Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright © 2008-2015 Intel Corporation
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice (including the next
0012  * paragraph) shall be included in all copies or substantial portions of the
0013  * Software.
0014  *
0015  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0016  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0017  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0018  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
0019  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
0020  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
0021  * IN THE SOFTWARE.
0022  *
0023  */
0024 
0025 #include <linux/dma-fence-array.h>
0026 #include <linux/dma-fence-chain.h>
0027 #include <linux/irq_work.h>
0028 #include <linux/prefetch.h>
0029 #include <linux/sched.h>
0030 #include <linux/sched/clock.h>
0031 #include <linux/sched/signal.h>
0032 #include <linux/sched/mm.h>
0033 
0034 #include "gem/i915_gem_context.h"
0035 #include "gt/intel_breadcrumbs.h"
0036 #include "gt/intel_context.h"
0037 #include "gt/intel_engine.h"
0038 #include "gt/intel_engine_heartbeat.h"
0039 #include "gt/intel_engine_regs.h"
0040 #include "gt/intel_gpu_commands.h"
0041 #include "gt/intel_reset.h"
0042 #include "gt/intel_ring.h"
0043 #include "gt/intel_rps.h"
0044 
0045 #include "i915_active.h"
0046 #include "i915_deps.h"
0047 #include "i915_driver.h"
0048 #include "i915_drv.h"
0049 #include "i915_trace.h"
0050 #include "intel_pm.h"
0051 
0052 struct execute_cb {
0053     struct irq_work work;
0054     struct i915_sw_fence *fence;
0055     struct i915_request *signal;
0056 };
0057 
0058 static struct kmem_cache *slab_requests;
0059 static struct kmem_cache *slab_execute_cbs;
0060 
0061 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
0062 {
0063     return dev_name(to_request(fence)->i915->drm.dev);
0064 }
0065 
0066 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
0067 {
0068     const struct i915_gem_context *ctx;
0069 
0070     /*
0071      * The timeline struct (as part of the ppgtt underneath a context)
0072      * may be freed when the request is no longer in use by the GPU.
0073      * We could extend the life of a context to beyond that of all
0074      * fences, possibly keeping the hw resource around indefinitely,
0075      * or we just give them a false name. Since
0076      * dma_fence_ops.get_timeline_name is a debug feature, the occasional
0077      * lie seems justifiable.
0078      */
0079     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
0080         return "signaled";
0081 
0082     ctx = i915_request_gem_context(to_request(fence));
0083     if (!ctx)
0084         return "[" DRIVER_NAME "]";
0085 
0086     return ctx->name;
0087 }
0088 
0089 static bool i915_fence_signaled(struct dma_fence *fence)
0090 {
0091     return i915_request_completed(to_request(fence));
0092 }
0093 
0094 static bool i915_fence_enable_signaling(struct dma_fence *fence)
0095 {
0096     return i915_request_enable_breadcrumb(to_request(fence));
0097 }
0098 
0099 static signed long i915_fence_wait(struct dma_fence *fence,
0100                    bool interruptible,
0101                    signed long timeout)
0102 {
0103     return i915_request_wait_timeout(to_request(fence),
0104                      interruptible | I915_WAIT_PRIORITY,
0105                      timeout);
0106 }
0107 
0108 struct kmem_cache *i915_request_slab_cache(void)
0109 {
0110     return slab_requests;
0111 }
0112 
0113 static void i915_fence_release(struct dma_fence *fence)
0114 {
0115     struct i915_request *rq = to_request(fence);
0116 
0117     GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
0118            rq->guc_prio != GUC_PRIO_FINI);
0119 
0120     i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
0121     if (rq->batch_res) {
0122         i915_vma_resource_put(rq->batch_res);
0123         rq->batch_res = NULL;
0124     }
0125 
0126     /*
0127      * The request is put onto a RCU freelist (i.e. the address
0128      * is immediately reused), mark the fences as being freed now.
0129      * Otherwise the debugobjects for the fences are only marked as
0130      * freed when the slab cache itself is freed, and so we would get
0131      * caught trying to reuse dead objects.
0132      */
0133     i915_sw_fence_fini(&rq->submit);
0134     i915_sw_fence_fini(&rq->semaphore);
0135 
0136     /*
0137      * Keep one request on each engine for reserved use under mempressure
0138      * do not use with virtual engines as this really is only needed for
0139      * kernel contexts.
0140      *
0141      * We do not hold a reference to the engine here and so have to be
0142      * very careful in what rq->engine we poke. The virtual engine is
0143      * referenced via the rq->context and we released that ref during
0144      * i915_request_retire(), ergo we must not dereference a virtual
0145      * engine here. Not that we would want to, as the only consumer of
0146      * the reserved engine->request_pool is the power management parking,
0147      * which must-not-fail, and that is only run on the physical engines.
0148      *
0149      * Since the request must have been executed to be have completed,
0150      * we know that it will have been processed by the HW and will
0151      * not be unsubmitted again, so rq->engine and rq->execution_mask
0152      * at this point is stable. rq->execution_mask will be a single
0153      * bit if the last and _only_ engine it could execution on was a
0154      * physical engine, if it's multiple bits then it started on and
0155      * could still be on a virtual engine. Thus if the mask is not a
0156      * power-of-two we assume that rq->engine may still be a virtual
0157      * engine and so a dangling invalid pointer that we cannot dereference
0158      *
0159      * For example, consider the flow of a bonded request through a virtual
0160      * engine. The request is created with a wide engine mask (all engines
0161      * that we might execute on). On processing the bond, the request mask
0162      * is reduced to one or more engines. If the request is subsequently
0163      * bound to a single engine, it will then be constrained to only
0164      * execute on that engine and never returned to the virtual engine
0165      * after timeslicing away, see __unwind_incomplete_requests(). Thus we
0166      * know that if the rq->execution_mask is a single bit, rq->engine
0167      * can be a physical engine with the exact corresponding mask.
