Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (c) 2012, Microsoft Corporation.
0004  *
0005  * Author:
0006  *   K. Y. Srinivasan <kys@microsoft.com>
0007  */
0008 
0009 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0010 
0011 #include <linux/kernel.h>
0012 #include <linux/jiffies.h>
0013 #include <linux/mman.h>
0014 #include <linux/debugfs.h>
0015 #include <linux/delay.h>
0016 #include <linux/init.h>
0017 #include <linux/module.h>
0018 #include <linux/slab.h>
0019 #include <linux/kthread.h>
0020 #include <linux/completion.h>
0021 #include <linux/count_zeros.h>
0022 #include <linux/memory_hotplug.h>
0023 #include <linux/memory.h>
0024 #include <linux/notifier.h>
0025 #include <linux/percpu_counter.h>
0026 #include <linux/page_reporting.h>
0027 
0028 #include <linux/hyperv.h>
0029 #include <asm/hyperv-tlfs.h>
0030 
0031 #include <asm/mshyperv.h>
0032 
0033 #define CREATE_TRACE_POINTS
0034 #include "hv_trace_balloon.h"
0035 
0036 /*
0037  * We begin with definitions supporting the Dynamic Memory protocol
0038  * with the host.
0039  *
0040  * Begin protocol definitions.
0041  */
0042 
0043 
0044 
0045 /*
0046  * Protocol versions. The low word is the minor version, the high word the major
0047  * version.
0048  *
0049  * History:
0050  * Initial version 1.0
0051  * Changed to 0.1 on 2009/03/25
0052  * Changes to 0.2 on 2009/05/14
0053  * Changes to 0.3 on 2009/12/03
0054  * Changed to 1.0 on 2011/04/05
0055  */
0056 
0057 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
0058 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
0059 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
0060 
0061 enum {
0062     DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
0063     DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
0064     DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
0065 
0066     DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
0067     DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
0068     DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
0069 
0070     DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
0071 };
0072 
0073 
0074 
0075 /*
0076  * Message Types
0077  */
0078 
0079 enum dm_message_type {
0080     /*
0081      * Version 0.3
0082      */
0083     DM_ERROR            = 0,
0084     DM_VERSION_REQUEST      = 1,
0085     DM_VERSION_RESPONSE     = 2,
0086     DM_CAPABILITIES_REPORT      = 3,
0087     DM_CAPABILITIES_RESPONSE    = 4,
0088     DM_STATUS_REPORT        = 5,
0089     DM_BALLOON_REQUEST      = 6,
0090     DM_BALLOON_RESPONSE     = 7,
0091     DM_UNBALLOON_REQUEST        = 8,
0092     DM_UNBALLOON_RESPONSE       = 9,
0093     DM_MEM_HOT_ADD_REQUEST      = 10,
0094     DM_MEM_HOT_ADD_RESPONSE     = 11,
0095     DM_VERSION_03_MAX       = 11,
0096     /*
0097      * Version 1.0.
0098      */
0099     DM_INFO_MESSAGE         = 12,
0100     DM_VERSION_1_MAX        = 12
0101 };
0102 
0103 
0104 /*
0105  * Structures defining the dynamic memory management
0106  * protocol.
0107  */
0108 
0109 union dm_version {
0110     struct {
0111         __u16 minor_version;
0112         __u16 major_version;
0113     };
0114     __u32 version;
0115 } __packed;
0116 
0117 
0118 union dm_caps {
0119     struct {
0120         __u64 balloon:1;
0121         __u64 hot_add:1;
0122         /*
0123          * To support guests that may have alignment
0124          * limitations on hot-add, the guest can specify
0125          * its alignment requirements; a value of n
0126          * represents an alignment of 2^n in mega bytes.
0127          */
0128         __u64 hot_add_alignment:4;
0129         __u64 reservedz:58;
0130     } cap_bits;
0131     __u64 caps;
0132 } __packed;
0133 
0134 union dm_mem_page_range {
0135     struct  {
0136         /*
0137          * The PFN number of the first page in the range.
0138          * 40 bits is the architectural limit of a PFN
0139          * number for AMD64.
0140          */
0141         __u64 start_page:40;
0142         /*
0143          * The number of pages in the range.
0144          */
0145         __u64 page_cnt:24;
0146     } finfo;
0147     __u64  page_range;
0148 } __packed;
0149 
0150 
0151 
0152 /*
0153  * The header for all dynamic memory messages:
0154  *
0155  * type: Type of the message.
0156  * size: Size of the message in bytes; including the header.
0157  * trans_id: The guest is responsible for manufacturing this ID.
0158  */
0159 
0160 struct dm_header {
0161     __u16 type;
0162     __u16 size;
0163     __u32 trans_id;
0164 } __packed;
0165 
0166 /*
0167  * A generic message format for dynamic memory.
0168  * Specific message formats are defined later in the file.
0169  */
0170 
0171 struct dm_message {
0172     struct dm_header hdr;
0173     __u8 data[]; /* enclosed message */
0174 } __packed;
0175 
0176 
0177 /*
0178  * Specific message types supporting the dynamic memory protocol.
0179  */
0180 
0181 /*
0182  * Version negotiation message. Sent from the guest to the host.
0183  * The guest is free to try different versions until the host
0184  * accepts the version.
0185  *
0186  * dm_version: The protocol version requested.
0187  * is_last_attempt: If TRUE, this is the last version guest will request.
0188  * reservedz: Reserved field, set to zero.
0189  */
0190 
0191 struct dm_version_request {
0192     struct dm_header hdr;
0193     union dm_version version;
0194     __u32 is_last_attempt:1;
0195     __u32 reservedz:31;
0196 } __packed;
0197 
0198 /*
0199  * Version response message; Host to Guest and indicates
0200  * if the host has accepted the version sent by the guest.
0201  *
0202  * is_accepted: If TRUE, host has accepted the version and the guest
0203  * should proceed to the next stage of the protocol. FALSE indicates that
0204  * guest should re-try with a different version.
0205  *
0206  * reservedz: Reserved field, set to zero.
0207  */
0208 
0209 struct dm_version_response {
0210     struct dm_header hdr;
0211     __u64 is_accepted:1;
0212     __u64 reservedz:63;
0213 } __packed;
0214 
0215 /*
0216  * Message reporting capabilities. This is sent from the guest to the
0217  * host.
0218  */
0219 
0220 struct dm_capabilities {
0221     struct dm_header hdr;
0222     union dm_caps caps;
0223     __u64 min_page_cnt;
0224     __u64 max_page_number;
0225 } __packed;
0226 
0227 /*
0228  * Response to the capabilities message. This is sent from the host to the
0229  * guest. This message notifies if the host has accepted the guest's
0230  * capabilities. If the host has not accepted, the guest must shutdown
0231  * the service.
0232  *
0233  * is_accepted: Indicates if the host has accepted guest's capabilities.
0234  * reservedz: Must be 0.
0235  */
0236 
0237 struct dm_capabilities_resp_msg {
0238     struct dm_header hdr;
0239     __u64 is_accepted:1;
0240     __u64 reservedz:63;
0241 } __packed;
0242 
0243 /*
0244  * This message is used to report memory pressure from the guest.
0245  * This message is not part of any transaction and there is no
0246  * response to this message.
0247  *
0248  * num_avail: Available memory in pages.
0249  * num_committed: Committed memory in pages.
0250  * page_file_size: The accumulated size of all page files
0251  *         in the system in pages.
0252  * zero_free: The number of zero and free pages.
0253  * page_file_writes: The writes to the page file in pages.
0254  * io_diff: An indicator of file cache efficiency or page file activity,
0255  *      calculated as File Cache Page Fault Count - Page Read Count.
0256  *      This value is in pages.
0257  *
0258  * Some of these metrics are Windows specific and fortunately
0259  * the algorithm on the host side that computes the guest memory
0260  * pressure only uses num_committed value.
0261  */
0262 
0263 struct dm_status {
0264     struct dm_header hdr;
0265     __u64 num_avail;
0266     __u64 num_committed;
0267     __u64 page_file_size;
0268     __u64 zero_free;
0269     __u32 page_file_writes;
0270     __u32 io_diff;
0271 } __packed;
0272 
0273 
0274 /*
0275  * Message to ask the guest to allocate memory - balloon up message.
