Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * adt7475 - Thermal sensor driver for the ADT7475 chip and derivatives
0004  * Copyright (C) 2007-2008, Advanced Micro Devices, Inc.
0005  * Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
0006  * Copyright (C) 2008 Hans de Goede <hdegoede@redhat.com>
0007  * Copyright (C) 2009 Jean Delvare <jdelvare@suse.de>
0008  *
0009  * Derived from the lm83 driver by Jean Delvare
0010  */
0011 
0012 #include <linux/module.h>
0013 #include <linux/of_device.h>
0014 #include <linux/init.h>
0015 #include <linux/slab.h>
0016 #include <linux/i2c.h>
0017 #include <linux/hwmon.h>
0018 #include <linux/hwmon-sysfs.h>
0019 #include <linux/hwmon-vid.h>
0020 #include <linux/err.h>
0021 #include <linux/jiffies.h>
0022 #include <linux/of.h>
0023 #include <linux/util_macros.h>
0024 
0025 /* Indexes for the sysfs hooks */
0026 
0027 #define INPUT       0
0028 #define MIN     1
0029 #define MAX     2
0030 #define CONTROL     3
0031 #define OFFSET      3
0032 #define AUTOMIN     4
0033 #define THERM       5
0034 #define HYSTERSIS   6
0035 
0036 /*
0037  * These are unique identifiers for the sysfs functions - unlike the
0038  * numbers above, these are not also indexes into an array
0039  */
0040 
0041 #define ALARM       9
0042 #define FAULT       10
0043 
0044 /* 7475 Common Registers */
0045 
0046 #define REG_DEVREV2     0x12    /* ADT7490 only */
0047 
0048 #define REG_VTT         0x1E    /* ADT7490 only */
0049 #define REG_EXTEND3     0x1F    /* ADT7490 only */
0050 
0051 #define REG_VOLTAGE_BASE    0x20
0052 #define REG_TEMP_BASE       0x25
0053 #define REG_TACH_BASE       0x28
0054 #define REG_PWM_BASE        0x30
0055 #define REG_PWM_MAX_BASE    0x38
0056 
0057 #define REG_DEVID       0x3D
0058 #define REG_VENDID      0x3E
0059 #define REG_DEVID2      0x3F
0060 
0061 #define REG_CONFIG1     0x40
0062 
0063 #define REG_STATUS1     0x41
0064 #define REG_STATUS2     0x42
0065 
0066 #define REG_VID         0x43    /* ADT7476 only */
0067 
0068 #define REG_VOLTAGE_MIN_BASE    0x44
0069 #define REG_VOLTAGE_MAX_BASE    0x45
0070 
0071 #define REG_TEMP_MIN_BASE   0x4E
0072 #define REG_TEMP_MAX_BASE   0x4F
0073 
0074 #define REG_TACH_MIN_BASE   0x54
0075 
0076 #define REG_PWM_CONFIG_BASE 0x5C
0077 
0078 #define REG_TEMP_TRANGE_BASE    0x5F
0079 
0080 #define REG_ENHANCE_ACOUSTICS1  0x62
0081 #define REG_ENHANCE_ACOUSTICS2  0x63
0082 
0083 #define REG_PWM_MIN_BASE    0x64
0084 
0085 #define REG_TEMP_TMIN_BASE  0x67
0086 #define REG_TEMP_THERM_BASE 0x6A
0087 
0088 #define REG_REMOTE1_HYSTERSIS   0x6D
0089 #define REG_REMOTE2_HYSTERSIS   0x6E
0090 
0091 #define REG_TEMP_OFFSET_BASE    0x70
0092 
0093 #define REG_CONFIG2     0x73
0094 
0095 #define REG_EXTEND1     0x76
0096 #define REG_EXTEND2     0x77
0097 
0098 #define REG_CONFIG3     0x78
0099 #define REG_CONFIG5     0x7C
0100 #define REG_CONFIG4     0x7D
0101 
0102 #define REG_STATUS4     0x81    /* ADT7490 only */
0103 
0104 #define REG_VTT_MIN     0x84    /* ADT7490 only */
0105 #define REG_VTT_MAX     0x86    /* ADT7490 only */
0106 
0107 #define VID_VIDSEL      0x80    /* ADT7476 only */
0108 
0109 #define CONFIG2_ATTN        0x20
0110 
0111 #define CONFIG3_SMBALERT    0x01
0112 #define CONFIG3_THERM       0x02
0113 
0114 #define CONFIG4_PINFUNC     0x03
0115 #define CONFIG4_THERM       0x01
0116 #define CONFIG4_SMBALERT    0x02
0117 #define CONFIG4_MAXDUTY     0x08
0118 #define CONFIG4_ATTN_IN10   0x30
0119 #define CONFIG4_ATTN_IN43   0xC0
0120 
0121 #define CONFIG5_TWOSCOMP    0x01
0122 #define CONFIG5_TEMPOFFSET  0x02
0123 #define CONFIG5_VIDGPIO     0x10    /* ADT7476 only */
0124 
0125 /* ADT7475 Settings */
0126 
0127 #define ADT7475_VOLTAGE_COUNT   5   /* Not counting Vtt */
0128 #define ADT7475_TEMP_COUNT  3
0129 #define ADT7475_TACH_COUNT  4
0130 #define ADT7475_PWM_COUNT   3
0131 
0132 /* Macro to read the registers */
0133 
0134 #define adt7475_read(reg) i2c_smbus_read_byte_data(client, (reg))
0135 
0136 /* Macros to easily index the registers */
0137 
0138 #define TACH_REG(idx) (REG_TACH_BASE + ((idx) * 2))
0139 #define TACH_MIN_REG(idx) (REG_TACH_MIN_BASE + ((idx) * 2))
0140 
0141 #define PWM_REG(idx) (REG_PWM_BASE + (idx))
0142 #define PWM_MAX_REG(idx) (REG_PWM_MAX_BASE + (idx))
0143 #define PWM_MIN_REG(idx) (REG_PWM_MIN_BASE + (idx))
0144 #define PWM_CONFIG_REG(idx) (REG_PWM_CONFIG_BASE + (idx))
0145 
0146 #define VOLTAGE_REG(idx) (REG_VOLTAGE_BASE + (idx))
0147 #define VOLTAGE_MIN_REG(idx) (REG_VOLTAGE_MIN_BASE + ((idx) * 2))
0148 #define VOLTAGE_MAX_REG(idx) (REG_VOLTAGE_MAX_BASE + ((idx) * 2))
0149 
0150 #define TEMP_REG(idx) (REG_TEMP_BASE + (idx))
0151 #define TEMP_MIN_REG(idx) (REG_TEMP_MIN_BASE + ((idx) * 2))
0152 #define TEMP_MAX_REG(idx) (REG_TEMP_MAX_BASE + ((idx) * 2))
0153 #define TEMP_TMIN_REG(idx) (REG_TEMP_TMIN_BASE + (idx))
0154 #define TEMP_THERM_REG(idx) (REG_TEMP_THERM_BASE + (idx))
0155 #define TEMP_OFFSET_REG(idx) (REG_TEMP_OFFSET_BASE + (idx))
0156 #define TEMP_TRANGE_REG(idx) (REG_TEMP_TRANGE_BASE + (idx))
0157 
0158 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
0159 
0160 enum chips { adt7473, adt7475, adt7476, adt7490 };
0161 
0162 static const struct i2c_device_id adt7475_id[] = {
0163     { "adt7473", adt7473 },
0164     { "adt7475", adt7475 },
0165     { "adt7476", adt7476 },
0166     { "adt7490", adt7490 },
0167     { }
0168 };
0169 MODULE_DEVICE_TABLE(i2c, adt7475_id);
0170 
0171 static const struct of_device_id __maybe_unused adt7475_of_match[] = {
0172     {
0173         .compatible = "adi,adt7473",
0174         .data = (void *)adt7473
0175     },
0176     {
0177         .compatible = "adi,adt7475",
0178         .data = (void *)adt7475
0179     },
0180     {
0181         .compatible = "adi,adt7476",
0182         .data = (void *)adt7476
0183     },
0184     {
0185         .compatible = "adi,adt7490",
0186         .data = (void *)adt7490
0187     },
0188     { },
0189 };
0190 MODULE_DEVICE_TABLE(of, adt7475_of_match);
0191 
0192 struct adt7475_data {
0193     struct i2c_client *client;
0194     struct mutex lock;
0195 
0196     unsigned long measure_updated;
0197     bool valid;
0198 
0199     u8 config2;
0200     u8 config4;
0201     u8 config5;
0202     u8 has_voltage;
0203     u8 bypass_attn;     /* Bypass voltage attenuator */
0204     u8 has_pwm2:1;
0205     u8 has_fan4:1;
0206     u8 has_vid:1;
0207     u32 alarms;
0208     u16 voltage[3][6];
0209     u16 temp[7][3];
0210     u16 tach[2][4];
0211     u8 pwm[4][3];
0212     u8 range[3];
0213     u8 pwmctl[3];
0214     u8 pwmchan[3];
0215     u8 enh_acoustics[2];
0216 
0217     u8 vid;
0218     u8 vrm;
0219     const struct attribute_group *groups[9];
0220 };
0221 
0222 static struct i2c_driver adt7475_driver;
0223 static struct adt7475_data *adt7475_update_device(struct device *dev);
0224 static void adt7475_read_hystersis(struct i2c_client *client);
0225 static void adt7475_read_pwm(struct i2c_client *client, int index);
0226 
0227 /* Given a temp value, convert it to register value */
0228 
0229 static inline u16 temp2reg(struct adt7475_data *data, long val)
0230 {
0231     u16 ret;
0232 
0233     if (!(data->config5 & CONFIG5_TWOSCOMP)) {
0234         val = clamp_val(val, -64000, 191000);
0235         ret = (val + 64500) / 1000;
0236     } else {
0237         val = clamp_val(val, -128000, 127000);
0238         if (val < -500)
0239             ret = (256500 + val) / 1000;
0240         else
0241             ret = (val + 500) / 1000;
0242     }
0243 
0244     return ret << 2;
0245 }
0246 
0247 /* Given a register value, convert it to a real temp value */
0248 
0249 static inline int reg2temp(struct adt7475_data *data, u16 reg)
0250 {
0251     if (data->config5 & CONFIG5_TWOSCOMP) {
0252         if (reg >= 512)
0253             return (reg - 1024) * 250;
0254         else
0255             return reg * 250;
0256     } else
0257         return (reg - 256) * 250;
0258 }
0259 
0260 static inline int tach2rpm(u16 tach)
0261 {
0262     if (tach == 0 || tach == 0xFFFF)
0263         return 0;
0264 
0265     return (90000 * 60) / tach;
0266 }
0267 
0268 static inline u16 rpm2tach(unsigned long rpm)
0269 {
0270     if (rpm == 0)
0271         return 0;
0272 
0273     return clamp_val((90000 * 60) / rpm, 1, 0xFFFF);
0274 }
0275 
0276 /* Scaling factors for voltage inputs, taken from the ADT7490 datasheet */
0277 static const int adt7473_in_scaling[ADT7475_VOLTAGE_COUNT + 1][2] = {
0278     { 45, 94 }, /* +2.5V */
0279     { 175, 525 },   /* Vccp */
0280     { 68, 71 }, /* Vcc */
0281     { 93, 47 }, /* +5V */
0282     { 120, 20 },    /* +12V */
0283     { 45, 45 }, /* Vtt */
0284 };
0285 
0286 static inline int reg2volt(int channel, u16 reg, u8 bypass_attn)
0287 {
0288     const int *r = adt7473_in_scaling[channel];
0289 
0290     if (bypass_attn & (1 << channel))
