst[i])
0669                 data->temp_max_hyst[i]
0670                   = w83627ehf_read_temp(data,
0671                         data->reg_temp_hyst[i]);
0672             if (i > 2)
0673                 continue;
0674             if (data->have_temp_offset & (1 << i))
0675                 data->temp_offset[i]
0676                   = w83627ehf_read_value(data,
0677                         W83627EHF_REG_TEMP_OFFSET[i]);
0678         }
0679 
0680         data->alarms = w83627ehf_read_value(data,
0681                     W83627EHF_REG_ALARM1) |
0682                    (w83627ehf_read_value(data,
0683                     W83627EHF_REG_ALARM2) << 8) |
0684                    (w83627ehf_read_value(data,
0685                     W83627EHF_REG_ALARM3) << 16);
0686 
0687         data->caseopen = w83627ehf_read_value(data,
0688                         W83627EHF_REG_CASEOPEN_DET);
0689 
0690         data->last_updated = jiffies;
0691         data->valid = true;
0692     }
0693 
0694     mutex_unlock(&data->update_lock);
0695     return data;
0696 }
0697 
0698 #define store_in_reg(REG, reg) \
0699 static int \
0700 store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
0701            long val) \
0702 { \
0703     if (val < 0) \
0704         return -EINVAL; \
0705     mutex_lock(&data->update_lock); \
0706     data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
0707     w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
0708                   data->in_##reg[channel]); \
0709     mutex_unlock(&data->update_lock); \
0710     return 0; \
0711 }
0712 
0713 store_in_reg(MIN, min)
0714 store_in_reg(MAX, max)
0715 
0716 static int
0717 store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
0718           long val)
0719 {
0720     unsigned int reg;
0721     u8 new_div;
0722 
0723     if (val < 0)
0724         return -EINVAL;
0725 
0726     mutex_lock(&data->update_lock);
0727     if (!val) {
0728         /* No min limit, alarm disabled */
0729         data->fan_min[channel] = 255;
0730         new_div = data->fan_div[channel]; /* No change */
0731         dev_info(dev, "fan%u low limit and alarm disabled\n",
0732              channel + 1);
0733     } else if ((reg = 1350000U / val) >= 128 * 255) {
0734         /*
0735          * Speed below this value cannot possibly be represented,
0736          * even with the highest divider (128)
0737          */
0738         data->fan_min[channel] = 254;
0739         new_div = 7; /* 128 == (1 << 7) */
0740         dev_warn(dev,
0741              "fan%u low limit %lu below minimum %u, set to minimum\n",
0742              channel + 1, val, fan_from_reg8(254, 7));
0743     } else if (!reg) {
0744         /*
0745          * Speed above this value cannot possibly be represented,
0746          * even with the lowest divider (1)
0747          */
0748         data->fan_min[channel] = 1;
0749         new_div = 0; /* 1 == (1 << 0) */
0750         dev_warn(dev,
0751              "fan%u low limit %lu above maximum %u, set to maximum\n",
0752              channel + 1, val, fan_from_reg8(1, 0));
0753     } else {
0754         /*
0755          * Automatically pick the best divider, i.e. the one such
0756          * that the min limit will correspond to a register value
0757          * in the 96..192 range
0758          */
0759         new_div = 0;
0760         while (reg > 192 && new_div < 7) {
0761             reg >>= 1;
0762             new_div++;
0763         }
0764         data->fan_min[channel] = reg;
0765     }
0766 
0767     /*
0768      * Write both the fan clock divider (if it changed) and the new
0769      * fan min (unconditionally)
0770      */
0771     if (new_div != data->fan_div[channel]) {
0772         dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
0773             channel + 1, div_from_reg(data->fan_div[channel]),
0774             div_from_reg(new_div));
0775         data->fan_div[channel] = new_div;
0776         w83627ehf_write_fan_div(data, channel);
0777         /* Give the chip time to sample a new speed value */
0778         data->last_updated = jiffies;
0779     }
0780 
0781     w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
0782                   data->fan_min[channel]);
0783     mutex_unlock(&data->update_lock);
0784 
0785     return 0;
0786 }
0787 
0788 #define store_temp_reg(addr, reg) \
0789 static int \
0790 store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
0791         long val) \
0792 { \
0793     mutex_lock(&data->update_lock); \
0794     data->reg[channel] = LM75_TEMP_TO_REG(val); \
0795     w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
0796     mutex_unlock(&data->update_lock); \
0797     return 0; \
0798 }
0799 store_temp_reg(reg_temp_over, temp_max);
0800 store_temp_reg(reg_temp_hyst, temp_max_hyst);
0801 
0802 static int
0803 store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
0804           long val)
0805 {
0806     val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
0807 
0808     mutex_lock(&data->update_lock);
0809     data->temp_offset[channel] = val;
0810     w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
0811     mutex_unlock(&data->update_lock);
0812     return 0;
0813 }
0814 
0815 static int
0816 store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
0817            long val)
0818 {
0819     u16 reg;
0820 
0821     if (val < 0 || val > 1)
0822         return -EINVAL;
0823 
0824     mutex_lock(&data->update_lock);
0825     reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
0826     data->pwm_mode[channel] = val;
0827     reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
0828     if (!val)
0829         reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
0830     w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
0831     mutex_unlock(&data->update_lock);
0832     return 0;
0833 }
0834 
0835 static int
0836 store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
0837       long val)
0838 {
0839     val = clamp_val(val, 0, 255);
0840 
0841     mutex_lock(&data->update_lock);
0842     data->pwm[channel] = val;
0843     w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
0844     mutex_unlock(&data->update_lock);
0845     return 0;
0846 }
0847 
0848 static int
0849 store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
0850          long val)
0851 {
0852     u16 reg;
0853 
0854     if (!val || val < 0 ||
0855         (val > 4 && val != data->pwm_enable_orig[channel]))
0856         return -EINVAL;
0857 
0858     mutex_lock(&data->update_lock);
0859     data->pwm_enable[channel] = val;
0860     reg = w83627ehf_read_value(data,
0861                    W83627EHF_REG_PWM_ENABLE[channel]);
0862     reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
0863     reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
0864     w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
0865                   reg);
0866     mutex_unlock(&data->update_lock);
0867     return 0;
0868 }
0869 
0870 #define show_tol_temp(reg) \
0871 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0872                 char *buf) \
0873 { \
0874     struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
