0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0027
0028 #include <linux/module.h>
0029 #include <linux/slab.h>
0030 #include <linux/i2c.h>
0031 #include <linux/hwmon.h>
0032 #include <linux/hwmon-sysfs.h>
0033 #include <linux/hwmon-vid.h>
0034 #include <linux/err.h>
0035 #include <linux/init.h>
0036 #include <linux/jiffies.h>
0037 #include <linux/mutex.h>
0038 #include "lm75.h"
0039
0040
0041 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
0042
0043 static unsigned short force_subclients[4];
0044 module_param_array(force_subclients, short, NULL, 0);
0045 MODULE_PARM_DESC(force_subclients,
0046 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
0047
0048
0049 #define ASB100_REG_IN(nr) (0x20 + (nr))
0050 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
0051 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
0052
0053
0054 #define ASB100_REG_FAN(nr) (0x28 + (nr))
0055 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
0056
0057
0058 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
0059 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
0060 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
0061
0062 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
0063 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
0064 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
0065
0066 #define ASB100_REG_TEMP2_CONFIG 0x0152
0067 #define ASB100_REG_TEMP3_CONFIG 0x0252
0068
0069
0070 #define ASB100_REG_CONFIG 0x40
0071 #define ASB100_REG_ALARM1 0x41
0072 #define ASB100_REG_ALARM2 0x42
0073 #define ASB100_REG_SMIM1 0x43
0074 #define ASB100_REG_SMIM2 0x44
0075 #define ASB100_REG_VID_FANDIV 0x47
0076 #define ASB100_REG_I2C_ADDR 0x48
0077 #define ASB100_REG_CHIPID 0x49
0078 #define ASB100_REG_I2C_SUBADDR 0x4a
0079 #define ASB100_REG_PIN 0x4b
0080 #define ASB100_REG_IRQ 0x4c
0081 #define ASB100_REG_BANK 0x4e
0082 #define ASB100_REG_CHIPMAN 0x4f
0083
0084 #define ASB100_REG_WCHIPID 0x58
0085
0086
0087 #define ASB100_REG_PWM1 0x59
0088
0089
0090
0091
0092
0093
0094
0095 #define ASB100_IN_MIN 0
0096 #define ASB100_IN_MAX 4080
0097
0098
0099
0100
0101
0102 static u8 IN_TO_REG(unsigned val)
0103 {
0104 unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
0105 return (nval + 8) / 16;
0106 }
0107
0108 static unsigned IN_FROM_REG(u8 reg)
0109 {
0110 return reg * 16;
0111 }
0112
0113 static u8 FAN_TO_REG(long rpm, int div)
0114 {
0115 if (rpm == -1)
0116 return 0;
0117 if (rpm == 0)
0118 return 255;
0119 rpm = clamp_val(rpm, 1, 1000000);
0120 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
0121 }
0122
0123 static int FAN_FROM_REG(u8 val, int div)
0124 {
0125 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
0126 }
0127
0128
0129 #define ASB100_TEMP_MIN -128000
0130 #define ASB100_TEMP_MAX 127000
0131
0132
0133
0134
0135
0136 static u8 TEMP_TO_REG(long temp)
0137 {
0138 int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
0139 ntemp += (ntemp < 0 ? -500 : 500);
0140 return (u8)(ntemp / 1000);
0141 }
0142
0143 static int TEMP_FROM_REG(u8 reg)
0144 {
0145 return (s8)reg * 1000;
0146 }
0147
0148
0149
0150
0151
0152 static u8 ASB100_PWM_TO_REG(int pwm)
0153 {
0154 pwm = clamp_val(pwm, 0, 255);
0155 return (u8)(pwm / 16);
0156 }
0157
0158 static int ASB100_PWM_FROM_REG(u8 reg)
0159 {
0160 return reg * 16;
0161 }
0162
0163 #define DIV_FROM_REG(val) (1 << (val))
0164
0165
0166
0167
0168
0169 static u8 DIV_TO_REG(long val)
0170 {
0171 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
0172 }
0173
0174
0175
0176
0177
0178
0179 struct asb100_data {
0180 struct device *hwmon_dev;
0181 struct mutex lock;
0182
0183 struct mutex update_lock;
0184 unsigned long last_updated;
0185
0186
0187 struct i2c_client *lm75[2];
0188
0189 bool valid;
0190 u8 in[7];
0191 u8 in_max[7];
0192 u8 in_min[7];
0193 u8 fan[3];
0194 u8 fan_min[3];
0195 u16 temp[4];
0196 u16 temp_max[4];
0197 u16 temp_hyst[4];
0198 u8 fan_div[3];
0199 u8 pwm;