0276  * This message is sent from the host to the guest. The guest may not be
0277  * able to allocate as much memory as requested.
0278  *
0279  * num_pages: number of pages to allocate.
0280  */
0281 
0282 struct dm_balloon {
0283     struct dm_header hdr;
0284     __u32 num_pages;
0285     __u32 reservedz;
0286 } __packed;
0287 
0288 
0289 /*
0290  * Balloon response message; this message is sent from the guest
0291  * to the host in response to the balloon message.
0292  *
0293  * reservedz: Reserved; must be set to zero.
0294  * more_pages: If FALSE, this is the last message of the transaction.
0295  * if TRUE there will atleast one more message from the guest.
0296  *
0297  * range_count: The number of ranges in the range array.
0298  *
0299  * range_array: An array of page ranges returned to the host.
0300  *
0301  */
0302 
0303 struct dm_balloon_response {
0304     struct dm_header hdr;
0305     __u32 reservedz;
0306     __u32 more_pages:1;
0307     __u32 range_count:31;
0308     union dm_mem_page_range range_array[];
0309 } __packed;
0310 
0311 /*
0312  * Un-balloon message; this message is sent from the host
0313  * to the guest to give guest more memory.
0314  *
0315  * more_pages: If FALSE, this is the last message of the transaction.
0316  * if TRUE there will atleast one more message from the guest.
0317  *
0318  * reservedz: Reserved; must be set to zero.
0319  *
0320  * range_count: The number of ranges in the range array.
0321  *
0322  * range_array: An array of page ranges returned to the host.
0323  *
0324  */
0325 
0326 struct dm_unballoon_request {
0327     struct dm_header hdr;
0328     __u32 more_pages:1;
0329     __u32 reservedz:31;
0330     __u32 range_count;
0331     union dm_mem_page_range range_array[];
0332 } __packed;
0333 
0334 /*
0335  * Un-balloon response message; this message is sent from the guest
0336  * to the host in response to an unballoon request.
0337  *
0338  */
0339 
0340 struct dm_unballoon_response {
0341     struct dm_header hdr;
0342 } __packed;
0343 
0344 
0345 /*
0346  * Hot add request message. Message sent from the host to the guest.
0347  *
0348  * mem_range: Memory range to hot add.
0349  *
0350  */
0351 
0352 struct dm_hot_add {
0353     struct dm_header hdr;
0354     union dm_mem_page_range range;
0355 } __packed;
0356 
0357 /*
0358  * Hot add response message.
0359  * This message is sent by the guest to report the status of a hot add request.
0360  * If page_count is less than the requested page count, then the host should
0361  * assume all further hot add requests will fail, since this indicates that
0362  * the guest has hit an upper physical memory barrier.
0363  *
0364  * Hot adds may also fail due to low resources; in this case, the guest must
0365  * not complete this message until the hot add can succeed, and the host must
0366  * not send a new hot add request until the response is sent.
0367  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
0368  * times it fails the request.
0369  *
0370  *
0371  * page_count: number of pages that were successfully hot added.
0372  *
0373  * result: result of the operation 1: success, 0: failure.
0374  *
0375  */
0376 
0377 struct dm_hot_add_response {
0378     struct dm_header hdr;
0379     __u32 page_count;
0380     __u32 result;
0381 } __packed;
0382 
0383 /*
0384  * Types of information sent from host to the guest.
0385  */
0386 
0387 enum dm_info_type {
0388     INFO_TYPE_MAX_PAGE_CNT = 0,
0389     MAX_INFO_TYPE
0390 };
0391 
0392 
0393 /*
0394  * Header for the information message.
0395  */
0396 
0397 struct dm_info_header {
0398     enum dm_info_type type;
0399     __u32 data_size;
0400 } __packed;
0401 
0402 /*
0403  * This message is sent from the host to the guest to pass
0404  * some relevant information (win8 addition).
0405  *
0406  * reserved: no used.
0407  * info_size: size of the information blob.
0408  * info: information blob.
0409  */
0410 
0411 struct dm_info_msg {
0412     struct dm_header hdr;
0413     __u32 reserved;
0414     __u32 info_size;
0415     __u8  info[];
0416 };
0417 
0418 /*
0419  * End protocol definitions.
0420  */
0421 
0422 /*
0423  * State to manage hot adding memory into the guest.
0424  * The range start_pfn : end_pfn specifies the range
0425  * that the host has asked us to hot add. The range
0426  * start_pfn : ha_end_pfn specifies the range that we have
0427  * currently hot added. We hot add in multiples of 128M
0428  * chunks; it is possible that we may not be able to bring
0429  * online all the pages in the region. The range
0430  * covered_start_pfn:covered_end_pfn defines the pages that can
0431  * be brough online.
0432  */
0433 
0434 struct hv_hotadd_state {
0435     struct list_head list;
0436     unsigned long start_pfn;
0437     unsigned long covered_start_pfn;
0438     unsigned long covered_end_pfn;
0439     unsigned long ha_end_pfn;
0440     unsigned long end_pfn;
0441     /*
0442      * A list of gaps.
0443      */
0444     struct list_head gap_list;
0445 };
0446 
0447 struct hv_hotadd_gap {
0448     struct list_head list;
0449     unsigned long start_pfn;
0450     unsigned long end_pfn;
0451 };
0452 
0453 struct balloon_state {
0454     __u32 num_pages;
0455     struct work_struct wrk;
0456 };
0457 
0458 struct hot_add_wrk {
0459     union dm_mem_page_range ha_page_range;
0460     union dm_mem_page_range ha_region_range;
0461     struct work_struct wrk;
0462 };
0463 
0464 static bool allow_hibernation;
0465 static bool hot_add = true;
0466 static bool do_hot_add;
0467 /*
0468  * Delay reporting memory pressure by
0469  * the specified number of seconds.
0470  */
0471 static uint pressure_report_delay = 45;
0472 
0473 /*
0474  * The last time we posted a pressure report to host.
0475  */
0476 static unsigned long last_post_time;
0477 
0478 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
0479 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
0480 
0481 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
0482 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
0483 static atomic_t trans_id = ATOMIC_INIT(0);
0484 
0485 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
0486 
0487 /*
0488  * Driver specific state.
0489  */
0490 
0491 enum hv_dm_state {
0492     DM_INITIALIZING = 0,
0493     DM_INITIALIZED,
0494     DM_BALLOON_UP,
0495     DM_BALLOON_DOWN,
0496     DM_HOT_ADD,
0497     DM_INIT_ERROR
0498 };
0499 
0500 
0501 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
0502 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
0503 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
0504 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
0505 
0506 struct hv_dynmem_device {
0507     struct hv_device *dev;
0508     enum hv_dm_state state;
0509     struct completion host_event;
0510     struct completion config_event;
0511 
0512     /*
0513      * Number of pages we have currently ballooned out.
0514      */
0515     unsigned int num_pages_ballooned;
0516     unsigned int num_pages_onlined;
0517     unsigned int num_pages_added;
0518 
0519     /*
0520      * State to manage the ballooning (up) operation.
0521      */
0522     struct balloon_state balloon_wrk;
0523 
0524     /*
0525      * State to execute the "hot-add" operation.
0526      */
0527     struct hot_add_wrk ha_wrk;
0528 
0529     /*
0530      * This state tracks if the host has specified a hot-add
0531      * region.
0532      */
0533     bool host_specified_ha_region;
0534 
0535     /*
0536      * State to synchronize hot-add.
0537      */
0538     struct completion  ol_waitevent;
0539     /*
0540      * This thread handles hot-add
0541      * requests from the host as well as notifying
0542      * the host with regards to memory pressure in
0543      * the guest.
0544      */
0545     struct task_struct *thread;
0546 
0547     /*
0548      * Protects ha_region_list, num_pages_onlined counter and individual
0549      * regions from ha_region_list.
0550      */
0551     spinlock_t ha_lock;
0552 
0553     /*
0554      * A list of hot-add regions.
0555      */
0556     struct list_head ha_region_list;
0557 
0558     /*
0559      * We start with the highest version we can support
0560      * and downgrade based on the host; we save here the
0561      * next version to try.
