Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * adm1021.c - Part of lm_sensors, Linux kernel modules for hardware
0004  *         monitoring
0005  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl> and
0006  *               Philip Edelbrock <phil@netroedge.com>
0007  */
0008 
0009 #include <linux/module.h>
0010 #include <linux/init.h>
0011 #include <linux/slab.h>
0012 #include <linux/jiffies.h>
0013 #include <linux/i2c.h>
0014 #include <linux/hwmon.h>
0015 #include <linux/hwmon-sysfs.h>
0016 #include <linux/err.h>
0017 #include <linux/mutex.h>
0018 
0019 
0020 /* Addresses to scan */
0021 static const unsigned short normal_i2c[] = {
0022     0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };
0023 
0024 enum chips {
0025     adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm, mc1066 };
0026 
0027 /* adm1021 constants specified below */
0028 
0029 /* The adm1021 registers */
0030 /* Read-only */
0031 /* For nr in 0-1 */
0032 #define ADM1021_REG_TEMP(nr)        (nr)
0033 #define ADM1021_REG_STATUS      0x02
0034 /* 0x41 = AD, 0x49 = TI, 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi */
0035 #define ADM1021_REG_MAN_ID      0xFE
0036 /* ADM1021 = 0x0X, ADM1023 = 0x3X */
0037 #define ADM1021_REG_DEV_ID      0xFF
0038 /* These use different addresses for reading/writing */
0039 #define ADM1021_REG_CONFIG_R        0x03
0040 #define ADM1021_REG_CONFIG_W        0x09
0041 #define ADM1021_REG_CONV_RATE_R     0x04
0042 #define ADM1021_REG_CONV_RATE_W     0x0A
0043 /* These are for the ADM1023's additional precision on the remote temp sensor */
0044 #define ADM1023_REG_REM_TEMP_PREC   0x10
0045 #define ADM1023_REG_REM_OFFSET      0x11
0046 #define ADM1023_REG_REM_OFFSET_PREC 0x12
0047 #define ADM1023_REG_REM_TOS_PREC    0x13
0048 #define ADM1023_REG_REM_THYST_PREC  0x14
0049 /* limits */
0050 /* For nr in 0-1 */
0051 #define ADM1021_REG_TOS_R(nr)       (0x05 + 2 * (nr))
0052 #define ADM1021_REG_TOS_W(nr)       (0x0B + 2 * (nr))
0053 #define ADM1021_REG_THYST_R(nr)     (0x06 + 2 * (nr))
0054 #define ADM1021_REG_THYST_W(nr)     (0x0C + 2 * (nr))
0055 /* write-only */
0056 #define ADM1021_REG_ONESHOT     0x0F
0057 
0058 /* Initial values */
0059 
0060 /*
0061  * Note: Even though I left the low and high limits named os and hyst,
0062  * they don't quite work like a thermostat the way the LM75 does.  I.e.,
0063  * a lower temp than THYST actually triggers an alarm instead of
0064  * clearing it.  Weird, ey?   --Phil
0065  */
0066 
0067 /* Each client has this additional data */
0068 struct adm1021_data {
0069     struct i2c_client *client;
0070     enum chips type;
0071 
0072     const struct attribute_group *groups[3];
0073 
0074     struct mutex update_lock;
0075     bool valid;     /* true if following fields are valid */
0076     char low_power;     /* !=0 if device in low power mode */
0077     unsigned long last_updated; /* In jiffies */
0078 
0079     int temp_max[2];        /* Register values */
0080     int temp_min[2];
0081     int temp[2];
0082     u8 alarms;
0083     /* Special values for ADM1023 only */
0084     u8 remote_temp_offset;
0085     u8 remote_temp_offset_prec;
0086 };
0087 
0088 /* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */
0089 static bool read_only;
0090 
0091 static struct adm1021_data *adm1021_update_device(struct device *dev)
0092 {
0093     struct adm1021_data *data = dev_get_drvdata(dev);
0094     struct i2c_client *client = data->client;
0095 
0096     mutex_lock(&data->update_lock);
0097 
0098     if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
0099         || !data->valid) {
0100         int i;
0101 
0102         dev_dbg(dev, "Starting adm1021 update\n");
0103 
0104         for (i = 0; i < 2; i++) {
0105             data->temp[i] = 1000 *
