0001
0002
0003
0004
0005 #include "dpu_hwio.h"
0006 #include "dpu_hw_catalog.h"
0007 #include "dpu_hw_top.h"
0008 #include "dpu_kms.h"
0009
0010 #define SSPP_SPARE 0x28
0011
0012 #define FLD_SPLIT_DISPLAY_CMD BIT(1)
0013 #define FLD_SMART_PANEL_FREE_RUN BIT(2)
0014 #define FLD_INTF_1_SW_TRG_MUX BIT(4)
0015 #define FLD_INTF_2_SW_TRG_MUX BIT(8)
0016 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
0017
0018 #define DANGER_STATUS 0x360
0019 #define SAFE_STATUS 0x364
0020
0021 #define TE_LINE_INTERVAL 0x3F4
0022
0023 #define TRAFFIC_SHAPER_EN BIT(31)
0024 #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
0025 #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
0026 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
0027
0028 #define MDP_WD_TIMER_0_CTL 0x380
0029 #define MDP_WD_TIMER_0_CTL2 0x384
0030 #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
0031 #define MDP_WD_TIMER_1_CTL 0x390
0032 #define MDP_WD_TIMER_1_CTL2 0x394
0033 #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
0034 #define MDP_WD_TIMER_2_CTL 0x420
0035 #define MDP_WD_TIMER_2_CTL2 0x424
0036 #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
0037 #define MDP_WD_TIMER_3_CTL 0x430
0038 #define MDP_WD_TIMER_3_CTL2 0x434
0039 #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
0040 #define MDP_WD_TIMER_4_CTL 0x440
0041 #define MDP_WD_TIMER_4_CTL2 0x444
0042 #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
0043
0044 #define MDP_TICK_COUNT 16
0045 #define XO_CLK_RATE 19200
0046 #define MS_TICKS_IN_SEC 1000
0047
0048 #define CALCULATE_WD_LOAD_VALUE(fps) \
0049 ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
0050
0051 #define DCE_SEL 0x450
0052
0053 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
0054 struct split_pipe_cfg *cfg)
0055 {
0056 struct dpu_hw_blk_reg_map *c;
0057 u32 upper_pipe = 0;
0058 u32 lower_pipe = 0;
0059
0060 if (!mdp || !cfg)
0061 return;
0062
0063 c = &mdp->hw;
0064
0065 if (cfg->en) {
0066 if (cfg->mode == INTF_MODE_CMD) {
0067 lower_pipe = FLD_SPLIT_DISPLAY_CMD;
0068
0069 if (cfg->intf == INTF_2)
0070 lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
0071 else
0072 lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
0073 upper_pipe = lower_pipe;
0074 } else {
0075 if (cfg->intf == INTF_2) {
0076 lower_pipe = FLD_INTF_1_SW_TRG_MUX;
0077 upper_pipe = FLD_INTF_2_SW_TRG_MUX;
0078 } else {
0079 lower_pipe = FLD_INTF_2_SW_TRG_MUX;
0080 upper_pipe = FLD_INTF_1_SW_TRG_MUX;
0081 }
0082 }
0083 }
0084
0085 DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
0086 DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
0087 DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
0088 DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
0089 }
0090
0091 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
0092 enum dpu_clk_ctrl_type clk_ctrl, bool enable)
0093 {
0094 struct dpu_hw_blk_reg_map *c;
0095 u32 reg_off, bit_off;
0096 u32 reg_val, new_val;
0097 bool clk_forced_on;
0098
0099 if (!mdp)
0100 return false;
0101
0102 c = &mdp->hw;
0103
0104 if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
0105 return false;
0106
0107 reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
0108 bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
0109
0110 reg_val = DPU_REG_READ(c, reg_off);
0111
0112 if (enable)
0113 new_val = reg_val | BIT(bit_off);
0114 else
0115 new_val = reg_val & ~BIT(bit_off);
0116
0117 DPU_REG_WRITE(c, reg_off, new_val);
0118
0119 clk_forced_on = !(reg_val & BIT(bit_off));
0120
0121 return clk_forced_on;
0122 }
0123
0124
0125 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
0126 struct dpu_danger_safe_status *status)
0127 {
0128 struct dpu_hw_blk_reg_map *c;
0129 u32 value;
0130
0131 if (!mdp || !status)
0132 return;
0133
0134 c = &mdp->hw;
0135
0136 value = DPU_REG_READ(c, DANGER_STATUS);
0137 status->mdp = (value >> 0) & 0x3;
0138 status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
0139 status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
0140 status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
0141 status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
0142 status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
0143 status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
0144 status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
0145 status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
0146 status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
0147 status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
0148 status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
0149 status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
0150 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
0151 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
0152 }
0153
0154 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
0155 struct dpu_vsync_source_cfg *cfg)
0156 {
0157 struct dpu_hw_blk_reg_map *c;
0158 u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
0159 static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
0160
