Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *
0004  * Copyright (c) 2009, Microsoft Corporation.
0005  *
0006  * Authors:
0007  *   Haiyang Zhang <haiyangz@microsoft.com>
0008  *   Hank Janssen  <hjanssen@microsoft.com>
0009  *   K. Y. Srinivasan <kys@microsoft.com>
0010  */
0011 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0012 
0013 #include <linux/kernel.h>
0014 #include <linux/mm.h>
0015 #include <linux/hyperv.h>
0016 #include <linux/uio.h>
0017 #include <linux/vmalloc.h>
0018 #include <linux/slab.h>
0019 #include <linux/prefetch.h>
0020 #include <linux/io.h>
0021 #include <asm/mshyperv.h>
0022 
0023 #include "hyperv_vmbus.h"
0024 
0025 #define VMBUS_PKT_TRAILER   8
0026 
0027 /*
0028  * When we write to the ring buffer, check if the host needs to
0029  * be signaled. Here is the details of this protocol:
0030  *
0031  *  1. The host guarantees that while it is draining the
0032  *     ring buffer, it will set the interrupt_mask to
0033  *     indicate it does not need to be interrupted when
0034  *     new data is placed.
0035  *
0036  *  2. The host guarantees that it will completely drain
0037  *     the ring buffer before exiting the read loop. Further,
0038  *     once the ring buffer is empty, it will clear the
0039  *     interrupt_mask and re-check to see if new data has
0040  *     arrived.
0041  *
0042  * KYS: Oct. 30, 2016:
0043  * It looks like Windows hosts have logic to deal with DOS attacks that
0044  * can be triggered if it receives interrupts when it is not expecting
0045  * the interrupt. The host expects interrupts only when the ring
0046  * transitions from empty to non-empty (or full to non full on the guest
0047  * to host ring).
0048  * So, base the signaling decision solely on the ring state until the
0049  * host logic is fixed.
0050  */
0051 
0052 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
0053 {
0054     struct hv_ring_buffer_info *rbi = &channel->outbound;
0055 
0056     virt_mb();
0057     if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
0058         return;
0059 
0060     /* check interrupt_mask before read_index */
0061     virt_rmb();
0062     /*
0063      * This is the only case we need to signal when the
0064      * ring transitions from being empty to non-empty.
0065      */
0066     if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
0067         ++channel->intr_out_empty;
0068         vmbus_setevent(channel);
0069     }
0070 }
0071 
0072 /* Get the next write location for the specified ring buffer. */
0073 static inline u32
0074 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
0075 {
0076     u32 next = ring_info->ring_buffer->write_index;
0077 
0078     return next;
0079 }
0080 
0081 /* Set the next write location for the specified ring buffer. */
0082 static inline void
0083 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
0084              u32 next_write_location)
0085 {
0086     ring_info->ring_buffer->write_index = next_write_location;
0087 }
0088 
0089 /* Get the size of the ring buffer. */
0090 static inline u32
0091 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
0092 {
0093     return ring_info->ring_datasize;
0094 }
0095 
0096 /* Get the read and write indices as u64 of the specified ring buffer. */
0097 static inline u64
0098 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
0099 {
0100     return (u64)ring_info->ring_buffer->write_index << 32;
0101 }
0102 
0103 /*
0104  * Helper routine to copy from source to ring buffer.
0105  * Assume there is enough room. Handles wrap-around in dest case only!!