0106                 (s8) i2c_smbus_read_byte_data(
0107                     client, ADM1021_REG_TEMP(i));
0108             data->temp_max[i] = 1000 *
0109                 (s8) i2c_smbus_read_byte_data(
0110                     client, ADM1021_REG_TOS_R(i));
0111             if (data->type != lm84) {
0112                 data->temp_min[i] = 1000 *
0113                   (s8) i2c_smbus_read_byte_data(client,
0114                             ADM1021_REG_THYST_R(i));
0115             }
0116         }
0117         data->alarms = i2c_smbus_read_byte_data(client,
0118                         ADM1021_REG_STATUS) & 0x7c;
0119         if (data->type == adm1023) {
0120             /*
0121              * The ADM1023 provides 3 extra bits of precision for
0122              * the remote sensor in extra registers.
0123              */
0124             data->temp[1] += 125 * (i2c_smbus_read_byte_data(
0125                 client, ADM1023_REG_REM_TEMP_PREC) >> 5);
0126             data->temp_max[1] += 125 * (i2c_smbus_read_byte_data(
0127                 client, ADM1023_REG_REM_TOS_PREC) >> 5);
0128             data->temp_min[1] += 125 * (i2c_smbus_read_byte_data(
0129                 client, ADM1023_REG_REM_THYST_PREC) >> 5);
0130             data->remote_temp_offset =
0131                 i2c_smbus_read_byte_data(client,
0132                         ADM1023_REG_REM_OFFSET);
0133             data->remote_temp_offset_prec =
0134                 i2c_smbus_read_byte_data(client,
0135                         ADM1023_REG_REM_OFFSET_PREC);
0136         }
0137         data->last_updated = jiffies;
0138         data->valid = true;
0139     }
0140 
0141     mutex_unlock(&data->update_lock);
0142 
0143     return data;
0144 }
0145 
0146 static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
0147              char *buf)
0148 {
0149     int index = to_sensor_dev_attr(devattr)->index;
0150     struct adm1021_data *data = adm1021_update_device(dev);
0151 
0152     return sprintf(buf, "%d\n", data->temp[index]);
0153 }
0154 
0155 static ssize_t temp_max_show(struct device *dev,
0156                  struct device_attribute *devattr, char *buf)
0157 {
0158     int index = to_sensor_dev_attr(devattr)->index;
0159     struct adm1021_data *data = adm1021_update_device(dev);
0160 
0161     return sprintf(buf, "%d\n", data->temp_max[index]);
0162 }
0163 
0164 static ssize_t temp_min_show(struct device *dev,
0165                  struct device_attribute *devattr, char *buf)
0166 {
0167     int index = to_sensor_dev_attr(devattr)->index;
0168     struct adm1021_data *data = adm1021_update_device(dev);
0169 
0170     return sprintf(buf, "%d\n", data->temp_min[index]);
0171 }
0172 
0173 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
0174               char *buf)
0175 {
0176     int index = to_sensor_dev_attr(attr)->index;
0177     struct adm1021_data *data = adm1021_update_device(dev);
0178     return sprintf(buf, "%u\n", (data->alarms >> index) & 1);
0179 }
0180 
0181 static ssize_t alarms_show(struct device *dev,
0182                struct device_attribute *attr,
0183                char *buf)
0184 {
0185     struct adm1021_data *data = adm1021_update_device(dev);
0186     return sprintf(buf, "%u\n", data->alarms);
0187 }
0188 
0189 static ssize_t temp_max_store(struct device *dev,
0190                   struct device_attribute *devattr,
0191                   const char *buf, size_t count)
0192 {
0193     int index = to_sensor_dev_attr(devattr)->index;
0194     struct adm1021_data *data = dev_get_drvdata(dev);
0195     struct i2c_client *client = data->client;
0196     long temp;
0197     int reg_val, err;
0198 
0199     err = kstrtol(buf, 10, &temp);
0200     if (err)
0201         return err;