0200 u8 vid;
0201 u32 alarms;
0202 u8 vrm;
0203 };
0204
0205 static int asb100_read_value(struct i2c_client *client, u16 reg);
0206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
0207
0208 static int asb100_probe(struct i2c_client *client);
0209 static int asb100_detect(struct i2c_client *client,
0210 struct i2c_board_info *info);
0211 static int asb100_remove(struct i2c_client *client);
0212 static struct asb100_data *asb100_update_device(struct device *dev);
0213 static void asb100_init_client(struct i2c_client *client);
0214
0215 static const struct i2c_device_id asb100_id[] = {
0216 { "asb100", 0 },
0217 { }
0218 };
0219 MODULE_DEVICE_TABLE(i2c, asb100_id);
0220
0221 static struct i2c_driver asb100_driver = {
0222 .class = I2C_CLASS_HWMON,
0223 .driver = {
0224 .name = "asb100",
0225 },
0226 .probe_new = asb100_probe,
0227 .remove = asb100_remove,
0228 .id_table = asb100_id,
0229 .detect = asb100_detect,
0230 .address_list = normal_i2c,
0231 };
0232
0233
0234 #define show_in_reg(reg) \
0235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0236 char *buf) \
0237 { \
0238 int nr = to_sensor_dev_attr(attr)->index; \
0239 struct asb100_data *data = asb100_update_device(dev); \
0240 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
0241 }
0242
0243 show_in_reg(in)
0244 show_in_reg(in_min)
0245 show_in_reg(in_max)
0246
0247 #define set_in_reg(REG, reg) \
0248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
0249 const char *buf, size_t count) \
0250 { \
0251 int nr = to_sensor_dev_attr(attr)->index; \
0252 struct i2c_client *client = to_i2c_client(dev); \
0253 struct asb100_data *data = i2c_get_clientdata(client); \
0254 unsigned long val; \
0255 int err = kstrtoul(buf, 10, &val); \
0256 if (err) \
0257 return err; \
0258 mutex_lock(&data->update_lock); \
0259 data->in_##reg[nr] = IN_TO_REG(val); \
0260 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
0261 data->in_##reg[nr]); \
0262 mutex_unlock(&data->update_lock); \
0263 return count; \
0264 }
0265
0266 set_in_reg(MIN, min)
0267 set_in_reg(MAX, max)
0268
0269 #define sysfs_in(offset) \
0270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
0271 show_in, NULL, offset); \
0272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
0273 show_in_min, set_in_min, offset); \
0274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
0275 show_in_max, set_in_max, offset)
0276
0277 sysfs_in(0);
0278 sysfs_in(1);
0279 sysfs_in(2);
0280 sysfs_in(3);
0281 sysfs_in(4);
0282 sysfs_in(5);
0283 sysfs_in(6);
0284
0285
0286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
0287 char *buf)
0288 {
0289 int nr = to_sensor_dev_attr(attr)->index;
0290 struct asb100_data *data = asb100_update_device(dev);
0291 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
0292 DIV_FROM_REG(data->fan_div[nr])));
0293 }
0294
0295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
0296 char *buf)
0297 {
0298 int nr = to_sensor_dev_attr(attr)->index;
0299 struct asb100_data *data = asb100_update_device(dev);
0300 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
0301 DIV_FROM_REG(data->fan_div[nr])));
0302 }
0303
0304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
0305 char *buf)
0306 {
0307 int nr = to_sensor_dev_attr(attr)->index;
0308 struct asb100_data *data = asb100_update_device(dev);
0309 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
0310 }
0311
0312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
0313 const char *buf, size_t count)
0314 {
0315 int nr = to_sensor_dev_attr(attr)->index;
0316 struct i2c_client *client = to_i2c_client(dev);
0317 struct asb100_data *data = i2c_get_clientdata(client);
0318 unsigned long val;
0319 int err;
0320
0321 err = kstrtoul(buf, 10, &val);
0322 if (err)
0323 return err;
0324
0325 mutex_lock(&data->update_lock);
0326 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
0327 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