0562      */
0563     __u32 next_version;
0564 
0565     /*
0566      * The negotiated version agreed by host.
0567      */
0568     __u32 version;
0569 
0570     struct page_reporting_dev_info pr_dev_info;
0571 
0572     /*
0573      * Maximum number of pages that can be hot_add-ed
0574      */
0575     __u64 max_dynamic_page_count;
0576 };
0577 
0578 static struct hv_dynmem_device dm_device;
0579 
0580 static void post_status(struct hv_dynmem_device *dm);
0581 
0582 #ifdef CONFIG_MEMORY_HOTPLUG
0583 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
0584                      unsigned long pfn)
0585 {
0586     struct hv_hotadd_gap *gap;
0587 
0588     /* The page is not backed. */
0589     if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
0590         return false;
0591 
0592     /* Check for gaps. */
0593     list_for_each_entry(gap, &has->gap_list, list) {
0594         if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
0595             return false;
0596     }
0597 
0598     return true;
0599 }
0600 
0601 static unsigned long hv_page_offline_check(unsigned long start_pfn,
0602                        unsigned long nr_pages)
0603 {
0604     unsigned long pfn = start_pfn, count = 0;
0605     struct hv_hotadd_state *has;
0606     bool found;
0607 
0608     while (pfn < start_pfn + nr_pages) {
0609         /*
0610          * Search for HAS which covers the pfn and when we find one
0611          * count how many consequitive PFNs are covered.
0612          */
0613         found = false;
0614         list_for_each_entry(has, &dm_device.ha_region_list, list) {
0615             while ((pfn >= has->start_pfn) &&
0616                    (pfn < has->end_pfn) &&
0617                    (pfn < start_pfn + nr_pages)) {
0618                 found = true;
0619                 if (has_pfn_is_backed(has, pfn))
0620                     count++;
0621                 pfn++;
0622             }
0623         }
0624 
0625         /*
0626          * This PFN is not in any HAS (e.g. we're offlining a region
0627          * which was present at boot), no need to account for it. Go
0628          * to the next one.
0629          */
0630         if (!found)
0631             pfn++;
0632     }
0633 
0634     return count;
0635 }
0636 
0637 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
0638                   void *v)
0639 {
0640     struct memory_notify *mem = (struct memory_notify *)v;
0641     unsigned long flags, pfn_count;
0642 
0643     switch (val) {
0644     case MEM_ONLINE:
0645     case MEM_CANCEL_ONLINE:
0646         complete(&dm_device.ol_waitevent);
0647         break;
0648 
0649     case MEM_OFFLINE:
0650         spin_lock_irqsave(&dm_device.ha_lock, flags);
0651         pfn_count = hv_page_offline_check(mem->start_pfn,
0652                           mem->nr_pages);
0653         if (pfn_count <= dm_device.num_pages_onlined) {
0654             dm_device.num_pages_onlined -= pfn_count;
0655         } else {
0656             /*
0657              * We're offlining more pages than we managed to online.
0658              * This is unexpected. In any case don't let
0659              * num_pages_onlined wrap around zero.
0660              */
0661             WARN_ON_ONCE(1);
0662             dm_device.num_pages_onlined = 0;
0663         }
0664         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0665         break;
0666     case MEM_GOING_ONLINE:
0667     case MEM_GOING_OFFLINE:
0668     case MEM_CANCEL_OFFLINE:
0669         break;
0670     }
0671     return NOTIFY_OK;
0672 }
0673 
0674 static struct notifier_block hv_memory_nb = {
0675     .notifier_call = hv_memory_notifier,
0676     .priority = 0
0677 };
0678 
0679 /* Check if the particular page is backed and can be onlined and online it. */
0680 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
0681 {
0682     if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
0683         if (!PageOffline(pg))
0684             __SetPageOffline(pg);
0685         return;
0686     }
0687     if (PageOffline(pg))
0688         __ClearPageOffline(pg);
0689 
0690     /* This frame is currently backed; online the page. */
0691     generic_online_page(pg, 0);
0692 
0693     lockdep_assert_held(&dm_device.ha_lock);
0694     dm_device.num_pages_onlined++;
0695 }
0696 
0697 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
0698                 unsigned long start_pfn, unsigned long size)
0699 {
0700     int i;
0701 
0702     pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
0703     for (i = 0; i < size; i++)
0704         hv_page_online_one(has, pfn_to_page(start_pfn + i));
0705 }
0706 
0707 static void hv_mem_hot_add(unsigned long start, unsigned long size,
0708                 unsigned long pfn_count,
0709                 struct hv_hotadd_state *has)
0710 {
0711     int ret = 0;
0712     int i, nid;
0713     unsigned long start_pfn;
0714     unsigned long processed_pfn;
0715     unsigned long total_pfn = pfn_count;
0716     unsigned long flags;
0717 
0718     for (i = 0; i < (size/HA_CHUNK); i++) {
0719         start_pfn = start + (i * HA_CHUNK);
0720 
0721         spin_lock_irqsave(&dm_device.ha_lock, flags);
0722         has->ha_end_pfn +=  HA_CHUNK;
0723 
0724         if (total_pfn > HA_CHUNK) {
0725             processed_pfn = HA_CHUNK;
0726             total_pfn -= HA_CHUNK;
0727         } else {
0728             processed_pfn = total_pfn;
0729             total_pfn = 0;
0730         }
0731 
0732         has->covered_end_pfn +=  processed_pfn;
0733         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0734 
0735         reinit_completion(&dm_device.ol_waitevent);
0736 
0737         nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
0738         ret = add_memory(nid, PFN_PHYS((start_pfn)),
0739                 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
0740 
0741         if (ret) {
0742             pr_err("hot_add memory failed error is %d\n", ret);
0743             if (ret == -EEXIST) {
0744                 /*
0745                  * This error indicates that the error
0746                  * is not a transient failure. This is the
0747                  * case where the guest's physical address map
0748                  * precludes hot adding memory. Stop all further
0749                  * memory hot-add.
0750                  */
0751                 do_hot_add = false;
0752             }
0753             spin_lock_irqsave(&dm_device.ha_lock, flags);
0754             has->ha_end_pfn -= HA_CHUNK;
0755             has->covered_end_pfn -=  processed_pfn;
0756             spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0757             break;
0758         }
0759 
0760         /*
0761          * Wait for memory to get onlined. If the kernel onlined the
0762          * memory when adding it, this will return directly. Otherwise,
0763          * it will wait for user space to online the memory. This helps
0764          * to avoid adding memory faster than it is getting onlined. As
0765          * adding succeeded, it is ok to proceed even if the memory was
0766          * not onlined in time.
0767          */
0768         wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
0769         post_status(&dm_device);
0770     }
0771 }
0772 
0773 static void hv_online_page(struct page *pg, unsigned int order)
0774 {
0775     struct hv_hotadd_state *has;
0776     unsigned long flags;
0777     unsigned long pfn = page_to_pfn(pg);
0778 
0779     spin_lock_irqsave(&dm_device.ha_lock, flags);
0780     list_for_each_entry(has, &dm_device.ha_region_list, list) {
0781         /* The page belongs to a different HAS. */
0782         if ((pfn < has->start_pfn) ||
0783                 (pfn + (1UL << order) > has->end_pfn))
0784             continue;
0785 
0786         hv_bring_pgs_online(has, pfn, 1UL << order);
0787         break;
0788     }
0789     spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0790 }
0791 
0792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
0793 {
0794     struct hv_hotadd_state *has;
0795     struct hv_hotadd_gap *gap;
0796     unsigned long residual, new_inc;
0797     int ret = 0;
0798     unsigned long flags;
0799 
0800     spin_lock_irqsave(&dm_device.ha_lock, flags);
0801     list_for_each_entry(has, &dm_device.ha_region_list, list) {
0802         /*
0803          * If the pfn range we are dealing with is not in the current
0804          * "hot add block", move on.
0805          */
0806         if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
0807             continue;
0808 
0809         /*
0810          * If the current start pfn is not where the covered_end
0811          * is, create a gap and update covered_end_pfn.
