Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2015 Broadcom
0004  */
0005 
0006 /**
0007  * DOC: VC4 CRTC module
0008  *
0009  * In VC4, the Pixel Valve is what most closely corresponds to the
0010  * DRM's concept of a CRTC.  The PV generates video timings from the
0011  * encoder's clock plus its configuration.  It pulls scaled pixels from
0012  * the HVS at that timing, and feeds it to the encoder.
0013  *
0014  * However, the DRM CRTC also collects the configuration of all the
0015  * DRM planes attached to it.  As a result, the CRTC is also
0016  * responsible for writing the display list for the HVS channel that
0017  * the CRTC will use.
0018  *
0019  * The 2835 has 3 different pixel valves.  pv0 in the audio power
0020  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
0021  * image domain can feed either HDMI or the SDTV controller.  The
0022  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
0023  * SDTV, etc.) according to which output type is chosen in the mux.
0024  *
0025  * For power management, the pixel valve's registers are all clocked
0026  * by the AXI clock, while the timings and FIFOs make use of the
0027  * output-specific clock.  Since the encoders also directly consume
0028  * the CPRMAN clocks, and know what timings they need, they are the
0029  * ones that set the clock.
0030  */
0031 
0032 #include <linux/clk.h>
0033 #include <linux/component.h>
0034 #include <linux/of_device.h>
0035 #include <linux/pm_runtime.h>
0036 
0037 #include <drm/drm_atomic.h>
0038 #include <drm/drm_atomic_helper.h>
0039 #include <drm/drm_atomic_uapi.h>
0040 #include <drm/drm_fb_cma_helper.h>
0041 #include <drm/drm_framebuffer.h>
0042 #include <drm/drm_print.h>
0043 #include <drm/drm_probe_helper.h>
0044 #include <drm/drm_vblank.h>
0045 
0046 #include "vc4_drv.h"
0047 #include "vc4_hdmi.h"
0048 #include "vc4_regs.h"
0049 
0050 #define HVS_FIFO_LATENCY_PIX    6
0051 
0052 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
0053 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
0054 
0055 static const struct debugfs_reg32 crtc_regs[] = {
0056     VC4_REG32(PV_CONTROL),
0057     VC4_REG32(PV_V_CONTROL),
0058     VC4_REG32(PV_VSYNCD_EVEN),
0059     VC4_REG32(PV_HORZA),
0060     VC4_REG32(PV_HORZB),
0061     VC4_REG32(PV_VERTA),
0062     VC4_REG32(PV_VERTB),
0063     VC4_REG32(PV_VERTA_EVEN),
0064     VC4_REG32(PV_VERTB_EVEN),
0065     VC4_REG32(PV_INTEN),
0066     VC4_REG32(PV_INTSTAT),
0067     VC4_REG32(PV_STAT),
0068     VC4_REG32(PV_HACT_ACT),
0069 };
0070 
0071 static unsigned int
0072 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
0073 {
0074     struct vc4_hvs *hvs = vc4->hvs;
0075     u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
0076     /* Top/base are supposed to be 4-pixel aligned, but the
0077      * Raspberry Pi firmware fills the low bits (which are
0078      * presumably ignored).
0079      */
0080     u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
0081     u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
0082 
0083     return top - base + 4;
0084 }
0085 
0086 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
0087                       bool in_vblank_irq,
0088                       int *vpos, int *hpos,
0089                       ktime_t *stime, ktime_t *etime,
0090                       const struct drm_display_mode *mode)
0091 {
0092     struct drm_device *dev = crtc->dev;
0093     struct vc4_dev *vc4 = to_vc4_dev(dev);
0094     struct vc4_hvs *hvs = vc4->hvs;
0095     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0096     struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
0097     unsigned int cob_size;
0098     u32 val;
0099     int fifo_lines;
0100     int vblank_lines;
0101     bool ret = false;
0102 
0103     /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
0104 
0105     /* Get optional system timestamp before query. */
0106     if (stime)
0107         *stime = ktime_get();
0108 
0109     /*
0110      * Read vertical scanline which is currently composed for our
0111      * pixelvalve by the HVS, and also the scaler status.
0112      */
0113     val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
0114 
0115     /* Get optional system timestamp after query. */
0116     if (etime)
0117         *etime = ktime_get();
0118 
0119     /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
0120 
0121     /* Vertical position of hvs composed scanline. */
0122     *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
0123     *hpos = 0;
0124 
0125     if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
0126         *vpos /= 2;
0127 
0128         /* Use hpos to correct for field offset in interlaced mode. */
0129         if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
0130             *hpos += mode->crtc_htotal / 2;
0131     }
0132 
0133     cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
0134     /* This is the offset we need for translating hvs -> pv scanout pos. */
0135     fifo_lines = cob_size / mode->crtc_hdisplay;
0136 
0137     if (fifo_lines > 0)
0138         ret = true;
0139 
0140     /* HVS more than fifo_lines into frame for compositing? */
0141     if (*vpos > fifo_lines) {
0142         /*
0143          * We are in active scanout and can get some meaningful results
0144          * from HVS. The actual PV scanout can not trail behind more
0145          * than fifo_lines as that is the fifo's capacity. Assume that
0146          * in active scanout the HVS and PV work in lockstep wrt. HVS
0147          * refilling the fifo and PV consuming from the fifo, ie.
0148          * whenever the PV consumes and frees up a scanline in the
0149          * fifo, the HVS will immediately refill it, therefore
0150          * incrementing vpos. Therefore we choose HVS read position -
0151          * fifo size in scanlines as a estimate of the real scanout
0152          * position of the PV.