0168      */
0169     if (!intel_engine_is_virtual(rq->engine) &&
0170         is_power_of_2(rq->execution_mask) &&
0171         !cmpxchg(&rq->engine->request_pool, NULL, rq))
0172         return;
0173 
0174     kmem_cache_free(slab_requests, rq);
0175 }
0176 
0177 const struct dma_fence_ops i915_fence_ops = {
0178     .get_driver_name = i915_fence_get_driver_name,
0179     .get_timeline_name = i915_fence_get_timeline_name,
0180     .enable_signaling = i915_fence_enable_signaling,
0181     .signaled = i915_fence_signaled,
0182     .wait = i915_fence_wait,
0183     .release = i915_fence_release,
0184 };
0185 
0186 static void irq_execute_cb(struct irq_work *wrk)
0187 {
0188     struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
0189 
0190     i915_sw_fence_complete(cb->fence);
0191     kmem_cache_free(slab_execute_cbs, cb);
0192 }
0193 
0194 static __always_inline void
0195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
0196 {
0197     struct execute_cb *cb, *cn;
0198 
0199     if (llist_empty(&rq->execute_cb))
0200         return;
0201 
0202     llist_for_each_entry_safe(cb, cn,
0203                   llist_del_all(&rq->execute_cb),
0204                   work.node.llist)
0205         fn(&cb->work);
0206 }
0207 
0208 static void __notify_execute_cb_irq(struct i915_request *rq)
0209 {
0210     __notify_execute_cb(rq, irq_work_queue);
0211 }
0212 
0213 static bool irq_work_imm(struct irq_work *wrk)
0214 {
0215     wrk->func(wrk);
0216     return false;
0217 }
0218 
0219 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
0220 {
0221     __notify_execute_cb(rq, irq_work_imm);
0222 }
0223 
0224 static void __i915_request_fill(struct i915_request *rq, u8 val)
0225 {
0226     void *vaddr = rq->ring->vaddr;
0227     u32 head;
0228 
0229     head = rq->infix;
0230     if (rq->postfix < head) {
0231         memset(vaddr + head, val, rq->ring->size - head);
0232         head = 0;
0233     }
0234     memset(vaddr + head, val, rq->postfix - head);
0235 }
0236 
0237 /**
0238  * i915_request_active_engine
0239  * @rq: request to inspect
0240  * @active: pointer in which to return the active engine
0241  *
0242  * Fills the currently active engine to the @active pointer if the request
0243  * is active and still not completed.
0244  *
0245  * Returns true if request was active or false otherwise.
0246  */
0247 bool
0248 i915_request_active_engine(struct i915_request *rq,
0249                struct intel_engine_cs **active)
0250 {
0251     struct intel_engine_cs *engine, *locked;
0252     bool ret = false;
0253 
0254     /*
0255      * Serialise with __i915_request_submit() so that it sees
0256      * is-banned?, or we know the request is already inflight.
0257      *
0258      * Note that rq->engine is unstable, and so we double
0259      * check that we have acquired the lock on the final engine.
0260      */
0261     locked = READ_ONCE(rq->engine);
0262     spin_lock_irq(&locked->sched_engine->lock);
0263     while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
0264         spin_unlock(&locked->sched_engine->lock);
0265         locked = engine;
0266         spin_lock(&locked->sched_engine->lock);
0267     }
0268 
0269     if (i915_request_is_active(rq)) {
0270         if (!__i915_request_is_complete(rq))
0271             *active = locked;
0272         ret = true;
0273     }
0274 
0275     spin_unlock_irq(&locked->sched_engine->lock);
0276 
0277     return ret;
0278 }
0279 
0280 static void __rq_init_watchdog(struct i915_request *rq)
0281 {
0282     rq->watchdog.timer.function = NULL;
0283 }
0284 
0285 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
0286 {
0287     struct i915_request *rq =
0288         container_of(hrtimer, struct i915_request, watchdog.timer);
0289     struct intel_gt *gt = rq->engine->gt;
0290 
0291     if (!i915_request_completed(rq)) {
0292         if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
0293             schedule_work(&gt->watchdog.work);
0294     } else {
0295         i915_request_put(rq);
0296     }
0297 
0298     return HRTIMER_NORESTART;
0299 }
0300 
0301 static void __rq_arm_watchdog(struct i915_request *rq)
0302 {
0303     struct i915_request_watchdog *wdg = &rq->watchdog;
0304     struct intel_context *ce = rq->context;
0305 
0306     if (!ce->watchdog.timeout_us)
0307         return;
0308 
0309     i915_request_get(rq);
0310 
0311     hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
0312     wdg->timer.function = __rq_watchdog_expired;
0313     hrtimer_start_range_ns(&wdg->timer,
0314                    ns_to_ktime(ce->watchdog.timeout_us *
0315                        NSEC_PER_USEC),
0316                    NSEC_PER_MSEC,
0317                    HRTIMER_MODE_REL);
0318 }
0319 
0320 static void __rq_cancel_watchdog(struct i915_request *rq)
0321 {
0322     struct i915_request_watchdog *wdg = &rq->watchdog;
0323 
0324     if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
0325         i915_request_put(rq);
0326 }
0327 
0328 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
0329 
0330 /**
0331  * i915_request_free_capture_list - Free a capture list
0332  * @capture: Pointer to the first list item or NULL
0333  *
0334  */
0335 void i915_request_free_capture_list(struct i915_capture_list *capture)
0336 {
0337     while (capture) {
0338         struct i915_capture_list *next = capture->next;
0339 
0340         i915_vma_resource_put(capture->vma_res);
0341         kfree(capture);
0342         capture = next;
0343     }
0344 }
0345 
0346 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
0347 
0348 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
0349 
0350 #else
0351 
0352 #define i915_request_free_capture_list(_a) do {} while (0)
0353 
0354 #define assert_capture_list_is_null(_a) do {} while (0)
0355 
0356 #define clear_capture_list(_rq) do {} while (0)
0357 
0358 #endif
0359 
0360 bool i915_request_retire(struct i915_request *rq)
0361 {
0362     if (!__i915_request_is_complete(rq))
0363         return false;
0364 
0365     RQ_TRACE(rq, "\n");
0366 
0367     GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
0368     trace_i915_request_retire(rq);
0369     i915_request_mark_complete(rq);
0370 
0371     __rq_cancel_watchdog(rq);
0372 
0373     /*
0374      * We know the GPU must have read the request to have
0375      * sent us the seqno + interrupt, so use the position
0376      * of tail of the request to update the last known position
0377      * of the GPU head.
0378      *
0379      * Note this requires that we are always called in request
0380      * completion order.
0381      */
0382     GEM_BUG_ON(!list_is_first(&rq->link,
0383                   &i915_request_timeline(rq)->requests));
0384     if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
0385         /* Poison before we release our space in the ring */
0386         __i915_request_fill(rq, POISON_FREE);
0387     rq->ring->head = rq->postfix;
0388 
0389     if (!i915_request_signaled(rq)) {
0390         spin_lock_irq(&rq->lock);
0391         dma_fence_signal_locked(&rq->fence);
0392         spin_unlock_irq(&rq->lock);
0393     }
0394 
0395     if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
0396         intel_rps_dec_waiters(&rq->engine->gt->rps);
0397 
0398     /*
0399      * We only loosely track inflight requests across preemption,
0400      * and so we may find ourselves attempting to retire a _completed_
0401      * request that we have removed from the HW and put back on a run
0402      * queue.
0403      *
0404      * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
0405      * after removing the breadcrumb and signaling it, so that we do not
0406      * inadvertently attach the breadcrumb to a completed request.