0875     struct sensor_device_attribute *sensor_attr = \
0876         to_sensor_dev_attr(attr); \
0877     int nr = sensor_attr->index; \
0878     return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
0879 }
0880 
0881 show_tol_temp(tolerance)
0882 show_tol_temp(target_temp)
0883 
0884 static ssize_t
0885 store_target_temp(struct device *dev, struct device_attribute *attr,
0886             const char *buf, size_t count)
0887 {
0888     struct w83627ehf_data *data = dev_get_drvdata(dev);
0889     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0890     int nr = sensor_attr->index;
0891     long val;
0892     int err;
0893 
0894     err = kstrtol(buf, 10, &val);
0895     if (err < 0)
0896         return err;
0897 
0898     val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
0899 
0900     mutex_lock(&data->update_lock);
0901     data->target_temp[nr] = val;
0902     w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
0903     mutex_unlock(&data->update_lock);
0904     return count;
0905 }
0906 
0907 static ssize_t
0908 store_tolerance(struct device *dev, struct device_attribute *attr,
0909             const char *buf, size_t count)
0910 {
0911     struct w83627ehf_data *data = dev_get_drvdata(dev);
0912     struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
0913     int nr = sensor_attr->index;
0914     u16 reg;
0915     long val;
0916     int err;
0917 
0918     err = kstrtol(buf, 10, &val);
0919     if (err < 0)
0920         return err;
0921 
0922     /* Limit the temp to 0C - 15C */
0923     val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
0924 
0925     mutex_lock(&data->update_lock);
0926     reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
0927     if (nr == 1)
0928         reg = (reg & 0x0f) | (val << 4);
0929     else
0930         reg = (reg & 0xf0) | val;
0931     w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
0932     data->tolerance[nr] = val;
0933     mutex_unlock(&data->update_lock);
0934     return count;
0935 }
0936 
0937 static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
0938         store_target_temp, 0);
0939 static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
0940         store_target_temp, 1);
0941 static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
0942         store_target_temp, 2);
0943 static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
0944         store_target_temp, 3);
0945 
0946 static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
0947         store_tolerance, 0);
0948 static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
0949         store_tolerance, 1);
0950 static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
0951         store_tolerance, 2);
0952 static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
0953         store_tolerance, 3);
0954 
0955 /* Smart Fan registers */
0956 
0957 #define fan_functions(reg, REG) \
0958 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0959                char *buf) \
0960 { \
0961     struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
0962     struct sensor_device_attribute *sensor_attr = \
0963         to_sensor_dev_attr(attr); \
0964     int nr = sensor_attr->index; \
0965     return sprintf(buf, "%d\n", data->reg[nr]); \
0966 } \
0967 static ssize_t \
0968 store_##reg(struct device *dev, struct device_attribute *attr, \
0969                 const char *buf, size_t count) \
0970 { \
0971     struct w83627ehf_data *data = dev_get_drvdata(dev); \
0972     struct sensor_device_attribute *sensor_attr = \
0973         to_sensor_dev_attr(attr); \
0974     int nr = sensor_attr->index; \
0975     unsigned long val; \
0976     int err; \
0977     err = kstrtoul(buf, 10, &val); \
0978     if (err < 0) \
0979         return err; \
0980     val = clamp_val(val, 1, 255); \
0981     mutex_lock(&data->update_lock); \
0982     data->reg[nr] = val; \
0983     w83627ehf_write_value(data, REG[nr], val); \
0984     mutex_unlock(&data->update_lock); \
0985     return count; \
0986 }
0987 
0988 fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
0989 fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
0990 fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
0991 fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
0992 
0993 #define fan_time_functions(reg, REG) \
0994 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0995                 char *buf) \
0996 { \
0997     struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
0998     struct sensor_device_attribute *sensor_attr = \
0999         to_sensor_dev_attr(attr); \
1000     int nr = sensor_attr->index; \
1001     return sprintf(buf, "%d\n", \
1002             step_time_from_reg(data->reg[nr], \
1003                        data->pwm_mode[nr])); \
1004 } \
1005 \
1006 static ssize_t \
1007 store_##reg(struct device *dev, struct device_attribute *attr, \
1008             const char *buf, size_t count) \
1009 { \
1010     struct w83627ehf_data *data = dev_get_drvdata(dev); \
1011     struct sensor_device_attribute *sensor_attr = \
1012         to_sensor_dev_attr(attr); \
1013     int nr = sensor_attr->index; \
1014     unsigned long val; \
1015     int err; \
1016     err = kstrtoul(buf, 10, &val); \
1017     if (err < 0) \
1018         return err; \
1019     val = step_time_to_reg(val, data->pwm_mode[nr]); \
1020     mutex_lock(&data->update_lock); \
1021     data->reg[nr] = val; \
1022     w83627ehf_write_value(data, REG[nr], val); \
1023     mutex_unlock(&data->update_lock); \
1024     return count; \
1025 } \
1026 
1027 fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1028 
1029 static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1030         store_fan_stop_time, 3);
1031 static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1032         store_fan_start_output, 3);
1033 static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1034         store_fan_stop_output, 3);
1035 static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1036         store_fan_max_output, 3);
1037 static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1038         store_fan_step_output, 3);
1039 
1040 static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1041         store_fan_stop_time, 2);
1042 static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1043         store_fan_start_output, 2);
1044 static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1045             store_fan_stop_output, 2);
1046 
1047 static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1048         store_fan_stop_time, 0);
1049 static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1050         store_fan_stop_time, 1);
1051 static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1052         store_fan_start_output, 0);
1053 static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1054         store_fan_start_output, 1);
1055 static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1056         store_fan_stop_output, 0);
1057 static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1058         store_fan_stop_output, 1);
1059 
1060 
1061 /*
1062  * pwm1 and pwm3 don't support max and step settings on all chips.