0153          */
0154         *vpos -= fifo_lines + 1;
0155 
0156         return ret;
0157     }
0158 
0159     /*
0160      * Less: This happens when we are in vblank and the HVS, after getting
0161      * the VSTART restart signal from the PV, just started refilling its
0162      * fifo with new lines from the top-most lines of the new framebuffers.
0163      * The PV does not scan out in vblank, so does not remove lines from
0164      * the fifo, so the fifo will be full quickly and the HVS has to pause.
0165      * We can't get meaningful readings wrt. scanline position of the PV
0166      * and need to make things up in a approximative but consistent way.
0167      */
0168     vblank_lines = mode->vtotal - mode->vdisplay;
0169 
0170     if (in_vblank_irq) {
0171         /*
0172          * Assume the irq handler got called close to first
0173          * line of vblank, so PV has about a full vblank
0174          * scanlines to go, and as a base timestamp use the
0175          * one taken at entry into vblank irq handler, so it
0176          * is not affected by random delays due to lock
0177          * contention on event_lock or vblank_time lock in
0178          * the core.
0179          */
0180         *vpos = -vblank_lines;
0181 
0182         if (stime)
0183             *stime = vc4_crtc->t_vblank;
0184         if (etime)
0185             *etime = vc4_crtc->t_vblank;
0186 
0187         /*
0188          * If the HVS fifo is not yet full then we know for certain
0189          * we are at the very beginning of vblank, as the hvs just
0190          * started refilling, and the stime and etime timestamps
0191          * truly correspond to start of vblank.
0192          *
0193          * Unfortunately there's no way to report this to upper levels
0194          * and make it more useful.
0195          */
0196     } else {
0197         /*
0198          * No clue where we are inside vblank. Return a vpos of zero,
0199          * which will cause calling code to just return the etime
0200          * timestamp uncorrected. At least this is no worse than the
0201          * standard fallback.
0202          */
0203         *vpos = 0;
0204     }
0205 
0206     return ret;
0207 }
0208 
0209 void vc4_crtc_destroy(struct drm_crtc *crtc)
0210 {
0211     drm_crtc_cleanup(crtc);
0212 }
0213 
0214 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
0215 {
0216     const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
0217     const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
0218     struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
0219     u32 fifo_len_bytes = pv_data->fifo_depth;
0220 
0221     /*
0222      * Pixels are pulled from the HVS if the number of bytes is
0223      * lower than the FIFO full level.
0224      *
0225      * The latency of the pixel fetch mechanism is 6 pixels, so we
0226      * need to convert those 6 pixels in bytes, depending on the
0227      * format, and then subtract that from the length of the FIFO
0228      * to make sure we never end up in a situation where the FIFO
0229      * is full.
0230      */
0231     switch (format) {
0232     case PV_CONTROL_FORMAT_DSIV_16:
0233     case PV_CONTROL_FORMAT_DSIC_16:
0234         return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
0235     case PV_CONTROL_FORMAT_DSIV_18:
0236         return fifo_len_bytes - 14;
0237     case PV_CONTROL_FORMAT_24:
0238     case PV_CONTROL_FORMAT_DSIV_24:
0239     default:
0240         /*
0241          * For some reason, the pixelvalve4 doesn't work with
0242          * the usual formula and will only work with 32.
0243          */
0244         if (crtc_data->hvs_output == 5)
0245             return 32;
0246 
0247         /*
0248          * It looks like in some situations, we will overflow
0249          * the PixelValve FIFO (with the bit 10 of PV stat being
0250          * set) and stall the HVS / PV, eventually resulting in
0251          * a page flip timeout.
0252          *
0253          * Displaying the video overlay during a playback with
0254          * Kodi on an RPi3 seems to be a great solution with a
0255          * failure rate around 50%.
0256          *
0257          * Removing 1 from the FIFO full level however
0258          * seems to completely remove that issue.
0259          */
0260         if (!vc4->is_vc5)
0261             return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
0262 
0263         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
0264     }
0265 }
0266 
0267 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
0268                          u32 format)
0269 {
0270     u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
0271     u32 ret = 0;
0272 
0273     ret |= VC4_SET_FIELD((level >> 6),
0274                  PV5_CONTROL_FIFO_LEVEL_HIGH);
0275 
0276     return ret | VC4_SET_FIELD(level & 0x3f,
0277                    PV_CONTROL_FIFO_LEVEL);
0278 }
0279 
0280 /*
0281  * Returns the encoder attached to the CRTC.
0282  *
0283  * VC4 can only scan out to one encoder at a time, while the DRM core
0284  * allows drivers to push pixels to more than one encoder from the
0285  * same CRTC.