0106  */
0107 static u32 hv_copyto_ringbuffer(
0108     struct hv_ring_buffer_info  *ring_info,
0109     u32             start_write_offset,
0110     const void          *src,
0111     u32             srclen)
0112 {
0113     void *ring_buffer = hv_get_ring_buffer(ring_info);
0114     u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
0115 
0116     memcpy(ring_buffer + start_write_offset, src, srclen);
0117 
0118     start_write_offset += srclen;
0119     if (start_write_offset >= ring_buffer_size)
0120         start_write_offset -= ring_buffer_size;
0121 
0122     return start_write_offset;
0123 }
0124 
0125 /*
0126  *
0127  * hv_get_ringbuffer_availbytes()
0128  *
0129  * Get number of bytes available to read and to write to
0130  * for the specified ring buffer
0131  */
0132 static void
0133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
0134                  u32 *read, u32 *write)
0135 {
0136     u32 read_loc, write_loc, dsize;
0137 
0138     /* Capture the read/write indices before they changed */
0139     read_loc = READ_ONCE(rbi->ring_buffer->read_index);
0140     write_loc = READ_ONCE(rbi->ring_buffer->write_index);
0141     dsize = rbi->ring_datasize;
0142 
0143     *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
0144         read_loc - write_loc;
0145     *read = dsize - *write;
0146 }
0147 
0148 /* Get various debug metrics for the specified ring buffer. */
0149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
0150                 struct hv_ring_buffer_debug_info *debug_info)
0151 {
0152     u32 bytes_avail_towrite;
0153     u32 bytes_avail_toread;
0154 
0155     mutex_lock(&ring_info->ring_buffer_mutex);
0156 
0157     if (!ring_info->ring_buffer) {
0158         mutex_unlock(&ring_info->ring_buffer_mutex);
0159         return -EINVAL;
0160     }
0161 
0162     hv_get_ringbuffer_availbytes(ring_info,
0163                      &bytes_avail_toread,
0164                      &bytes_avail_towrite);
0165     debug_info->bytes_avail_toread = bytes_avail_toread;
0166     debug_info->bytes_avail_towrite = bytes_avail_towrite;
0167     debug_info->current_read_index = ring_info->ring_buffer->read_index;
0168     debug_info->current_write_index = ring_info->ring_buffer->write_index;
0169     debug_info->current_interrupt_mask
0170         = ring_info->ring_buffer->interrupt_mask;
0171     mutex_unlock(&ring_info->ring_buffer_mutex);
0172 
0173     return 0;
0174 }
0175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
0176 
0177 /* Initialize a channel's ring buffer info mutex locks */
0178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
0179 {
0180     mutex_init(&channel->inbound.ring_buffer_mutex);
0181     mutex_init(&channel->outbound.ring_buffer_mutex);
0182 }
0183 
0184 /* Initialize the ring buffer. */
0185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
0186                struct page *pages, u32 page_cnt, u32 max_pkt_size)
0187 {
0188     struct page **pages_wraparound;
0189     unsigned long *pfns_wraparound;
0190     u64 pfn;
0191     int i;
0192 
0193     BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
0194 
0195     /*
0196      * First page holds struct hv_ring_buffer, do wraparound mapping for
0197      * the rest.
0198      */
0199     if (hv_isolation_type_snp()) {
0200         pfn = page_to_pfn(pages) +
0201             PFN_DOWN(ms_hyperv.shared_gpa_boundary);
0202 
0203         pfns_wraparound = kcalloc(page_cnt * 2 - 1,
0204             sizeof(unsigned long), GFP_KERNEL);
0205         if (!pfns_wraparound)
0206             return -ENOMEM;
0207 
0208         pfns_wraparound[0] = pfn;
0209         for (i = 0; i < 2 * (page_cnt - 1); i++)
0210             pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
0211 
0212         ring_info->ring_buffer = (struct hv_ring_buffer *)
0213             vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
0214                  PAGE_KERNEL);
0215         kfree(pfns_wraparound);
0216 
0217         if (!ring_info->ring_buffer)
0218             return -ENOMEM;
0219 
0220         /* Zero ring buffer after setting memory host visibility. */
0221         memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
0222     } else {
0223         pages_wraparound = kcalloc(page_cnt * 2 - 1,