0202     temp /= 1000;
0203 
0204     mutex_lock(&data->update_lock);
0205     reg_val = clamp_val(temp, -128, 127);
0206     data->temp_max[index] = reg_val * 1000;
0207     if (!read_only)
0208         i2c_smbus_write_byte_data(client, ADM1021_REG_TOS_W(index),
0209                       reg_val);
0210     mutex_unlock(&data->update_lock);
0211 
0212     return count;
0213 }
0214 
0215 static ssize_t temp_min_store(struct device *dev,
0216                   struct device_attribute *devattr,
0217                   const char *buf, size_t count)
0218 {
0219     int index = to_sensor_dev_attr(devattr)->index;
0220     struct adm1021_data *data = dev_get_drvdata(dev);
0221     struct i2c_client *client = data->client;
0222     long temp;
0223     int reg_val, err;
0224 
0225     err = kstrtol(buf, 10, &temp);
0226     if (err)
0227         return err;
0228     temp /= 1000;
0229 
0230     mutex_lock(&data->update_lock);
0231     reg_val = clamp_val(temp, -128, 127);
0232     data->temp_min[index] = reg_val * 1000;
0233     if (!read_only)
0234         i2c_smbus_write_byte_data(client, ADM1021_REG_THYST_W(index),
0235                       reg_val);
0236     mutex_unlock(&data->update_lock);
0237 
0238     return count;
0239 }
0240 
0241 static ssize_t low_power_show(struct device *dev,
0242                   struct device_attribute *devattr, char *buf)
0243 {
0244     struct adm1021_data *data = adm1021_update_device(dev);
0245     return sprintf(buf, "%d\n", data->low_power);
0246 }
0247 
0248 static ssize_t low_power_store(struct device *dev,
0249                    struct device_attribute *devattr,
0250                    const char *buf, size_t count)
0251 {
0252     struct adm1021_data *data = dev_get_drvdata(dev);
0253     struct i2c_client *client = data->client;
0254     char low_power;
0255     unsigned long val;
0256     int err;
0257 
0258     err = kstrtoul(buf, 10, &val);
0259     if (err)
0260         return err;
0261     low_power = val != 0;
0262 
0263     mutex_lock(&data->update_lock);
0264     if (low_power != data->low_power) {
0265         int config = i2c_smbus_read_byte_data(
0266             client, ADM1021_REG_CONFIG_R);
0267         data->low_power = low_power;
0268         i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W,
0269             (config & 0xBF) | (low_power << 6));
0270     }
0271     mutex_unlock(&data->update_lock);
0272 
0273     return count;
0274 }
0275 
0276 
0277 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
0278 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
0279 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
0280 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
0281 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
0282 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
0283 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
0284 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 5);
0285 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 4);
0286 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
0287 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 2);
0288 
0289 static DEVICE_ATTR_RO(alarms);
0290 static DEVICE_ATTR_RW(low_power);
0291 
0292 static struct attribute *adm1021_attributes[] = {
0293     &sensor_dev_attr_temp1_max.dev_attr.attr,
0294     &sensor_dev_attr_temp1_input.dev_attr.attr,
0295     &sensor_dev_attr_temp2_max.dev_attr.attr,
0296     &sensor_dev_attr_temp2_input.dev_attr.attr,
0297     &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
0298     &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
0299     &sensor_dev_attr_temp2_fault.dev_attr.attr,
0300     &dev_attr_alarms.attr,
0301     &dev_attr_low_power.attr,
0302     NULL
0303 };
0304 