0291         return DIV_ROUND_CLOSEST(reg * 2250, 1024);
0292     return DIV_ROUND_CLOSEST(reg * (r[0] + r[1]) * 2250, r[1] * 1024);
0293 }
0294 
0295 static inline u16 volt2reg(int channel, long volt, u8 bypass_attn)
0296 {
0297     const int *r = adt7473_in_scaling[channel];
0298     long reg;
0299 
0300     if (bypass_attn & (1 << channel))
0301         reg = DIV_ROUND_CLOSEST(volt * 1024, 2250);
0302     else
0303         reg = DIV_ROUND_CLOSEST(volt * r[1] * 1024,
0304                     (r[0] + r[1]) * 2250);
0305     return clamp_val(reg, 0, 1023) & (0xff << 2);
0306 }
0307 
0308 static int adt7475_read_word(struct i2c_client *client, int reg)
0309 {
0310     int val1, val2;
0311 
0312     val1 = i2c_smbus_read_byte_data(client, reg);
0313     if (val1 < 0)
0314         return val1;
0315     val2 = i2c_smbus_read_byte_data(client, reg + 1);
0316     if (val2 < 0)
0317         return val2;
0318 
0319     return val1 | (val2 << 8);
0320 }
0321 
0322 static void adt7475_write_word(struct i2c_client *client, int reg, u16 val)
0323 {
0324     i2c_smbus_write_byte_data(client, reg + 1, val >> 8);
0325     i2c_smbus_write_byte_data(client, reg, val & 0xFF);
0326 }
0327 
0328 static ssize_t voltage_show(struct device *dev, struct device_attribute *attr,
0329                 char *buf)
0330 {
0331     struct adt7475_data *data = adt7475_update_device(dev);
0332     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0333     unsigned short val;
0334 
0335     if (IS_ERR(data))
0336         return PTR_ERR(data);
0337 
0338     switch (sattr->nr) {
0339     case ALARM:
0340         return sprintf(buf, "%d\n",
0341                    (data->alarms >> sattr->index) & 1);
0342     default:
0343         val = data->voltage[sattr->nr][sattr->index];
0344         return sprintf(buf, "%d\n",
0345                    reg2volt(sattr->index, val, data->bypass_attn));
0346     }
0347 }
0348 
0349 static ssize_t voltage_store(struct device *dev,
0350                  struct device_attribute *attr, const char *buf,
0351                  size_t count)
0352 {
0353 
0354     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0355     struct adt7475_data *data = dev_get_drvdata(dev);
0356     struct i2c_client *client = data->client;
0357     unsigned char reg;
0358     long val;
0359 
0360     if (kstrtol(buf, 10, &val))
0361         return -EINVAL;
0362 
0363     mutex_lock(&data->lock);
0364 
0365     data->voltage[sattr->nr][sattr->index] =
0366                 volt2reg(sattr->index, val, data->bypass_attn);
0367 
0368     if (sattr->index < ADT7475_VOLTAGE_COUNT) {
0369         if (sattr->nr == MIN)
0370             reg = VOLTAGE_MIN_REG(sattr->index);
0371         else
0372             reg = VOLTAGE_MAX_REG(sattr->index);
0373     } else {
0374         if (sattr->nr == MIN)
0375             reg = REG_VTT_MIN;
0376         else
0377             reg = REG_VTT_MAX;
0378     }
0379 
0380     i2c_smbus_write_byte_data(client, reg,
0381                   data->voltage[sattr->nr][sattr->index] >> 2);
0382     mutex_unlock(&data->lock);
0383 
0384     return count;
0385 }
0386 
0387 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
0388              char *buf)
0389 {
0390     struct adt7475_data *data = adt7475_update_device(dev);
0391     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0392     int out;
0393 
0394     if (IS_ERR(data))
0395         return PTR_ERR(data);
0396 
0397     switch (sattr->nr) {
0398     case HYSTERSIS:
0399         mutex_lock(&data->lock);
0400         out = data->temp[sattr->nr][sattr->index];
0401         if (sattr->index != 1)
0402             out = (out >> 4) & 0xF;
0403         else
0404             out = (out & 0xF);
0405         /*
0406          * Show the value as an absolute number tied to
0407          * THERM
0408          */
0409         out = reg2temp(data, data->temp[THERM][sattr->index]) -
0410             out * 1000;
0411         mutex_unlock(&data->lock);
0412         break;
0413 
0414     case OFFSET:
0415         /*
0416          * Offset is always 2's complement, regardless of the
0417          * setting in CONFIG5
0418          */
0419         mutex_lock(&data->lock);
0420         out = (s8)data->temp[sattr->nr][sattr->index];
0421         if (data->config5 & CONFIG5_TEMPOFFSET)
0422             out *= 1000;
0423         else
0424             out *= 500;
0425         mutex_unlock(&data->lock);
0426         break;
0427 
0428     case ALARM:
0429         out = (data->alarms >> (sattr->index + 4)) & 1;
0430         break;
0431 
0432     case FAULT:
0433         /* Note - only for remote1 and remote2 */
0434         out = !!(data->alarms & (sattr->index ? 0x8000 : 0x4000));
0435         break;
0436 
0437     default:
0438         /* All other temp values are in the configured format */
0439         out = reg2temp(data, data->temp[sattr->nr][sattr->index]);
0440     }
0441 
0442     return sprintf(buf, "%d\n", out);
0443 }
0444 
0445 static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
0446               const char *buf, size_t count)
0447 {
0448     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0449     struct adt7475_data *data = dev_get_drvdata(dev);
0450     struct i2c_client *client = data->client;
0451     unsigned char reg = 0;
0452     u8 out;
0453     int temp;
0454     long val;
0455 
0456     if (kstrtol(buf, 10, &val))
0457         return -EINVAL;
0458 
0459     mutex_lock(&data->lock);
0460 
0461     /* We need the config register in all cases for temp <-> reg conv. */
0462     data->config5 = adt7475_read(REG_CONFIG5);
0463 
0464     switch (sattr->nr) {
0465     case OFFSET:
0466         if (data->config5 & CONFIG5_TEMPOFFSET) {
0467             val = clamp_val(val, -63000, 127000);
0468             out = data->temp[OFFSET][sattr->index] = val / 1000;
0469         } else {
0470             val = clamp_val(val, -63000, 64000);
0471             out = data->temp[OFFSET][sattr->index] = val / 500;
0472         }
0473         break;
0474 
0475     case HYSTERSIS:
0476         /*
0477          * The value will be given as an absolute value, turn it
0478          * into an offset based on THERM
0479          */
0480 
0481         /* Read fresh THERM and HYSTERSIS values from the chip */
0482         data->temp[THERM][sattr->index] =
0483             adt7475_read(TEMP_THERM_REG(sattr->index)) << 2;
0484         adt7475_read_hystersis(client);
0485 
0486         temp = reg2temp(data, data->temp[THERM][sattr->index]);
0487         val = clamp_val(val, temp - 15000, temp);
0488         val = (temp - val) / 1000;
0489 
0490         if (sattr->index != 1) {
0491             data->temp[HYSTERSIS][sattr->index] &= 0xF0;
0492             data->temp[HYSTERSIS][sattr->index] |= (val & 0xF) << 4;
0493         } else {
0494             data->temp[HYSTERSIS][sattr->index] &= 0x0F;
0495             data->temp[HYSTERSIS][sattr->index] |= (val & 0xF);
0496         }
0497 
0498         out = data->temp[HYSTERSIS][sattr->index];
0499         break;
0500 
0501     default:
0502         data->temp[sattr->nr][sattr->index] = temp2reg(data, val);
0503 
0504         /*
0505          * We maintain an extra 2 digits of precision for simplicity
0506          * - shift those back off before writing the value
0507          */
0508         out = (u8) (data->temp[sattr->nr][sattr->index] >> 2);
0509     }
0510 
0511     switch (sattr->nr) {
0512     case MIN:
0513         reg = TEMP_MIN_REG(sattr->index);
0514         break;
0515     case MAX:
0516         reg = TEMP_MAX_REG(sattr->index);
0517         break;
0518     case OFFSET:
0519         reg = TEMP_OFFSET_REG(sattr->index);
0520         break;
0521     case AUTOMIN:
0522         reg = TEMP_TMIN_REG(sattr->index);
0523         break;
0524     case THERM:
0525         reg = TEMP_THERM_REG(sattr->index);
0526         break;
0527     case HYSTERSIS:
0528         if (sattr->index != 2)
0529             reg = REG_REMOTE1_HYSTERSIS;
0530         else
0531             reg = REG_REMOTE2_HYSTERSIS;
0532 
0533         break;
0534     }
0535 
0536     i2c_smbus_write_byte_data(client, reg, out);
0537 
0538     mutex_unlock(&data->lock);
0539     return count;
0540 }
0541 
0542 /* Assuming CONFIG6[SLOW] is 0 */
0543 static const int ad7475_st_map[] = {
0544     37500, 18800, 12500, 7500, 4700, 3100, 1600, 800,
0545 };
0546 
0547 static ssize_t temp_st_show(struct device *dev, struct device_attribute *attr,
0548                 char *buf)
0549 {
0550     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0551     struct adt7475_data *data = dev_get_drvdata(dev);
0552     long val;
0553 
0554     switch (sattr->index) {
0555     case 0:
0556         val = data->enh_acoustics[0] & 0xf;
0557         break;
0558     case 1:
0559         val = (data->enh_acoustics[1] >> 4) & 0xf;
0560         break;
0561     case 2:
0562     default:
0563         val = data->enh_acoustics[1] & 0xf;
0564         break;
0565     }
0566 
0567     if (val & 0x8)
0568         return sprintf(buf, "%d\n", ad7475_st_map[val & 0x7]);
0569     else
0570         return sprintf(buf, "0\n");
0571 }
0572 
0573 static ssize_t temp_st_store(struct device *dev,
0574                  struct device_attribute *attr, const char *buf,
0575                  size_t count)
0576 {
0577     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0578     struct adt7475_data *data = dev_get_drvdata(dev);
0579     struct i2c_client *client = data->client;
0580     unsigned char reg;
0581     int shift, idx;
0582     ulong val;
0583 
0584     if (kstrtoul(buf, 10, &val))
0585         return -EINVAL;
0586 
0587     switch (sattr->index) {
0588     case 0:
0589         reg = REG_ENHANCE_ACOUSTICS1;
0590         shift = 0;
0591         idx = 0;
0592         break;
0593     case 1:
0594         reg = REG_ENHANCE_ACOUSTICS2;
0595         shift = 0;
0596         idx = 1;
0597         break;
0598     case 2:
0599     default:
0600         reg = REG_ENHANCE_ACOUSTICS2;
0601         shift = 4;
0602         idx = 1;
0603         break;
0604     }
0605 
0606     if (val > 0) {
0607         val = find_closest_descending(val, ad7475_st_map,
0608                           ARRAY_SIZE(ad7475_st_map));
0609         val |= 0x8;
0610     }
0611 
0612     mutex_lock(&data->lock);
0613 
0614     data->enh_acoustics[idx] &= ~(0xf << shift);
0615     data->enh_acoustics[idx] |= (val << shift);
0616 
0617     i2c_smbus_write_byte_data(client, reg, data->enh_acoustics[idx]);
0618 
0619     mutex_unlock(&data->lock);
0620 
0621     return count;
0622 }
0623 
0624 /*
0625  * Table of autorange values - the user will write the value in millidegrees,
0626  * and we'll convert it
0627  */
0628 static const int autorange_table[] = {
0629     2000, 2500, 3330, 4000, 5000, 6670, 8000,
0630     10000, 13330, 16000, 20000, 26670, 32000, 40000,
0631     53330, 80000
0632 };
0633 
0634 static ssize_t point2_show(struct device *dev, struct device_attribute *attr,
0635                char *buf)
0636 {
0637     struct adt7475_data *data = adt7475_update_device(dev);
0638     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0639     int out, val;
0640 
0641     if (IS_ERR(data))
0642         return PTR_ERR(data);
0643 
0644     mutex_lock(&data->lock);
0645     out = (data->range[sattr->index] >> 4) & 0x0F;
0646     val = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
0647     mutex_unlock(&data->lock);
0648 
0649     return sprintf(buf, "%d\n", val + autorange_table[out]);
0650 }
0651 
0652 static ssize_t point2_store(struct device *dev, struct device_attribute *attr,
0653                 const char *buf, size_t count)
0654 {
0655     struct adt7475_data *data = dev_get_drvdata(dev);
0656     struct i2c_client *client = data->client;
0657     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0658     int temp;
0659     long val;
0660 
0661     if (kstrtol(buf, 10, &val))
0662         return -EINVAL;
0663 
0664     mutex_lock(&data->lock);
0665 
0666     /* Get a fresh copy of the needed registers */
0667     data->config5 = adt7475_read(REG_CONFIG5);
0668     data->temp[AUTOMIN][sattr->index] =
0669         adt7475_read(TEMP_TMIN_REG(sattr->index)) << 2;
0670     data->range[sattr->index] =
0671         adt7475_read(TEMP_TRANGE_REG(sattr->index));
0672 
0673     /*
0674      * The user will write an absolute value, so subtract the start point
0675      * to figure the range
0676      */
0677     temp = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
0678     val = clamp_val(val, temp + autorange_table[0],
0679         temp + autorange_table[ARRAY_SIZE(autorange_table) - 1]);
0680     val -= temp;
0681 
0682     /* Find the nearest table entry to what the user wrote */
0683     val = find_closest(val, autorange_table, ARRAY_SIZE(autorange_table));
0684 
0685     data->range[sattr->index] &= ~0xF0;
0686     data->range[sattr->index] |= val << 4;
0687 
0688     i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
0689                   data->range[sattr->index]);
0690 
0691     mutex_unlock(&data->lock);
0692     return count;
0693 }
0694 
0695 static ssize_t tach_show(struct device *dev, struct device_attribute *attr,
0696              char *buf)
0697 {
0698     struct adt7475_data *data = adt7475_update_device(dev);
0699     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0700     int out;
0701 
0702     if (IS_ERR(data))
0703         return PTR_ERR(data);
0704 
0705     if (sattr->nr == ALARM)
0706         out = (data->alarms >> (sattr->index + 10)) & 1;
0707     else
0708         out = tach2rpm(data->tach[sattr->nr][sattr->index]);
0709 
0710     return sprintf(buf, "%d\n", out);
0711 }
0712 
0713 static ssize_t tach_store(struct device *dev, struct device_attribute *attr,
0714               const char *buf, size_t count)
0715 {
0716 
0717     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0718     struct adt7475_data *data = dev_get_drvdata(dev);
0719     struct i2c_client *client = data->client;
0720     unsigned long val;
0721 
0722     if (kstrtoul(buf, 10, &val))
0723         return -EINVAL;
0724 
0725     mutex_lock(&data->lock);
0726 
0727     data->tach[MIN][sattr->index] = rpm2tach(val);
0728 
0729     adt7475_write_word(client, TACH_MIN_REG(sattr->index),
0730                data->tach[MIN][sattr->index]);
0731 
0732     mutex_unlock(&data->lock);
0733     return count;
0734 }
0735 
0736 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
0737             char *buf)
0738 {
0739     struct adt7475_data *data = adt7475_update_device(dev);
0740     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0741 
0742     if (IS_ERR(data))
0743         return PTR_ERR(data);
0744 
0745     return sprintf(buf, "%d\n", data->pwm[sattr->nr][sattr->index]);
0746 }
0747 
0748 static ssize_t pwmchan_show(struct device *dev, struct device_attribute *attr,
0749                 char *buf)
0750 {
0751     struct adt7475_data *data = adt7475_update_device(dev);
0752     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0753 
0754     if (IS_ERR(data))
0755         return PTR_ERR(data);
0756 
0757     return sprintf(buf, "%d\n", data->pwmchan[sattr->index]);
0758 }
0759 
0760 static ssize_t pwmctrl_show(struct device *dev, struct device_attribute *attr,
0761                 char *buf)
0762 {
0763     struct adt7475_data *data = adt7475_update_device(dev);
0764     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0765 
0766     if (IS_ERR(data))
0767         return PTR_ERR(data);
0768 
0769     return sprintf(buf, "%d\n", data->pwmctl[sattr->index]);
0770 }
0771 
0772 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
0773              const char *buf, size_t count)
0774 {
0775 
0776     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0777     struct adt7475_data *data = dev_get_drvdata(dev);
0778     struct i2c_client *client = data->client;
0779     unsigned char reg = 0;
0780     long val;
0781 
0782     if (kstrtol(buf, 10, &val))
0783         return -EINVAL;
0784 
0785     mutex_lock(&data->lock);
0786 
0787     switch (sattr->nr) {
0788     case INPUT:
0789         /* Get a fresh value for CONTROL */
0790         data->pwm[CONTROL][sattr->index] =
0791             adt7475_read(PWM_CONFIG_REG(sattr->index));
0792 
0793         /*
0794          * If we are not in manual mode, then we shouldn't allow
0795          * the user to set the pwm speed
0796          */
0797         if (((data->pwm[CONTROL][sattr->index] >> 5) & 7) != 7) {
0798             mutex_unlock(&data->lock);
0799             return count;
0800         }
0801 
0802         reg = PWM_REG(sattr->index);
0803         break;
0804 
0805     case MIN:
0806         reg = PWM_MIN_REG(sattr->index);
0807         break;
0808 
0809     case MAX:
0810         reg = PWM_MAX_REG(sattr->index);
0811         break;
0812     }
0813 
0814     data->pwm[sattr->nr][sattr->index] = clamp_val(val, 0, 0xFF);
0815     i2c_smbus_write_byte_data(client, reg,
0816                   data->pwm[sattr->nr][sattr->index]);
0817     mutex_unlock(&data->lock);
0818 
0819     return count;
0820 }
0821 
0822 static ssize_t stall_disable_show(struct device *dev,
0823                   struct device_attribute *attr, char *buf)
0824 {
0825     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0826     struct adt7475_data *data = dev_get_drvdata(dev);
0827 
0828     u8 mask = BIT(5 + sattr->index);
0829 
0830     return sprintf(buf, "%d\n", !!(data->enh_acoustics[0] & mask));
0831 }
0832 
0833 static ssize_t stall_disable_store(struct device *dev,
0834                    struct device_attribute *attr,