0286  */
0287 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
0288                      struct drm_crtc_state *state)
0289 {
0290     struct drm_encoder *encoder;
0291 
0292     WARN_ON(hweight32(state->encoder_mask) > 1);
0293 
0294     drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
0295         return encoder;
0296 
0297     return NULL;
0298 }
0299 
0300 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
0301 {
0302     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0303 
0304     /* The PV needs to be disabled before it can be flushed */
0305     CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
0306     CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
0307 }
0308 
0309 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
0310                    struct drm_atomic_state *state)
0311 {
0312     struct drm_device *dev = crtc->dev;
0313     struct vc4_dev *vc4 = to_vc4_dev(dev);
0314     struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
0315     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0316     const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
0317     struct drm_crtc_state *crtc_state = crtc->state;
0318     struct drm_display_mode *mode = &crtc_state->adjusted_mode;
0319     bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
0320     bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
0321                vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
0322     u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
0323     bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
0324                vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
0325     bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
0326     u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
0327     u8 ppc = pv_data->pixels_per_clock;
0328     bool debug_dump_regs = false;
0329 
0330     if (debug_dump_regs) {
0331         struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
0332         dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
0333              drm_crtc_index(crtc));
0334         drm_print_regset32(&p, &vc4_crtc->regset);
0335     }
0336 
0337     vc4_crtc_pixelvalve_reset(crtc);
0338 
0339     CRTC_WRITE(PV_HORZA,
0340            VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
0341                  PV_HORZA_HBP) |
0342            VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
0343                  PV_HORZA_HSYNC));
0344 
0345     CRTC_WRITE(PV_HORZB,
0346            VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
0347                  PV_HORZB_HFP) |
0348            VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
0349                  PV_HORZB_HACTIVE));
0350 
0351     CRTC_WRITE(PV_VERTA,
0352            VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
0353                  interlace,
0354                  PV_VERTA_VBP) |
0355            VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
0356                  PV_VERTA_VSYNC));
0357     CRTC_WRITE(PV_VERTB,
0358            VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
0359                  PV_VERTB_VFP) |
0360            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
0361 
0362     if (interlace) {
0363         CRTC_WRITE(PV_VERTA_EVEN,
0364                VC4_SET_FIELD(mode->crtc_vtotal -
0365                      mode->crtc_vsync_end,
0366                      PV_VERTA_VBP) |
0367                VC4_SET_FIELD(mode->crtc_vsync_end -
0368                      mode->crtc_vsync_start,
0369                      PV_VERTA_VSYNC));
0370         CRTC_WRITE(PV_VERTB_EVEN,
0371                VC4_SET_FIELD(mode->crtc_vsync_start -
0372                      mode->crtc_vdisplay,
0373                      PV_VERTB_VFP) |
0374                VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
0375 
0376         /* We set up first field even mode for HDMI.  VEC's
0377          * NTSC mode would want first field odd instead, once
0378          * we support it (to do so, set ODD_FIRST and put the
0379          * delay in VSYNCD_EVEN instead).
0380          */
0381         CRTC_WRITE(PV_V_CONTROL,
0382                PV_VCONTROL_CONTINUOUS |
0383                (is_dsi ? PV_VCONTROL_DSI : 0) |
0384                PV_VCONTROL_INTERLACE |
0385                VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
0386                      PV_VCONTROL_ODD_DELAY));
0387         CRTC_WRITE(PV_VSYNCD_EVEN, 0);
0388     } else {
0389         CRTC_WRITE(PV_V_CONTROL,
0390                PV_VCONTROL_CONTINUOUS |
0391                (is_dsi ? PV_VCONTROL_DSI : 0));
0392     }
0393 
0394     if (is_dsi)
0395         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
0396 
0397     if (vc4->is_vc5)
0398         CRTC_WRITE(PV_MUX_CFG,
0399                VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
0400                      PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
0401 
0402     CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
0403            vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
0404            VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
0405            VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
0406            PV_CONTROL_CLR_AT_START |
0407            PV_CONTROL_TRIGGER_UNDERFLOW |
0408            PV_CONTROL_WAIT_HSTART |
0409            VC4_SET_FIELD(vc4_encoder->clock_select,
0410                  PV_CONTROL_CLK_SELECT));
0411 
0412     if (debug_dump_regs) {
0413         struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
0414         dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
0415              drm_crtc_index(crtc));
0416         drm_print_regset32(&p, &vc4_crtc->regset);
0417     }
0418 }
0419 
0420 static void require_hvs_enabled(struct drm_device *dev)
0421 {
0422     struct vc4_dev *vc4 = to_vc4_dev(dev);
0423     struct vc4_hvs *hvs = vc4->hvs;
0424 
0425     WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
0426              SCALER_DISPCTRL_ENABLE);
0427 }
0428 
0429 static int vc4_crtc_disable(struct drm_crtc *crtc,
0430                 struct drm_encoder *encoder,
0431                 struct drm_atomic_state *state,
0432                 unsigned int channel)
0433 {
0434     struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
0435     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0436     struct drm_device *dev = crtc->dev;
0437     struct vc4_dev *vc4 = to_vc4_dev(dev);
0438     int ret;
0439 
0440     CRTC_WRITE(PV_V_CONTROL,
0441            CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
0442     ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
0443     WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
0444 
0445     /*
0446      * This delay is needed to avoid to get a pixel stuck in an
0447      * unflushable FIFO between the pixelvalve and the HDMI
0448      * controllers on the BCM2711.
0449      *
0450      * Timing is fairly sensitive here, so mdelay is the safest
0451      * approach.
0452      *
0453      * If it was to be reworked, the stuck pixel happens on a
0454      * BCM2711 when changing mode with a good probability, so a
0455      * script that changes mode on a regular basis should trigger
0456      * the bug after less than 10 attempts. It manifests itself with
0457      * every pixels being shifted by one to the right, and thus the
0458      * last pixel of a line actually being displayed as the first
0459      * pixel on the next line.