0305 static const struct attribute_group adm1021_group = {
0306     .attrs = adm1021_attributes,
0307 };
0308 
0309 static struct attribute *adm1021_min_attributes[] = {
0310     &sensor_dev_attr_temp1_min.dev_attr.attr,
0311     &sensor_dev_attr_temp2_min.dev_attr.attr,
0312     &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
0313     &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
0314     NULL
0315 };
0316 
0317 static const struct attribute_group adm1021_min_group = {
0318     .attrs = adm1021_min_attributes,
0319 };
0320 
0321 /* Return 0 if detection is successful, -ENODEV otherwise */
0322 static int adm1021_detect(struct i2c_client *client,
0323               struct i2c_board_info *info)
0324 {
0325     struct i2c_adapter *adapter = client->adapter;
0326     const char *type_name;
0327     int reg, conv_rate, status, config, man_id, dev_id;
0328 
0329     if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
0330         pr_debug("detect failed, smbus byte data not supported!\n");
0331         return -ENODEV;
0332     }
0333 
0334     status = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS);
0335     conv_rate = i2c_smbus_read_byte_data(client,
0336                          ADM1021_REG_CONV_RATE_R);
0337     config = i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R);
0338 
0339     /* Check unused bits */
0340     if ((status & 0x03) || (config & 0x3F) || (conv_rate & 0xF8)) {
0341         pr_debug("detect failed, chip not detected!\n");
0342         return -ENODEV;
0343     }
0344 
0345     /* Determine the chip type. */
0346     man_id = i2c_smbus_read_byte_data(client, ADM1021_REG_MAN_ID);
0347     dev_id = i2c_smbus_read_byte_data(client, ADM1021_REG_DEV_ID);
0348 
0349     if (man_id < 0 || dev_id < 0)
0350         return -ENODEV;
0351 
0352     if (man_id == 0x4d && dev_id == 0x01) {
0353         /*
0354          * dev_id 0x01 matches MAX6680, MAX6695, MAX6696, and possibly
0355          * others. Read register which is unsupported on MAX1617 but
0356          * exists on all those chips and compare with the dev_id
0357          * register. If it matches, it may be a MAX1617A.
0358          */
0359         reg = i2c_smbus_read_byte_data(client,
0360                            ADM1023_REG_REM_TEMP_PREC);
0361         if (reg != dev_id)
0362             return -ENODEV;
0363         type_name = "max1617a";
0364     } else if (man_id == 0x41) {
0365         if ((dev_id & 0xF0) == 0x30)
0366             type_name = "adm1023";
0367         else if ((dev_id & 0xF0) == 0x00)
0368             type_name = "adm1021";
0369         else
0370             return -ENODEV;
0371     } else if (man_id == 0x49)
0372         type_name = "thmc10";
0373     else if (man_id == 0x23)
0374         type_name = "gl523sm";
0375     else if (man_id == 0x54)
0376         type_name = "mc1066";
0377     else {
0378         int lte, rte, lhi, rhi, llo, rlo;
0379 
0380         /* extra checks for LM84 and MAX1617 to avoid misdetections */
0381 
0382         llo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(0));
0383         rlo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(1));
0384 
0385         /* fail if any of the additional register reads failed */
0386         if (llo < 0 || rlo < 0)
0387             return -ENODEV;
0388 
0389         lte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(0));
0390         rte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(1));
0391         lhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(0));
0392         rhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(1));
0393 
0394         /*
0395          * Fail for negative temperatures and negative high limits.
0396          * This check also catches read errors on the tested registers.