0835                    const char *buf, size_t count)
0836 {
0837     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0838     struct adt7475_data *data = dev_get_drvdata(dev);
0839     struct i2c_client *client = data->client;
0840     long val;
0841     u8 mask = BIT(5 + sattr->index);
0842 
0843     if (kstrtol(buf, 10, &val))
0844         return -EINVAL;
0845 
0846     mutex_lock(&data->lock);
0847 
0848     data->enh_acoustics[0] &= ~mask;
0849     if (val)
0850         data->enh_acoustics[0] |= mask;
0851 
0852     i2c_smbus_write_byte_data(client, REG_ENHANCE_ACOUSTICS1,
0853                   data->enh_acoustics[0]);
0854 
0855     mutex_unlock(&data->lock);
0856 
0857     return count;
0858 }
0859 
0860 /* Called by set_pwmctrl and set_pwmchan */
0861 
0862 static int hw_set_pwm(struct i2c_client *client, int index,
0863               unsigned int pwmctl, unsigned int pwmchan)
0864 {
0865     struct adt7475_data *data = i2c_get_clientdata(client);
0866     long val = 0;
0867 
0868     switch (pwmctl) {
0869     case 0:
0870         val = 0x03; /* Run at full speed */
0871         break;
0872     case 1:
0873         val = 0x07; /* Manual mode */
0874         break;
0875     case 2:
0876         switch (pwmchan) {
0877         case 1:
0878             /* Remote1 controls PWM */
0879             val = 0x00;
0880             break;
0881         case 2:
0882             /* local controls PWM */
0883             val = 0x01;
0884             break;
0885         case 4:
0886             /* remote2 controls PWM */
0887             val = 0x02;
0888             break;
0889         case 6:
0890             /* local/remote2 control PWM */
0891             val = 0x05;
0892             break;
0893         case 7:
0894             /* All three control PWM */
0895             val = 0x06;
0896             break;
0897         default:
0898             return -EINVAL;
0899         }
0900         break;
0901     default:
0902         return -EINVAL;
0903     }
0904 
0905     data->pwmctl[index] = pwmctl;
0906     data->pwmchan[index] = pwmchan;
0907 
0908     data->pwm[CONTROL][index] &= ~0xE0;
0909     data->pwm[CONTROL][index] |= (val & 7) << 5;
0910 
0911     i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
0912                   data->pwm[CONTROL][index]);
0913 
0914     return 0;
0915 }
0916 
0917 static ssize_t pwmchan_store(struct device *dev,
0918                  struct device_attribute *attr, const char *buf,
0919                  size_t count)
0920 {
0921     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0922     struct adt7475_data *data = dev_get_drvdata(dev);
0923     struct i2c_client *client = data->client;
0924     int r;
0925     long val;
0926 
0927     if (kstrtol(buf, 10, &val))
0928         return -EINVAL;
0929 
0930     mutex_lock(&data->lock);
0931     /* Read Modify Write PWM values */
0932     adt7475_read_pwm(client, sattr->index);
0933     r = hw_set_pwm(client, sattr->index, data->pwmctl[sattr->index], val);
0934     if (r)
0935         count = r;
0936     mutex_unlock(&data->lock);
0937 
0938     return count;
0939 }
0940 
0941 static ssize_t pwmctrl_store(struct device *dev,
0942                  struct device_attribute *attr, const char *buf,
0943                  size_t count)
0944 {
0945     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0946     struct adt7475_data *data = dev_get_drvdata(dev);
0947     struct i2c_client *client = data->client;
0948     int r;
0949     long val;
0950 
0951     if (kstrtol(buf, 10, &val))
0952         return -EINVAL;
0953 
0954     mutex_lock(&data->lock);
0955     /* Read Modify Write PWM values */
0956     adt7475_read_pwm(client, sattr->index);
0957     r = hw_set_pwm(client, sattr->index, val, data->pwmchan[sattr->index]);
0958     if (r)
0959         count = r;
0960     mutex_unlock(&data->lock);
0961 
0962     return count;
0963 }
0964 
0965 /* List of frequencies for the PWM */
0966 static const int pwmfreq_table[] = {
0967     11, 14, 22, 29, 35, 44, 58, 88, 22500
0968 };
0969 
0970 static ssize_t pwmfreq_show(struct device *dev, struct device_attribute *attr,
0971                 char *buf)
0972 {
0973     struct adt7475_data *data = adt7475_update_device(dev);
0974     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0975     int idx;
0976 
0977     if (IS_ERR(data))
0978         return PTR_ERR(data);
0979     idx = clamp_val(data->range[sattr->index] & 0xf, 0,
0980             ARRAY_SIZE(pwmfreq_table) - 1);
0981 
0982     return sprintf(buf, "%d\n", pwmfreq_table[idx]);
0983 }
0984 
0985 static ssize_t pwmfreq_store(struct device *dev,
0986                  struct device_attribute *attr, const char *buf,
0987                  size_t count)
0988 {
0989     struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
0990     struct adt7475_data *data = dev_get_drvdata(dev);
0991     struct i2c_client *client = data->client;
0992     int out;
0993     long val;
0994 
0995     if (kstrtol(buf, 10, &val))
0996         return -EINVAL;
0997 
0998     out = find_closest(val, pwmfreq_table, ARRAY_SIZE(pwmfreq_table));
0999 
1000     mutex_lock(&data->lock);
1001 
1002     data->range[sattr->index] =
1003         adt7475_read(TEMP_TRANGE_REG(sattr->index));
1004     data->range[sattr->index] &= ~0xf;
1005     data->range[sattr->index] |= out;
1006 
1007     i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
1008                   data->range[sattr->index]);
1009 
1010     mutex_unlock(&data->lock);
1011     return count;
1012 }
1013 
1014 static ssize_t pwm_use_point2_pwm_at_crit_show(struct device *dev,
1015                     struct device_attribute *devattr,
1016                     char *buf)
1017 {
1018     struct adt7475_data *data = adt7475_update_device(dev);
1019 
1020     if (IS_ERR(data))
1021         return PTR_ERR(data);
1022 
1023     return sprintf(buf, "%d\n", !!(data->config4 & CONFIG4_MAXDUTY));
1024 }
1025 
1026 static ssize_t pwm_use_point2_pwm_at_crit_store(struct device *dev,
1027                     struct device_attribute *devattr,
1028                     const char *buf, size_t count)
1029 {
1030     struct adt7475_data *data = dev_get_drvdata(dev);
1031     struct i2c_client *client = data->client;
1032     long val;
1033 
1034     if (kstrtol(buf, 10, &val))
1035         return -EINVAL;
1036     if (val != 0 && val != 1)
1037         return -EINVAL;
1038 
1039     mutex_lock(&data->lock);
1040     data->config4 = i2c_smbus_read_byte_data(client, REG_CONFIG4);
1041     if (val)
1042         data->config4 |= CONFIG4_MAXDUTY;
1043     else
1044         data->config4 &= ~CONFIG4_MAXDUTY;
1045     i2c_smbus_write_byte_data(client, REG_CONFIG4, data->config4);
1046     mutex_unlock(&data->lock);
1047 
1048     return count;
1049 }
1050 
1051 static ssize_t vrm_show(struct device *dev, struct device_attribute *devattr,
1052             char *buf)
1053 {
1054     struct adt7475_data *data = dev_get_drvdata(dev);
1055     return sprintf(buf, "%d\n", (int)data->vrm);
1056 }
1057 
1058 static ssize_t vrm_store(struct device *dev, struct device_attribute *devattr,
1059              const char *buf, size_t count)
1060 {
1061     struct adt7475_data *data = dev_get_drvdata(dev);
1062     long val;
1063 
1064     if (kstrtol(buf, 10, &val))
1065         return -EINVAL;
1066     if (val < 0 || val > 255)
1067         return -EINVAL;
1068     data->vrm = val;
1069 
1070     return count;
1071 }
1072 
1073 static ssize_t cpu0_vid_show(struct device *dev,
1074                  struct device_attribute *devattr, char *buf)
1075 {
1076     struct adt7475_data *data = adt7475_update_device(dev);
1077 
1078     if (IS_ERR(data))
1079         return PTR_ERR(data);
1080 
1081     return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1082 }
1083 
1084 static SENSOR_DEVICE_ATTR_2_RO(in0_input, voltage, INPUT, 0);
1085 static SENSOR_DEVICE_ATTR_2_RW(in0_max, voltage, MAX, 0);
1086 static SENSOR_DEVICE_ATTR_2_RW(in0_min, voltage, MIN, 0);
1087 static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, voltage, ALARM, 0);
1088 static SENSOR_DEVICE_ATTR_2_RO(in1_input, voltage, INPUT, 1);
1089 static SENSOR_DEVICE_ATTR_2_RW(in1_max, voltage, MAX, 1);
1090 static SENSOR_DEVICE_ATTR_2_RW(in1_min, voltage, MIN, 1);
1091 static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, voltage, ALARM, 1);
1092 static SENSOR_DEVICE_ATTR_2_RO(in2_input, voltage, INPUT, 2);
1093 static SENSOR_DEVICE_ATTR_2_RW(in2_max, voltage, MAX, 2);
1094 static SENSOR_DEVICE_ATTR_2_RW(in2_min, voltage, MIN, 2);
1095 static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, voltage, ALARM, 2);
1096 static SENSOR_DEVICE_ATTR_2_RO(in3_input, voltage, INPUT, 3);
1097 static SENSOR_DEVICE_ATTR_2_RW(in3_max, voltage, MAX, 3);