1063  * Need to check support while generating/removing attribute files.
1064  */
1065 static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1066         store_fan_max_output, 0);
1067 static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1068         store_fan_step_output, 0);
1069 static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1070         store_fan_max_output, 1);
1071 static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1072         store_fan_step_output, 1);
1073 static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1074         store_fan_max_output, 2);
1075 static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1076         store_fan_step_output, 2);
1077 
1078 static ssize_t
1079 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1080 {
1081     struct w83627ehf_data *data = dev_get_drvdata(dev);
1082     return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1083 }
1084 static DEVICE_ATTR_RO(cpu0_vid);
1085 
1086 
1087 /* Case open detection */
1088 static int
1089 clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1090            long val)
1091 {
1092     const u16 mask = 0x80;
1093     u16 reg;
1094 
1095     if (val != 0 || channel != 0)
1096         return -EINVAL;
1097 
1098     mutex_lock(&data->update_lock);
1099     reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1100     w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1101     w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1102     data->valid = false;    /* Force cache refresh */
1103     mutex_unlock(&data->update_lock);
1104 
1105     return 0;
1106 }
1107 
1108 static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1109                        struct attribute *a, int n)
1110 {
1111     struct device *dev = kobj_to_dev(kobj);
1112     struct w83627ehf_data *data = dev_get_drvdata(dev);
1113     struct device_attribute *devattr;
1114     struct sensor_device_attribute *sda;
1115 
1116     devattr = container_of(a, struct device_attribute, attr);
1117 
1118     /* Not sensor */
1119     if (devattr->show == cpu0_vid_show && data->have_vid)
1120         return a->mode;
1121 
1122     sda = (struct sensor_device_attribute *)devattr;
1123 
1124     if (sda->index < 2 &&
1125         (devattr->show == show_fan_stop_time ||
1126          devattr->show == show_fan_start_output ||
1127          devattr->show == show_fan_stop_output))
1128         return a->mode;
1129 
1130     if (sda->index < 3 &&
1131         (devattr->show == show_fan_max_output ||
1132          devattr->show == show_fan_step_output) &&
1133         data->REG_FAN_STEP_OUTPUT &&
1134         data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1135         return a->mode;
1136 
1137     /* if fan3 and fan4 are enabled create the files for them */
1138     if (sda->index == 2 &&
1139         (data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1140         (devattr->show == show_fan_stop_time ||
1141          devattr->show == show_fan_start_output ||
1142          devattr->show == show_fan_stop_output))
1143         return a->mode;
1144 
1145     if (sda->index == 3 &&
1146         (data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1147         (devattr->show == show_fan_stop_time ||
1148          devattr->show == show_fan_start_output ||
1149          devattr->show == show_fan_stop_output ||
1150          devattr->show == show_fan_max_output ||
1151          devattr->show == show_fan_step_output))
1152         return a->mode;
1153 
1154     if ((devattr->show == show_target_temp ||
1155         devattr->show == show_tolerance) &&
1156         (data->has_fan & (1 << sda->index)) &&
1157         sda->index < data->pwm_num)
1158         return a->mode;
1159 
1160     return 0;
1161 }
1162 
1163 /* These groups handle non-standard attributes used in this device */
1164 static struct attribute *w83627ehf_attrs[] = {
1165 
1166     &sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1167     &sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1168     &sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1169     &sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1170     &sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1171     &sensor_dev_attr_pwm1_target.dev_attr.attr,
1172     &sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1173 
1174     &sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1175     &sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1176     &sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1177     &sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1178     &sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1179     &sensor_dev_attr_pwm2_target.dev_attr.attr,
1180     &sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1181 
1182     &sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1183     &sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1184     &sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1185     &sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1186     &sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1187     &sensor_dev_attr_pwm3_target.dev_attr.attr,
1188     &sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1189 
1190     &sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1191     &sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1192     &sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1193     &sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1194     &sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1195     &sensor_dev_attr_pwm4_target.dev_attr.attr,
1196     &sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1197 
1198     &dev_attr_cpu0_vid.attr,
1199     NULL
1200 };
1201 
1202 static const struct attribute_group w83627ehf_group = {
1203     .attrs = w83627ehf_attrs,
1204     .is_visible = w83627ehf_attrs_visible,
1205 };
1206 
1207 static const struct attribute_group *w83627ehf_groups[] = {
1208     &w83627ehf_group,
1209     NULL
1210 };
1211 
1212 /*
1213  * Driver and device management
1214  */
1215 
1216 /* Get the monitoring functions started */
1217 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1218                            enum kinds kind)
1219 {
1220     int i;
1221     u8 tmp, diode;
1222 
1223     /* Start monitoring is needed */
1224     tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1225     if (!(tmp & 0x01))
1226         w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1227                       tmp | 0x01);
1228 
1229     /* Enable temperature sensors if needed */