0397          */
0398         if ((s8)lte < 0 || (s8)rte < 0 || (s8)lhi < 0 || (s8)rhi < 0)
0399             return -ENODEV;
0400 
0401         /* fail if all registers hold the same value */
0402         if (lte == rte && lte == lhi && lte == rhi && lte == llo
0403             && lte == rlo)
0404             return -ENODEV;
0405 
0406         /*
0407          * LM84 Mfr ID is in a different place,
0408          * and it has more unused bits. Registers at 0xfe and 0xff
0409          * are undefined and return the most recently read value,
0410          * here the value of the configuration register.
0411          */
0412         if (conv_rate == 0x00
0413             && man_id == config && dev_id == config
0414             && (config & 0x7F) == 0x00
0415             && (status & 0xAB) == 0x00) {
0416             type_name = "lm84";
0417         } else {
0418             if ((config & 0x3f) || (status & 0x03))
0419                 return -ENODEV;
0420             /* fail if low limits are larger than high limits */
0421             if ((s8)llo > lhi || (s8)rlo > rhi)
0422                 return -ENODEV;
0423             type_name = "max1617";
0424         }
0425     }
0426 
0427     pr_debug("Detected chip %s at adapter %d, address 0x%02x.\n",
0428          type_name, i2c_adapter_id(adapter), client->addr);
0429     strlcpy(info->type, type_name, I2C_NAME_SIZE);
0430 
0431     return 0;
0432 }
0433 
0434 static void adm1021_init_client(struct i2c_client *client)
0435 {
0436     /* Enable ADC and disable suspend mode */
0437     i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W,
0438         i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R) & 0xBF);
0439     /* Set Conversion rate to 1/sec (this can be tinkered with) */
0440     i2c_smbus_write_byte_data(client, ADM1021_REG_CONV_RATE_W, 0x04);
0441 }
0442 
0443 static const struct i2c_device_id adm1021_id[];
0444 
0445 static int adm1021_probe(struct i2c_client *client)
0446 {
0447     struct device *dev = &client->dev;
0448     struct adm1021_data *data;
0449     struct device *hwmon_dev;
0450 
0451     data = devm_kzalloc(dev, sizeof(struct adm1021_data), GFP_KERNEL);
0452     if (!data)
0453         return -ENOMEM;
0454 
0455     data->client = client;
0456     data->type = i2c_match_id(adm1021_id, client)->driver_data;
0457     mutex_init(&data->update_lock);
0458 
0459     /* Initialize the ADM1021 chip */
0460     if (data->type != lm84 && !read_only)
0461         adm1021_init_client(client);
0462 
0463     data->groups[0] = &adm1021_group;
0464     if (data->type != lm84)
0465         data->groups[1] = &adm1021_min_group;
0466 
0467     hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
0468                                data, data->groups);
0469 
0470     return PTR_ERR_OR_ZERO(hwmon_dev);
0471 }
0472 
0473 static const struct i2c_device_id adm1021_id[] = {
0474     { "adm1021", adm1021 },
0475     { "adm1023", adm1023 },
0476     { "max1617", max1617 },
0477     { "max1617a", max1617a },
0478     { "thmc10", thmc10 },
0479     { "lm84", lm84 },
0480     { "gl523sm", gl523sm },
0481     { "mc1066", mc1066 },
0482     { }
0483 };
0484 MODULE_DEVICE_TABLE(i2c, adm1021_id);
0485 
0486 static struct i2c_driver adm1021_driver = {
0487     .class      = I2C_CLASS_HWMON,
0488     .driver = {
0489         .name   = "adm1021",
0490     },
0491     .probe_new  = adm1021_probe,
0492     .id_table   = adm1021_id,
0493     .detect     = adm1021_detect,
0494     .address_list   = normal_i2c,
0495 };
0496 
0497 module_i2c_driver(adm1021_driver);
0498 
0499 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
0500         "Philip Edelbrock <phil@netroedge.com>");
0501 MODULE_DESCRIPTION("adm1021 driver");
0502 MODULE_LICENSE("GPL");
0503 
0504 module_param(read_only, bool, 0);
0505 MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");