0812          */
0813         if (has->covered_end_pfn != start_pfn) {
0814             gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
0815             if (!gap) {
0816                 ret = -ENOMEM;
0817                 break;
0818             }
0819 
0820             INIT_LIST_HEAD(&gap->list);
0821             gap->start_pfn = has->covered_end_pfn;
0822             gap->end_pfn = start_pfn;
0823             list_add_tail(&gap->list, &has->gap_list);
0824 
0825             has->covered_end_pfn = start_pfn;
0826         }
0827 
0828         /*
0829          * If the current hot add-request extends beyond
0830          * our current limit; extend it.
0831          */
0832         if ((start_pfn + pfn_cnt) > has->end_pfn) {
0833             residual = (start_pfn + pfn_cnt - has->end_pfn);
0834             /*
0835              * Extend the region by multiples of HA_CHUNK.
0836              */
0837             new_inc = (residual / HA_CHUNK) * HA_CHUNK;
0838             if (residual % HA_CHUNK)
0839                 new_inc += HA_CHUNK;
0840 
0841             has->end_pfn += new_inc;
0842         }
0843 
0844         ret = 1;
0845         break;
0846     }
0847     spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0848 
0849     return ret;
0850 }
0851 
0852 static unsigned long handle_pg_range(unsigned long pg_start,
0853                     unsigned long pg_count)
0854 {
0855     unsigned long start_pfn = pg_start;
0856     unsigned long pfn_cnt = pg_count;
0857     unsigned long size;
0858     struct hv_hotadd_state *has;
0859     unsigned long pgs_ol = 0;
0860     unsigned long old_covered_state;
0861     unsigned long res = 0, flags;
0862 
0863     pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
0864         pg_start);
0865 
0866     spin_lock_irqsave(&dm_device.ha_lock, flags);
0867     list_for_each_entry(has, &dm_device.ha_region_list, list) {
0868         /*
0869          * If the pfn range we are dealing with is not in the current
0870          * "hot add block", move on.
0871          */
0872         if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
0873             continue;
0874 
0875         old_covered_state = has->covered_end_pfn;
0876 
0877         if (start_pfn < has->ha_end_pfn) {
0878             /*
0879              * This is the case where we are backing pages
0880              * in an already hot added region. Bring
0881              * these pages online first.
0882              */
0883             pgs_ol = has->ha_end_pfn - start_pfn;
0884             if (pgs_ol > pfn_cnt)
0885                 pgs_ol = pfn_cnt;
0886 
0887             has->covered_end_pfn +=  pgs_ol;
0888             pfn_cnt -= pgs_ol;
0889             /*
0890              * Check if the corresponding memory block is already
0891              * online. It is possible to observe struct pages still
0892              * being uninitialized here so check section instead.
0893              * In case the section is online we need to bring the
0894              * rest of pfns (which were not backed previously)
0895              * online too.
0896              */
0897             if (start_pfn > has->start_pfn &&
0898                 online_section_nr(pfn_to_section_nr(start_pfn)))
0899                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
0900 
0901         }
0902 
0903         if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
0904             /*
0905              * We have some residual hot add range
0906              * that needs to be hot added; hot add
0907              * it now. Hot add a multiple of
0908              * of HA_CHUNK that fully covers the pages
0909              * we have.
0910              */
0911             size = (has->end_pfn - has->ha_end_pfn);
0912             if (pfn_cnt <= size) {
0913                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
0914                 if (pfn_cnt % HA_CHUNK)
0915                     size += HA_CHUNK;
0916             } else {
0917                 pfn_cnt = size;
0918             }
0919             spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0920             hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
0921             spin_lock_irqsave(&dm_device.ha_lock, flags);
0922         }
0923         /*
0924          * If we managed to online any pages that were given to us,
0925          * we declare success.
0926          */
0927         res = has->covered_end_pfn - old_covered_state;
0928         break;
0929     }
0930     spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0931 
0932     return res;
0933 }
0934 
0935 static unsigned long process_hot_add(unsigned long pg_start,
0936                     unsigned long pfn_cnt,
0937                     unsigned long rg_start,
0938                     unsigned long rg_size)
0939 {
0940     struct hv_hotadd_state *ha_region = NULL;
0941     int covered;
0942     unsigned long flags;
0943 
0944     if (pfn_cnt == 0)
0945         return 0;
0946 
0947     if (!dm_device.host_specified_ha_region) {
0948         covered = pfn_covered(pg_start, pfn_cnt);
0949         if (covered < 0)
0950             return 0;
0951 
0952         if (covered)
0953             goto do_pg_range;
0954     }
0955 
0956     /*
0957      * If the host has specified a hot-add range; deal with it first.
0958      */
0959 
0960     if (rg_size != 0) {
0961         ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
0962         if (!ha_region)
0963             return 0;
0964 
0965         INIT_LIST_HEAD(&ha_region->list);
0966         INIT_LIST_HEAD(&ha_region->gap_list);
0967 
0968         ha_region->start_pfn = rg_start;
0969         ha_region->ha_end_pfn = rg_start;
0970         ha_region->covered_start_pfn = pg_start;
0971         ha_region->covered_end_pfn = pg_start;
0972         ha_region->end_pfn = rg_start + rg_size;
0973 
0974         spin_lock_irqsave(&dm_device.ha_lock, flags);
0975         list_add_tail(&ha_region->list, &dm_device.ha_region_list);
0976         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
0977     }
0978 
0979 do_pg_range:
0980     /*
0981      * Process the page range specified; bringing them
0982      * online if possible.
0983      */
0984     return handle_pg_range(pg_start, pfn_cnt);
0985 }
0986 
0987 #endif
0988 
0989 static void hot_add_req(struct work_struct *dummy)
0990 {
0991     struct dm_hot_add_response resp;
0992 #ifdef CONFIG_MEMORY_HOTPLUG
0993     unsigned long pg_start, pfn_cnt;
0994     unsigned long rg_start, rg_sz;
0995 #endif
0996     struct hv_dynmem_device *dm = &dm_device;
0997 
0998     memset(&resp, 0, sizeof(struct dm_hot_add_response));
0999     resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000     resp.hdr.size = sizeof(struct dm_hot_add_response);
1001 
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003     pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004     pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1005 
1006     rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007     rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1008 
1009     if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010         unsigned long region_size;
1011         unsigned long region_start;
1012 
1013         /*
1014          * The host has not specified the hot-add region.
1015          * Based on the hot-add page range being specified,
1016          * compute a hot-add region that can cover the pages
1017          * that need to be hot-added while ensuring the alignment
1018          * and size requirements of Linux as it relates to hot-add.
1019          */
1020         region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1021         if (pfn_cnt % HA_CHUNK)
1022             region_size += HA_CHUNK;
1023 
1024         region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1025 
1026         rg_start = region_start;
1027         rg_sz = region_size;
1028     }
1029 
1030     if (do_hot_add)
1031         resp.page_count = process_hot_add(pg_start, pfn_cnt,
1032                         rg_start, rg_sz);
1033 
1034     dm->num_pages_added += resp.page_count;
1035 #endif
1036     /*
1037      * The result field of the response structure has the
1038      * following semantics:
1039      *
1040      * 1. If all or some pages hot-added: Guest should return success.
1041      *
1042      * 2. If no pages could be hot-added:
1043      *
1044      * If the guest returns success, then the host
1045      * will not attempt any further hot-add operations. This
1046      * signifies a permanent failure.
1047      *
1048      * If the guest returns failure, then this failure will be
1049      * treated as a transient failure and the host may retry the
1050      * hot-add operation after some delay.