0460      */
0461     mdelay(20);
0462 
0463     if (vc4_encoder && vc4_encoder->post_crtc_disable)
0464         vc4_encoder->post_crtc_disable(encoder, state);
0465 
0466     vc4_crtc_pixelvalve_reset(crtc);
0467     vc4_hvs_stop_channel(vc4->hvs, channel);
0468 
0469     if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
0470         vc4_encoder->post_crtc_powerdown(encoder, state);
0471 
0472     return 0;
0473 }
0474 
0475 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
0476                             enum vc4_encoder_type type)
0477 {
0478     struct drm_encoder *encoder;
0479 
0480     drm_for_each_encoder(encoder, crtc->dev) {
0481         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
0482 
0483         if (vc4_encoder->type == type)
0484             return encoder;
0485     }
0486 
0487     return NULL;
0488 }
0489 
0490 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
0491 {
0492     struct drm_device *drm = crtc->dev;
0493     struct vc4_dev *vc4 = to_vc4_dev(drm);
0494     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0495     enum vc4_encoder_type encoder_type;
0496     const struct vc4_pv_data *pv_data;
0497     struct drm_encoder *encoder;
0498     struct vc4_hdmi *vc4_hdmi;
0499     unsigned encoder_sel;
0500     int channel;
0501     int ret;
0502 
0503     if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
0504                       "brcm,bcm2711-pixelvalve2") ||
0505           of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
0506                       "brcm,bcm2711-pixelvalve4")))
0507         return 0;
0508 
0509     if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
0510         return 0;
0511 
0512     if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
0513         return 0;
0514 
0515     channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
0516     if (channel < 0)
0517         return 0;
0518 
0519     encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
0520     if (WARN_ON(encoder_sel != 0))
0521         return 0;
0522 
0523     pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
0524     encoder_type = pv_data->encoder_types[encoder_sel];
0525     encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
0526     if (WARN_ON(!encoder))
0527         return 0;
0528 
0529     vc4_hdmi = encoder_to_vc4_hdmi(encoder);
0530     ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
0531     if (ret)
0532         return ret;
0533 
0534     ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
0535     if (ret)
0536         return ret;
0537 
0538     /*
0539      * post_crtc_powerdown will have called pm_runtime_put, so we
0540      * don't need it here otherwise we'll get the reference counting
0541      * wrong.
0542      */
0543 
0544     return 0;
0545 }
0546 
0547 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
0548                     struct drm_atomic_state *state)
0549 {
0550     struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
0551                                      crtc);
0552     struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
0553     struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
0554     struct drm_device *dev = crtc->dev;
0555 
0556     drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
0557         crtc->name, crtc->base.id, encoder->name, encoder->base.id);
0558 
0559     require_hvs_enabled(dev);
0560 
0561     /* Disable vblank irq handling before crtc is disabled. */
0562     drm_crtc_vblank_off(crtc);
0563 
0564     vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
0565 
0566     /*
0567      * Make sure we issue a vblank event after disabling the CRTC if
0568      * someone was waiting it.
0569      */
0570     if (crtc->state->event) {
0571         unsigned long flags;
0572 
0573         spin_lock_irqsave(&dev->event_lock, flags);
0574         drm_crtc_send_vblank_event(crtc, crtc->state->event);
0575         crtc->state->event = NULL;
0576         spin_unlock_irqrestore(&dev->event_lock, flags);
0577     }
0578 }
0579 
0580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
0581                    struct drm_atomic_state *state)
0582 {
0583     struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
0584                                      crtc);
0585     struct drm_device *dev = crtc->dev;
0586     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0587     struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
0588     struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
0589 
0590     drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
0591         crtc->name, crtc->base.id, encoder->name, encoder->base.id);
0592 
0593     require_hvs_enabled(dev);
0594 
0595     /* Enable vblank irq handling before crtc is started otherwise
0596      * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
0597      */
0598     drm_crtc_vblank_on(crtc);
0599 
0600     vc4_hvs_atomic_enable(crtc, state);
0601 
0602     if (vc4_encoder->pre_crtc_configure)
0603         vc4_encoder->pre_crtc_configure(encoder, state);
0604 
0605     vc4_crtc_config_pv(crtc, encoder, state);
0606 
0607     CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
0608 
0609     if (vc4_encoder->pre_crtc_enable)
0610         vc4_encoder->pre_crtc_enable(encoder, state);
0611 
0612     /* When feeding the transposer block the pixelvalve is unneeded and
0613      * should not be enabled.
0614      */
0615     CRTC_WRITE(PV_V_CONTROL,
0616            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
0617 
0618     if (vc4_encoder->post_crtc_enable)
0619         vc4_encoder->post_crtc_enable(encoder, state);
0620 }
0621 
0622 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
0623                         const struct drm_display_mode *mode)
0624 {
0625     /* Do not allow doublescan modes from user space */
0626     if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
0627         DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
0628                   crtc->base.id);
0629         return MODE_NO_DBLESCAN;
0630     }
0631 
0632     return MODE_OK;
0633 }
0634 
0635 void vc4_crtc_get_margins(struct drm_crtc_state *state,
0636               unsigned int *left, unsigned int *right,
0637               unsigned int *top, unsigned int *bottom)
0638 {
0639     struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
0640     struct drm_connector_state *conn_state;
0641     struct drm_connector *conn;
0642     int i;
0643 
0644     *left = vc4_state->margins.left;
0645     *right = vc4_state->margins.right;
0646     *top = vc4_state->margins.top;
0647     *bottom = vc4_state->margins.bottom;
0648 
0649     /* We have to interate over all new connector states because
0650      * vc4_crtc_get_margins() might be called before
0651      * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
0652      * might be outdated.