1230     for (i = 0; i < NUM_REG_TEMP; i++) {
1231         if (!(data->have_temp & (1 << i)))
1232             continue;
1233         if (!data->reg_temp_config[i])
1234             continue;
1235         tmp = w83627ehf_read_value(data,
1236                        data->reg_temp_config[i]);
1237         if (tmp & 0x01)
1238             w83627ehf_write_value(data,
1239                           data->reg_temp_config[i],
1240                           tmp & 0xfe);
1241     }
1242 
1243     /* Enable VBAT monitoring if needed */
1244     tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1245     if (!(tmp & 0x01))
1246         w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1247 
1248     /* Get thermal sensor types */
1249     switch (kind) {
1250     case w83627ehf:
1251         diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1252         break;
1253     case w83627uhg:
1254         diode = 0x00;
1255         break;
1256     default:
1257         diode = 0x70;
1258     }
1259     for (i = 0; i < 3; i++) {
1260         const char *label = NULL;
1261 
1262         if (data->temp_label)
1263             label = data->temp_label[data->temp_src[i]];
1264 
1265         /* Digital source overrides analog type */
1266         if (label && strncmp(label, "PECI", 4) == 0)
1267             data->temp_type[i] = 6;
1268         else if (label && strncmp(label, "AMD", 3) == 0)
1269             data->temp_type[i] = 5;
1270         else if ((tmp & (0x02 << i)))
1271             data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1272         else
1273             data->temp_type[i] = 4; /* thermistor */
1274     }
1275 }
1276 
1277 static void
1278 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1279 {
1280     int i;
1281 
1282     for (i = 0; i < n_temp; i++) {
1283         data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1284         data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1285         data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1286         data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1287     }
1288 }
1289 
1290 static void
1291 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1292                struct w83627ehf_data *data)
1293 {
1294     int fan3pin, fan4pin, fan5pin, regval;
1295 
1296     /* The W83627UHG is simple, only two fan inputs, no config */
1297     if (sio_data->kind == w83627uhg) {
1298         data->has_fan = 0x03; /* fan1 and fan2 */
1299         data->has_fan_min = 0x03;
1300         return;
1301     }
1302 
1303     /* fan4 and fan5 share some pins with the GPIO and serial flash */
1304     if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1305         fan3pin = 1;
1306         fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1307         fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1308     } else {
1309         fan3pin = 1;
1310         fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1311         fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1312     }
1313 
1314     data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1315     data->has_fan |= (fan3pin << 2);
1316     data->has_fan_min |= (fan3pin << 2);
1317 
1318     /*
1319      * It looks like fan4 and fan5 pins can be alternatively used
1320      * as fan on/off switches, but fan5 control is write only :/
1321      * We assume that if the serial interface is disabled, designers
1322      * connected fan5 as input unless they are emitting log 1, which
1323      * is not the default.
1324      */
1325     regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1326     if ((regval & (1 << 2)) && fan4pin) {
1327         data->has_fan |= (1 << 3);
1328         data->has_fan_min |= (1 << 3);
1329     }
1330     if (!(regval & (1 << 1)) && fan5pin) {
1331         data->has_fan |= (1 << 4);
1332         data->has_fan_min |= (1 << 4);
1333     }
1334 }
1335 
1336 static umode_t
1337 w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1338              u32 attr, int channel)
1339 {
1340     const struct w83627ehf_data *data = drvdata;
1341 
1342     switch (type) {
1343     case hwmon_temp:
1344         /* channel 0.., name 1.. */
1345         if (!(data->have_temp & (1 << channel)))
1346             return 0;
1347         if (attr == hwmon_temp_input)
1348             return 0444;
1349         if (attr == hwmon_temp_label) {
1350             if (data->temp_label)
1351                 return 0444;
1352             return 0;
1353         }
1354         if (channel == 2 && data->temp3_val_only)
1355             return 0;
1356         if (attr == hwmon_temp_max) {
1357             if (data->reg_temp_over[channel])
1358                 return 0644;
1359             else
1360                 return 0;
1361         }
1362         if (attr == hwmon_temp_max_hyst) {
1363             if (data->reg_temp_hyst[channel])
1364                 return 0644;
1365             else
1366                 return 0;
1367         }
1368         if (channel > 2)
1369             return 0;
1370         if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1371             return 0444;
1372         if (attr == hwmon_temp_offset) {
1373             if (data->have_temp_offset & (1 << channel))
1374                 return 0644;
1375             else
1376                 return 0;
1377         }
1378         break;
1379 
1380     case hwmon_fan:
1381         /* channel 0.., name 1.. */
1382         if (!(data->has_fan & (1 << channel)))
1383             return 0;
1384         if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1385             return 0444;
1386         if (attr == hwmon_fan_div) {
1387             return 0444;
1388         }
1389         if (attr == hwmon_fan_min) {
1390             if (data->has_fan_min & (1 << channel))
1391                 return 0644;
1392             else
1393                 return 0;
1394         }
1395         break;
1396 
1397     case hwmon_in:
1398         /* channel 0.., name 0.. */
1399         if (channel >= data->in_num)
1400             return 0;
1401         if (channel == 6 && data->in6_skip)
1402             return 0;
1403         if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1404             return 0444;
1405         if (attr == hwmon_in_min || attr == hwmon_in_max)
1406             return 0644;
1407         break;
1408 
1409     case hwmon_pwm:
1410         /* channel 0.., name 1.. */
1411         if (!(data->has_fan & (1 << channel)) ||
1412             channel >= data->pwm_num)
1413             return 0;
1414         if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1415             attr == hwmon_pwm_input)