0328 mutex_unlock(&data->update_lock);
0329 return count;
0330 }
0331
0332
0333
0334
0335
0336
0337
0338 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
0339 const char *buf, size_t count)
0340 {
0341 int nr = to_sensor_dev_attr(attr)->index;
0342 struct i2c_client *client = to_i2c_client(dev);
0343 struct asb100_data *data = i2c_get_clientdata(client);
0344 unsigned long min;
0345 int reg;
0346 unsigned long val;
0347 int err;
0348
0349 err = kstrtoul(buf, 10, &val);
0350 if (err)
0351 return err;
0352
0353 mutex_lock(&data->update_lock);
0354
0355 min = FAN_FROM_REG(data->fan_min[nr],
0356 DIV_FROM_REG(data->fan_div[nr]));
0357 data->fan_div[nr] = DIV_TO_REG(val);
0358
0359 switch (nr) {
0360 case 0:
0361 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
0362 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
0363 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
0364 break;
0365
0366 case 1:
0367 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
0368 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
0369 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
0370 break;
0371
0372 case 2:
0373 reg = asb100_read_value(client, ASB100_REG_PIN);
0374 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
0375 asb100_write_value(client, ASB100_REG_PIN, reg);
0376 break;
0377 }
0378
0379 data->fan_min[nr] =
0380 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
0381 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
0382
0383 mutex_unlock(&data->update_lock);
0384
0385 return count;
0386 }
0387
0388 #define sysfs_fan(offset) \
0389 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
0390 show_fan, NULL, offset - 1); \
0391 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
0392 show_fan_min, set_fan_min, offset - 1); \
0393 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
0394 show_fan_div, set_fan_div, offset - 1)
0395
0396 sysfs_fan(1);
0397 sysfs_fan(2);
0398 sysfs_fan(3);
0399
0400
0401 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
0402 {
0403 int ret = 0;
0404
0405 switch (nr) {
0406 case 1: case 2:
0407 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
0408 break;
0409 case 0: case 3: default:
0410 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
0411 break;
0412 }
0413 return ret;
0414 }
0415
0416 #define show_temp_reg(reg) \
0417 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
0418 char *buf) \
0419 { \
0420 int nr = to_sensor_dev_attr(attr)->index; \
0421 struct asb100_data *data = asb100_update_device(dev); \
0422 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
0423 }
0424
0425 show_temp_reg(temp);
0426 show_temp_reg(temp_max);
0427 show_temp_reg(temp_hyst);
0428
0429 #define set_temp_reg(REG, reg) \
0430 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
0431 const char *buf, size_t count) \
0432 { \
0433 int nr = to_sensor_dev_attr(attr)->index; \
0434 struct i2c_client *client = to_i2c_client(dev); \
0435 struct asb100_data *data = i2c_get_clientdata(client); \
0436 long val; \
0437 int err = kstrtol(buf, 10, &val); \
0438 if (err) \
0439 return err; \
0440 mutex_lock(&data->update_lock); \
0441 switch (nr) { \
0442 case 1: case 2: \
0443 data->reg[nr] = LM75_TEMP_TO_REG(val); \
0444 break; \
0445 case 0: case 3: default: \
0446 data->reg[nr] = TEMP_TO_REG(val); \
0447 break; \
0448 } \
0449 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
0450 data->reg[nr]); \
0451 mutex_unlock(&data->update_lock); \
0452 return count; \
0453 }
0454
0455 set_temp_reg(MAX, temp_max);
0456 set_temp_reg(HYST, temp_hyst);
0457
0458 #define sysfs_temp(num) \
0459 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
0460 show_temp, NULL, num - 1); \
0461 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
0462 show_temp_max, set_temp_max, num - 1); \
0463 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
0464 show_temp_hyst, set_temp_hyst, num - 1)
0465
0466 sysfs_temp(1);