0407      */
0408     rq->engine->remove_active_request(rq);
0409     GEM_BUG_ON(!llist_empty(&rq->execute_cb));
0410 
0411     __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
0412 
0413     intel_context_exit(rq->context);
0414     intel_context_unpin(rq->context);
0415 
0416     i915_sched_node_fini(&rq->sched);
0417     i915_request_put(rq);
0418 
0419     return true;
0420 }
0421 
0422 void i915_request_retire_upto(struct i915_request *rq)
0423 {
0424     struct intel_timeline * const tl = i915_request_timeline(rq);
0425     struct i915_request *tmp;
0426 
0427     RQ_TRACE(rq, "\n");
0428     GEM_BUG_ON(!__i915_request_is_complete(rq));
0429 
0430     do {
0431         tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
0432         GEM_BUG_ON(!i915_request_completed(tmp));
0433     } while (i915_request_retire(tmp) && tmp != rq);
0434 }
0435 
0436 static struct i915_request * const *
0437 __engine_active(struct intel_engine_cs *engine)
0438 {
0439     return READ_ONCE(engine->execlists.active);
0440 }
0441 
0442 static bool __request_in_flight(const struct i915_request *signal)
0443 {
0444     struct i915_request * const *port, *rq;
0445     bool inflight = false;
0446 
0447     if (!i915_request_is_ready(signal))
0448         return false;
0449 
0450     /*
0451      * Even if we have unwound the request, it may still be on
0452      * the GPU (preempt-to-busy). If that request is inside an
0453      * unpreemptible critical section, it will not be removed. Some
0454      * GPU functions may even be stuck waiting for the paired request
0455      * (__await_execution) to be submitted and cannot be preempted
0456      * until the bond is executing.
0457      *
0458      * As we know that there are always preemption points between
0459      * requests, we know that only the currently executing request
0460      * may be still active even though we have cleared the flag.
0461      * However, we can't rely on our tracking of ELSP[0] to know
0462      * which request is currently active and so maybe stuck, as
0463      * the tracking maybe an event behind. Instead assume that
0464      * if the context is still inflight, then it is still active
0465      * even if the active flag has been cleared.
0466      *
0467      * To further complicate matters, if there a pending promotion, the HW
0468      * may either perform a context switch to the second inflight execlists,
0469      * or it may switch to the pending set of execlists. In the case of the
0470      * latter, it may send the ACK and we process the event copying the
0471      * pending[] over top of inflight[], _overwriting_ our *active. Since
0472      * this implies the HW is arbitrating and not struck in *active, we do
0473      * not worry about complete accuracy, but we do require no read/write
0474      * tearing of the pointer [the read of the pointer must be valid, even
0475      * as the array is being overwritten, for which we require the writes
0476      * to avoid tearing.]
0477      *
0478      * Note that the read of *execlists->active may race with the promotion
0479      * of execlists->pending[] to execlists->inflight[], overwritting
0480      * the value at *execlists->active. This is fine. The promotion implies
0481      * that we received an ACK from the HW, and so the context is not
0482      * stuck -- if we do not see ourselves in *active, the inflight status
0483      * is valid. If instead we see ourselves being copied into *active,
0484      * we are inflight and may signal the callback.
0485      */
0486     if (!intel_context_inflight(signal->context))
0487         return false;
0488 
0489     rcu_read_lock();
0490     for (port = __engine_active(signal->engine);
0491          (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
0492          port++) {
0493         if (rq->context == signal->context) {
0494             inflight = i915_seqno_passed(rq->fence.seqno,
0495                              signal->fence.seqno);
0496             break;
0497         }
0498     }
0499     rcu_read_unlock();
0500 
0501     return inflight;
0502 }
0503 
0504 static int
0505 __await_execution(struct i915_request *rq,
0506           struct i915_request *signal,
0507           gfp_t gfp)
0508 {
0509     struct execute_cb *cb;
0510 
0511     if (i915_request_is_active(signal))
0512         return 0;
0513 
0514     cb = kmem_cache_alloc(slab_execute_cbs, gfp);
0515     if (!cb)
0516         return -ENOMEM;
0517 
0518     cb->fence = &rq->submit;
0519     i915_sw_fence_await(cb->fence);
0520     init_irq_work(&cb->work, irq_execute_cb);
0521 
0522     /*
0523      * Register the callback first, then see if the signaler is already
0524      * active. This ensures that if we race with the
0525      * __notify_execute_cb from i915_request_submit() and we are not
0526      * included in that list, we get a second bite of the cherry and
0527      * execute it ourselves. After this point, a future
0528      * i915_request_submit() will notify us.
0529      *
0530      * In i915_request_retire() we set the ACTIVE bit on a completed
0531      * request (then flush the execute_cb). So by registering the
0532      * callback first, then checking the ACTIVE bit, we serialise with
0533      * the completed/retired request.
0534      */
0535     if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
0536         if (i915_request_is_active(signal) ||
0537             __request_in_flight(signal))
0538             i915_request_notify_execute_cb_imm(signal);
0539     }
0540 
0541     return 0;
0542 }
0543 
0544 static bool fatal_error(int error)
0545 {
0546     switch (error) {
0547     case 0: /* not an error! */
0548     case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
0549     case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
0550         return false;
0551     default:
0552         return true;
0553     }
0554 }
0555 
0556 void __i915_request_skip(struct i915_request *rq)
0557 {
0558     GEM_BUG_ON(!fatal_error(rq->fence.error));
0559 
0560     if (rq->infix == rq->postfix)
0561         return;
0562 
0563     RQ_TRACE(rq, "error: %d\n", rq->fence.error);
0564 
0565     /*
0566      * As this request likely depends on state from the lost
0567      * context, clear out all the user operations leaving the
0568      * breadcrumb at the end (so we get the fence notifications).
0569      */
0570     __i915_request_fill(rq, 0);
0571     rq->infix = rq->postfix;
0572 }
0573 
0574 bool i915_request_set_error_once(struct i915_request *rq, int error)
0575 {
0576     int old;
0577 
0578     GEM_BUG_ON(!IS_ERR_VALUE((long)error));
0579 
0580     if (i915_request_signaled(rq))
0581         return false;
0582 
0583     old = READ_ONCE(rq->fence.error);
0584     do {
0585         if (fatal_error(old))
0586             return false;
0587     } while (!try_cmpxchg(&rq->fence.error, &old, error));
0588 
0589     return true;
0590 }
0591 
0592 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
0593 {
0594     if (__i915_request_is_complete(rq))
0595         return NULL;
0596 
0597     GEM_BUG_ON(i915_request_signaled(rq));
0598 
0599     /* As soon as the request is completed, it may be retired */
0600     rq = i915_request_get(rq);
0601 
0602     i915_request_set_error_once(rq, -EIO);
0603     i915_request_mark_complete(rq);
0604 
0605     return rq;
0606 }
0607 
0608 bool __i915_request_submit(struct i915_request *request)
0609 {
0610     struct intel_engine_cs *engine = request->engine;
0611     bool result = false;
0612 
0613     RQ_TRACE(request, "\n");
0614 
0615     GEM_BUG_ON(!irqs_disabled());
0616     lockdep_assert_held(&engine->sched_engine->lock);
0617 
0618     /*
0619      * With the advent of preempt-to-busy, we frequently encounter
0620      * requests that we have unsubmitted from HW, but left running
0621      * until the next ack and so have completed in the meantime. On
0622      * resubmission of that completed request, we can skip
0623      * updating the payload, and execlists can even skip submitting
0624      * the request.