1416             return 0644;
1417         break;
1418 
1419     case hwmon_intrusion:
1420         return 0644;
1421 
1422     default: /* Shouldn't happen */
1423         return 0;
1424     }
1425 
1426     return 0; /* Shouldn't happen */
1427 }
1428 
1429 static int
1430 w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1431                int channel, long *val)
1432 {
1433     switch (attr) {
1434     case hwmon_temp_input:
1435         *val = LM75_TEMP_FROM_REG(data->temp[channel]);
1436         return 0;
1437     case hwmon_temp_max:
1438         *val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1439         return 0;
1440     case hwmon_temp_max_hyst:
1441         *val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1442         return 0;
1443     case hwmon_temp_offset:
1444         *val = data->temp_offset[channel] * 1000;
1445         return 0;
1446     case hwmon_temp_type:
1447         *val = (int)data->temp_type[channel];
1448         return 0;
1449     case hwmon_temp_alarm:
1450         if (channel < 3) {
1451             int bit[] = { 4, 5, 13 };
1452             *val = (data->alarms >> bit[channel]) & 1;
1453             return 0;
1454         }
1455         break;
1456 
1457     default:
1458         break;
1459     }
1460 
1461     return -EOPNOTSUPP;
1462 }
1463 
1464 static int
1465 w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1466              int channel, long *val)
1467 {
1468     switch (attr) {
1469     case hwmon_in_input:
1470         *val = in_from_reg(data->in[channel], channel, data->scale_in);
1471         return 0;
1472     case hwmon_in_min:
1473         *val = in_from_reg(data->in_min[channel], channel,
1474                    data->scale_in);
1475         return 0;
1476     case hwmon_in_max:
1477         *val = in_from_reg(data->in_max[channel], channel,
1478                    data->scale_in);
1479         return 0;
1480     case hwmon_in_alarm:
1481         if (channel < 10) {
1482             int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1483             *val = (data->alarms >> bit[channel]) & 1;
1484             return 0;
1485         }
1486         break;
1487     default:
1488         break;
1489     }
1490     return -EOPNOTSUPP;
1491 }
1492 
1493 static int
1494 w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1495               int channel, long *val)
1496 {
1497     switch (attr) {
1498     case hwmon_fan_input:
1499         *val = data->rpm[channel];
1500         return 0;
1501     case hwmon_fan_min:
1502         *val = fan_from_reg8(data->fan_min[channel],
1503                      data->fan_div[channel]);
1504         return 0;
1505     case hwmon_fan_div:
1506         *val = div_from_reg(data->fan_div[channel]);
1507         return 0;
1508     case hwmon_fan_alarm:
1509         if (channel < 5) {
1510             int bit[] = { 6, 7, 11, 10, 23 };
1511             *val = (data->alarms >> bit[channel]) & 1;
1512             return 0;
1513         }
1514         break;
1515     default:
1516         break;
1517     }
1518     return -EOPNOTSUPP;
1519 }
1520 
1521 static int
1522 w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1523               int channel, long *val)
1524 {
1525     switch (attr) {
1526     case hwmon_pwm_input:
1527         *val = data->pwm[channel];
1528         return 0;
1529     case hwmon_pwm_enable:
1530         *val = data->pwm_enable[channel];
1531         return 0;
1532     case hwmon_pwm_mode:
1533         *val = data->pwm_enable[channel];
1534         return 0;
1535     default:
1536         break;
1537     }
1538     return -EOPNOTSUPP;
1539 }
1540 
1541 static int
1542 w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1543                 int channel, long *val)
1544 {
1545     if (attr != hwmon_intrusion_alarm || channel != 0)
1546         return -EOPNOTSUPP; /* shouldn't happen */
1547 
1548     *val = !!(data->caseopen & 0x10);
1549     return 0;
1550 }
1551 
1552 static int
1553 w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1554             u32 attr, int channel, long *val)
1555 {
1556     struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1557 
1558     switch (type) {
1559     case hwmon_fan:
1560         return w83627ehf_do_read_fan(data, attr, channel, val);
1561 
1562     case hwmon_in:
1563         return w83627ehf_do_read_in(data, attr, channel, val);
1564 
1565     case hwmon_pwm:
1566         return w83627ehf_do_read_pwm(data, attr, channel, val);
1567 
1568     case hwmon_temp:
1569         return w83627ehf_do_read_temp(data, attr, channel, val);
1570 
1571     case hwmon_intrusion:
1572         return w83627ehf_do_read_intrusion(data, attr, channel, val);
1573 
1574     default:
1575         break;
1576     }
1577 
1578     return -EOPNOTSUPP;
1579 }
1580 
1581 static int
1582 w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1583               u32 attr, int channel, const char **str)
1584 {
1585     struct w83627ehf_data *data = dev_get_drvdata(dev);
1586 
1587     switch (type) {
1588     case hwmon_temp:
1589         if (attr == hwmon_temp_label) {
1590             *str = data->temp_label[data->temp_src[channel]];
1591             return 0;
1592         }
1593         break;
1594 
1595     default:
1596         break;
1597     }
1598     /* Nothing else should be read as a string */
1599     return -EOPNOTSUPP;
1600 }
1601 
1602 static int
1603 w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1604             u32 attr, int channel, long val)
1605 {
1606     struct w83627ehf_data *data = dev_get_drvdata(dev);
1607 
1608     if (type == hwmon_in && attr == hwmon_in_min)
1609         return store_in_min(dev, data, channel, val);
1610     if (type == hwmon_in && attr == hwmon_in_max)
1611         return store_in_max(dev, data, channel, val);
1612 
1613     if (type == hwmon_fan && attr == hwmon_fan_min)
1614         return store_fan_min(dev, data, channel, val);
1615 
1616     if (type == hwmon_temp && attr == hwmon_temp_max)
1617         return store_temp_max(dev, data, channel, val);
1618     if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1619         return store_temp_max_hyst(dev, data, channel, val);
1620     if (type == hwmon_temp && attr == hwmon_temp_offset)
1621         return store_temp_offset(dev, data, channel, val);
1622 
1623     if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1624         return store_pwm_mode(dev, data, channel, val);
1625     if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1626         return store_pwm_enable(dev, data, channel, val);