0653      */
0654     for_each_new_connector_in_state(state->state, conn, conn_state, i) {
0655         if (conn_state->crtc != state->crtc)
0656             continue;
0657 
0658         *left = conn_state->tv.margins.left;
0659         *right = conn_state->tv.margins.right;
0660         *top = conn_state->tv.margins.top;
0661         *bottom = conn_state->tv.margins.bottom;
0662         break;
0663     }
0664 }
0665 
0666 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
0667                  struct drm_atomic_state *state)
0668 {
0669     struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
0670                                       crtc);
0671     struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
0672     struct drm_connector *conn;
0673     struct drm_connector_state *conn_state;
0674     struct drm_encoder *encoder;
0675     int ret, i;
0676 
0677     ret = vc4_hvs_atomic_check(crtc, state);
0678     if (ret)
0679         return ret;
0680 
0681     encoder = vc4_get_crtc_encoder(crtc, crtc_state);
0682     if (encoder) {
0683         const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
0684         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
0685 
0686         if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
0687             vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
0688                           mode->clock * 9 / 10) * 1000;
0689         } else {
0690             vc4_state->hvs_load = mode->clock * 1000;
0691         }
0692     }
0693 
0694     for_each_new_connector_in_state(state, conn, conn_state,
0695                     i) {
0696         if (conn_state->crtc != crtc)
0697             continue;
0698 
0699         vc4_state->margins.left = conn_state->tv.margins.left;
0700         vc4_state->margins.right = conn_state->tv.margins.right;
0701         vc4_state->margins.top = conn_state->tv.margins.top;
0702         vc4_state->margins.bottom = conn_state->tv.margins.bottom;
0703         break;
0704     }
0705 
0706     return 0;
0707 }
0708 
0709 static int vc4_enable_vblank(struct drm_crtc *crtc)
0710 {
0711     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0712 
0713     CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
0714 
0715     return 0;
0716 }
0717 
0718 static void vc4_disable_vblank(struct drm_crtc *crtc)
0719 {
0720     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
0721 
0722     CRTC_WRITE(PV_INTEN, 0);
0723 }
0724 
0725 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
0726 {
0727     struct drm_crtc *crtc = &vc4_crtc->base;
0728     struct drm_device *dev = crtc->dev;
0729     struct vc4_dev *vc4 = to_vc4_dev(dev);
0730     struct vc4_hvs *hvs = vc4->hvs;
0731     u32 chan = vc4_crtc->current_hvs_channel;
0732     unsigned long flags;
0733 
0734     spin_lock_irqsave(&dev->event_lock, flags);
0735     spin_lock(&vc4_crtc->irq_lock);
0736     if (vc4_crtc->event &&
0737         (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
0738          vc4_crtc->feeds_txp)) {
0739         drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
0740         vc4_crtc->event = NULL;
0741         drm_crtc_vblank_put(crtc);
0742 
0743         /* Wait for the page flip to unmask the underrun to ensure that
0744          * the display list was updated by the hardware. Before that
0745          * happens, the HVS will be using the previous display list with
0746          * the CRTC and encoder already reconfigured, leading to
0747          * underruns. This can be seen when reconfiguring the CRTC.
0748          */
0749         vc4_hvs_unmask_underrun(hvs, chan);
0750     }
0751     spin_unlock(&vc4_crtc->irq_lock);
0752     spin_unlock_irqrestore(&dev->event_lock, flags);
0753 }
0754 
0755 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
0756 {
0757     crtc->t_vblank = ktime_get();
0758     drm_crtc_handle_vblank(&crtc->base);
0759     vc4_crtc_handle_page_flip(crtc);
0760 }
0761 
0762 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
0763 {
0764     struct vc4_crtc *vc4_crtc = data;
0765     u32 stat = CRTC_READ(PV_INTSTAT);
0766     irqreturn_t ret = IRQ_NONE;
0767 
0768     if (stat & PV_INT_VFP_START) {
0769         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
0770         vc4_crtc_handle_vblank(vc4_crtc);
0771         ret = IRQ_HANDLED;
0772     }
0773 
0774     return ret;
0775 }
0776 
0777 struct vc4_async_flip_state {
0778     struct drm_crtc *crtc;
0779     struct drm_framebuffer *fb;
0780     struct drm_framebuffer *old_fb;
0781     struct drm_pending_vblank_event *event;
0782 
0783     union {
0784         struct dma_fence_cb fence;
0785         struct vc4_seqno_cb seqno;
0786     } cb;
0787 };
0788 
0789 /* Called when the V3D execution for the BO being flipped to is done, so that
0790  * we can actually update the plane's address to point to it.
0791  */
0792 static void
0793 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
0794 {
0795     struct drm_crtc *crtc = flip_state->crtc;
0796     struct drm_device *dev = crtc->dev;
0797     struct drm_plane *plane = crtc->primary;
0798 
0799     vc4_plane_async_set_fb(plane, flip_state->fb);
0800     if (flip_state->event) {
0801         unsigned long flags;
0802 
0803         spin_lock_irqsave(&dev->event_lock, flags);
0804         drm_crtc_send_vblank_event(crtc, flip_state->event);
0805         spin_unlock_irqrestore(&dev->event_lock, flags);
0806     }
0807 
0808     drm_crtc_vblank_put(crtc);
0809     drm_framebuffer_put(flip_state->fb);
0810 
0811     if (flip_state->old_fb)
0812         drm_framebuffer_put(flip_state->old_fb);
0813 
0814     kfree(flip_state);
0815 }
0816 
0817 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
0818 {
0819     struct vc4_async_flip_state *flip_state =
0820         container_of(cb, struct vc4_async_flip_state, cb.seqno);
0821     struct vc4_bo *bo = NULL;
0822 
0823     if (flip_state->old_fb) {
0824         struct drm_gem_cma_object *cma_bo =
0825             drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
0826         bo = to_vc4_bo(&cma_bo->base);
0827     }
0828 
0829     vc4_async_page_flip_complete(flip_state);
0830 
0831     /*
0832      * Decrement the BO usecnt in order to keep the inc/dec
0833      * calls balanced when the planes are updated through
0834      * the async update path.
0835      *
0836      * FIXME: we should move to generic async-page-flip when
0837      * it's available, so that we can get rid of this
0838      * hand-made cleanup_fb() logic.