1098 static SENSOR_DEVICE_ATTR_2_RW(in3_min, voltage, MIN, 3);
1099 static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, voltage, ALARM, 3);
1100 static SENSOR_DEVICE_ATTR_2_RO(in4_input, voltage, INPUT, 4);
1101 static SENSOR_DEVICE_ATTR_2_RW(in4_max, voltage, MAX, 4);
1102 static SENSOR_DEVICE_ATTR_2_RW(in4_min, voltage, MIN, 4);
1103 static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, voltage, ALARM, 8);
1104 static SENSOR_DEVICE_ATTR_2_RO(in5_input, voltage, INPUT, 5);
1105 static SENSOR_DEVICE_ATTR_2_RW(in5_max, voltage, MAX, 5);
1106 static SENSOR_DEVICE_ATTR_2_RW(in5_min, voltage, MIN, 5);
1107 static SENSOR_DEVICE_ATTR_2_RO(in5_alarm, voltage, ALARM, 31);
1108 static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, INPUT, 0);
1109 static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, temp, ALARM, 0);
1110 static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, temp, FAULT, 0);
1111 static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, MAX, 0);
1112 static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, MIN, 0);
1113 static SENSOR_DEVICE_ATTR_2_RW(temp1_offset, temp, OFFSET, 0);
1114 static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point1_temp, temp, AUTOMIN, 0);
1115 static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point2_temp, point2, 0, 0);
1116 static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, THERM, 0);
1117 static SENSOR_DEVICE_ATTR_2_RW(temp1_crit_hyst, temp, HYSTERSIS, 0);
1118 static SENSOR_DEVICE_ATTR_2_RW(temp1_smoothing, temp_st, 0, 0);
1119 static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, INPUT, 1);
1120 static SENSOR_DEVICE_ATTR_2_RO(temp2_alarm, temp, ALARM, 1);
1121 static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, MAX, 1);
1122 static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, MIN, 1);
1123 static SENSOR_DEVICE_ATTR_2_RW(temp2_offset, temp, OFFSET, 1);
1124 static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point1_temp, temp, AUTOMIN, 1);
1125 static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point2_temp, point2, 0, 1);
1126 static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, THERM, 1);
1127 static SENSOR_DEVICE_ATTR_2_RW(temp2_crit_hyst, temp, HYSTERSIS, 1);
1128 static SENSOR_DEVICE_ATTR_2_RW(temp2_smoothing, temp_st, 0, 1);
1129 static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, INPUT, 2);
1130 static SENSOR_DEVICE_ATTR_2_RO(temp3_alarm, temp, ALARM, 2);
1131 static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, temp, FAULT, 2);
1132 static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, MAX, 2);
1133 static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, MIN, 2);
1134 static SENSOR_DEVICE_ATTR_2_RW(temp3_offset, temp, OFFSET, 2);
1135 static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point1_temp, temp, AUTOMIN, 2);
1136 static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point2_temp, point2, 0, 2);
1137 static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, THERM, 2);
1138 static SENSOR_DEVICE_ATTR_2_RW(temp3_crit_hyst, temp, HYSTERSIS, 2);
1139 static SENSOR_DEVICE_ATTR_2_RW(temp3_smoothing, temp_st, 0, 2);
1140 static SENSOR_DEVICE_ATTR_2_RO(fan1_input, tach, INPUT, 0);
1141 static SENSOR_DEVICE_ATTR_2_RW(fan1_min, tach, MIN, 0);
1142 static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, tach, ALARM, 0);
1143 static SENSOR_DEVICE_ATTR_2_RO(fan2_input, tach, INPUT, 1);
1144 static SENSOR_DEVICE_ATTR_2_RW(fan2_min, tach, MIN, 1);
1145 static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, tach, ALARM, 1);
1146 static SENSOR_DEVICE_ATTR_2_RO(fan3_input, tach, INPUT, 2);
1147 static SENSOR_DEVICE_ATTR_2_RW(fan3_min, tach, MIN, 2);
1148 static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, tach, ALARM, 2);
1149 static SENSOR_DEVICE_ATTR_2_RO(fan4_input, tach, INPUT, 3);
1150 static SENSOR_DEVICE_ATTR_2_RW(fan4_min, tach, MIN, 3);
1151 static SENSOR_DEVICE_ATTR_2_RO(fan4_alarm, tach, ALARM, 3);
1152 static SENSOR_DEVICE_ATTR_2_RW(pwm1, pwm, INPUT, 0);
1153 static SENSOR_DEVICE_ATTR_2_RW(pwm1_freq, pwmfreq, INPUT, 0);
1154 static SENSOR_DEVICE_ATTR_2_RW(pwm1_enable, pwmctrl, INPUT, 0);
1155 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_channels_temp, pwmchan, INPUT, 0);
1156 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_pwm, pwm, MIN, 0);
1157 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_pwm, pwm, MAX, 0);
1158 static SENSOR_DEVICE_ATTR_2_RW(pwm1_stall_disable, stall_disable, 0, 0);
1159 static SENSOR_DEVICE_ATTR_2_RW(pwm2, pwm, INPUT, 1);
1160 static SENSOR_DEVICE_ATTR_2_RW(pwm2_freq, pwmfreq, INPUT, 1);
1161 static SENSOR_DEVICE_ATTR_2_RW(pwm2_enable, pwmctrl, INPUT, 1);
1162 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_channels_temp, pwmchan, INPUT, 1);
1163 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_pwm, pwm, MIN, 1);
1164 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_pwm, pwm, MAX, 1);
1165 static SENSOR_DEVICE_ATTR_2_RW(pwm2_stall_disable, stall_disable, 0, 1);
1166 static SENSOR_DEVICE_ATTR_2_RW(pwm3, pwm, INPUT, 2);
1167 static SENSOR_DEVICE_ATTR_2_RW(pwm3_freq, pwmfreq, INPUT, 2);
1168 static SENSOR_DEVICE_ATTR_2_RW(pwm3_enable, pwmctrl, INPUT, 2);
1169 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_channels_temp, pwmchan, INPUT, 2);
1170 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_pwm, pwm, MIN, 2);
1171 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_pwm, pwm, MAX, 2);
1172 static SENSOR_DEVICE_ATTR_2_RW(pwm3_stall_disable, stall_disable, 0, 2);
1173 
1174 /* Non-standard name, might need revisiting */
1175 static DEVICE_ATTR_RW(pwm_use_point2_pwm_at_crit);
1176 
1177 static DEVICE_ATTR_RW(vrm);
1178 static DEVICE_ATTR_RO(cpu0_vid);
1179 
1180 static struct attribute *adt7475_attrs[] = {
1181     &sensor_dev_attr_in1_input.dev_attr.attr,
1182     &sensor_dev_attr_in1_max.dev_attr.attr,
1183     &sensor_dev_attr_in1_min.dev_attr.attr,
1184     &sensor_dev_attr_in1_alarm.dev_attr.attr,
1185     &sensor_dev_attr_in2_input.dev_attr.attr,
1186     &sensor_dev_attr_in2_max.dev_attr.attr,
1187     &sensor_dev_attr_in2_min.dev_attr.attr,
1188     &sensor_dev_attr_in2_alarm.dev_attr.attr,
1189     &sensor_dev_attr_temp1_input.dev_attr.attr,
1190     &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1191     &sensor_dev_attr_temp1_fault.dev_attr.attr,
1192     &sensor_dev_attr_temp1_max.dev_attr.attr,
1193     &sensor_dev_attr_temp1_min.dev_attr.attr,
1194     &sensor_dev_attr_temp1_offset.dev_attr.attr,
1195     &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
1196     &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
1197     &sensor_dev_attr_temp1_crit.dev_attr.attr,
1198     &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1199     &sensor_dev_attr_temp1_smoothing.dev_attr.attr,
1200     &sensor_dev_attr_temp2_input.dev_attr.attr,
1201     &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1202     &sensor_dev_attr_temp2_max.dev_attr.attr,
1203     &sensor_dev_attr_temp2_min.dev_attr.attr,
1204     &sensor_dev_attr_temp2_offset.dev_attr.attr,
1205     &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
1206     &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
1207     &sensor_dev_attr_temp2_crit.dev_attr.attr,
1208     &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1209     &sensor_dev_attr_temp2_smoothing.dev_attr.attr,
1210     &sensor_dev_attr_temp3_input.dev_attr.attr,
1211     &sensor_dev_attr_temp3_fault.dev_attr.attr,
1212     &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1213     &sensor_dev_attr_temp3_max.dev_attr.attr,
1214     &sensor_dev_attr_temp3_min.dev_attr.attr,
1215     &sensor_dev_attr_temp3_offset.dev_attr.attr,
1216     &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
1217     &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
1218     &sensor_dev_attr_temp3_crit.dev_attr.attr,
1219     &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1220     &sensor_dev_attr_temp3_smoothing.dev_attr.attr,
1221     &sensor_dev_attr_fan1_input.dev_attr.attr,
1222     &sensor_dev_attr_fan1_min.dev_attr.attr,
1223     &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1224     &sensor_dev_attr_fan2_input.dev_attr.attr,
1225     &sensor_dev_attr_fan2_min.dev_attr.attr,
1226     &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1227     &sensor_dev_attr_fan3_input.dev_attr.attr,
1228     &sensor_dev_attr_fan3_min.dev_attr.attr,
1229     &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1230     &sensor_dev_attr_pwm1.dev_attr.attr,
1231     &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1232     &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1233     &sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
1234     &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