1051      */
1052     if (resp.page_count > 0)
1053         resp.result = 1;
1054     else if (!do_hot_add)
1055         resp.result = 1;
1056     else
1057         resp.result = 0;
1058 
1059     if (!do_hot_add || resp.page_count == 0) {
1060         if (!allow_hibernation)
1061             pr_err("Memory hot add failed\n");
1062         else
1063             pr_info("Ignore hot-add request!\n");
1064     }
1065 
1066     dm->state = DM_INITIALIZED;
1067     resp.hdr.trans_id = atomic_inc_return(&trans_id);
1068     vmbus_sendpacket(dm->dev->channel, &resp,
1069             sizeof(struct dm_hot_add_response),
1070             (unsigned long)NULL,
1071             VM_PKT_DATA_INBAND, 0);
1072 }
1073 
1074 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1075 {
1076     struct dm_info_header *info_hdr;
1077 
1078     info_hdr = (struct dm_info_header *)msg->info;
1079 
1080     switch (info_hdr->type) {
1081     case INFO_TYPE_MAX_PAGE_CNT:
1082         if (info_hdr->data_size == sizeof(__u64)) {
1083             __u64 *max_page_count = (__u64 *)&info_hdr[1];
1084 
1085             pr_info("Max. dynamic memory size: %llu MB\n",
1086                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1087             dm->max_dynamic_page_count = *max_page_count;
1088         }
1089 
1090         break;
1091     default:
1092         pr_warn("Received Unknown type: %d\n", info_hdr->type);
1093     }
1094 }
1095 
1096 static unsigned long compute_balloon_floor(void)
1097 {
1098     unsigned long min_pages;
1099     unsigned long nr_pages = totalram_pages();
1100 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1101     /* Simple continuous piecewiese linear function:
1102      *  max MiB -> min MiB  gradient
1103      *       0         0
1104      *      16        16
1105      *      32        24
1106      *     128        72    (1/2)
1107      *     512       168    (1/4)
1108      *    2048       360    (1/8)
1109      *    8192       744    (1/16)
1110      *   32768      1512    (1/32)
1111      */
1112     if (nr_pages < MB2PAGES(128))
1113         min_pages = MB2PAGES(8) + (nr_pages >> 1);
1114     else if (nr_pages < MB2PAGES(512))
1115         min_pages = MB2PAGES(40) + (nr_pages >> 2);
1116     else if (nr_pages < MB2PAGES(2048))
1117         min_pages = MB2PAGES(104) + (nr_pages >> 3);
1118     else if (nr_pages < MB2PAGES(8192))
1119         min_pages = MB2PAGES(232) + (nr_pages >> 4);
1120     else
1121         min_pages = MB2PAGES(488) + (nr_pages >> 5);
1122 #undef MB2PAGES
1123     return min_pages;
1124 }
1125 
1126 /*
1127  * Compute total committed memory pages
1128  */
1129 
1130 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1131 {
1132     return vm_memory_committed() +
1133         dm->num_pages_ballooned +
1134         (dm->num_pages_added > dm->num_pages_onlined ?
1135          dm->num_pages_added - dm->num_pages_onlined : 0) +
1136         compute_balloon_floor();
1137 }
1138 
1139 /*
1140  * Post our status as it relates memory pressure to the
1141  * host. Host expects the guests to post this status
1142  * periodically at 1 second intervals.
1143  *
1144  * The metrics specified in this protocol are very Windows
1145  * specific and so we cook up numbers here to convey our memory
1146  * pressure.
1147  */
1148 
1149 static void post_status(struct hv_dynmem_device *dm)
1150 {
1151     struct dm_status status;
1152     unsigned long now = jiffies;
1153     unsigned long last_post = last_post_time;
1154     unsigned long num_pages_avail, num_pages_committed;
1155 
1156     if (pressure_report_delay > 0) {
1157         --pressure_report_delay;
1158         return;
1159     }
1160 
1161     if (!time_after(now, (last_post_time + HZ)))
1162         return;
1163 
1164     memset(&status, 0, sizeof(struct dm_status));
1165     status.hdr.type = DM_STATUS_REPORT;
1166     status.hdr.size = sizeof(struct dm_status);
1167     status.hdr.trans_id = atomic_inc_return(&trans_id);
1168 
1169     /*
1170      * The host expects the guest to report free and committed memory.
1171      * Furthermore, the host expects the pressure information to include
1172      * the ballooned out pages. For a given amount of memory that we are
1173      * managing we need to compute a floor below which we should not
1174      * balloon. Compute this and add it to the pressure report.
1175      * We also need to report all offline pages (num_pages_added -
1176      * num_pages_onlined) as committed to the host, otherwise it can try
1177      * asking us to balloon them out.
1178      */
1179     num_pages_avail = si_mem_available();
1180     num_pages_committed = get_pages_committed(dm);
1181 
1182     trace_balloon_status(num_pages_avail, num_pages_committed,
1183                  vm_memory_committed(), dm->num_pages_ballooned,
1184                  dm->num_pages_added, dm->num_pages_onlined);
1185 
1186     /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1187     status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1188     status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1189 
1190     /*
1191      * If our transaction ID is no longer current, just don't
1192      * send the status. This can happen if we were interrupted
1193      * after we picked our transaction ID.
1194      */
1195     if (status.hdr.trans_id != atomic_read(&trans_id))
1196         return;
1197 
1198     /*
1199      * If the last post time that we sampled has changed,
1200      * we have raced, don't post the status.
1201      */
1202     if (last_post != last_post_time)
1203         return;
1204 
1205     last_post_time = jiffies;
1206     vmbus_sendpacket(dm->dev->channel, &status,
1207                 sizeof(struct dm_status),
1208                 (unsigned long)NULL,
1209                 VM_PKT_DATA_INBAND, 0);
1210 
1211 }
1212 
1213 static void free_balloon_pages(struct hv_dynmem_device *dm,
1214              union dm_mem_page_range *range_array)
1215 {
1216     int num_pages = range_array->finfo.page_cnt;
1217     __u64 start_frame = range_array->finfo.start_page;
1218     struct page *pg;
1219     int i;
1220 
1221     for (i = 0; i < num_pages; i++) {
1222         pg = pfn_to_page(i + start_frame);
1223         __ClearPageOffline(pg);
1224         __free_page(pg);
1225         dm->num_pages_ballooned--;
1226         adjust_managed_page_count(pg, 1);
1227     }
1228 }
1229 
1230 
1231 
1232 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1233                     unsigned int num_pages,
1234                     struct dm_balloon_response *bl_resp,
1235                     int alloc_unit)
1236 {
1237     unsigned int i, j;
1238     struct page *pg;
1239 
1240     for (i = 0; i < num_pages / alloc_unit; i++) {
1241         if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1242             HV_HYP_PAGE_SIZE)
1243             return i * alloc_unit;
1244 
1245         /*
1246          * We execute this code in a thread context. Furthermore,
1247          * we don't want the kernel to try too hard.
1248          */
1249         pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1250                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1251                 get_order(alloc_unit << PAGE_SHIFT));
1252 
1253         if (!pg)
1254             return i * alloc_unit;
1255 
1256         dm->num_pages_ballooned += alloc_unit;
1257 
1258         /*
1259          * If we allocatted 2M pages; split them so we
1260          * can free them in any order we get.
1261          */
1262 
1263         if (alloc_unit != 1)
1264             split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1265 
1266         /* mark all pages offline */
1267         for (j = 0; j < alloc_unit; j++) {
1268             __SetPageOffline(pg + j);
1269             adjust_managed_page_count(pg + j, -1);
1270         }
1271 
1272         bl_resp->range_count++;
1273         bl_resp->range_array[i].finfo.start_page =
1274             page_to_pfn(pg);
1275         bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1276         bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1277 
1278     }
1279 
1280     return i * alloc_unit;
1281 }
1282 
1283 static void balloon_up(struct work_struct *dummy)
1284 {
1285     unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1286     unsigned int num_ballooned = 0;
1287     struct dm_balloon_response *bl_resp;
1288     int alloc_unit;
1289     int ret;
1290     bool done = false;
1291     int i;
1292     long avail_pages;
1293     unsigned long floor;
1294 
1295     /*
1296      * We will attempt 2M allocations. However, if we fail to
1297      * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1298      */
1299     alloc_unit = PAGES_IN_2M;
1300 
1301     avail_pages = si_mem_available();
1302     floor = compute_balloon_floor();
1303 
1304     /* Refuse to balloon below the floor. */
1305     if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1306         pr_info("Balloon request will be partially fulfilled. %s\n",
1307             avail_pages < num_pages ? "Not enough memory." :
1308             "Balloon floor reached.");
1309 
1310         num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1311     }
1312 
1313     while (!done) {
1314         memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1315         bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1316         bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1317         bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1318         bl_resp->more_pages = 1;
1319 
1320         num_pages -= num_ballooned;
1321         num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1322                             bl_resp, alloc_unit);
1323 
1324         if (alloc_unit != 1 && num_ballooned == 0) {
1325             alloc_unit = 1;
1326             continue;
1327         }
1328 
1329         if (num_ballooned == 0 || num_ballooned == num_pages) {
1330             pr_debug("Ballooned %u out of %u requested pages.\n",
1331                 num_pages, dm_device.balloon_wrk.num_pages);
1332 
1333             bl_resp->more_pages = 0;
1334             done = true;
1335             dm_device.state = DM_INITIALIZED;
1336         }
1337 
1338         /*
1339          * We are pushing a lot of data through the channel;
1340          * deal with transient failures caused because of the
1341          * lack of space in the ring buffer.