1627     if (type == hwmon_pwm && attr == hwmon_pwm_input)
1628         return store_pwm(dev, data, channel, val);
1629 
1630     if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1631         return clear_caseopen(dev, data, channel, val);
1632 
1633     return -EOPNOTSUPP;
1634 }
1635 
1636 static const struct hwmon_ops w83627ehf_ops = {
1637     .is_visible = w83627ehf_is_visible,
1638     .read = w83627ehf_read,
1639     .read_string = w83627ehf_read_string,
1640     .write = w83627ehf_write,
1641 };
1642 
1643 static const struct hwmon_channel_info *w83627ehf_info[] = {
1644     HWMON_CHANNEL_INFO(fan,
1645         HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1646         HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1647         HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648         HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649         HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1650     HWMON_CHANNEL_INFO(in,
1651         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1652         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1653         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660         HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1661     HWMON_CHANNEL_INFO(pwm,
1662         HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1663         HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1664         HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665         HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1666     HWMON_CHANNEL_INFO(temp,
1667         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1668             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1669         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683         HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684             HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1685     HWMON_CHANNEL_INFO(intrusion,
1686         HWMON_INTRUSION_ALARM),
1687     NULL
1688 };
1689 
1690 static const struct hwmon_chip_info w83627ehf_chip_info = {
1691     .ops = &w83627ehf_ops,
1692     .info = w83627ehf_info,
1693 };
1694 
1695 static int __init w83627ehf_probe(struct platform_device *pdev)
1696 {
1697     struct device *dev = &pdev->dev;
1698     struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1699     struct w83627ehf_data *data;
1700     struct resource *res;
1701     u8 en_vrm10;
1702     int i, err = 0;
1703     struct device *hwmon_dev;
1704 
1705     res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1706     if (!devm_request_region(dev, res->start, IOREGION_LENGTH, DRVNAME))
1707         return -EBUSY;
1708 
1709     data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1710     if (!data)
1711         return -ENOMEM;
1712 
1713     data->addr = res->start;
1714     mutex_init(&data->lock);
1715     mutex_init(&data->update_lock);
1716     data->name = w83627ehf_device_names[sio_data->kind];
1717     data->bank = 0xff;      /* Force initial bank selection */
1718     platform_set_drvdata(pdev, data);
1719 
1720     /* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1721     data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1722     /* 667HG has 3 pwms, and 627UHG has only 2 */
1723     switch (sio_data->kind) {
1724     default:
1725         data->pwm_num = 4;
1726         break;
1727     case w83667hg:
1728     case w83667hg_b:
1729         data->pwm_num = 3;
1730         break;
1731     case w83627uhg:
1732         data->pwm_num = 2;
1733         break;
1734     }
1735 
1736     /* Default to 3 temperature inputs, code below will adjust as needed */
1737     data->have_temp = 0x07;
1738 
1739     /* Deal with temperature register setup first. */
1740     if (sio_data->kind == w83667hg_b) {
1741         u8 reg;
1742 
1743         w83627ehf_set_temp_reg_ehf(data, 4);
1744 
1745         /*
1746          * Temperature sources are selected with bank 0, registers 0x49
1747          * and 0x4a.
1748          */
1749         reg = w83627ehf_read_value(data, 0x4a);
1750         data->temp_src[0] = reg >> 5;
1751         reg = w83627ehf_read_value(data, 0x49);
1752         data->temp_src[1] = reg & 0x07;
1753         data->temp_src[2] = (reg >> 4) & 0x07;
1754 
1755         /*
1756          * W83667HG-B has another temperature register at 0x7e.
1757          * The temperature source is selected with register 0x7d.
1758          * Support it if the source differs from already reported
1759          * sources.
1760          */
1761         reg = w83627ehf_read_value(data, 0x7d);
1762         reg &= 0x07;
1763         if (reg != data->temp_src[0] && reg != data->temp_src[1]
1764             && reg != data->temp_src[2]) {
1765             data->temp_src[3] = reg;
1766             data->have_temp |= 1 << 3;
1767         }
1768 
1769         /*
1770          * Chip supports either AUXTIN or VIN3. Try to find out which
1771          * one.
1772          */
1773         reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1774         if (data->temp_src[2] == 2 && (reg & 0x01))
1775             data->have_temp &= ~(1 << 2);
1776 
1777         if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1778             || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1779             data->in6_skip = 1;
1780 
1781         data->temp_label = w83667hg_b_temp_label;
1782         data->have_temp_offset = data->have_temp & 0x07;
1783         for (i = 0; i < 3; i++) {
1784             if (data->temp_src[i] > 2)
1785                 data->have_temp_offset &= ~(1 << i);
1786         }
1787     } else if (sio_data->kind == w83627uhg) {
1788         u8 reg;
1789 
1790         w83627ehf_set_temp_reg_ehf(data, 3);
1791 
1792         /*
1793          * Temperature sources for temp2 and temp3 are selected with
1794          * bank 0, registers 0x49 and 0x4a.
1795          */
1796         data->temp_src[0] = 0;  /* SYSTIN */
1797         reg = w83627ehf_read_value(data, 0x49) & 0x07;
1798         /* Adjust to have the same mapping as other source registers */
1799         if (reg == 0)
1800             data->temp_src[1] = 1;
1801         else if (reg >= 2 && reg <= 5)
1802             data->temp_src[1] = reg + 2;
1803         else    /* should never happen */
1804             data->have_temp &= ~(1 << 1);
1805         reg = w83627ehf_read_value(data, 0x4a);
1806         data->temp_src[2] = reg >> 5;
1807 
1808         /*
1809          * Skip temp3 if source is invalid or the same as temp1
1810          * or temp2.