0467 sysfs_temp(2);
0468 sysfs_temp(3);
0469 sysfs_temp(4);
0470
0471
0472 static ssize_t cpu0_vid_show(struct device *dev,
0473 struct device_attribute *attr, char *buf)
0474 {
0475 struct asb100_data *data = asb100_update_device(dev);
0476 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
0477 }
0478
0479 static DEVICE_ATTR_RO(cpu0_vid);
0480
0481
0482 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
0483 char *buf)
0484 {
0485 struct asb100_data *data = dev_get_drvdata(dev);
0486 return sprintf(buf, "%d\n", data->vrm);
0487 }
0488
0489 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
0490 const char *buf, size_t count)
0491 {
0492 struct asb100_data *data = dev_get_drvdata(dev);
0493 unsigned long val;
0494 int err;
0495
0496 err = kstrtoul(buf, 10, &val);
0497 if (err)
0498 return err;
0499
0500 if (val > 255)
0501 return -EINVAL;
0502
0503 data->vrm = val;
0504 return count;
0505 }
0506
0507
0508 static DEVICE_ATTR_RW(vrm);
0509
0510 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
0511 char *buf)
0512 {
0513 struct asb100_data *data = asb100_update_device(dev);
0514 return sprintf(buf, "%u\n", data->alarms);
0515 }
0516
0517 static DEVICE_ATTR_RO(alarms);
0518
0519 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
0520 char *buf)
0521 {
0522 int bitnr = to_sensor_dev_attr(attr)->index;
0523 struct asb100_data *data = asb100_update_device(dev);
0524 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
0525 }
0526 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
0527 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
0528 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
0529 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
0530 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
0531 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
0532 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
0533 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
0534 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
0535 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
0536 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
0537
0538
0539 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
0540 char *buf)
0541 {
0542 struct asb100_data *data = asb100_update_device(dev);
0543 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
0544 }
0545
0546 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
0547 const char *buf, size_t count)
0548 {
0549 struct i2c_client *client = to_i2c_client(dev);
0550 struct asb100_data *data = i2c_get_clientdata(client);
0551 unsigned long val;
0552 int err;
0553
0554 err = kstrtoul(buf, 10, &val);
0555 if (err)
0556 return err;
0557
0558 mutex_lock(&data->update_lock);
0559 data->pwm &= 0x80;
0560 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
0561 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
0562 mutex_unlock(&data->update_lock);
0563 return count;
0564 }
0565
0566 static ssize_t pwm1_enable_show(struct device *dev,
0567 struct device_attribute *attr, char *buf)
0568 {
0569 struct asb100_data *data = asb100_update_device(dev);
0570 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
0571 }
0572
0573 static ssize_t pwm1_enable_store(struct device *dev,
0574 struct device_attribute *attr,
0575 const char *buf, size_t count)
0576 {
0577 struct i2c_client *client = to_i2c_client(dev);
0578 struct asb100_data *data = i2c_get_clientdata(client);
0579 unsigned long val;
0580 int err;
0581
0582 err = kstrtoul(buf, 10, &val);
0583 if (err)
0584 return err;
0585
0586 mutex_lock(&data->update_lock);
0587 data->pwm &= 0x0f;
0588 data->pwm |= (val ? 0x80 : 0x00);
0589 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
0590 mutex_unlock(&data->update_lock);
0591 return count;
0592 }
0593
0594 static DEVICE_ATTR_RW(pwm1);
0595 static DEVICE_ATTR_RW(pwm1_enable);
0596
0597 static struct attribute *asb100_attributes[] = {
0598 &sensor_dev_attr_in0_input.dev_attr.attr,