0839      */
0840     if (bo)
0841         vc4_bo_dec_usecnt(bo);
0842 }
0843 
0844 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
0845                            struct dma_fence_cb *cb)
0846 {
0847     struct vc4_async_flip_state *flip_state =
0848         container_of(cb, struct vc4_async_flip_state, cb.fence);
0849 
0850     vc4_async_page_flip_complete(flip_state);
0851     dma_fence_put(fence);
0852 }
0853 
0854 static int vc4_async_set_fence_cb(struct drm_device *dev,
0855                   struct vc4_async_flip_state *flip_state)
0856 {
0857     struct drm_framebuffer *fb = flip_state->fb;
0858     struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
0859     struct vc4_dev *vc4 = to_vc4_dev(dev);
0860     struct dma_fence *fence;
0861     int ret;
0862 
0863     if (!vc4->is_vc5) {
0864         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
0865 
0866         return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
0867                       vc4_async_page_flip_seqno_complete);
0868     }
0869 
0870     ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
0871     if (ret)
0872         return ret;
0873 
0874     /* If there's no fence, complete the page flip immediately */
0875     if (!fence) {
0876         vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
0877         return 0;
0878     }
0879 
0880     /* If the fence has already been completed, complete the page flip */
0881     if (dma_fence_add_callback(fence, &flip_state->cb.fence,
0882                    vc4_async_page_flip_fence_complete))
0883         vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
0884 
0885     return 0;
0886 }
0887 
0888 static int
0889 vc4_async_page_flip_common(struct drm_crtc *crtc,
0890                struct drm_framebuffer *fb,
0891                struct drm_pending_vblank_event *event,
0892                uint32_t flags)
0893 {
0894     struct drm_device *dev = crtc->dev;
0895     struct drm_plane *plane = crtc->primary;
0896     struct vc4_async_flip_state *flip_state;
0897 
0898     flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
0899     if (!flip_state)
0900         return -ENOMEM;
0901 
0902     drm_framebuffer_get(fb);
0903     flip_state->fb = fb;
0904     flip_state->crtc = crtc;
0905     flip_state->event = event;
0906 
0907     /* Save the current FB before it's replaced by the new one in
0908      * drm_atomic_set_fb_for_plane(). We'll need the old FB in
0909      * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
0910      * it consistent.
0911      * FIXME: we should move to generic async-page-flip when it's
0912      * available, so that we can get rid of this hand-made cleanup_fb()
0913      * logic.
0914      */
0915     flip_state->old_fb = plane->state->fb;
0916     if (flip_state->old_fb)
0917         drm_framebuffer_get(flip_state->old_fb);
0918 
0919     WARN_ON(drm_crtc_vblank_get(crtc) != 0);
0920 
0921     /* Immediately update the plane's legacy fb pointer, so that later
0922      * modeset prep sees the state that will be present when the semaphore
0923      * is released.
0924      */
0925     drm_atomic_set_fb_for_plane(plane->state, fb);
0926 
0927     vc4_async_set_fence_cb(dev, flip_state);
0928 
0929     /* Driver takes ownership of state on successful async commit. */
0930     return 0;
0931 }
0932 
0933 /* Implements async (non-vblank-synced) page flips.
0934  *
0935  * The page flip ioctl needs to return immediately, so we grab the
0936  * modeset semaphore on the pipe, and queue the address update for
0937  * when V3D is done with the BO being flipped to.
0938  */
0939 static int vc4_async_page_flip(struct drm_crtc *crtc,
0940                    struct drm_framebuffer *fb,
0941                    struct drm_pending_vblank_event *event,
0942                    uint32_t flags)
0943 {
0944     struct drm_device *dev = crtc->dev;
0945     struct vc4_dev *vc4 = to_vc4_dev(dev);
0946     struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
0947     struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
0948     int ret;
0949 
0950     if (WARN_ON_ONCE(vc4->is_vc5))
0951         return -ENODEV;
0952 
0953     /*
0954      * Increment the BO usecnt here, so that we never end up with an
0955      * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
0956      * plane is later updated through the non-async path.
0957      *
0958      * FIXME: we should move to generic async-page-flip when
0959      * it's available, so that we can get rid of this
0960      * hand-made prepare_fb() logic.