1342          */
1343 
1344         do {
1345             bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1346             ret = vmbus_sendpacket(dm_device.dev->channel,
1347                         bl_resp,
1348                         bl_resp->hdr.size,
1349                         (unsigned long)NULL,
1350                         VM_PKT_DATA_INBAND, 0);
1351 
1352             if (ret == -EAGAIN)
1353                 msleep(20);
1354             post_status(&dm_device);
1355         } while (ret == -EAGAIN);
1356 
1357         if (ret) {
1358             /*
1359              * Free up the memory we allocatted.
1360              */
1361             pr_err("Balloon response failed\n");
1362 
1363             for (i = 0; i < bl_resp->range_count; i++)
1364                 free_balloon_pages(&dm_device,
1365                          &bl_resp->range_array[i]);
1366 
1367             done = true;
1368         }
1369     }
1370 
1371 }
1372 
1373 static void balloon_down(struct hv_dynmem_device *dm,
1374             struct dm_unballoon_request *req)
1375 {
1376     union dm_mem_page_range *range_array = req->range_array;
1377     int range_count = req->range_count;
1378     struct dm_unballoon_response resp;
1379     int i;
1380     unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1381 
1382     for (i = 0; i < range_count; i++) {
1383         free_balloon_pages(dm, &range_array[i]);
1384         complete(&dm_device.config_event);
1385     }
1386 
1387     pr_debug("Freed %u ballooned pages.\n",
1388         prev_pages_ballooned - dm->num_pages_ballooned);
1389 
1390     if (req->more_pages == 1)
1391         return;
1392 
1393     memset(&resp, 0, sizeof(struct dm_unballoon_response));
1394     resp.hdr.type = DM_UNBALLOON_RESPONSE;
1395     resp.hdr.trans_id = atomic_inc_return(&trans_id);
1396     resp.hdr.size = sizeof(struct dm_unballoon_response);
1397 
1398     vmbus_sendpacket(dm_device.dev->channel, &resp,
1399                 sizeof(struct dm_unballoon_response),
1400                 (unsigned long)NULL,
1401                 VM_PKT_DATA_INBAND, 0);
1402 
1403     dm->state = DM_INITIALIZED;
1404 }
1405 
1406 static void balloon_onchannelcallback(void *context);
1407 
1408 static int dm_thread_func(void *dm_dev)
1409 {
1410     struct hv_dynmem_device *dm = dm_dev;
1411 
1412     while (!kthread_should_stop()) {
1413         wait_for_completion_interruptible_timeout(
1414                         &dm_device.config_event, 1*HZ);
1415         /*
1416          * The host expects us to post information on the memory
1417          * pressure every second.
1418          */
1419         reinit_completion(&dm_device.config_event);
1420         post_status(dm);
1421     }
1422 
1423     return 0;
1424 }
1425 
1426 
1427 static void version_resp(struct hv_dynmem_device *dm,
1428             struct dm_version_response *vresp)
1429 {
1430     struct dm_version_request version_req;
1431     int ret;
1432 
1433     if (vresp->is_accepted) {
1434         /*
1435          * We are done; wakeup the
1436          * context waiting for version
1437          * negotiation.
1438          */
1439         complete(&dm->host_event);
1440         return;
1441     }
1442     /*
1443      * If there are more versions to try, continue
1444      * with negotiations; if not
1445      * shutdown the service since we are not able
1446      * to negotiate a suitable version number
1447      * with the host.
1448      */
1449     if (dm->next_version == 0)
1450         goto version_error;
1451 
1452     memset(&version_req, 0, sizeof(struct dm_version_request));
1453     version_req.hdr.type = DM_VERSION_REQUEST;
1454     version_req.hdr.size = sizeof(struct dm_version_request);
1455     version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1456     version_req.version.version = dm->next_version;
1457     dm->version = version_req.version.version;
1458 
1459     /*
1460      * Set the next version to try in case current version fails.
1461      * Win7 protocol ought to be the last one to try.
1462      */
1463     switch (version_req.version.version) {
1464     case DYNMEM_PROTOCOL_VERSION_WIN8:
1465         dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1466         version_req.is_last_attempt = 0;
1467         break;
1468     default:
1469         dm->next_version = 0;
1470         version_req.is_last_attempt = 1;
1471     }
1472 
1473     ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1474                 sizeof(struct dm_version_request),
1475                 (unsigned long)NULL,
1476                 VM_PKT_DATA_INBAND, 0);
1477 
1478     if (ret)
1479         goto version_error;
1480 
1481     return;
1482 
1483 version_error:
1484     dm->state = DM_INIT_ERROR;
1485     complete(&dm->host_event);
1486 }
1487 
1488 static void cap_resp(struct hv_dynmem_device *dm,
1489             struct dm_capabilities_resp_msg *cap_resp)
1490 {
1491     if (!cap_resp->is_accepted) {
1492         pr_err("Capabilities not accepted by host\n");
1493         dm->state = DM_INIT_ERROR;
1494     }
1495     complete(&dm->host_event);
1496 }
1497 
1498 static void balloon_onchannelcallback(void *context)
1499 {
1500     struct hv_device *dev = context;
1501     u32 recvlen;
1502     u64 requestid;
1503     struct dm_message *dm_msg;
1504     struct dm_header *dm_hdr;
1505     struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1506     struct dm_balloon *bal_msg;
1507     struct dm_hot_add *ha_msg;
1508     union dm_mem_page_range *ha_pg_range;
1509     union dm_mem_page_range *ha_region;
1510 
1511     memset(recv_buffer, 0, sizeof(recv_buffer));
1512     vmbus_recvpacket(dev->channel, recv_buffer,
1513              HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1514 
1515     if (recvlen > 0) {
1516         dm_msg = (struct dm_message *)recv_buffer;
1517         dm_hdr = &dm_msg->hdr;
1518 
1519         switch (dm_hdr->type) {
1520         case DM_VERSION_RESPONSE:
1521             version_resp(dm,
1522                  (struct dm_version_response *)dm_msg);
1523             break;
1524 
1525         case DM_CAPABILITIES_RESPONSE:
1526             cap_resp(dm,
1527                  (struct dm_capabilities_resp_msg *)dm_msg);
1528             break;
1529 
1530         case DM_BALLOON_REQUEST:
1531             if (allow_hibernation) {
1532                 pr_info("Ignore balloon-up request!\n");
1533                 break;
1534             }
1535 
1536             if (dm->state == DM_BALLOON_UP)
1537                 pr_warn("Currently ballooning\n");
1538             bal_msg = (struct dm_balloon *)recv_buffer;
1539             dm->state = DM_BALLOON_UP;
1540             dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1541             schedule_work(&dm_device.balloon_wrk.wrk);
1542             break;
1543 
1544         case DM_UNBALLOON_REQUEST:
1545             if (allow_hibernation) {
1546                 pr_info("Ignore balloon-down request!\n");
1547                 break;
1548             }
1549 
1550             dm->state = DM_BALLOON_DOWN;
1551             balloon_down(dm,
1552                  (struct dm_unballoon_request *)recv_buffer);
1553             break;
1554 
1555         case DM_MEM_HOT_ADD_REQUEST:
1556             if (dm->state == DM_HOT_ADD)
1557                 pr_warn("Currently hot-adding\n");
1558             dm->state = DM_HOT_ADD;
1559             ha_msg = (struct dm_hot_add *)recv_buffer;
1560             if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1561                 /*
1562                  * This is a normal hot-add request specifying
1563                  * hot-add memory.