0599 &sensor_dev_attr_in0_min.dev_attr.attr,
0600 &sensor_dev_attr_in0_max.dev_attr.attr,
0601 &sensor_dev_attr_in1_input.dev_attr.attr,
0602 &sensor_dev_attr_in1_min.dev_attr.attr,
0603 &sensor_dev_attr_in1_max.dev_attr.attr,
0604 &sensor_dev_attr_in2_input.dev_attr.attr,
0605 &sensor_dev_attr_in2_min.dev_attr.attr,
0606 &sensor_dev_attr_in2_max.dev_attr.attr,
0607 &sensor_dev_attr_in3_input.dev_attr.attr,
0608 &sensor_dev_attr_in3_min.dev_attr.attr,
0609 &sensor_dev_attr_in3_max.dev_attr.attr,
0610 &sensor_dev_attr_in4_input.dev_attr.attr,
0611 &sensor_dev_attr_in4_min.dev_attr.attr,
0612 &sensor_dev_attr_in4_max.dev_attr.attr,
0613 &sensor_dev_attr_in5_input.dev_attr.attr,
0614 &sensor_dev_attr_in5_min.dev_attr.attr,
0615 &sensor_dev_attr_in5_max.dev_attr.attr,
0616 &sensor_dev_attr_in6_input.dev_attr.attr,
0617 &sensor_dev_attr_in6_min.dev_attr.attr,
0618 &sensor_dev_attr_in6_max.dev_attr.attr,
0619
0620 &sensor_dev_attr_fan1_input.dev_attr.attr,
0621 &sensor_dev_attr_fan1_min.dev_attr.attr,
0622 &sensor_dev_attr_fan1_div.dev_attr.attr,
0623 &sensor_dev_attr_fan2_input.dev_attr.attr,
0624 &sensor_dev_attr_fan2_min.dev_attr.attr,
0625 &sensor_dev_attr_fan2_div.dev_attr.attr,
0626 &sensor_dev_attr_fan3_input.dev_attr.attr,
0627 &sensor_dev_attr_fan3_min.dev_attr.attr,
0628 &sensor_dev_attr_fan3_div.dev_attr.attr,
0629
0630 &sensor_dev_attr_temp1_input.dev_attr.attr,
0631 &sensor_dev_attr_temp1_max.dev_attr.attr,
0632 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
0633 &sensor_dev_attr_temp2_input.dev_attr.attr,
0634 &sensor_dev_attr_temp2_max.dev_attr.attr,
0635 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
0636 &sensor_dev_attr_temp3_input.dev_attr.attr,
0637 &sensor_dev_attr_temp3_max.dev_attr.attr,
0638 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
0639 &sensor_dev_attr_temp4_input.dev_attr.attr,
0640 &sensor_dev_attr_temp4_max.dev_attr.attr,
0641 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
0642
0643 &sensor_dev_attr_in0_alarm.dev_attr.attr,
0644 &sensor_dev_attr_in1_alarm.dev_attr.attr,
0645 &sensor_dev_attr_in2_alarm.dev_attr.attr,
0646 &sensor_dev_attr_in3_alarm.dev_attr.attr,
0647 &sensor_dev_attr_in4_alarm.dev_attr.attr,
0648 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
0649 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
0650 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
0651 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
0652 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
0653 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
0654
0655 &dev_attr_cpu0_vid.attr,
0656 &dev_attr_vrm.attr,
0657 &dev_attr_alarms.attr,
0658 &dev_attr_pwm1.attr,
0659 &dev_attr_pwm1_enable.attr,
0660
0661 NULL
0662 };
0663
0664 static const struct attribute_group asb100_group = {
0665 .attrs = asb100_attributes,
0666 };
0667
0668 static int asb100_detect_subclients(struct i2c_client *client)
0669 {
0670 int i, id, err;
0671 int address = client->addr;
0672 unsigned short sc_addr[2];
0673 struct asb100_data *data = i2c_get_clientdata(client);
0674 struct i2c_adapter *adapter = client->adapter;
0675
0676 id = i2c_adapter_id(adapter);
0677
0678 if (force_subclients[0] == id && force_subclients[1] == address) {
0679 for (i = 2; i <= 3; i++) {
0680 if (force_subclients[i] < 0x48 ||
0681 force_subclients[i] > 0x4f) {
0682 dev_err(&client->dev,
0683 "invalid subclient address %d; must be 0x48-0x4f\n",
0684 force_subclients[i]);
0685 err = -ENODEV;
0686 goto ERROR_SC_2;
0687 }
0688 }
0689 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
0690 (force_subclients[2] & 0x07) |
0691 ((force_subclients[3] & 0x07) << 4));
0692 sc_addr[0] = force_subclients[2];
0693 sc_addr[1] = force_subclients[3];
0694 } else {
0695 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
0696 sc_addr[0] = 0x48 + (val & 0x07);
0697 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
0698 }