0625      *
0626      * We must remove the request from the caller's priority queue,
0627      * and the caller must only call us when the request is in their
0628      * priority queue, under the sched_engine->lock. This ensures that the
0629      * request has *not* yet been retired and we can safely move
0630      * the request into the engine->active.list where it will be
0631      * dropped upon retiring. (Otherwise if resubmit a *retired*
0632      * request, this would be a horrible use-after-free.)
0633      */
0634     if (__i915_request_is_complete(request)) {
0635         list_del_init(&request->sched.link);
0636         goto active;
0637     }
0638 
0639     if (unlikely(!intel_context_is_schedulable(request->context)))
0640         i915_request_set_error_once(request, -EIO);
0641 
0642     if (unlikely(fatal_error(request->fence.error)))
0643         __i915_request_skip(request);
0644 
0645     /*
0646      * Are we using semaphores when the gpu is already saturated?
0647      *
0648      * Using semaphores incurs a cost in having the GPU poll a
0649      * memory location, busywaiting for it to change. The continual
0650      * memory reads can have a noticeable impact on the rest of the
0651      * system with the extra bus traffic, stalling the cpu as it too
0652      * tries to access memory across the bus (perf stat -e bus-cycles).
0653      *
0654      * If we installed a semaphore on this request and we only submit
0655      * the request after the signaler completed, that indicates the
0656      * system is overloaded and using semaphores at this time only
0657      * increases the amount of work we are doing. If so, we disable
0658      * further use of semaphores until we are idle again, whence we
0659      * optimistically try again.
0660      */
0661     if (request->sched.semaphores &&
0662         i915_sw_fence_signaled(&request->semaphore))
0663         engine->saturated |= request->sched.semaphores;
0664 
0665     engine->emit_fini_breadcrumb(request,
0666                      request->ring->vaddr + request->postfix);
0667 
0668     trace_i915_request_execute(request);
0669     if (engine->bump_serial)
0670         engine->bump_serial(engine);
0671     else
0672         engine->serial++;
0673 
0674     result = true;
0675 
0676     GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
0677     engine->add_active_request(request);
0678 active:
0679     clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
0680     set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
0681 
0682     /*
0683      * XXX Rollback bonded-execution on __i915_request_unsubmit()?
0684      *
0685      * In the future, perhaps when we have an active time-slicing scheduler,
0686      * it will be interesting to unsubmit parallel execution and remove
0687      * busywaits from the GPU until their master is restarted. This is
0688      * quite hairy, we have to carefully rollback the fence and do a
0689      * preempt-to-idle cycle on the target engine, all the while the
0690      * master execute_cb may refire.
0691      */
0692     __notify_execute_cb_irq(request);
0693 
0694     /* We may be recursing from the signal callback of another i915 fence */
0695     if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
0696         i915_request_enable_breadcrumb(request);
0697 
0698     return result;
0699 }
0700 
0701 void i915_request_submit(struct i915_request *request)
0702 {
0703     struct intel_engine_cs *engine = request->engine;
0704     unsigned long flags;
0705 
0706     /* Will be called from irq-context when using foreign fences. */
0707     spin_lock_irqsave(&engine->sched_engine->lock, flags);
0708 
0709     __i915_request_submit(request);
0710 
0711     spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
0712 }
0713 
0714 void __i915_request_unsubmit(struct i915_request *request)
0715 {
0716     struct intel_engine_cs *engine = request->engine;
0717 
0718     /*
0719      * Only unwind in reverse order, required so that the per-context list
0720      * is kept in seqno/ring order.
0721      */
0722     RQ_TRACE(request, "\n");
0723 
0724     GEM_BUG_ON(!irqs_disabled());
0725     lockdep_assert_held(&engine->sched_engine->lock);
0726 
0727     /*
0728      * Before we remove this breadcrumb from the signal list, we have
0729      * to ensure that a concurrent dma_fence_enable_signaling() does not
0730      * attach itself. We first mark the request as no longer active and
0731      * make sure that is visible to other cores, and then remove the
0732      * breadcrumb if attached.
0733      */
0734     GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
0735     clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
0736     if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
0737         i915_request_cancel_breadcrumb(request);
0738 
0739     /* We've already spun, don't charge on resubmitting. */
0740     if (request->sched.semaphores && __i915_request_has_started(request))
0741         request->sched.semaphores = 0;
0742 
0743     /*
0744      * We don't need to wake_up any waiters on request->execute, they
0745      * will get woken by any other event or us re-adding this request
0746      * to the engine timeline (__i915_request_submit()). The waiters
0747      * should be quite adapt at finding that the request now has a new
0748      * global_seqno to the one they went to sleep on.
0749      */
0750 }
0751 
0752 void i915_request_unsubmit(struct i915_request *request)
0753 {
0754     struct intel_engine_cs *engine = request->engine;
0755     unsigned long flags;
0756 
0757     /* Will be called from irq-context when using foreign fences. */
0758     spin_lock_irqsave(&engine->sched_engine->lock, flags);
0759 
0760     __i915_request_unsubmit(request);
0761 
0762     spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
0763 }
0764 
0765 void i915_request_cancel(struct i915_request *rq, int error)
0766 {
0767     if (!i915_request_set_error_once(rq, error))
0768         return;
0769 
0770     set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
0771 
0772     intel_context_cancel_request(rq->context, rq);
0773 }
0774 
0775 static int
0776 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
0777 {
0778     struct i915_request *request =
0779         container_of(fence, typeof(*request), submit);
0780 
0781     switch (state) {
0782     case FENCE_COMPLETE:
0783         trace_i915_request_submit(request);
0784 
0785         if (unlikely(fence->error))
0786             i915_request_set_error_once(request, fence->error);
0787         else
0788             __rq_arm_watchdog(request);
0789 
0790         /*
0791          * We need to serialize use of the submit_request() callback
0792          * with its hotplugging performed during an emergency
0793          * i915_gem_set_wedged().  We use the RCU mechanism to mark the
0794          * critical section in order to force i915_gem_set_wedged() to
0795          * wait until the submit_request() is completed before
0796          * proceeding.