0161 if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
0162 return;
0163
0164 c = &mdp->hw;
0165 reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
0166 for (i = 0; i < cfg->pp_count; i++) {
0167 int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
0168
0169 if (pp_idx >= ARRAY_SIZE(pp_offset))
0170 continue;
0171
0172 reg &= ~(0xf << pp_offset[pp_idx]);
0173 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
0174 }
0175 DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
0176
0177 if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
0178 cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
0179 switch (cfg->vsync_source) {
0180 case DPU_VSYNC_SOURCE_WD_TIMER_4:
0181 wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
0182 wd_ctl = MDP_WD_TIMER_4_CTL;
0183 wd_ctl2 = MDP_WD_TIMER_4_CTL2;
0184 break;
0185 case DPU_VSYNC_SOURCE_WD_TIMER_3:
0186 wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
0187 wd_ctl = MDP_WD_TIMER_3_CTL;
0188 wd_ctl2 = MDP_WD_TIMER_3_CTL2;
0189 break;
0190 case DPU_VSYNC_SOURCE_WD_TIMER_2:
0191 wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
0192 wd_ctl = MDP_WD_TIMER_2_CTL;
0193 wd_ctl2 = MDP_WD_TIMER_2_CTL2;
0194 break;
0195 case DPU_VSYNC_SOURCE_WD_TIMER_1:
0196 wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
0197 wd_ctl = MDP_WD_TIMER_1_CTL;
0198 wd_ctl2 = MDP_WD_TIMER_1_CTL2;
0199 break;
0200 case DPU_VSYNC_SOURCE_WD_TIMER_0:
0201 default:
0202 wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
0203 wd_ctl = MDP_WD_TIMER_0_CTL;
0204 wd_ctl2 = MDP_WD_TIMER_0_CTL2;
0205 break;
0206 }
0207
0208 DPU_REG_WRITE(c, wd_load_value,
0209 CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
0210
0211 DPU_REG_WRITE(c, wd_ctl, BIT(0));
0212 reg = DPU_REG_READ(c, wd_ctl2);
0213 reg |= BIT(8);
0214 reg |= BIT(0);
0215 DPU_REG_WRITE(c, wd_ctl2, reg);
0216
0217
0218 wmb();
0219 }
0220 }
0221
0222 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
0223 struct dpu_danger_safe_status *status)
0224 {
0225 struct dpu_hw_blk_reg_map *c;
0226 u32 value;
0227
0228 if (!mdp || !status)
0229 return;
0230
0231 c = &mdp->hw;
0232
0233 value = DPU_REG_READ(c, SAFE_STATUS);
0234 status->mdp = (value >> 0) & 0x1;
0235 status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
0236 status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
0237 status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
0238 status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
0239 status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
0240 status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
0241 status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
0242 status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
0243 status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
0244 status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
0245 status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
0246 status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
0247 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
0248 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
0249 }
0250
0251 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
0252 {
0253 struct dpu_hw_blk_reg_map *c;
0254
0255 if (!mdp)
0256 return;
0257
0258 c = &mdp->hw;
0259
0260 DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
0261 }
0262
0263 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
0264 unsigned long cap)
0265 {
0266 ops->setup_split_pipe = dpu_hw_setup_split_pipe;
0267 ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
0268 ops->get_danger_status = dpu_hw_get_danger_status;
0269 ops->setup_vsync_source = dpu_hw_setup_vsync_source;
0270 ops->get_safe_status = dpu_hw_get_safe_status;
0271
0272 if (cap & BIT(DPU_MDP_AUDIO_SELECT))
0273 ops->intf_audio_select = dpu_hw_intf_audio_select;
0274 }
0275
0276 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
0277 const struct dpu_mdss_cfg *m,
0278 void __iomem *addr,
0279 struct dpu_hw_blk_reg_map *b)
0280 {
0281 int i;
0282
0283 if (!m || !addr || !b)
0284 return ERR_PTR(-EINVAL);
0285
0286 for (i = 0; i < m->mdp_count; i++) {
0287 if (mdp == m->mdp[i].id) {
0288 b->blk_addr = addr + m->mdp[i].base;
0289 b->log_mask = DPU_DBG_MASK_TOP;
0290 return &m->mdp[i];
0291 }
0292 }
0293
0294 return ERR_PTR(-EINVAL);
0295 }
0296
0297 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
0298 void __iomem *addr,
0299 const struct dpu_mdss_cfg *m)
0300 {
0301 struct dpu_hw_mdp *mdp;
0302 const struct dpu_mdp_cfg *cfg;
0303
0304 if (!addr || !m)
0305 return ERR_PTR(-EINVAL);
0306
0307 mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
0308 if (!mdp)
0309 return ERR_PTR(-ENOMEM);
0310
0311 cfg = _top_offset(idx, m, addr, &mdp->hw);
0312 if (IS_ERR_OR_NULL(cfg)) {
0313 kfree(mdp);
0314 return ERR_PTR(-EINVAL);
0315 }
0316
0317
0318
0319
0320 mdp->idx = idx;
0321 mdp->caps = cfg;
0322 _setup_mdp_ops(&mdp->ops, mdp->caps->features);
0323
0324 return mdp;
0325 }
0326
0327 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
0328 {
0329 kfree(mdp);
0330 }
0331