0961      */
0962     ret = vc4_bo_inc_usecnt(bo);
0963     if (ret)
0964         return ret;
0965 
0966     ret = vc4_async_page_flip_common(crtc, fb, event, flags);
0967     if (ret) {
0968         vc4_bo_dec_usecnt(bo);
0969         return ret;
0970     }
0971 
0972     return 0;
0973 }
0974 
0975 static int vc5_async_page_flip(struct drm_crtc *crtc,
0976                    struct drm_framebuffer *fb,
0977                    struct drm_pending_vblank_event *event,
0978                    uint32_t flags)
0979 {
0980     return vc4_async_page_flip_common(crtc, fb, event, flags);
0981 }
0982 
0983 int vc4_page_flip(struct drm_crtc *crtc,
0984           struct drm_framebuffer *fb,
0985           struct drm_pending_vblank_event *event,
0986           uint32_t flags,
0987           struct drm_modeset_acquire_ctx *ctx)
0988 {
0989     if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
0990         struct drm_device *dev = crtc->dev;
0991         struct vc4_dev *vc4 = to_vc4_dev(dev);
0992 
0993         if (vc4->is_vc5)
0994             return vc5_async_page_flip(crtc, fb, event, flags);
0995         else
0996             return vc4_async_page_flip(crtc, fb, event, flags);
0997     } else {
0998         return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
0999     }
1000 }
1001 
1002 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1003 {
1004     struct vc4_crtc_state *vc4_state, *old_vc4_state;
1005 
1006     vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1007     if (!vc4_state)
1008         return NULL;
1009 
1010     old_vc4_state = to_vc4_crtc_state(crtc->state);
1011     vc4_state->margins = old_vc4_state->margins;
1012     vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1013 
1014     __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1015     return &vc4_state->base;
1016 }
1017 
1018 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1019                 struct drm_crtc_state *state)
1020 {
1021     struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1022     struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1023 
1024     if (drm_mm_node_allocated(&vc4_state->mm)) {
1025         unsigned long flags;
1026 
1027         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1028         drm_mm_remove_node(&vc4_state->mm);
1029         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1030 
1031     }
1032 
1033     drm_atomic_helper_crtc_destroy_state(crtc, state);
1034 }
1035 
1036 void vc4_crtc_reset(struct drm_crtc *crtc)
1037 {
1038     struct vc4_crtc_state *vc4_crtc_state;
1039 
1040     if (crtc->state)
1041         vc4_crtc_destroy_state(crtc, crtc->state);
1042 
1043     vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1044     if (!vc4_crtc_state) {
1045         crtc->state = NULL;
1046         return;
1047     }
1048 
1049     vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1050     __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1051 }
1052 
1053 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1054     .set_config = drm_atomic_helper_set_config,
1055     .destroy = vc4_crtc_destroy,
1056     .page_flip = vc4_page_flip,
1057     .set_property = NULL,
1058     .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1059     .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1060     .reset = vc4_crtc_reset,
1061     .atomic_duplicate_state = vc4_crtc_duplicate_state,
1062     .atomic_destroy_state = vc4_crtc_destroy_state,
1063     .enable_vblank = vc4_enable_vblank,
1064     .disable_vblank = vc4_disable_vblank,
1065     .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1066 };
1067 
1068 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1069     .mode_valid = vc4_crtc_mode_valid,
1070     .atomic_check = vc4_crtc_atomic_check,
1071     .atomic_begin = vc4_hvs_atomic_begin,
1072     .atomic_flush = vc4_hvs_atomic_flush,
1073     .atomic_enable = vc4_crtc_atomic_enable,
1074     .atomic_disable = vc4_crtc_atomic_disable,
1075     .get_scanout_position = vc4_crtc_get_scanout_position,
1076 };
1077 
1078 static const struct vc4_pv_data bcm2835_pv0_data = {
1079     .base = {
1080         .hvs_available_channels = BIT(0),
1081         .hvs_output = 0,
1082     },
1083     .debugfs_name = "crtc0_regs",
1084     .fifo_depth = 64,
1085     .pixels_per_clock = 1,
1086     .encoder_types = {
1087         [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1088         [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1089     },
1090 };
1091 
1092 static const struct vc4_pv_data bcm2835_pv1_data = {
1093     .base = {
1094         .hvs_available_channels = BIT(2),
1095         .hvs_output = 2,
1096     },
1097     .debugfs_name = "crtc1_regs",
1098     .fifo_depth = 64,
1099     .pixels_per_clock = 1,
1100     .encoder_types = {
1101         [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1102         [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1103     },
1104 };
1105 
1106 static const struct vc4_pv_data bcm2835_pv2_data = {
1107     .base = {
1108         .hvs_available_channels = BIT(1),
1109         .hvs_output = 1,
1110     },
1111     .debugfs_name = "crtc2_regs",
1112     .fifo_depth = 64,
1113     .pixels_per_clock = 1,
1114     .encoder_types = {
1115         [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1116         [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1117     },
1118 };
1119 
1120 static const struct vc4_pv_data bcm2711_pv0_data = {
1121     .base = {
1122         .hvs_available_channels = BIT(0),
1123         .hvs_output = 0,
1124     },
1125     .debugfs_name = "crtc0_regs",
1126     .fifo_depth = 64,
1127     .pixels_per_clock = 1,
1128     .encoder_types = {
1129         [0] = VC4_ENCODER_TYPE_DSI0,
1130         [1] = VC4_ENCODER_TYPE_DPI,
1131     },
1132 };
1133 
1134 static const struct vc4_pv_data bcm2711_pv1_data = {
1135     .base = {
1136         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1137         .hvs_output = 3,
1138     },
1139     .debugfs_name = "crtc1_regs",
1140     .fifo_depth = 64,
1141     .pixels_per_clock = 1,
1142     .encoder_types = {
1143         [0] = VC4_ENCODER_TYPE_DSI1,
1144         [1] = VC4_ENCODER_TYPE_SMI,
1145     },
1146 };
1147 
1148 static const struct vc4_pv_data bcm2711_pv2_data = {
1149     .base = {
1150         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1151         .hvs_output = 4,
1152     },
1153     .debugfs_name = "crtc2_regs",
1154     .fifo_depth = 256,
1155     .pixels_per_clock = 2,
1156     .encoder_types = {
1157         [0] = VC4_ENCODER_TYPE_HDMI0,
1158     },
1159 };
1160 
1161 static const struct vc4_pv_data bcm2711_pv3_data = {
1162     .base = {
1163         .hvs_available_channels = BIT(1),
1164         .hvs_output = 1,
1165     },
1166     .debugfs_name = "crtc3_regs",
1167     .fifo_depth = 64,
1168     .pixels_per_clock = 1,
1169     .encoder_types = {
1170         [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1171     },
1172 };
1173 
1174 static const struct vc4_pv_data bcm2711_pv4_data = {
1175     .base = {
1176         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1177         .hvs_output = 5,
1178     },
1179     .debugfs_name = "crtc4_regs",
1180     .fifo_depth = 64,
1181     .pixels_per_clock = 2,
1182     .encoder_types = {
1183         [0] = VC4_ENCODER_TYPE_HDMI1,
1184     },
1185 };
1186 
1187 static const struct of_device_id vc4_crtc_dt_match[] = {
1188     { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1189     { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1190     { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1191     { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1192     { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1193     { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1194     { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1195     { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1196     {}
1197 };
1198 
1199 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1200                     struct drm_crtc *crtc)
1201 {
1202     struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1203     const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1204     const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1205     struct drm_encoder *encoder;
1206 
1207     drm_for_each_encoder(encoder, drm) {
1208         struct vc4_encoder *vc4_encoder;
1209         int i;
1210 
1211         if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1212             continue;
1213 
1214         vc4_encoder = to_vc4_encoder(encoder);
1215         for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1216             if (vc4_encoder->type == encoder_types[i]) {
1217                 vc4_encoder->clock_select = i;
1218                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1219                 break;
1220             }
1221         }
1222     }
1223 }
1224 
1225 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1226           const struct drm_crtc_funcs *crtc_funcs,
1227           const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1228 {
1229     struct vc4_dev *vc4 = to_vc4_dev(drm);
1230     struct drm_crtc *crtc = &vc4_crtc->base;
1231     struct drm_plane *primary_plane;
1232     unsigned int i;
1233 
1234     /* For now, we create just the primary and the legacy cursor
1235      * planes.  We should be able to stack more planes on easily,
1236      * but to do that we would need to compute the bandwidth
1237      * requirement of the plane configuration, and reject ones
1238      * that will take too much.