1564                  */
1565                 dm->host_specified_ha_region = false;
1566                 ha_pg_range = &ha_msg->range;
1567                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1568                 dm->ha_wrk.ha_region_range.page_range = 0;
1569             } else {
1570                 /*
1571                  * Host is specifying that we first hot-add
1572                  * a region and then partially populate this
1573                  * region.
1574                  */
1575                 dm->host_specified_ha_region = true;
1576                 ha_pg_range = &ha_msg->range;
1577                 ha_region = &ha_pg_range[1];
1578                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1579                 dm->ha_wrk.ha_region_range = *ha_region;
1580             }
1581             schedule_work(&dm_device.ha_wrk.wrk);
1582             break;
1583 
1584         case DM_INFO_MESSAGE:
1585             process_info(dm, (struct dm_info_msg *)dm_msg);
1586             break;
1587 
1588         default:
1589             pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1590 
1591         }
1592     }
1593 
1594 }
1595 
1596 /* Hyper-V only supports reporting 2MB pages or higher */
1597 #define HV_MIN_PAGE_REPORTING_ORDER 9
1598 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1599 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1600             struct scatterlist *sgl, unsigned int nents)
1601 {
1602     unsigned long flags;
1603     struct hv_memory_hint *hint;
1604     int i;
1605     u64 status;
1606     struct scatterlist *sg;
1607 
1608     WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1609     WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1610     local_irq_save(flags);
1611     hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1612     if (!hint) {
1613         local_irq_restore(flags);
1614         return -ENOSPC;
1615     }
1616 
1617     hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1618     hint->reserved = 0;
1619     for_each_sg(sgl, sg, nents, i) {
1620         union hv_gpa_page_range *range;
1621 
1622         range = &hint->ranges[i];
1623         range->address_space = 0;
1624         /* page reporting only reports 2MB pages or higher */
1625         range->page.largepage = 1;
1626         range->page.additional_pages =
1627             (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1628         range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1629         range->base_large_pfn =
1630             page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1631     }
1632 
1633     status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1634                      hint, NULL);
1635     local_irq_restore(flags);
1636     if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1637         pr_err("Cold memory discard hypercall failed with status %llx\n",
1638             status);
1639         return -EINVAL;
1640     }
1641 
1642     return 0;
1643 }
1644 
1645 static void enable_page_reporting(void)
1646 {
1647     int ret;
1648 
1649     /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1650     if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1651         pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1652         return;
1653     }
1654 
1655     if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1656         pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1657         return;
1658     }
1659 
1660     BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1661     dm_device.pr_dev_info.report = hv_free_page_report;
1662     ret = page_reporting_register(&dm_device.pr_dev_info);
1663     if (ret < 0) {
1664         dm_device.pr_dev_info.report = NULL;
1665         pr_err("Failed to enable cold memory discard: %d\n", ret);
1666     } else {
1667         pr_info("Cold memory discard hint enabled\n");
1668     }
1669 }
1670 
1671 static void disable_page_reporting(void)
1672 {
1673     if (dm_device.pr_dev_info.report) {
1674         page_reporting_unregister(&dm_device.pr_dev_info);
1675         dm_device.pr_dev_info.report = NULL;
1676     }
1677 }
1678 
1679 static int ballooning_enabled(void)
1680 {
1681     /*
1682      * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1683      * since currently it's unclear to us whether an unballoon request can
1684      * make sure all page ranges are guest page size aligned.
1685      */
1686     if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1687         pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1688         return 0;
1689     }
1690 
1691     return 1;
1692 }
1693 
1694 static int hot_add_enabled(void)
1695 {
1696     /*
1697      * Disable hot add on ARM64, because we currently rely on
1698      * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1699      * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1700      * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1701      * add_memory().
1702      */
1703     if (IS_ENABLED(CONFIG_ARM64)) {
1704         pr_info("Memory hot add disabled on ARM64\n");
1705         return 0;
1706     }
1707 
1708     return 1;
1709 }
1710 
1711 static int balloon_connect_vsp(struct hv_device *dev)
1712 {
1713     struct dm_version_request version_req;
1714     struct dm_capabilities cap_msg;
1715     unsigned long t;
1716     int ret;
1717 
1718     /*
1719      * max_pkt_size should be large enough for one vmbus packet header plus
1720      * our receive buffer size. Hyper-V sends messages up to
1721      * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1722      */
1723     dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1724 
1725     ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1726              balloon_onchannelcallback, dev);
1727     if (ret)
1728         return ret;
1729 
1730     /*
1731      * Initiate the hand shake with the host and negotiate
1732      * a version that the host can support. We start with the
1733      * highest version number and go down if the host cannot
1734      * support it.
1735      */
1736     memset(&version_req, 0, sizeof(struct dm_version_request));
1737     version_req.hdr.type = DM_VERSION_REQUEST;
1738     version_req.hdr.size = sizeof(struct dm_version_request);
1739     version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1740     version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1741     version_req.is_last_attempt = 0;
1742     dm_device.version = version_req.version.version;
1743 
1744     ret = vmbus_sendpacket(dev->channel, &version_req,
1745                    sizeof(struct dm_version_request),
1746                    (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1747     if (ret)
1748         goto out;
1749 
1750     t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1751     if (t == 0) {
1752         ret = -ETIMEDOUT;
1753         goto out;
1754     }
1755 
1756     /*
1757      * If we could not negotiate a compatible version with the host
1758      * fail the probe function.
1759      */
1760     if (dm_device.state == DM_INIT_ERROR) {
1761         ret = -EPROTO;
1762         goto out;
1763     }
1764 
1765     pr_info("Using Dynamic Memory protocol version %u.%u\n",
1766         DYNMEM_MAJOR_VERSION(dm_device.version),
1767         DYNMEM_MINOR_VERSION(dm_device.version));
1768 
1769     /*
1770      * Now submit our capabilities to the host.
1771      */
1772     memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1773     cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1774     cap_msg.hdr.size = sizeof(struct dm_capabilities);
1775     cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1776 
1777     /*
1778      * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1779      * currently still requires the bits to be set, so we have to add code
1780      * to fail the host's hot-add and balloon up/down requests, if any.
1781      */
1782     cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1783     cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1784 
1785     /*
1786      * Specify our alignment requirements as it relates
1787      * memory hot-add. Specify 128MB alignment.
1788      */
1789     cap_msg.caps.cap_bits.hot_add_alignment = 7;
1790 
1791     /*
1792      * Currently the host does not use these
1793      * values and we set them to what is done in the
1794      * Windows driver.
1795      */
1796     cap_msg.min_page_cnt = 0;
1797     cap_msg.max_page_number = -1;
1798 
1799     ret = vmbus_sendpacket(dev->channel, &cap_msg,
1800                    sizeof(struct dm_capabilities),
1801                    (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1802     if (ret)
1803         goto out;
1804 
1805     t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1806     if (t == 0) {
1807         ret = -ETIMEDOUT;
1808         goto out;
1809     }
1810 
1811     /*
1812      * If the host does not like our capabilities,
1813      * fail the probe function.
1814      */
1815     if (dm_device.state == DM_INIT_ERROR) {
1816         ret = -EPROTO;
1817         goto out;
1818     }
1819 
1820     return 0;
1821 out:
1822     vmbus_close(dev->channel);
1823     return ret;
1824 }
1825 
1826 /*
1827  * DEBUGFS Interface
1828  */
1829 #ifdef CONFIG_DEBUG_FS
1830 
1831 /**
1832  * hv_balloon_debug_show - shows statistics of balloon operations.
1833  * @f: pointer to the &struct seq_file.
1834  * @offset: ignored.
1835  *
1836  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1837  *
1838  * Return: zero on success or an error code.