0224                        sizeof(struct page *),
0225                        GFP_KERNEL);
0226         if (!pages_wraparound)
0227             return -ENOMEM;
0228 
0229         pages_wraparound[0] = pages;
0230         for (i = 0; i < 2 * (page_cnt - 1); i++)
0231             pages_wraparound[i + 1] =
0232                 &pages[i % (page_cnt - 1) + 1];
0233 
0234         ring_info->ring_buffer = (struct hv_ring_buffer *)
0235             vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
0236                 PAGE_KERNEL);
0237 
0238         kfree(pages_wraparound);
0239         if (!ring_info->ring_buffer)
0240             return -ENOMEM;
0241     }
0242 
0243 
0244     ring_info->ring_buffer->read_index =
0245         ring_info->ring_buffer->write_index = 0;
0246 
0247     /* Set the feature bit for enabling flow control. */
0248     ring_info->ring_buffer->feature_bits.value = 1;
0249 
0250     ring_info->ring_size = page_cnt << PAGE_SHIFT;
0251     ring_info->ring_size_div10_reciprocal =
0252         reciprocal_value(ring_info->ring_size / 10);
0253     ring_info->ring_datasize = ring_info->ring_size -
0254         sizeof(struct hv_ring_buffer);
0255     ring_info->priv_read_index = 0;
0256 
0257     /* Initialize buffer that holds copies of incoming packets */
0258     if (max_pkt_size) {
0259         ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
0260         if (!ring_info->pkt_buffer)
0261             return -ENOMEM;
0262         ring_info->pkt_buffer_size = max_pkt_size;
0263     }
0264 
0265     spin_lock_init(&ring_info->ring_lock);
0266 
0267     return 0;
0268 }
0269 
0270 /* Cleanup the ring buffer. */
0271 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
0272 {
0273     mutex_lock(&ring_info->ring_buffer_mutex);
0274     vunmap(ring_info->ring_buffer);
0275     ring_info->ring_buffer = NULL;
0276     mutex_unlock(&ring_info->ring_buffer_mutex);
0277 
0278     kfree(ring_info->pkt_buffer);
0279     ring_info->pkt_buffer = NULL;
0280     ring_info->pkt_buffer_size = 0;
0281 }
0282 
0283 /* Write to the ring buffer. */
0284 int hv_ringbuffer_write(struct vmbus_channel *channel,
0285             const struct kvec *kv_list, u32 kv_count,
0286             u64 requestid, u64 *trans_id)
0287 {
0288     int i;
0289     u32 bytes_avail_towrite;
0290     u32 totalbytes_towrite = sizeof(u64);
0291     u32 next_write_location;
0292     u32 old_write;
0293     u64 prev_indices;
0294     unsigned long flags;
0295     struct hv_ring_buffer_info *outring_info = &channel->outbound;
0296     struct vmpacket_descriptor *desc = kv_list[0].iov_base;
0297     u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
0298 
0299     if (channel->rescind)
0300         return -ENODEV;
0301 
0302     for (i = 0; i < kv_count; i++)
0303         totalbytes_towrite += kv_list[i].iov_len;
0304 
0305     spin_lock_irqsave(&outring_info->ring_lock, flags);
0306 
0307     bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
0308 
0309     /*
0310      * If there is only room for the packet, assume it is full.
0311      * Otherwise, the next time around, we think the ring buffer
0312      * is empty since the read index == write index.
0313      */
0314     if (bytes_avail_towrite <= totalbytes_towrite) {
0315         ++channel->out_full_total;
0316 
0317         if (!channel->out_full_flag) {
0318             ++channel->out_full_first;
0319             channel->out_full_flag = true;
0320         }
0321 
0322         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
0323         return -EAGAIN;
0324     }
0325 
0326     channel->out_full_flag = false;
0327 
0328     /* Write to the ring buffer */
0329     next_write_location = hv_get_next_write_location(outring_info);
0330 
0331     old_write = next_write_location;
0332 
0333     for (i = 0; i < kv_count; i++) {
0334         next_write_location = hv_copyto_ringbuffer(outring_info,
0335                              next_write_location,
0336                              kv_list[i].iov_base,
0337                              kv_list[i].iov_len);
0338     }
0339 
0340     /*
0341      * Allocate the request ID after the data has been copied into the
0342      * ring buffer.  Once this request ID is allocated, the completion
0343      * path could find the data and free it.