0797          */
0798         rcu_read_lock();
0799         request->engine->submit_request(request);
0800         rcu_read_unlock();
0801         break;
0802 
0803     case FENCE_FREE:
0804         i915_request_put(request);
0805         break;
0806     }
0807 
0808     return NOTIFY_DONE;
0809 }
0810 
0811 static int
0812 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
0813 {
0814     struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
0815 
0816     switch (state) {
0817     case FENCE_COMPLETE:
0818         break;
0819 
0820     case FENCE_FREE:
0821         i915_request_put(rq);
0822         break;
0823     }
0824 
0825     return NOTIFY_DONE;
0826 }
0827 
0828 static void retire_requests(struct intel_timeline *tl)
0829 {
0830     struct i915_request *rq, *rn;
0831 
0832     list_for_each_entry_safe(rq, rn, &tl->requests, link)
0833         if (!i915_request_retire(rq))
0834             break;
0835 }
0836 
0837 static noinline struct i915_request *
0838 request_alloc_slow(struct intel_timeline *tl,
0839            struct i915_request **rsvd,
0840            gfp_t gfp)
0841 {
0842     struct i915_request *rq;
0843 
0844     /* If we cannot wait, dip into our reserves */
0845     if (!gfpflags_allow_blocking(gfp)) {
0846         rq = xchg(rsvd, NULL);
0847         if (!rq) /* Use the normal failure path for one final WARN */
0848             goto out;
0849 
0850         return rq;
0851     }
0852 
0853     if (list_empty(&tl->requests))
0854         goto out;
0855 
0856     /* Move our oldest request to the slab-cache (if not in use!) */
0857     rq = list_first_entry(&tl->requests, typeof(*rq), link);
0858     i915_request_retire(rq);
0859 
0860     rq = kmem_cache_alloc(slab_requests,
0861                   gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
0862     if (rq)
0863         return rq;
0864 
0865     /* Ratelimit ourselves to prevent oom from malicious clients */
0866     rq = list_last_entry(&tl->requests, typeof(*rq), link);
0867     cond_synchronize_rcu(rq->rcustate);
0868 
0869     /* Retire our old requests in the hope that we free some */
0870     retire_requests(tl);
0871 
0872 out:
0873     return kmem_cache_alloc(slab_requests, gfp);
0874 }
0875 
0876 static void __i915_request_ctor(void *arg)
0877 {
0878     struct i915_request *rq = arg;
0879 
0880     spin_lock_init(&rq->lock);
0881     i915_sched_node_init(&rq->sched);
0882     i915_sw_fence_init(&rq->submit, submit_notify);
0883     i915_sw_fence_init(&rq->semaphore, semaphore_notify);
0884 
0885     clear_capture_list(rq);
0886     rq->batch_res = NULL;
0887 
0888     init_llist_head(&rq->execute_cb);
0889 }
0890 
0891 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
0892 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
0893 #else
0894 #define clear_batch_ptr(_a) do {} while (0)
0895 #endif
0896 
0897 struct i915_request *
0898 __i915_request_create(struct intel_context *ce, gfp_t gfp)
0899 {
0900     struct intel_timeline *tl = ce->timeline;
0901     struct i915_request *rq;
0902     u32 seqno;
0903     int ret;
0904 
0905     might_alloc(gfp);
0906 
0907     /* Check that the caller provided an already pinned context */
0908     __intel_context_pin(ce);
0909 
0910     /*
0911      * Beware: Dragons be flying overhead.
0912      *
0913      * We use RCU to look up requests in flight. The lookups may
0914      * race with the request being allocated from the slab freelist.
0915      * That is the request we are writing to here, may be in the process
0916      * of being read by __i915_active_request_get_rcu(). As such,
0917      * we have to be very careful when overwriting the contents. During
0918      * the RCU lookup, we change chase the request->engine pointer,
0919      * read the request->global_seqno and increment the reference count.
0920      *
0921      * The reference count is incremented atomically. If it is zero,
0922      * the lookup knows the request is unallocated and complete. Otherwise,
0923      * it is either still in use, or has been reallocated and reset
0924      * with dma_fence_init(). This increment is safe for release as we
0925      * check that the request we have a reference to and matches the active
0926      * request.
0927      *
0928      * Before we increment the refcount, we chase the request->engine
0929      * pointer. We must not call kmem_cache_zalloc() or else we set
0930      * that pointer to NULL and cause a crash during the lookup. If
0931      * we see the request is completed (based on the value of the
0932      * old engine and seqno), the lookup is complete and reports NULL.
0933      * If we decide the request is not completed (new engine or seqno),
0934      * then we grab a reference and double check that it is still the
0935      * active request - which it won't be and restart the lookup.
0936      *
0937      * Do not use kmem_cache_zalloc() here!
0938      */
0939     rq = kmem_cache_alloc(slab_requests,
0940                   gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
0941     if (unlikely(!rq)) {
0942         rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
0943         if (!rq) {
0944             ret = -ENOMEM;
0945             goto err_unreserve;
0946         }
0947     }
0948 
0949     rq->context = ce;
0950     rq->engine = ce->engine;
0951     rq->ring = ce->ring;
0952     rq->execution_mask = ce->engine->mask;
0953     rq->i915 = ce->engine->i915;
0954 
0955     ret = intel_timeline_get_seqno(tl, rq, &seqno);
0956     if (ret)
0957         goto err_free;
0958 
0959     dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
0960                tl->fence_context, seqno);
0961 
0962     RCU_INIT_POINTER(rq->timeline, tl);
0963     rq->hwsp_seqno = tl->hwsp_seqno;
0964     GEM_BUG_ON(__i915_request_is_complete(rq));
0965 
0966     rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
0967 
0968     rq->guc_prio = GUC_PRIO_INIT;
0969 
0970     /* We bump the ref for the fence chain */
0971     i915_sw_fence_reinit(&i915_request_get(rq)->submit);
0972     i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
0973 
0974     i915_sched_node_reinit(&rq->sched);
0975 
0976     /* No zalloc, everything must be cleared after use */
0977     clear_batch_ptr(rq);
0978     __rq_init_watchdog(rq);
0979     assert_capture_list_is_null(rq);
0980     GEM_BUG_ON(!llist_empty(&rq->execute_cb));
0981     GEM_BUG_ON(rq->batch_res);
0982 
0983     /*
0984      * Reserve space in the ring buffer for all the commands required to
0985      * eventually emit this request. This is to guarantee that the
0986      * i915_request_add() call can't fail. Note that the reserve may need
0987      * to be redone if the request is not actually submitted straight
0988      * away, e.g. because a GPU scheduler has deferred it.