1811          */
1812         if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1813             data->temp_src[2] == data->temp_src[0] ||
1814             ((data->have_temp & (1 << 1)) &&
1815              data->temp_src[2] == data->temp_src[1]))
1816             data->have_temp &= ~(1 << 2);
1817         else
1818             data->temp3_val_only = 1;   /* No limit regs */
1819 
1820         data->in6_skip = 1;         /* No VIN3 */
1821 
1822         data->temp_label = w83667hg_b_temp_label;
1823         data->have_temp_offset = data->have_temp & 0x03;
1824         for (i = 0; i < 3; i++) {
1825             if (data->temp_src[i] > 1)
1826                 data->have_temp_offset &= ~(1 << i);
1827         }
1828     } else {
1829         w83627ehf_set_temp_reg_ehf(data, 3);
1830 
1831         /* Temperature sources are fixed */
1832 
1833         if (sio_data->kind == w83667hg) {
1834             u8 reg;
1835 
1836             /*
1837              * Chip supports either AUXTIN or VIN3. Try to find
1838              * out which one.
1839              */
1840             reg = w83627ehf_read_value(data,
1841                         W83627EHF_REG_TEMP_CONFIG[2]);
1842             if (reg & 0x01)
1843                 data->have_temp &= ~(1 << 2);
1844             else
1845                 data->in6_skip = 1;
1846         }
1847         data->have_temp_offset = data->have_temp & 0x07;
1848     }
1849 
1850     if (sio_data->kind == w83667hg_b) {
1851         data->REG_FAN_MAX_OUTPUT =
1852           W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1853         data->REG_FAN_STEP_OUTPUT =
1854           W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1855     } else {
1856         data->REG_FAN_MAX_OUTPUT =
1857           W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1858         data->REG_FAN_STEP_OUTPUT =
1859           W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1860     }
1861 
1862     /* Setup input voltage scaling factors */
1863     if (sio_data->kind == w83627uhg)
1864         data->scale_in = scale_in_w83627uhg;
1865     else
1866         data->scale_in = scale_in_common;
1867 
1868     /* Initialize the chip */
1869     w83627ehf_init_device(data, sio_data->kind);
1870 
1871     data->vrm = vid_which_vrm();
1872 
1873     err = superio_enter(sio_data->sioreg);
1874     if (err)
1875         return err;
1876 
1877     /* Read VID value */
1878     if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1879         /*
1880          * W83667HG has different pins for VID input and output, so
1881          * we can get the VID input values directly at logical device D
1882          * 0xe3.
1883          */
1884         superio_select(sio_data->sioreg, W83667HG_LD_VID);
1885         data->vid = superio_inb(sio_data->sioreg, 0xe3);
1886         data->have_vid = true;
1887     } else if (sio_data->kind != w83627uhg) {
1888         superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1889         if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1890             /*
1891              * Set VID input sensibility if needed. In theory the
1892              * BIOS should have set it, but in practice it's not
1893              * always the case. We only do it for the W83627EHF/EHG
1894              * because the W83627DHG is more complex in this
1895              * respect.
1896              */
1897             if (sio_data->kind == w83627ehf) {
1898                 en_vrm10 = superio_inb(sio_data->sioreg,
1899                                SIO_REG_EN_VRM10);
1900                 if ((en_vrm10 & 0x08) && data->vrm == 90) {
1901                     dev_warn(dev,
1902                          "Setting VID input voltage to TTL\n");
1903                     superio_outb(sio_data->sioreg,
1904                              SIO_REG_EN_VRM10,
1905                              en_vrm10 & ~0x08);
1906                 } else if (!(en_vrm10 & 0x08)
1907                        && data->vrm == 100) {
1908                     dev_warn(dev,
1909                          "Setting VID input voltage to VRM10\n");
1910                     superio_outb(sio_data->sioreg,
1911                              SIO_REG_EN_VRM10,
1912                              en_vrm10 | 0x08);
1913                 }
1914             }
1915 
1916             data->vid = superio_inb(sio_data->sioreg,
1917                         SIO_REG_VID_DATA);
1918             if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1919                 data->vid &= 0x3f;
1920             data->have_vid = true;
1921         } else {
1922             dev_info(dev,
1923                  "VID pins in output mode, CPU VID not available\n");
1924         }
1925     }
1926 
1927     w83627ehf_check_fan_inputs(sio_data, data);
1928 
1929     superio_exit(sio_data->sioreg);
1930 
1931     /* Read fan clock dividers immediately */
1932     w83627ehf_update_fan_div(data);
1933 
1934     /* Read pwm data to save original values */
1935     w83627ehf_update_pwm(data);
1936     for (i = 0; i < data->pwm_num; i++)
1937         data->pwm_enable_orig[i] = data->pwm_enable[i];
1938 
1939     hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1940                              data->name,
1941                              data,
1942                              &w83627ehf_chip_info,
1943                              w83627ehf_groups);
1944     return PTR_ERR_OR_ZERO(hwmon_dev);
1945 }
1946 
1947 static int __maybe_unused w83627ehf_suspend(struct device *dev)
1948 {
1949     struct w83627ehf_data *data = w83627ehf_update_device(dev);
1950 
1951     mutex_lock(&data->update_lock);
1952     data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1953     mutex_unlock(&data->update_lock);
1954 
1955     return 0;
1956 }
1957 
1958 static int __maybe_unused w83627ehf_resume(struct device *dev)
1959 {
1960     struct w83627ehf_data *data = dev_get_drvdata(dev);
1961     int i;
1962 
1963     mutex_lock(&data->update_lock);
1964     data->bank = 0xff;      /* Force initial bank selection */
1965 
1966     /* Restore limits */
1967     for (i = 0; i < data->in_num; i++) {
1968         if ((i == 6) && data->in6_skip)
1969             continue;
1970 
1971         w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1972                       data->in_min[i]);
1973         w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
1974                       data->in_max[i]);
1975     }
1976 