0344      */
0345 
0346     if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
0347         if (channel->next_request_id_callback != NULL) {
0348             rqst_id = channel->next_request_id_callback(channel, requestid);
0349             if (rqst_id == VMBUS_RQST_ERROR) {
0350                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
0351                 return -EAGAIN;
0352             }
0353         }
0354     }
0355     desc = hv_get_ring_buffer(outring_info) + old_write;
0356     __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
0357     /*
0358      * Ensure the compiler doesn't generate code that reads the value of
0359      * the transaction ID from the ring buffer, which is shared with the
0360      * Hyper-V host and subject to being changed at any time.
0361      */
0362     WRITE_ONCE(desc->trans_id, __trans_id);
0363     if (trans_id)
0364         *trans_id = __trans_id;
0365 
0366     /* Set previous packet start */
0367     prev_indices = hv_get_ring_bufferindices(outring_info);
0368 
0369     next_write_location = hv_copyto_ringbuffer(outring_info,
0370                          next_write_location,
0371                          &prev_indices,
0372                          sizeof(u64));
0373 
0374     /* Issue a full memory barrier before updating the write index */
0375     virt_mb();
0376 
0377     /* Now, update the write location */
0378     hv_set_next_write_location(outring_info, next_write_location);
0379 
0380 
0381     spin_unlock_irqrestore(&outring_info->ring_lock, flags);
0382 
0383     hv_signal_on_write(old_write, channel);
0384 
0385     if (channel->rescind) {
0386         if (rqst_id != VMBUS_NO_RQSTOR) {
0387             /* Reclaim request ID to avoid leak of IDs */
0388             if (channel->request_addr_callback != NULL)
0389                 channel->request_addr_callback(channel, rqst_id);
0390         }
0391         return -ENODEV;
0392     }
0393 
0394     return 0;
0395 }
0396 
0397 int hv_ringbuffer_read(struct vmbus_channel *channel,
0398                void *buffer, u32 buflen, u32 *buffer_actual_len,
0399                u64 *requestid, bool raw)
0400 {
0401     struct vmpacket_descriptor *desc;
0402     u32 packetlen, offset;
0403 
0404     if (unlikely(buflen == 0))
0405         return -EINVAL;
0406 
0407     *buffer_actual_len = 0;
0408     *requestid = 0;
0409 
0410     /* Make sure there is something to read */
0411     desc = hv_pkt_iter_first(channel);
0412     if (desc == NULL) {
0413         /*
0414          * No error is set when there is even no header, drivers are
0415          * supposed to analyze buffer_actual_len.
0416          */
0417         return 0;
0418     }
0419 
0420     offset = raw ? 0 : (desc->offset8 << 3);
0421     packetlen = (desc->len8 << 3) - offset;
0422     *buffer_actual_len = packetlen;
0423     *requestid = desc->trans_id;
0424 
0425     if (unlikely(packetlen > buflen))
0426         return -ENOBUFS;
0427 
0428     /* since ring is double mapped, only one copy is necessary */
0429     memcpy(buffer, (const char *)desc + offset, packetlen);
0430 
0431     /* Advance ring index to next packet descriptor */
0432     __hv_pkt_iter_next(channel, desc);
0433 
0434     /* Notify host of update */
0435     hv_pkt_iter_close(channel);
0436 
0437     return 0;
0438 }
0439 
0440 /*
0441  * Determine number of bytes available in ring buffer after
0442  * the current iterator (priv_read_index) location.
0443  *
0444  * This is similar to hv_get_bytes_to_read but with private
0445  * read index instead.