1235     &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
1236     &sensor_dev_attr_pwm1_stall_disable.dev_attr.attr,
1237     &sensor_dev_attr_pwm3.dev_attr.attr,
1238     &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1239     &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1240     &sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
1241     &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
1242     &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
1243     &sensor_dev_attr_pwm3_stall_disable.dev_attr.attr,
1244     &dev_attr_pwm_use_point2_pwm_at_crit.attr,
1245     NULL,
1246 };
1247 
1248 static struct attribute *fan4_attrs[] = {
1249     &sensor_dev_attr_fan4_input.dev_attr.attr,
1250     &sensor_dev_attr_fan4_min.dev_attr.attr,
1251     &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1252     NULL
1253 };
1254 
1255 static struct attribute *pwm2_attrs[] = {
1256     &sensor_dev_attr_pwm2.dev_attr.attr,
1257     &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1258     &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1259     &sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
1260     &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
1261     &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
1262     &sensor_dev_attr_pwm2_stall_disable.dev_attr.attr,
1263     NULL
1264 };
1265 
1266 static struct attribute *in0_attrs[] = {
1267     &sensor_dev_attr_in0_input.dev_attr.attr,
1268     &sensor_dev_attr_in0_max.dev_attr.attr,
1269     &sensor_dev_attr_in0_min.dev_attr.attr,
1270     &sensor_dev_attr_in0_alarm.dev_attr.attr,
1271     NULL
1272 };
1273 
1274 static struct attribute *in3_attrs[] = {
1275     &sensor_dev_attr_in3_input.dev_attr.attr,
1276     &sensor_dev_attr_in3_max.dev_attr.attr,
1277     &sensor_dev_attr_in3_min.dev_attr.attr,
1278     &sensor_dev_attr_in3_alarm.dev_attr.attr,
1279     NULL
1280 };
1281 
1282 static struct attribute *in4_attrs[] = {
1283     &sensor_dev_attr_in4_input.dev_attr.attr,
1284     &sensor_dev_attr_in4_max.dev_attr.attr,
1285     &sensor_dev_attr_in4_min.dev_attr.attr,
1286     &sensor_dev_attr_in4_alarm.dev_attr.attr,
1287     NULL
1288 };
1289 
1290 static struct attribute *in5_attrs[] = {
1291     &sensor_dev_attr_in5_input.dev_attr.attr,
1292     &sensor_dev_attr_in5_max.dev_attr.attr,
1293     &sensor_dev_attr_in5_min.dev_attr.attr,
1294     &sensor_dev_attr_in5_alarm.dev_attr.attr,
1295     NULL
1296 };
1297 
1298 static struct attribute *vid_attrs[] = {
1299     &dev_attr_cpu0_vid.attr,
1300     &dev_attr_vrm.attr,
1301     NULL
1302 };
1303 
1304 static const struct attribute_group adt7475_attr_group = { .attrs = adt7475_attrs };
1305 static const struct attribute_group fan4_attr_group = { .attrs = fan4_attrs };
1306 static const struct attribute_group pwm2_attr_group = { .attrs = pwm2_attrs };
1307 static const struct attribute_group in0_attr_group = { .attrs = in0_attrs };
1308 static const struct attribute_group in3_attr_group = { .attrs = in3_attrs };
1309 static const struct attribute_group in4_attr_group = { .attrs = in4_attrs };
1310 static const struct attribute_group in5_attr_group = { .attrs = in5_attrs };
1311 static const struct attribute_group vid_attr_group = { .attrs = vid_attrs };
1312 
1313 static int adt7475_detect(struct i2c_client *client,
1314               struct i2c_board_info *info)
1315 {
1316     struct i2c_adapter *adapter = client->adapter;
1317     int vendid, devid, devid2;
1318     const char *name;
1319 
1320     if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1321         return -ENODEV;
1322 
1323     vendid = adt7475_read(REG_VENDID);
1324     devid2 = adt7475_read(REG_DEVID2);
1325     if (vendid != 0x41 ||       /* Analog Devices */
1326         (devid2 & 0xf8) != 0x68)
1327         return -ENODEV;
1328 
1329     devid = adt7475_read(REG_DEVID);
1330     if (devid == 0x73)
1331         name = "adt7473";
1332     else if (devid == 0x75 && client->addr == 0x2e)
1333         name = "adt7475";
1334     else if (devid == 0x76)
1335         name = "adt7476";
1336     else if ((devid2 & 0xfc) == 0x6c)
1337         name = "adt7490";
1338     else {
1339         dev_dbg(&adapter->dev,
1340             "Couldn't detect an ADT7473/75/76/90 part at "
1341             "0x%02x\n", (unsigned int)client->addr);
1342         return -ENODEV;
1343     }
1344 
1345     strlcpy(info->type, name, I2C_NAME_SIZE);
1346 
1347     return 0;
1348 }
1349 
1350 static int adt7475_update_limits(struct i2c_client *client)
1351 {
1352     struct adt7475_data *data = i2c_get_clientdata(client);
1353     int i;
1354     int ret;
1355 
1356     ret = adt7475_read(REG_CONFIG4);
1357     if (ret < 0)
1358         return ret;
1359     data->config4 = ret;
1360 
1361     ret = adt7475_read(REG_CONFIG5);
1362     if (ret < 0)
1363         return ret;
1364     data->config5 = ret;
1365 
1366     for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
1367         if (!(data->has_voltage & (1 << i)))
1368             continue;
1369         /* Adjust values so they match the input precision */
1370         ret = adt7475_read(VOLTAGE_MIN_REG(i));
1371         if (ret < 0)
1372             return ret;
1373         data->voltage[MIN][i] = ret << 2;
1374 
1375         ret = adt7475_read(VOLTAGE_MAX_REG(i));
1376         if (ret < 0)
1377             return ret;
1378         data->voltage[MAX][i] = ret << 2;
1379     }
1380 
1381     if (data->has_voltage & (1 << 5)) {
1382         ret = adt7475_read(REG_VTT_MIN);
1383         if (ret < 0)
1384             return ret;
1385         data->voltage[MIN][5] = ret << 2;
1386 
1387         ret = adt7475_read(REG_VTT_MAX);
1388         if (ret < 0)
1389             return ret;
1390         data->voltage[MAX][5] = ret << 2;
1391     }
1392 
1393     for (i = 0; i < ADT7475_TEMP_COUNT; i++) {
1394         /* Adjust values so they match the input precision */
1395         ret = adt7475_read(TEMP_MIN_REG(i));
1396         if (ret < 0)
1397             return ret;
1398         data->temp[MIN][i] = ret << 2;
1399 
1400         ret = adt7475_read(TEMP_MAX_REG(i));
1401         if (ret < 0)
1402             return ret;
1403         data->temp[MAX][i] = ret << 2;
1404 
1405         ret = adt7475_read(TEMP_TMIN_REG(i));
1406         if (ret < 0)
1407             return ret;
1408         data->temp[AUTOMIN][i] = ret << 2;
1409 
1410         ret = adt7475_read(TEMP_THERM_REG(i));
1411         if (ret < 0)
1412             return ret;
1413         data->temp[THERM][i] = ret << 2;
1414 
1415         ret = adt7475_read(TEMP_OFFSET_REG(i));
1416         if (ret < 0)
1417             return ret;
1418         data->temp[OFFSET][i] = ret;
1419     }
1420     adt7475_read_hystersis(client);
1421 
1422     for (i = 0; i < ADT7475_TACH_COUNT; i++) {
1423         if (i == 3 && !data->has_fan4)
1424             continue;
1425         ret = adt7475_read_word(client, TACH_MIN_REG(i));
1426         if (ret < 0)
1427             return ret;
1428         data->tach[MIN][i] = ret;
1429     }
1430 
1431     for (i = 0; i < ADT7475_PWM_COUNT; i++) {
1432         if (i == 1 && !data->has_pwm2)
1433             continue;
1434         ret = adt7475_read(PWM_MAX_REG(i));
1435         if (ret < 0)
1436             return ret;
1437         data->pwm[MAX][i] = ret;
1438 
1439         ret = adt7475_read(PWM_MIN_REG(i));
1440         if (ret < 0)
1441             return ret;
1442         data->pwm[MIN][i] = ret;
1443         /* Set the channel and control information */
1444         adt7475_read_pwm(client, i);
1445     }
1446 
1447     ret = adt7475_read(TEMP_TRANGE_REG(0));
1448     if (ret < 0)
1449         return ret;
1450     data->range[0] = ret;
1451 
1452     ret = adt7475_read(TEMP_TRANGE_REG(1));
1453     if (ret < 0)
1454         return ret;
1455     data->range[1] = ret;
1456 
1457     ret = adt7475_read(TEMP_TRANGE_REG(2));
1458     if (ret < 0)
1459         return ret;
1460     data->range[2] = ret;
1461 
1462     return 0;
1463 }
1464 
1465 static int load_config3(const struct i2c_client *client, const char *propname)
1466 {
1467     const char *function;
1468     u8 config3;
1469     int ret;
1470 
1471     ret = of_property_read_string(client->dev.of_node, propname, &function);
1472     if (!ret) {
1473         ret = adt7475_read(REG_CONFIG3);
1474         if (ret < 0)
1475             return ret;
1476 
1477         config3 = ret & ~CONFIG3_SMBALERT;
1478         if (!strcmp("pwm2", function))
1479             ;
1480         else if (!strcmp("smbalert#", function))
1481             config3 |= CONFIG3_SMBALERT;
1482         else
1483             return -EINVAL;
1484 
1485         return i2c_smbus_write_byte_data(client, REG_CONFIG3, config3);
1486     }
1487 
1488     return 0;
