0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 #include <nvif/mmu.h>
0023
0024 #include <nvif/class.h>
0025 #include <nvif/if0008.h>
0026
0027 void
0028 nvif_mmu_dtor(struct nvif_mmu *mmu)
0029 {
0030 kfree(mmu->kind);
0031 kfree(mmu->type);
0032 kfree(mmu->heap);
0033 nvif_object_dtor(&mmu->object);
0034 }
0035
0036 int
0037 nvif_mmu_ctor(struct nvif_object *parent, const char *name, s32 oclass,
0038 struct nvif_mmu *mmu)
0039 {
0040 static const struct nvif_mclass mems[] = {
0041 { NVIF_CLASS_MEM_GF100, -1 },
0042 { NVIF_CLASS_MEM_NV50 , -1 },
0043 { NVIF_CLASS_MEM_NV04 , -1 },
0044 {}
0045 };
0046 struct nvif_mmu_v0 args;
0047 int ret, i;
0048
0049 args.version = 0;
0050 mmu->heap = NULL;
0051 mmu->type = NULL;
0052 mmu->kind = NULL;
0053
0054 ret = nvif_object_ctor(parent, name ? name : "nvifMmu", 0, oclass,
0055 &args, sizeof(args), &mmu->object);
0056 if (ret)
0057 goto done;
0058
0059 mmu->dmabits = args.dmabits;
0060 mmu->heap_nr = args.heap_nr;
0061 mmu->type_nr = args.type_nr;
0062 mmu->kind_nr = args.kind_nr;
0063
0064 ret = nvif_mclass(&mmu->object, mems);
0065 if (ret < 0)
0066 goto done;
0067 mmu->mem = mems[ret].oclass;
0068
0069 mmu->heap = kmalloc_array(mmu->heap_nr, sizeof(*mmu->heap),
0070 GFP_KERNEL);
0071 mmu->type = kmalloc_array(mmu->type_nr, sizeof(*mmu->type),
0072 GFP_KERNEL);
0073 if (ret = -ENOMEM, !mmu->heap || !mmu->type)
0074 goto done;
0075
0076 mmu->kind = kmalloc_array(mmu->kind_nr, sizeof(*mmu->kind),
0077 GFP_KERNEL);
0078 if (!mmu->kind && mmu->kind_nr)
0079 goto done;
0080
0081 for (i = 0; i < mmu->heap_nr; i++) {
0082 struct nvif_mmu_heap_v0 args = { .index = i };
0083
0084 ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_HEAP,
0085 &args, sizeof(args));
0086 if (ret)
0087 goto done;
0088
0089 mmu->heap[i].size = args.size;
0090 }
0091
0092 for (i = 0; i < mmu->type_nr; i++) {
0093 struct nvif_mmu_type_v0 args = { .index = i };
0094
0095 ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_TYPE,
0096 &args, sizeof(args));
0097 if (ret)
0098 goto done;
0099
0100 mmu->type[i].type = 0;
0101 if (args.vram) mmu->type[i].type |= NVIF_MEM_VRAM;
0102 if (args.host) mmu->type[i].type |= NVIF_MEM_HOST;
0103 if (args.comp) mmu->type[i].type |= NVIF_MEM_COMP;
0104 if (args.disp) mmu->type[i].type |= NVIF_MEM_DISP;
0105 if (args.kind ) mmu->type[i].type |= NVIF_MEM_KIND;
0106 if (args.mappable) mmu->type[i].type |= NVIF_MEM_MAPPABLE;
0107 if (args.coherent) mmu->type[i].type |= NVIF_MEM_COHERENT;
0108 if (args.uncached) mmu->type[i].type |= NVIF_MEM_UNCACHED;
0109 mmu->type[i].heap = args.heap;
0110 }
0111
0112 if (mmu->kind_nr) {
0113 struct nvif_mmu_kind_v0 *kind;
0114 size_t argc = struct_size(kind, data, mmu->kind_nr);
0115
0116 if (ret = -ENOMEM, !(kind = kmalloc(argc, GFP_KERNEL)))
0117 goto done;
0118 kind->version = 0;
0119 kind->count = mmu->kind_nr;
0120
0121 ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_KIND,
0122 kind, argc);
0123 if (ret == 0)
0124 memcpy(mmu->kind, kind->data, kind->count);
0125 mmu->kind_inv = kind->kind_inv;
0126 kfree(kind);
0127 }
0128
0129 done:
0130 if (ret)
0131 nvif_mmu_dtor(mmu);
0132 return ret;
0133 }