0699
0700 if (sc_addr[0] == sc_addr[1]) {
0701 dev_err(&client->dev,
0702 "duplicate addresses 0x%x for subclients\n",
0703 sc_addr[0]);
0704 err = -ENODEV;
0705 goto ERROR_SC_2;
0706 }
0707
0708 data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]);
0709 if (IS_ERR(data->lm75[0])) {
0710 dev_err(&client->dev,
0711 "subclient %d registration at address 0x%x failed.\n",
0712 1, sc_addr[0]);
0713 err = PTR_ERR(data->lm75[0]);
0714 goto ERROR_SC_2;
0715 }
0716
0717 data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]);
0718 if (IS_ERR(data->lm75[1])) {
0719 dev_err(&client->dev,
0720 "subclient %d registration at address 0x%x failed.\n",
0721 2, sc_addr[1]);
0722 err = PTR_ERR(data->lm75[1]);
0723 goto ERROR_SC_3;
0724 }
0725
0726 return 0;
0727
0728
0729 ERROR_SC_3:
0730 i2c_unregister_device(data->lm75[0]);
0731 ERROR_SC_2:
0732 return err;
0733 }
0734
0735
0736 static int asb100_detect(struct i2c_client *client,
0737 struct i2c_board_info *info)
0738 {
0739 struct i2c_adapter *adapter = client->adapter;
0740 int val1, val2;
0741
0742 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
0743 pr_debug("detect failed, smbus byte data not supported!\n");
0744 return -ENODEV;
0745 }
0746
0747 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
0748 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
0749
0750
0751 if ((!(val1 & 0x07)) &&
0752
0753 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
0754
0755 ((val1 & 0x80) && (val2 != 0x06)))) {
0756 pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
0757 return -ENODEV;
0758 }
0759
0760
0761 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
0762 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
0763 | 0x80);
0764
0765
0766 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
0767 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
0768
0769 if (val1 != 0x31 || val2 != 0x06)
0770 return -ENODEV;
0771
0772 strlcpy(info->type, "asb100", I2C_NAME_SIZE);
0773
0774 return 0;
0775 }
0776
0777 static int asb100_probe(struct i2c_client *client)
0778 {
0779 int err;
0780 struct asb100_data *data;
0781
0782 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
0783 GFP_KERNEL);
0784 if (!data)
0785 return -ENOMEM;
0786
0787 i2c_set_clientdata(client, data);
0788 mutex_init(&data->lock);
0789 mutex_init(&data->update_lock);
0790
0791
0792 err = asb100_detect_subclients(client);
0793 if (err)
0794 return err;
0795
0796
0797 asb100_init_client(client);
0798
0799
0800 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
0801 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
0802 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
0803
0804
0805 err = sysfs_create_group(&client->dev.kobj, &asb100_group);
0806 if (err)
0807 goto ERROR3;
0808
0809 data->hwmon_dev = hwmon_device_register(&client->dev);
0810 if (IS_ERR(data->hwmon_dev)) {
0811 err = PTR_ERR(data->hwmon_dev);
0812 goto ERROR4;
0813 }
0814
0815 return 0;
0816
0817 ERROR4:
0818 sysfs_remove_group(&client->dev.kobj, &asb100_group);
0819 ERROR3:
0820 i2c_unregister_device(data->lm75[1]);
0821 i2c_unregister_device(data->lm75[0]);
0822 return err;
0823 }
0824
0825 static int asb100_remove(struct i2c_client *client)
0826 {
0827 struct asb100_data *data = i2c_get_clientdata(client);
0828
0829 hwmon_device_unregister(data->hwmon_dev);
0830 sysfs_remove_group(&client->dev.kobj, &asb100_group);
0831
0832 i2c_unregister_device(data->lm75[1]);
0833 i2c_unregister_device(data->lm75[0]);
0834
0835 return 0;
0836 }
0837
0838
0839
0840
0841
0842 static int asb100_read_value(struct i2c_client *client, u16 reg)
0843 {
0844 struct asb100_data *data = i2c_get_clientdata(client);
0845 struct i2c_client *cl;
0846 int res, bank;
0847
0848 mutex_lock(&data->lock);
0849
0850 bank = (reg >> 8) & 0x0f;
0851 if (bank > 2)
0852
0853 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
0854
0855 if (bank == 0 || bank > 2) {