0989      *
0990      * Note that due to how we add reserved_space to intel_ring_begin()
0991      * we need to double our request to ensure that if we need to wrap
0992      * around inside i915_request_add() there is sufficient space at
0993      * the beginning of the ring as well.
0994      */
0995     rq->reserved_space =
0996         2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
0997 
0998     /*
0999      * Record the position of the start of the request so that
1000      * should we detect the updated seqno part-way through the
1001      * GPU processing the request, we never over-estimate the
1002      * position of the head.
1003      */
1004     rq->head = rq->ring->emit;
1005 
1006     ret = rq->engine->request_alloc(rq);
1007     if (ret)
1008         goto err_unwind;
1009 
1010     rq->infix = rq->ring->emit; /* end of header; start of user payload */
1011 
1012     intel_context_mark_active(ce);
1013     list_add_tail_rcu(&rq->link, &tl->requests);
1014 
1015     return rq;
1016 
1017 err_unwind:
1018     ce->ring->emit = rq->head;
1019 
1020     /* Make sure we didn't add ourselves to external state before freeing */
1021     GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1022     GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1023 
1024 err_free:
1025     kmem_cache_free(slab_requests, rq);
1026 err_unreserve:
1027     intel_context_unpin(ce);
1028     return ERR_PTR(ret);
1029 }
1030 
1031 struct i915_request *
1032 i915_request_create(struct intel_context *ce)
1033 {
1034     struct i915_request *rq;
1035     struct intel_timeline *tl;
1036 
1037     tl = intel_context_timeline_lock(ce);
1038     if (IS_ERR(tl))
1039         return ERR_CAST(tl);
1040 
1041     /* Move our oldest request to the slab-cache (if not in use!) */
1042     rq = list_first_entry(&tl->requests, typeof(*rq), link);
1043     if (!list_is_last(&rq->link, &tl->requests))
1044         i915_request_retire(rq);
1045 
1046     intel_context_enter(ce);
1047     rq = __i915_request_create(ce, GFP_KERNEL);
1048     intel_context_exit(ce); /* active reference transferred to request */
1049     if (IS_ERR(rq))
1050         goto err_unlock;
1051 
1052     /* Check that we do not interrupt ourselves with a new request */
1053     rq->cookie = lockdep_pin_lock(&tl->mutex);
1054 
1055     return rq;
1056 
1057 err_unlock:
1058     intel_context_timeline_unlock(tl);
1059     return rq;
1060 }
1061 
1062 static int
1063 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1064 {
1065     struct dma_fence *fence;
1066     int err;
1067 
1068     if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1069         return 0;
1070 
1071     if (i915_request_started(signal))
1072         return 0;
1073 
1074     /*
1075      * The caller holds a reference on @signal, but we do not serialise
1076      * against it being retired and removed from the lists.
1077      *
1078      * We do not hold a reference to the request before @signal, and
1079      * so must be very careful to ensure that it is not _recycled_ as
1080      * we follow the link backwards.
1081      */
1082     fence = NULL;
1083     rcu_read_lock();
1084     do {
1085         struct list_head *pos = READ_ONCE(signal->link.prev);
1086         struct i915_request *prev;
1087 
1088         /* Confirm signal has not been retired, the link is valid */
1089         if (unlikely(__i915_request_has_started(signal)))
1090             break;
1091 
1092         /* Is signal the earliest request on its timeline? */
1093         if (pos == &rcu_dereference(signal->timeline)->requests)
1094             break;
1095 
1096         /*
1097          * Peek at the request before us in the timeline. That
1098          * request will only be valid before it is retired, so
1099          * after acquiring a reference to it, confirm that it is
1100          * still part of the signaler's timeline.
1101          */
1102         prev = list_entry(pos, typeof(*prev), link);
1103         if (!i915_request_get_rcu(prev))
1104             break;
1105 
1106         /* After the strong barrier, confirm prev is still attached */
1107         if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1108             i915_request_put(prev);
1109             break;
1110         }
1111 
1112         fence = &prev->fence;
1113     } while (0);
1114     rcu_read_unlock();
1115     if (!fence)
1116         return 0;
1117 
1118     err = 0;
1119     if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1120         err = i915_sw_fence_await_dma_fence(&rq->submit,
1121                             fence, 0,
1122                             I915_FENCE_GFP);
1123     dma_fence_put(fence);
1124 
1125     return err;
1126 }
1127 
1128 static intel_engine_mask_t
1129 already_busywaiting(struct i915_request *rq)
1130 {
1131     /*
1132      * Polling a semaphore causes bus traffic, delaying other users of
1133      * both the GPU and CPU. We want to limit the impact on others,
1134      * while taking advantage of early submission to reduce GPU
1135      * latency. Therefore we restrict ourselves to not using more
1136      * than one semaphore from each source, and not using a semaphore
1137      * if we have detected the engine is saturated (i.e. would not be
1138      * submitted early and cause bus traffic reading an already passed
1139      * semaphore).
1140      *
1141      * See the are-we-too-late? check in __i915_request_submit().
1142      */
1143     return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1144 }
1145 
1146 static int
1147 __emit_semaphore_wait(struct i915_request *to,
1148               struct i915_request *from,
1149               u32 seqno)
1150 {
1151     const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1152     u32 hwsp_offset;
1153     int len, err;
1154     u32 *cs;
1155 
1156     GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1157     GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1158 
1159     /* We need to pin the signaler's HWSP until we are finished reading. */
1160     err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1161     if (err)
1162         return err;
1163 
1164     len = 4;
1165     if (has_token)
1166         len += 2;
1167 
1168     cs = intel_ring_begin(to, len);
1169     if (IS_ERR(cs))
1170         return PTR_ERR(cs);
1171 
1172     /*
1173      * Using greater-than-or-equal here means we have to worry
1174      * about seqno wraparound. To side step that issue, we swap
1175      * the timeline HWSP upon wrapping, so that everyone listening
1176      * for the old (pre-wrap) values do not see the much smaller
1177      * (post-wrap) values than they were expecting (and so wait
1178      * forever).
1179      */
1180     *cs++ = (MI_SEMAPHORE_WAIT |
1181          MI_SEMAPHORE_GLOBAL_GTT |
1182          MI_SEMAPHORE_POLL |
1183          MI_SEMAPHORE_SAD_GTE_SDD) +
1184         has_token;
1185     *cs++ = seqno;
1186     *cs++ = hwsp_offset;
1187     *cs++ = 0;
1188     if (has_token) {
1189         *cs++ = 0;
1190         *cs++ = MI_NOOP;
1191     }
1192 
1193     intel_ring_advance(to, cs);
1194     return 0;
1195 }
1196 
1197 static bool
1198 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1199 {
1200     return to->engine->gt->ggtt == from->engine->gt->ggtt;
1201 }
1202 
1203 static int
1204 emit_semaphore_wait(struct i915_request *to,
1205             struct i915_request *from,
1206             gfp_t gfp)
1207 {
1208     const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1209     struct i915_sw_fence *wait = &to->submit;
1210 
1211     if (!can_use_semaphore_wait(to, from))
1212         goto await_fence;
1213 
1214     if (!intel_context_use_semaphores(to->context))
1215         goto await_fence;
1216 
1217     if (i915_request_has_initial_breadcrumb(to))
1218         goto await_fence;
1219 
1220     /*
1221      * If this or its dependents are waiting on an external fence
1222      * that may fail catastrophically, then we want to avoid using
1223      * sempahores as they bypass the fence signaling metadata, and we
1224      * lose the fence->error propagation.