1839  */
1840 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1841 {
1842     struct hv_dynmem_device *dm = f->private;
1843     char *sname;
1844 
1845     seq_printf(f, "%-22s: %u.%u\n", "host_version",
1846                 DYNMEM_MAJOR_VERSION(dm->version),
1847                 DYNMEM_MINOR_VERSION(dm->version));
1848 
1849     seq_printf(f, "%-22s:", "capabilities");
1850     if (ballooning_enabled())
1851         seq_puts(f, " enabled");
1852 
1853     if (hot_add_enabled())
1854         seq_puts(f, " hot_add");
1855 
1856     seq_puts(f, "\n");
1857 
1858     seq_printf(f, "%-22s: %u", "state", dm->state);
1859     switch (dm->state) {
1860     case DM_INITIALIZING:
1861             sname = "Initializing";
1862             break;
1863     case DM_INITIALIZED:
1864             sname = "Initialized";
1865             break;
1866     case DM_BALLOON_UP:
1867             sname = "Balloon Up";
1868             break;
1869     case DM_BALLOON_DOWN:
1870             sname = "Balloon Down";
1871             break;
1872     case DM_HOT_ADD:
1873             sname = "Hot Add";
1874             break;
1875     case DM_INIT_ERROR:
1876             sname = "Error";
1877             break;
1878     default:
1879             sname = "Unknown";
1880     }
1881     seq_printf(f, " (%s)\n", sname);
1882 
1883     /* HV Page Size */
1884     seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1885 
1886     /* Pages added with hot_add */
1887     seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1888 
1889     /* pages that are "onlined"/used from pages_added */
1890     seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1891 
1892     /* pages we have given back to host */
1893     seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1894 
1895     seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1896                 get_pages_committed(dm));
1897 
1898     seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1899                 dm->max_dynamic_page_count);
1900 
1901     return 0;
1902 }
1903 
1904 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1905 
1906 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1907 {
1908     debugfs_create_file("hv-balloon", 0444, NULL, b,
1909             &hv_balloon_debug_fops);
1910 }
1911 
1912 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1913 {
1914     debugfs_remove(debugfs_lookup("hv-balloon", NULL));
1915 }
1916 
1917 #else
1918 
1919 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1920 {
1921 }
1922 
1923 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1924 {
1925 }
1926 
1927 #endif  /* CONFIG_DEBUG_FS */
1928 
1929 static int balloon_probe(struct hv_device *dev,
1930              const struct hv_vmbus_device_id *dev_id)
1931 {
1932     int ret;
1933 
1934     allow_hibernation = hv_is_hibernation_supported();
1935     if (allow_hibernation)
1936         hot_add = false;
1937 
1938 #ifdef CONFIG_MEMORY_HOTPLUG
1939     do_hot_add = hot_add;
1940 #else
1941     do_hot_add = false;
1942 #endif
1943     dm_device.dev = dev;
1944     dm_device.state = DM_INITIALIZING;
1945     dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1946     init_completion(&dm_device.host_event);
1947     init_completion(&dm_device.config_event);
1948     INIT_LIST_HEAD(&dm_device.ha_region_list);
1949     spin_lock_init(&dm_device.ha_lock);
1950     INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1951     INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1952     dm_device.host_specified_ha_region = false;
1953 
1954 #ifdef CONFIG_MEMORY_HOTPLUG
1955     set_online_page_callback(&hv_online_page);
1956     init_completion(&dm_device.ol_waitevent);
1957     register_memory_notifier(&hv_memory_nb);
1958 #endif
1959 
1960     hv_set_drvdata(dev, &dm_device);
1961 
1962     ret = balloon_connect_vsp(dev);
1963     if (ret != 0)
1964         goto connect_error;
1965 
1966     enable_page_reporting();
1967     dm_device.state = DM_INITIALIZED;
1968 
1969     dm_device.thread =
1970          kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1971     if (IS_ERR(dm_device.thread)) {
1972         ret = PTR_ERR(dm_device.thread);
1973         goto probe_error;
1974     }
1975 
1976     hv_balloon_debugfs_init(&dm_device);
1977 
1978     return 0;
1979 
1980 probe_error:
1981     dm_device.state = DM_INIT_ERROR;
1982     dm_device.thread  = NULL;
1983     disable_page_reporting();
1984     vmbus_close(dev->channel);
1985 connect_error:
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987     unregister_memory_notifier(&hv_memory_nb);
1988     restore_online_page_callback(&hv_online_page);
1989 #endif
1990     return ret;
1991 }
1992 
1993 static int balloon_remove(struct hv_device *dev)
1994 {
1995     struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1996     struct hv_hotadd_state *has, *tmp;
1997     struct hv_hotadd_gap *gap, *tmp_gap;
1998     unsigned long flags;
1999 
2000     if (dm->num_pages_ballooned != 0)
2001         pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2002 
2003     hv_balloon_debugfs_exit(dm);
2004 
2005     cancel_work_sync(&dm->balloon_wrk.wrk);
2006     cancel_work_sync(&dm->ha_wrk.wrk);
2007 
2008     kthread_stop(dm->thread);
2009 
2010     /*
2011      * This is to handle the case when balloon_resume()
2012      * call has failed and some cleanup has been done as
2013      * a part of the error handling.
2014      */
2015     if (dm_device.state != DM_INIT_ERROR) {
2016         disable_page_reporting();
2017         vmbus_close(dev->channel);
2018 #ifdef CONFIG_MEMORY_HOTPLUG
2019         unregister_memory_notifier(&hv_memory_nb);
2020         restore_online_page_callback(&hv_online_page);
2021 #endif
2022     }
2023 
2024     spin_lock_irqsave(&dm_device.ha_lock, flags);
2025     list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2026         list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2027             list_del(&gap->list);
2028             kfree(gap);
2029         }
2030         list_del(&has->list);
2031         kfree(has);
2032     }
2033     spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2034 
2035     return 0;
2036 }
2037 
2038 static int balloon_suspend(struct hv_device *hv_dev)
2039 {
2040     struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2041 
2042     tasklet_disable(&hv_dev->channel->callback_event);
2043 
2044     cancel_work_sync(&dm->balloon_wrk.wrk);
2045     cancel_work_sync(&dm->ha_wrk.wrk);
2046 
2047     if (dm->thread) {
2048         kthread_stop(dm->thread);
2049         dm->thread = NULL;
2050         vmbus_close(hv_dev->channel);
2051     }
2052 
2053     tasklet_enable(&hv_dev->channel->callback_event);
2054 
2055     return 0;
2056 
2057 }
2058 
2059 static int balloon_resume(struct hv_device *dev)
2060 {
2061     int ret;
2062 
2063     dm_device.state = DM_INITIALIZING;
2064 
2065     ret = balloon_connect_vsp(dev);
2066 
2067     if (ret != 0)
2068         goto out;
2069 
2070     dm_device.thread =
2071          kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2072     if (IS_ERR(dm_device.thread)) {
2073         ret = PTR_ERR(dm_device.thread);
2074         dm_device.thread = NULL;
2075         goto close_channel;
2076     }
2077 
2078     dm_device.state = DM_INITIALIZED;
2079     return 0;
2080 close_channel:
2081     vmbus_close(dev->channel);
2082 out:
2083     dm_device.state = DM_INIT_ERROR;
2084     disable_page_reporting();
2085 #ifdef CONFIG_MEMORY_HOTPLUG
2086     unregister_memory_notifier(&hv_memory_nb);
2087     restore_online_page_callback(&hv_online_page);
2088 #endif
2089     return ret;
2090 }
2091 
2092 static const struct hv_vmbus_device_id id_table[] = {
2093     /* Dynamic Memory Class ID */
2094     /* 525074DC-8985-46e2-8057-A307DC18A502 */
2095     { HV_DM_GUID, },
2096     { },
2097 };
2098 
2099 MODULE_DEVICE_TABLE(vmbus, id_table);
2100 
2101 static  struct hv_driver balloon_drv = {
2102     .name = "hv_balloon",
2103     .id_table = id_table,
2104     .probe =  balloon_probe,
2105     .remove =  balloon_remove,
2106     .suspend = balloon_suspend,
2107     .resume = balloon_resume,
2108     .driver = {
2109         .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2110     },
2111 };
2112 
2113 static int __init init_balloon_drv(void)
2114 {
2115 
2116     return vmbus_driver_register(&balloon_drv);
2117 }
2118 
2119 module_init(init_balloon_drv);
2120 
2121 MODULE_DESCRIPTION("Hyper-V Balloon");
2122 MODULE_LICENSE("GPL");