1239      */
1240     primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1241     if (IS_ERR(primary_plane)) {
1242         dev_err(drm->dev, "failed to construct primary plane\n");
1243         return PTR_ERR(primary_plane);
1244     }
1245 
1246     spin_lock_init(&vc4_crtc->irq_lock);
1247     drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1248                   crtc_funcs, NULL);
1249     drm_crtc_helper_add(crtc, crtc_helper_funcs);
1250 
1251     if (!vc4->is_vc5) {
1252         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1253 
1254         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1255 
1256         /* We support CTM, but only for one CRTC at a time. It's therefore
1257          * implemented as private driver state in vc4_kms, not here.
1258          */
1259         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1260     }
1261 
1262     for (i = 0; i < crtc->gamma_size; i++) {
1263         vc4_crtc->lut_r[i] = i;
1264         vc4_crtc->lut_g[i] = i;
1265         vc4_crtc->lut_b[i] = i;
1266     }
1267 
1268     return 0;
1269 }
1270 
1271 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1272 {
1273     struct platform_device *pdev = to_platform_device(dev);
1274     struct drm_device *drm = dev_get_drvdata(master);
1275     const struct vc4_pv_data *pv_data;
1276     struct vc4_crtc *vc4_crtc;
1277     struct drm_crtc *crtc;
1278     struct drm_plane *destroy_plane, *temp;
1279     int ret;
1280 
1281     vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1282     if (!vc4_crtc)
1283         return -ENOMEM;
1284     crtc = &vc4_crtc->base;
1285 
1286     pv_data = of_device_get_match_data(dev);
1287     if (!pv_data)
1288         return -ENODEV;
1289     vc4_crtc->data = &pv_data->base;
1290     vc4_crtc->pdev = pdev;
1291 
1292     vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1293     if (IS_ERR(vc4_crtc->regs))
1294         return PTR_ERR(vc4_crtc->regs);
1295 
1296     vc4_crtc->regset.base = vc4_crtc->regs;
1297     vc4_crtc->regset.regs = crtc_regs;
1298     vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1299 
1300     ret = vc4_crtc_init(drm, vc4_crtc,
1301                 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1302     if (ret)
1303         return ret;
1304     vc4_set_crtc_possible_masks(drm, crtc);
1305 
1306     CRTC_WRITE(PV_INTEN, 0);
1307     CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1308     ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1309                    vc4_crtc_irq_handler,
1310                    IRQF_SHARED,
1311                    "vc4 crtc", vc4_crtc);
1312     if (ret)
1313         goto err_destroy_planes;
1314 
1315     platform_set_drvdata(pdev, vc4_crtc);
1316 
1317     vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1318                  &vc4_crtc->regset);
1319 
1320     return 0;
1321 
1322 err_destroy_planes:
1323     list_for_each_entry_safe(destroy_plane, temp,
1324                  &drm->mode_config.plane_list, head) {
1325         if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1326             destroy_plane->funcs->destroy(destroy_plane);
1327     }
1328 
1329     return ret;
1330 }
1331 
1332 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1333                 void *data)
1334 {
1335     struct platform_device *pdev = to_platform_device(dev);
1336     struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1337 
1338     vc4_crtc_destroy(&vc4_crtc->base);
1339 
1340     CRTC_WRITE(PV_INTEN, 0);
1341 
1342     platform_set_drvdata(pdev, NULL);
1343 }
1344 
1345 static const struct component_ops vc4_crtc_ops = {
1346     .bind   = vc4_crtc_bind,
1347     .unbind = vc4_crtc_unbind,
1348 };
1349 
1350 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1351 {
1352     return component_add(&pdev->dev, &vc4_crtc_ops);
1353 }
1354 
1355 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1356 {
1357     component_del(&pdev->dev, &vc4_crtc_ops);
1358     return 0;
1359 }
1360 
1361 struct platform_driver vc4_crtc_driver = {
1362     .probe = vc4_crtc_dev_probe,
1363     .remove = vc4_crtc_dev_remove,
1364     .driver = {
1365         .name = "vc4_crtc",
1366         .of_match_table = vc4_crtc_dt_match,
1367     },
1368 };