1977     for (i = 0; i < 5; i++) {
1978         if (!(data->has_fan_min & (1 << i)))
1979             continue;
1980 
1981         w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
1982                       data->fan_min[i]);
1983     }
1984 
1985     for (i = 0; i < NUM_REG_TEMP; i++) {
1986         if (!(data->have_temp & (1 << i)))
1987             continue;
1988 
1989         if (data->reg_temp_over[i])
1990             w83627ehf_write_temp(data, data->reg_temp_over[i],
1991                          data->temp_max[i]);
1992         if (data->reg_temp_hyst[i])
1993             w83627ehf_write_temp(data, data->reg_temp_hyst[i],
1994                          data->temp_max_hyst[i]);
1995         if (i > 2)
1996             continue;
1997         if (data->have_temp_offset & (1 << i))
1998             w83627ehf_write_value(data,
1999                           W83627EHF_REG_TEMP_OFFSET[i],
2000                           data->temp_offset[i]);
2001     }
2002 
2003     /* Restore other settings */
2004     w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2005 
2006     /* Force re-reading all values */
2007     data->valid = false;
2008     mutex_unlock(&data->update_lock);
2009 
2010     return 0;
2011 }
2012 
2013 static SIMPLE_DEV_PM_OPS(w83627ehf_dev_pm_ops, w83627ehf_suspend, w83627ehf_resume);
2014 
2015 static struct platform_driver w83627ehf_driver = {
2016     .driver = {
2017         .name   = DRVNAME,
2018         .pm = &w83627ehf_dev_pm_ops,
2019     },
2020 };
2021 
2022 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2023 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2024                  struct w83627ehf_sio_data *sio_data)
2025 {
2026     static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2027     static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2028     static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2029     static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2030     static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2031     static const char sio_name_W83667HG[] __initconst = "W83667HG";
2032     static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2033 
2034     u16 val;
2035     const char *sio_name;
2036     int err;
2037 
2038     err = superio_enter(sioaddr);
2039     if (err)
2040         return err;
2041 
2042     if (force_id)
2043         val = force_id;
2044     else
2045         val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2046             | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2047     switch (val & SIO_ID_MASK) {
2048     case SIO_W83627EHF_ID:
2049         sio_data->kind = w83627ehf;
2050         sio_name = sio_name_W83627EHF;
2051         break;
2052     case SIO_W83627EHG_ID:
2053         sio_data->kind = w83627ehf;
2054         sio_name = sio_name_W83627EHG;
2055         break;
2056     case SIO_W83627DHG_ID:
2057         sio_data->kind = w83627dhg;
2058         sio_name = sio_name_W83627DHG;
2059         break;
2060     case SIO_W83627DHG_P_ID:
2061         sio_data->kind = w83627dhg_p;
2062         sio_name = sio_name_W83627DHG_P;
2063         break;
2064     case SIO_W83627UHG_ID:
2065         sio_data->kind = w83627uhg;
2066         sio_name = sio_name_W83627UHG;
2067         break;
2068     case SIO_W83667HG_ID:
2069         sio_data->kind = w83667hg;
2070         sio_name = sio_name_W83667HG;
2071         break;
2072     case SIO_W83667HG_B_ID:
2073         sio_data->kind = w83667hg_b;
2074         sio_name = sio_name_W83667HG_B;
2075         break;
2076     default:
2077         if (val != 0xffff)
2078             pr_debug("unsupported chip ID: 0x%04x\n", val);
2079         superio_exit(sioaddr);
2080         return -ENODEV;
2081     }
2082 
2083     /* We have a known chip, find the HWM I/O address */
2084     superio_select(sioaddr, W83627EHF_LD_HWM);
2085     val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2086         | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2087     *addr = val & IOREGION_ALIGNMENT;
2088     if (*addr == 0) {
2089         pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2090         superio_exit(sioaddr);
2091         return -ENODEV;
2092     }
2093 
2094     /* Activate logical device if needed */
2095     val = superio_inb(sioaddr, SIO_REG_ENABLE);
2096     if (!(val & 0x01)) {
2097         pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2098         superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2099     }
2100 
2101     superio_exit(sioaddr);
2102     pr_info("Found %s chip at %#x\n", sio_name, *addr);
2103     sio_data->sioreg = sioaddr;
2104 
2105     return 0;
2106 }
2107 
2108 /*
2109  * when Super-I/O functions move to a separate file, the Super-I/O
2110  * bus will manage the lifetime of the device and this module will only keep
2111  * track of the w83627ehf driver.
2112  */
2113 static struct platform_device *pdev;
2114 
2115 static int __init sensors_w83627ehf_init(void)
2116 {
2117     int err;
2118     unsigned short address;
2119     struct resource res = {
2120         .name   = DRVNAME,
2121         .flags  = IORESOURCE_IO,
2122     };
2123     struct w83627ehf_sio_data sio_data;
2124 
2125     /*
2126      * initialize sio_data->kind and sio_data->sioreg.
2127      *
2128      * when Super-I/O functions move to a separate file, the Super-I/O
2129      * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2130      * w83627ehf hardware monitor, and call probe()
2131      */
2132     if (w83627ehf_find(0x2e, &address, &sio_data) &&
2133         w83627ehf_find(0x4e, &address, &sio_data))
2134         return -ENODEV;
2135 
2136     res.start = address + IOREGION_OFFSET;
2137     res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2138 
2139     err = acpi_check_resource_conflict(&res);
2140     if (err)
2141         return err;
2142 
2143     pdev = platform_create_bundle(&w83627ehf_driver, w83627ehf_probe, &res, 1, &sio_data,
2144                       sizeof(struct w83627ehf_sio_data));
2145 
2146     return PTR_ERR_OR_ZERO(pdev);
2147 }
2148 
2149 static void __exit sensors_w83627ehf_exit(void)
2150 {
2151     platform_device_unregister(pdev);
2152     platform_driver_unregister(&w83627ehf_driver);
2153 }
2154 
2155 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2156 MODULE_DESCRIPTION("W83627EHF driver");
2157 MODULE_LICENSE("GPL");
2158 
2159 module_init(sensors_w83627ehf_init);
2160 module_exit(sensors_w83627ehf_exit);