0446  */
0447 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
0448 {
0449     u32 priv_read_loc = rbi->priv_read_index;
0450     u32 write_loc;
0451 
0452     /*
0453      * The Hyper-V host writes the packet data, then uses
0454      * store_release() to update the write_index.  Use load_acquire()
0455      * here to prevent loads of the packet data from being re-ordered
0456      * before the read of the write_index and potentially getting
0457      * stale data.
0458      */
0459     write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
0460 
0461     if (write_loc >= priv_read_loc)
0462         return write_loc - priv_read_loc;
0463     else
0464         return (rbi->ring_datasize - priv_read_loc) + write_loc;
0465 }
0466 
0467 /*
0468  * Get first vmbus packet from ring buffer after read_index
0469  *
0470  * If ring buffer is empty, returns NULL and no other action needed.
0471  */
0472 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
0473 {
0474     struct hv_ring_buffer_info *rbi = &channel->inbound;
0475     struct vmpacket_descriptor *desc, *desc_copy;
0476     u32 bytes_avail, pkt_len, pkt_offset;
0477 
0478     hv_debug_delay_test(channel, MESSAGE_DELAY);
0479 
0480     bytes_avail = hv_pkt_iter_avail(rbi);
0481     if (bytes_avail < sizeof(struct vmpacket_descriptor))
0482         return NULL;
0483     bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
0484 
0485     desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
0486 
0487     /*
0488      * Ensure the compiler does not use references to incoming Hyper-V values (which
0489      * could change at any moment) when reading local variables later in the code
0490      */
0491     pkt_len = READ_ONCE(desc->len8) << 3;
0492     pkt_offset = READ_ONCE(desc->offset8) << 3;
0493 
0494     /*
0495      * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
0496      * rbi->pkt_buffer_size
0497      */
0498     if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
0499         pkt_len = bytes_avail;
0500 
0501     /*
0502      * If pkt_offset is invalid, arbitrarily set it to
0503      * the size of vmpacket_descriptor
0504      */
0505     if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
0506         pkt_offset = sizeof(struct vmpacket_descriptor);
0507 
0508     /* Copy the Hyper-V packet out of the ring buffer */
0509     desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
0510     memcpy(desc_copy, desc, pkt_len);
0511 
0512     /*
0513      * Hyper-V could still change len8 and offset8 after the earlier read.
0514      * Ensure that desc_copy has legal values for len8 and offset8 that
0515      * are consistent with the copy we just made
0516      */
0517     desc_copy->len8 = pkt_len >> 3;
0518     desc_copy->offset8 = pkt_offset >> 3;
0519 
0520     return desc_copy;
0521 }
0522 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
0523 
0524 /*
0525  * Get next vmbus packet from ring buffer.
0526  *
0527  * Advances the current location (priv_read_index) and checks for more
0528  * data. If the end of the ring buffer is reached, then return NULL.
0529  */
0530 struct vmpacket_descriptor *
0531 __hv_pkt_iter_next(struct vmbus_channel *channel,
0532            const struct vmpacket_descriptor *desc)
0533 {
0534     struct hv_ring_buffer_info *rbi = &channel->inbound;
0535     u32 packetlen = desc->len8 << 3;
0536     u32 dsize = rbi->ring_datasize;
0537 
0538     hv_debug_delay_test(channel, MESSAGE_DELAY);
0539     /* bump offset to next potential packet */
0540     rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
0541     if (rbi->priv_read_index >= dsize)
0542         rbi->priv_read_index -= dsize;
0543 
0544     /* more data? */
0545     return hv_pkt_iter_first(channel);
0546 }
0547 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
0548 
0549 /* How many bytes were read in this iterator cycle */
0550 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
0551                     u32 start_read_index)
0552 {
0553     if (rbi->priv_read_index >= start_read_index)
0554         return rbi->priv_read_index - start_read_index;
0555     else
0556         return rbi->ring_datasize - start_read_index +
0557             rbi->priv_read_index;
0558 }
0559 
0560 /*
0561  * Update host ring buffer after iterating over packets. If the host has
0562  * stopped queuing new entries because it found the ring buffer full, and
0563  * sufficient space is being freed up, signal the host. But be careful to
0564  * only signal the host when necessary, both for performance reasons and
0565  * because Hyper-V protects itself by throttling guests that signal
0566  * inappropriately.