1225      */
1226     if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1227         goto await_fence;
1228 
1229     /* Just emit the first semaphore we see as request space is limited. */
1230     if (already_busywaiting(to) & mask)
1231         goto await_fence;
1232 
1233     if (i915_request_await_start(to, from) < 0)
1234         goto await_fence;
1235 
1236     /* Only submit our spinner after the signaler is running! */
1237     if (__await_execution(to, from, gfp))
1238         goto await_fence;
1239 
1240     if (__emit_semaphore_wait(to, from, from->fence.seqno))
1241         goto await_fence;
1242 
1243     to->sched.semaphores |= mask;
1244     wait = &to->semaphore;
1245 
1246 await_fence:
1247     return i915_sw_fence_await_dma_fence(wait,
1248                          &from->fence, 0,
1249                          I915_FENCE_GFP);
1250 }
1251 
1252 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1253                       struct dma_fence *fence)
1254 {
1255     return __intel_timeline_sync_is_later(tl,
1256                           fence->context,
1257                           fence->seqno - 1);
1258 }
1259 
1260 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1261                      const struct dma_fence *fence)
1262 {
1263     return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1264 }
1265 
1266 static int
1267 __i915_request_await_execution(struct i915_request *to,
1268                    struct i915_request *from)
1269 {
1270     int err;
1271 
1272     GEM_BUG_ON(intel_context_is_barrier(from->context));
1273 
1274     /* Submit both requests at the same time */
1275     err = __await_execution(to, from, I915_FENCE_GFP);
1276     if (err)
1277         return err;
1278 
1279     /* Squash repeated depenendices to the same timelines */
1280     if (intel_timeline_sync_has_start(i915_request_timeline(to),
1281                       &from->fence))
1282         return 0;
1283 
1284     /*
1285      * Wait until the start of this request.
1286      *
1287      * The execution cb fires when we submit the request to HW. But in
1288      * many cases this may be long before the request itself is ready to
1289      * run (consider that we submit 2 requests for the same context, where
1290      * the request of interest is behind an indefinite spinner). So we hook
1291      * up to both to reduce our queues and keep the execution lag minimised
1292      * in the worst case, though we hope that the await_start is elided.
1293      */
1294     err = i915_request_await_start(to, from);
1295     if (err < 0)
1296         return err;
1297 
1298     /*
1299      * Ensure both start together [after all semaphores in signal]
1300      *
1301      * Now that we are queued to the HW at roughly the same time (thanks
1302      * to the execute cb) and are ready to run at roughly the same time
1303      * (thanks to the await start), our signaler may still be indefinitely
1304      * delayed by waiting on a semaphore from a remote engine. If our
1305      * signaler depends on a semaphore, so indirectly do we, and we do not
1306      * want to start our payload until our signaler also starts theirs.
1307      * So we wait.
1308      *
1309      * However, there is also a second condition for which we need to wait
1310      * for the precise start of the signaler. Consider that the signaler
1311      * was submitted in a chain of requests following another context
1312      * (with just an ordinary intra-engine fence dependency between the
1313      * two). In this case the signaler is queued to HW, but not for
1314      * immediate execution, and so we must wait until it reaches the
1315      * active slot.
1316      */
1317     if (can_use_semaphore_wait(to, from) &&
1318         intel_engine_has_semaphores(to->engine) &&
1319         !i915_request_has_initial_breadcrumb(to)) {
1320         err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1321         if (err < 0)
1322             return err;
1323     }
1324 
1325     /* Couple the dependency tree for PI on this exposed to->fence */
1326     if (to->engine->sched_engine->schedule) {
1327         err = i915_sched_node_add_dependency(&to->sched,
1328                              &from->sched,
1329                              I915_DEPENDENCY_WEAK);
1330         if (err < 0)
1331             return err;
1332     }
1333 
1334     return intel_timeline_sync_set_start(i915_request_timeline(to),
1335                          &from->fence);
1336 }
1337 
1338 static void mark_external(struct i915_request *rq)
1339 {
1340     /*
1341      * The downside of using semaphores is that we lose metadata passing
1342      * along the signaling chain. This is particularly nasty when we
1343      * need to pass along a fatal error such as EFAULT or EDEADLK. For
1344      * fatal errors we want to scrub the request before it is executed,
1345      * which means that we cannot preload the request onto HW and have
1346      * it wait upon a semaphore.
1347      */
1348     rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1349 }
1350 
1351 static int
1352 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1353 {
1354     mark_external(rq);
1355     return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1356                          i915_fence_context_timeout(rq->engine->i915,
1357                                     fence->context),
1358                          I915_FENCE_GFP);
1359 }
1360 
1361 static int
1362 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1363 {
1364     struct dma_fence *iter;
1365     int err = 0;
1366 
1367     if (!to_dma_fence_chain(fence))
1368         return __i915_request_await_external(rq, fence);
1369 
1370     dma_fence_chain_for_each(iter, fence) {
1371         struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1372 
1373         if (!dma_fence_is_i915(chain->fence)) {
1374             err = __i915_request_await_external(rq, iter);
1375             break;
1376         }
1377 
1378         err = i915_request_await_dma_fence(rq, chain->fence);
1379         if (err < 0)
1380             break;
1381     }
1382 
1383     dma_fence_put(iter);
1384     return err;
1385 }
1386 
1387 static inline bool is_parallel_rq(struct i915_request *rq)
1388 {
1389     return intel_context_is_parallel(rq->context);
1390 }
1391 
1392 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1393 {
1394     return intel_context_to_parent(rq->context);
1395 }
1396 
1397 static bool is_same_parallel_context(struct i915_request *to,
1398                      struct i915_request *from)
1399 {
1400     if (is_parallel_rq(to))
1401         return request_to_parent(to) == request_to_parent(from);
1402 
1403     return false;
1404 }
1405 
1406 int
1407 i915_request_await_execution(struct i915_request *rq,
1408                  struct dma_fence *fence)
1409 {
1410     struct dma_fence **child = &fence;
1411     unsigned int nchild = 1;
1412     int ret;
1413 
1414     if (dma_fence_is_array(fence)) {
1415         struct dma_fence_array *array = to_dma_fence_array(fence);
1416 
1417         /* XXX Error for signal-on-any fence arrays */
1418 
1419         child = array->fences;
1420         nchild = array->num_fences;
1421         GEM_BUG_ON(!nchild);
1422     }
1423 
1424     do {
1425         fence = *child++;
1426         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1427             continue;
1428 
1429         if (fence->context == rq->fence.context)
1430             continue;
1431 
1432         /*
1433          * We don't squash repeated fence dependencies here as we
1434          * want to run our callback in all cases.