1489 }
1490 
1491 static int load_config4(const struct i2c_client *client, const char *propname)
1492 {
1493     const char *function;
1494     u8 config4;
1495     int ret;
1496 
1497     ret = of_property_read_string(client->dev.of_node, propname, &function);
1498     if (!ret) {
1499         ret = adt7475_read(REG_CONFIG4);
1500         if (ret < 0)
1501             return ret;
1502 
1503         config4 = ret & ~CONFIG4_PINFUNC;
1504 
1505         if (!strcmp("tach4", function))
1506             ;
1507         else if (!strcmp("therm#", function))
1508             config4 |= CONFIG4_THERM;
1509         else if (!strcmp("smbalert#", function))
1510             config4 |= CONFIG4_SMBALERT;
1511         else if (!strcmp("gpio", function))
1512             config4 |= CONFIG4_PINFUNC;
1513         else
1514             return -EINVAL;
1515 
1516         return i2c_smbus_write_byte_data(client, REG_CONFIG4, config4);
1517     }
1518 
1519     return 0;
1520 }
1521 
1522 static int load_config(const struct i2c_client *client, enum chips chip)
1523 {
1524     int err;
1525     const char *prop1, *prop2;
1526 
1527     switch (chip) {
1528     case adt7473:
1529     case adt7475:
1530         prop1 = "adi,pin5-function";
1531         prop2 = "adi,pin9-function";
1532         break;
1533     case adt7476:
1534     case adt7490:
1535         prop1 = "adi,pin10-function";
1536         prop2 = "adi,pin14-function";
1537         break;
1538     }
1539 
1540     err = load_config3(client, prop1);
1541     if (err) {
1542         dev_err(&client->dev, "failed to configure %s\n", prop1);
1543         return err;
1544     }
1545 
1546     err = load_config4(client, prop2);
1547     if (err) {
1548         dev_err(&client->dev, "failed to configure %s\n", prop2);
1549         return err;
1550     }
1551 
1552     return 0;
1553 }
1554 
1555 static int set_property_bit(const struct i2c_client *client, char *property,
1556                 u8 *config, u8 bit_index)
1557 {
1558     u32 prop_value = 0;
1559     int ret = of_property_read_u32(client->dev.of_node, property,
1560                     &prop_value);
1561 
1562     if (!ret) {
1563         if (prop_value)
1564             *config |= (1 << bit_index);
1565         else
1566             *config &= ~(1 << bit_index);
1567     }
1568 
1569     return ret;
1570 }
1571 
1572 static int load_attenuators(const struct i2c_client *client, enum chips chip,
1573                 struct adt7475_data *data)
1574 {
1575     switch (chip) {
1576     case adt7476:
1577     case adt7490:
1578         set_property_bit(client, "adi,bypass-attenuator-in0",
1579                  &data->config4, 4);
1580         set_property_bit(client, "adi,bypass-attenuator-in1",
1581                  &data->config4, 5);
1582         set_property_bit(client, "adi,bypass-attenuator-in3",
1583                  &data->config4, 6);
1584         set_property_bit(client, "adi,bypass-attenuator-in4",
1585                  &data->config4, 7);
1586 
1587         return i2c_smbus_write_byte_data(client, REG_CONFIG4,
1588                          data->config4);
1589     case adt7473:
1590     case adt7475:
1591         set_property_bit(client, "adi,bypass-attenuator-in1",
1592                  &data->config2, 5);
1593 
1594         return i2c_smbus_write_byte_data(client, REG_CONFIG2,
1595                          data->config2);
1596     }
1597 
1598     return 0;
1599 }
1600 
1601 static int adt7475_set_pwm_polarity(struct i2c_client *client)
1602 {
1603     u32 states[ADT7475_PWM_COUNT];
1604     int ret, i;
1605     u8 val;
1606 
1607     ret = of_property_read_u32_array(client->dev.of_node,
1608                      "adi,pwm-active-state", states,
1609                      ARRAY_SIZE(states));
1610     if (ret)
1611         return ret;
1612 
1613     for (i = 0; i < ADT7475_PWM_COUNT; i++) {
1614         ret = adt7475_read(PWM_CONFIG_REG(i));
1615         if (ret < 0)
1616             return ret;
1617         val = ret;
1618         if (states[i])
1619             val &= ~BIT(4);
1620         else
1621             val |= BIT(4);
1622 
1623         ret = i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(i), val);
1624         if (ret)
1625             return ret;
1626     }
1627 
1628     return 0;
1629 }
1630 
1631 static int adt7475_probe(struct i2c_client *client)
1632 {
1633     enum chips chip;
1634     static const char * const names[] = {
1635         [adt7473] = "ADT7473",
1636         [adt7475] = "ADT7475",
1637         [adt7476] = "ADT7476",
1638         [adt7490] = "ADT7490",
1639     };
1640 
1641     struct adt7475_data *data;
1642     struct device *hwmon_dev;
1643     int i, ret = 0, revision, group_num = 0;
1644     u8 config3;
1645     const struct i2c_device_id *id = i2c_match_id(adt7475_id, client);
1646 
1647     data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1648     if (data == NULL)
1649         return -ENOMEM;
1650 
1651     mutex_init(&data->lock);
1652     data->client = client;
1653     i2c_set_clientdata(client, data);
1654 
1655     if (client->dev.of_node)
1656         chip = (enum chips)of_device_get_match_data(&client->dev);
1657     else
1658         chip = id->driver_data;
1659 
1660     /* Initialize device-specific values */
1661     switch (chip) {
1662     case adt7476:
1663         data->has_voltage = 0x0e;   /* in1 to in3 */
1664         revision = adt7475_read(REG_DEVID2) & 0x07;
1665         break;
1666     case adt7490:
1667         data->has_voltage = 0x3e;   /* in1 to in5 */
1668         revision = adt7475_read(REG_DEVID2) & 0x03;
1669         if (revision == 0x03)
1670             revision += adt7475_read(REG_DEVREV2);
1671         break;
1672     default:
1673         data->has_voltage = 0x06;   /* in1, in2 */
1674         revision = adt7475_read(REG_DEVID2) & 0x07;
1675     }
1676 
1677     ret = load_config(client, chip);
1678     if (ret)
1679         return ret;
1680 
1681     config3 = adt7475_read(REG_CONFIG3);
1682     /* Pin PWM2 may alternatively be used for ALERT output */
1683     if (!(config3 & CONFIG3_SMBALERT))
1684         data->has_pwm2 = 1;
1685     /* Meaning of this bit is inverted for the ADT7473-1 */
1686     if (id->driver_data == adt7473 && revision >= 1)
1687         data->has_pwm2 = !data->has_pwm2;
1688 
1689     data->config4 = adt7475_read(REG_CONFIG4);
1690     /* Pin TACH4 may alternatively be used for THERM */
1691     if ((data->config4 & CONFIG4_PINFUNC) == 0x0)
1692         data->has_fan4 = 1;
1693 
1694     /*
1695      * THERM configuration is more complex on the ADT7476 and ADT7490,
1696      * because 2 different pins (TACH4 and +2.5 Vin) can be used for
1697      * this function
1698      */
1699     if (id->driver_data == adt7490) {
1700         if ((data->config4 & CONFIG4_PINFUNC) == 0x1 &&
1701             !(config3 & CONFIG3_THERM))
1702             data->has_fan4 = 1;
1703     }
1704     if (id->driver_data == adt7476 || id->driver_data == adt7490) {
1705         if (!(config3 & CONFIG3_THERM) ||
1706             (data->config4 & CONFIG4_PINFUNC) == 0x1)
1707             data->has_voltage |= (1 << 0);      /* in0 */
1708     }
1709 
1710     /*
1711      * On the ADT7476, the +12V input pin may instead be used as VID5,
1712      * and VID pins may alternatively be used as GPIO
1713      */
1714     if (id->driver_data == adt7476) {
1715         u8 vid = adt7475_read(REG_VID);
1716         if (!(vid & VID_VIDSEL))
1717             data->has_voltage |= (1 << 4);      /* in4 */
1718 
1719         data->has_vid = !(adt7475_read(REG_CONFIG5) & CONFIG5_VIDGPIO);
1720     }
1721 
1722     /* Voltage attenuators can be bypassed, globally or individually */
1723     data->config2 = adt7475_read(REG_CONFIG2);
1724     ret = load_attenuators(client, chip, data);
1725     if (ret)
1726         dev_warn(&client->dev, "Error configuring attenuator bypass\n");
1727 
1728     if (data->config2 & CONFIG2_ATTN) {
1729         data->bypass_attn = (0x3 << 3) | 0x3;
1730     } else {
1731         data->bypass_attn = ((data->config4 & CONFIG4_ATTN_IN10) >> 4) |
1732                     ((data->config4 & CONFIG4_ATTN_IN43) >> 3);
1733     }
1734     data->bypass_attn &= data->has_voltage;
1735 
1736     /*
1737      * Call adt7475_read_pwm for all pwm's as this will reprogram any
1738      * pwm's which are disabled to manual mode with 0% duty cycle
1739      */
1740     for (i = 0; i < ADT7475_PWM_COUNT; i++)
1741         adt7475_read_pwm(client, i);
1742 
1743     ret = adt7475_set_pwm_polarity(client);
1744     if (ret && ret != -EINVAL)
1745         dev_warn(&client->dev, "Error configuring pwm polarity\n");
1746 
1747     /* Start monitoring */
1748     switch (chip) {
1749     case adt7475:
1750     case adt7476:
1751         i2c_smbus_write_byte_data(client, REG_CONFIG1,
1752                       adt7475_read(REG_CONFIG1) | 0x01);
1753         break;
1754     default:
1755         break;
1756     }
1757 
1758     data->groups[group_num++] = &adt7475_attr_group;
1759 
1760     /* Features that can be disabled individually */
1761     if (data->has_fan4) {
1762         data->groups[group_num++] = &fan4_attr_group;
1763     }
1764     if (data->has_pwm2) {
1765         data->groups[group_num++] = &pwm2_attr_group;
1766     }
1767     if (data->has_voltage & (1 << 0)) {
1768         data->groups[group_num++] = &in0_attr_group;
1769     }
1770     if (data->has_voltage & (1 << 3)) {
1771         data->groups[group_num++] = &in3_attr_group;
1772     }
1773     if (data->has_voltage & (1 << 4)) {
1774         data->groups[group_num++] = &in4_attr_group;
1775     }
1776     if (data->has_voltage & (1 << 5)) {
1777         data->groups[group_num++] = &in5_attr_group;
1778     }
1779     if (data->has_vid) {
1780         data->vrm = vid_which_vrm();
1781         data->groups[group_num] = &vid_attr_group;
1782     }
1783 
1784     /* register device with all the acquired attributes */
1785     hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
1786                                client->name, data,
1787                                data->groups);
1788 
1789     if (IS_ERR(hwmon_dev)) {
1790         ret = PTR_ERR(hwmon_dev);
1791         return ret;
1792     }
1793 
1794     dev_info(&client->dev, "%s device, revision %d\n",
1795          names[id->driver_data], revision);
1796     if ((data->has_voltage & 0x11) || data->has_fan4 || data->has_pwm2)
1797         dev_info(&client->dev, "Optional features:%s%s%s%s%s\n",
1798              (data->has_voltage & (1 << 0)) ? " in0" : "",
1799              (data->has_voltage & (1 << 4)) ? " in4" : "",
1800              data->has_fan4 ? " fan4" : "",
1801              data->has_pwm2 ? " pwm2" : "",
1802              data->has_vid ? " vid" : "");
1803     if (data->bypass_attn)
1804         dev_info(&client->dev, "Bypassing attenuators on:%s%s%s%s\n",
1805              (data->bypass_attn & (1 << 0)) ? " in0" : "",
1806              (data->bypass_attn & (1 << 1)) ? " in1" : "",
1807              (data->bypass_attn & (1 << 3)) ? " in3" : "",
1808              (data->bypass_attn & (1 << 4)) ? " in4" : "");
1809 
1810     /* Limits and settings, should never change update more than once */
1811     ret = adt7475_update_limits(client);
1812     if (ret)
1813         return ret;
1814 
1815     return 0;
1816 }
1817 
1818 static struct i2c_driver adt7475_driver = {
1819     .class      = I2C_CLASS_HWMON,
1820     .driver = {
1821         .name   = "adt7475",
1822         .of_match_table = of_match_ptr(adt7475_of_match),
1823     },
1824     .probe_new  = adt7475_probe,
1825     .id_table   = adt7475_id,
1826     .detect     = adt7475_detect,
1827     .address_list   = normal_i2c,
1828 };
1829 
1830 static void adt7475_read_hystersis(struct i2c_client *client)
1831 {
1832     struct adt7475_data *data = i2c_get_clientdata(client);
1833 
1834     data->temp[HYSTERSIS][0] = (u16) adt7475_read(REG_REMOTE1_HYSTERSIS);
1835     data->temp[HYSTERSIS][1] = data->temp[HYSTERSIS][0];
1836     data->temp[HYSTERSIS][2] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS);
1837 }
1838 
1839 static void adt7475_read_pwm(struct i2c_client *client, int index)
1840 {
1841     struct adt7475_data *data = i2c_get_clientdata(client);
1842     unsigned int v;
1843 
1844     data->pwm[CONTROL][index] = adt7475_read(PWM_CONFIG_REG(index));
1845 
1846     /*
1847      * Figure out the internal value for pwmctrl and pwmchan
1848      * based on the current settings
1849      */
1850     v = (data->pwm[CONTROL][index] >> 5) & 7;
1851 
1852     if (v == 3)
1853         data->pwmctl[index] = 0;
1854     else if (v == 7)
1855         data->pwmctl[index] = 1;
1856     else if (v == 4) {
1857         /*
1858          * The fan is disabled - we don't want to
1859          * support that, so change to manual mode and
1860          * set the duty cycle to 0 instead
1861          */
1862         data->pwm[INPUT][index] = 0;
1863         data->pwm[CONTROL][index] &= ~0xE0;
1864         data->pwm[CONTROL][index] |= (7 << 5);
1865 
1866         i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
1867                       data->pwm[INPUT][index]);
1868 
1869         i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
1870                       data->pwm[CONTROL][index]);
1871 
1872         data->pwmctl[index] = 1;
1873     } else {
1874         data->pwmctl[index] = 2;
1875 
1876         switch (v) {
1877         case 0:
1878             data->pwmchan[index] = 1;
1879             break;
1880         case 1:
1881             data->pwmchan[index] = 2;
1882             break;
1883         case 2:
1884             data->pwmchan[index] = 4;
1885             break;
1886         case 5:
1887             data->pwmchan[index] = 6;
1888             break;
1889         case 6:
1890             data->pwmchan[index] = 7;
1891             break;
1892         }
1893     }
1894 }
1895 
1896 static int adt7475_update_measure(struct device *dev)
1897 {
1898     struct adt7475_data *data = dev_get_drvdata(dev);
1899     struct i2c_client *client = data->client;
1900     u16 ext;
1901     int i;
1902     int ret;
1903 
1904     ret = adt7475_read(REG_STATUS2);
1905     if (ret < 0)
1906         return ret;
1907     data->alarms = ret << 8;
1908 
1909     ret = adt7475_read(REG_STATUS1);
1910     if (ret < 0)
1911         return ret;
1912     data->alarms |= ret;
1913 
1914     ret = adt7475_read(REG_EXTEND2);
1915     if (ret < 0)
1916         return ret;
1917 
1918     ext = (ret << 8);
1919 
1920     ret = adt7475_read(REG_EXTEND1);
1921     if (ret < 0)
1922         return ret;
1923 
1924     ext |= ret;
1925 
1926     for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
1927         if (!(data->has_voltage & (1 << i)))
1928             continue;
1929         ret = adt7475_read(VOLTAGE_REG(i));
1930         if (ret < 0)
1931             return ret;
1932         data->voltage[INPUT][i] =
1933             (ret << 2) |
1934             ((ext >> (i * 2)) & 3);
1935     }
1936 
1937     for (i = 0; i < ADT7475_TEMP_COUNT; i++) {
1938         ret = adt7475_read(TEMP_REG(i));
1939         if (ret < 0)
1940             return ret;
1941         data->temp[INPUT][i] =
1942             (ret << 2) |
1943             ((ext >> ((i + 5) * 2)) & 3);
1944     }
1945 
1946     if (data->has_voltage & (1 << 5)) {
1947         ret = adt7475_read(REG_STATUS4);
1948         if (ret < 0)
1949             return ret;
1950         data->alarms |= ret << 24;
1951 
1952         ret = adt7475_read(REG_EXTEND3);
1953         if (ret < 0)
1954             return ret;
1955         ext = ret;
1956 
1957         ret = adt7475_read(REG_VTT);
1958         if (ret < 0)
1959             return ret;
1960         data->voltage[INPUT][5] = ret << 2 |
1961             ((ext >> 4) & 3);
1962     }
1963 
1964     for (i = 0; i < ADT7475_TACH_COUNT; i++) {
1965         if (i == 3 && !data->has_fan4)
1966             continue;
1967         ret = adt7475_read_word(client, TACH_REG(i));
1968         if (ret < 0)
1969             return ret;
1970         data->tach[INPUT][i] = ret;
1971     }
1972 
1973     /* Updated by hw when in auto mode */
1974     for (i = 0; i < ADT7475_PWM_COUNT; i++) {
1975         if (i == 1 && !data->has_pwm2)
1976             continue;
1977         ret = adt7475_read(PWM_REG(i));
1978         if (ret < 0)
1979             return ret;
1980         data->pwm[INPUT][i] = ret;
1981     }
1982 
1983     if (data->has_vid) {
1984         ret = adt7475_read(REG_VID);
1985         if (ret < 0)
1986             return ret;
1987         data->vid = ret & 0x3f;
1988     }
1989 
1990     return 0;
1991 }
1992 
1993 static struct adt7475_data *adt7475_update_device(struct device *dev)
1994 {
1995     struct adt7475_data *data = dev_get_drvdata(dev);
1996     int ret;
1997 
1998     mutex_lock(&data->lock);
1999 
2000     /* Measurement values update every 2 seconds */
2001     if (time_after(jiffies, data->measure_updated + HZ * 2) ||
2002         !data->valid) {
2003         ret = adt7475_update_measure(dev);
2004         if (ret) {
2005             data->valid = false;
2006             mutex_unlock(&data->lock);
2007             return ERR_PTR(ret);
2008         }
2009         data->measure_updated = jiffies;
2010         data->valid = true;
2011     }
2012 
2013     mutex_unlock(&data->lock);
2014 
2015     return data;
2016 }
2017 
2018 module_i2c_driver(adt7475_driver);
2019 
2020 MODULE_AUTHOR("Advanced Micro Devices, Inc");
2021 MODULE_DESCRIPTION("adt7475 driver");
2022 MODULE_LICENSE("GPL");