0567  *
0568  * Determining when to signal is tricky. There are three key data inputs
0569  * that must be handled in this order to avoid race conditions:
0570  *
0571  * 1. Update the read_index
0572  * 2. Read the pending_send_sz
0573  * 3. Read the current write_index
0574  *
0575  * The interrupt_mask is not used to determine when to signal. The
0576  * interrupt_mask is used only on the guest->host ring buffer when
0577  * sending requests to the host. The host does not use it on the host->
0578  * guest ring buffer to indicate whether it should be signaled.
0579  */
0580 void hv_pkt_iter_close(struct vmbus_channel *channel)
0581 {
0582     struct hv_ring_buffer_info *rbi = &channel->inbound;
0583     u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
0584 
0585     /*
0586      * Make sure all reads are done before we update the read index since
0587      * the writer may start writing to the read area once the read index
0588      * is updated.
0589      */
0590     virt_rmb();
0591     start_read_index = rbi->ring_buffer->read_index;
0592     rbi->ring_buffer->read_index = rbi->priv_read_index;
0593 
0594     /*
0595      * Older versions of Hyper-V (before WS2102 and Win8) do not
0596      * implement pending_send_sz and simply poll if the host->guest
0597      * ring buffer is full.  No signaling is needed or expected.
0598      */
0599     if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
0600         return;
0601 
0602     /*
0603      * Issue a full memory barrier before making the signaling decision.
0604      * If reading pending_send_sz were to be reordered and happen
0605      * before we commit the new read_index, a race could occur.  If the
0606      * host were to set the pending_send_sz after we have sampled
0607      * pending_send_sz, and the ring buffer blocks before we commit the
0608      * read index, we could miss sending the interrupt. Issue a full
0609      * memory barrier to address this.
0610      */
0611     virt_mb();
0612 
0613     /*
0614      * If the pending_send_sz is zero, then the ring buffer is not
0615      * blocked and there is no need to signal.  This is far by the
0616      * most common case, so exit quickly for best performance.
0617      */
0618     pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
0619     if (!pending_sz)
0620         return;
0621 
0622     /*
0623      * Ensure the read of write_index in hv_get_bytes_to_write()
0624      * happens after the read of pending_send_sz.
0625      */
0626     virt_rmb();
0627     curr_write_sz = hv_get_bytes_to_write(rbi);
0628     bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
0629 
0630     /*
0631      * We want to signal the host only if we're transitioning
0632      * from a "not enough free space" state to a "enough free
0633      * space" state.  For example, it's possible that this function
0634      * could run and free up enough space to signal the host, and then
0635      * run again and free up additional space before the host has a
0636      * chance to clear the pending_send_sz.  The 2nd invocation would
0637      * be a null transition from "enough free space" to "enough free
0638      * space", which doesn't warrant a signal.
0639      *
0640      * Exactly filling the ring buffer is treated as "not enough
0641      * space". The ring buffer always must have at least one byte
0642      * empty so the empty and full conditions are distinguishable.
0643      * hv_get_bytes_to_write() doesn't fully tell the truth in
0644      * this regard.
0645      *
0646      * So first check if we were in the "enough free space" state
0647      * before we began the iteration. If so, the host was not
0648      * blocked, and there's no need to signal.
0649      */
0650     if (curr_write_sz - bytes_read > pending_sz)
0651         return;
0652 
0653     /*
0654      * Similarly, if the new state is "not enough space", then
0655      * there's no need to signal.
0656      */
0657     if (curr_write_sz <= pending_sz)
0658         return;
0659 
0660     ++channel->intr_in_full;
0661     vmbus_setevent(channel);
0662 }
0663 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);