0856 res = i2c_smbus_read_byte_data(client, reg & 0xff);
0857 } else {
0858
0859 cl = data->lm75[bank - 1];
0860
0861
0862 switch (reg & 0xff) {
0863 case 0x50:
0864 res = i2c_smbus_read_word_swapped(cl, 0);
0865 break;
0866 case 0x52:
0867 res = i2c_smbus_read_byte_data(cl, 1);
0868 break;
0869 case 0x53:
0870 res = i2c_smbus_read_word_swapped(cl, 2);
0871 break;
0872 case 0x55:
0873 default:
0874 res = i2c_smbus_read_word_swapped(cl, 3);
0875 break;
0876 }
0877 }
0878
0879 if (bank > 2)
0880 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
0881
0882 mutex_unlock(&data->lock);
0883
0884 return res;
0885 }
0886
0887 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
0888 {
0889 struct asb100_data *data = i2c_get_clientdata(client);
0890 struct i2c_client *cl;
0891 int bank;
0892
0893 mutex_lock(&data->lock);
0894
0895 bank = (reg >> 8) & 0x0f;
0896 if (bank > 2)
0897
0898 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
0899
0900 if (bank == 0 || bank > 2) {
0901 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
0902 } else {
0903
0904 cl = data->lm75[bank - 1];
0905
0906
0907 switch (reg & 0xff) {
0908 case 0x52:
0909 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
0910 break;
0911 case 0x53:
0912 i2c_smbus_write_word_swapped(cl, 2, value);
0913 break;
0914 case 0x55:
0915 i2c_smbus_write_word_swapped(cl, 3, value);
0916 break;
0917 }
0918 }
0919
0920 if (bank > 2)
0921 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
0922
0923 mutex_unlock(&data->lock);
0924 }
0925
0926 static void asb100_init_client(struct i2c_client *client)
0927 {
0928 struct asb100_data *data = i2c_get_clientdata(client);
0929
0930 data->vrm = vid_which_vrm();
0931
0932
0933 asb100_write_value(client, ASB100_REG_CONFIG,
0934 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
0935 }
0936
0937 static struct asb100_data *asb100_update_device(struct device *dev)
0938 {
0939 struct i2c_client *client = to_i2c_client(dev);
0940 struct asb100_data *data = i2c_get_clientdata(client);
0941 int i;
0942
0943 mutex_lock(&data->update_lock);
0944
0945 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
0946 || !data->valid) {
0947
0948 dev_dbg(&client->dev, "starting device update...\n");
0949
0950
0951 for (i = 0; i < 7; i++) {
0952 data->in[i] = asb100_read_value(client,
0953 ASB100_REG_IN(i));
0954 data->in_min[i] = asb100_read_value(client,
0955 ASB100_REG_IN_MIN(i));
0956 data->in_max[i] = asb100_read_value(client,
0957 ASB100_REG_IN_MAX(i));
0958 }
0959
0960
0961 for (i = 0; i < 3; i++) {
0962 data->fan[i] = asb100_read_value(client,
0963 ASB100_REG_FAN(i));
0964 data->fan_min[i] = asb100_read_value(client,
0965 ASB100_REG_FAN_MIN(i));
0966 }
0967
0968
0969 for (i = 1; i <= 4; i++) {
0970 data->temp[i-1] = asb100_read_value(client,
0971 ASB100_REG_TEMP(i));
0972 data->temp_max[i-1] = asb100_read_value(client,
0973 ASB100_REG_TEMP_MAX(i));
0974 data->temp_hyst[i-1] = asb100_read_value(client,
0975 ASB100_REG_TEMP_HYST(i));
0976 }
0977
0978
0979 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
0980 data->vid = i & 0x0f;
0981 data->vid |= (asb100_read_value(client,
0982 ASB100_REG_CHIPID) & 0x01) << 4;
0983 data->fan_div[0] = (i >> 4) & 0x03;
0984 data->fan_div[1] = (i >> 6) & 0x03;
0985 data->fan_div[2] = (asb100_read_value(client,
0986 ASB100_REG_PIN) >> 6) & 0x03;
0987
0988
0989 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
0990
0991
0992 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
0993 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
0994
0995 data->last_updated = jiffies;
0996 data->valid = true;
0997
0998 dev_dbg(&client->dev, "... device update complete\n");
0999 }
1000
1001 mutex_unlock(&data->update_lock);
1002
1003 return data;
1004 }
1005
1006 module_i2c_driver(asb100_driver);
1007
1008 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1009 MODULE_DESCRIPTION("ASB100 Bach driver");
1010 MODULE_LICENSE("GPL");