1435          */
1436 
1437         if (dma_fence_is_i915(fence)) {
1438             if (is_same_parallel_context(rq, to_request(fence)))
1439                 continue;
1440             ret = __i915_request_await_execution(rq,
1441                                  to_request(fence));
1442         } else {
1443             ret = i915_request_await_external(rq, fence);
1444         }
1445         if (ret < 0)
1446             return ret;
1447     } while (--nchild);
1448 
1449     return 0;
1450 }
1451 
1452 static int
1453 await_request_submit(struct i915_request *to, struct i915_request *from)
1454 {
1455     /*
1456      * If we are waiting on a virtual engine, then it may be
1457      * constrained to execute on a single engine *prior* to submission.
1458      * When it is submitted, it will be first submitted to the virtual
1459      * engine and then passed to the physical engine. We cannot allow
1460      * the waiter to be submitted immediately to the physical engine
1461      * as it may then bypass the virtual request.
1462      */
1463     if (to->engine == READ_ONCE(from->engine))
1464         return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1465                             &from->submit,
1466                             I915_FENCE_GFP);
1467     else
1468         return __i915_request_await_execution(to, from);
1469 }
1470 
1471 static int
1472 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1473 {
1474     int ret;
1475 
1476     GEM_BUG_ON(to == from);
1477     GEM_BUG_ON(to->timeline == from->timeline);
1478 
1479     if (i915_request_completed(from)) {
1480         i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1481         return 0;
1482     }
1483 
1484     if (to->engine->sched_engine->schedule) {
1485         ret = i915_sched_node_add_dependency(&to->sched,
1486                              &from->sched,
1487                              I915_DEPENDENCY_EXTERNAL);
1488         if (ret < 0)
1489             return ret;
1490     }
1491 
1492     if (!intel_engine_uses_guc(to->engine) &&
1493         is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1494         ret = await_request_submit(to, from);
1495     else
1496         ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1497     if (ret < 0)
1498         return ret;
1499 
1500     return 0;
1501 }
1502 
1503 int
1504 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1505 {
1506     struct dma_fence **child = &fence;
1507     unsigned int nchild = 1;
1508     int ret;
1509 
1510     /*
1511      * Note that if the fence-array was created in signal-on-any mode,
1512      * we should *not* decompose it into its individual fences. However,
1513      * we don't currently store which mode the fence-array is operating
1514      * in. Fortunately, the only user of signal-on-any is private to
1515      * amdgpu and we should not see any incoming fence-array from
1516      * sync-file being in signal-on-any mode.
1517      */
1518     if (dma_fence_is_array(fence)) {
1519         struct dma_fence_array *array = to_dma_fence_array(fence);
1520 
1521         child = array->fences;
1522         nchild = array->num_fences;
1523         GEM_BUG_ON(!nchild);
1524     }
1525 
1526     do {
1527         fence = *child++;
1528         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1529             continue;
1530 
1531         /*
1532          * Requests on the same timeline are explicitly ordered, along
1533          * with their dependencies, by i915_request_add() which ensures
1534          * that requests are submitted in-order through each ring.
1535          */
1536         if (fence->context == rq->fence.context)
1537             continue;
1538 
1539         /* Squash repeated waits to the same timelines */
1540         if (fence->context &&
1541             intel_timeline_sync_is_later(i915_request_timeline(rq),
1542                          fence))
1543             continue;
1544 
1545         if (dma_fence_is_i915(fence)) {
1546             if (is_same_parallel_context(rq, to_request(fence)))
1547                 continue;
1548             ret = i915_request_await_request(rq, to_request(fence));
1549         } else {
1550             ret = i915_request_await_external(rq, fence);
1551         }
1552         if (ret < 0)
1553             return ret;
1554 
1555         /* Record the latest fence used against each timeline */
1556         if (fence->context)
1557             intel_timeline_sync_set(i915_request_timeline(rq),
1558                         fence);
1559     } while (--nchild);
1560 
1561     return 0;
1562 }
1563 
1564 /**
1565  * i915_request_await_deps - set this request to (async) wait upon a struct
1566  * i915_deps dma_fence collection
1567  * @rq: request we are wishing to use
1568  * @deps: The struct i915_deps containing the dependencies.
1569  *
1570  * Returns 0 if successful, negative error code on error.
1571  */
1572 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1573 {
1574     int i, err;
1575 
1576     for (i = 0; i < deps->num_deps; ++i) {
1577         err = i915_request_await_dma_fence(rq, deps->fences[i]);
1578         if (err)
1579             return err;
1580     }
1581 
1582     return 0;
1583 }
1584 
1585 /**
1586  * i915_request_await_object - set this request to (async) wait upon a bo
1587  * @to: request we are wishing to use
1588  * @obj: object which may be in use on another ring.
1589  * @write: whether the wait is on behalf of a writer
1590  *
1591  * This code is meant to abstract object synchronization with the GPU.
1592  * Conceptually we serialise writes between engines inside the GPU.
1593  * We only allow one engine to write into a buffer at any time, but
1594  * multiple readers. To ensure each has a coherent view of memory, we must:
1595  *
1596  * - If there is an outstanding write request to the object, the new
1597  *   request must wait for it to complete (either CPU or in hw, requests
1598  *   on the same ring will be naturally ordered).
1599  *
1600  * - If we are a write request (pending_write_domain is set), the new
1601  *   request must wait for outstanding read requests to complete.
1602  *
1603  * Returns 0 if successful, else propagates up the lower layer error.
1604  */
1605 int
1606 i915_request_await_object(struct i915_request *to,
1607               struct drm_i915_gem_object *obj,
1608               bool write)
1609 {
1610     struct dma_resv_iter cursor;
1611     struct dma_fence *fence;
1612     int ret = 0;
1613 
1614     dma_resv_for_each_fence(&cursor, obj->base.resv,
1615                 dma_resv_usage_rw(write), fence) {
1616         ret = i915_request_await_dma_fence(to, fence);
1617         if (ret)
1618             break;
1619     }
1620 
1621     return ret;
1622 }
1623 
1624 static struct i915_request *
1625 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1626                     struct intel_timeline *timeline)
1627 {
1628     struct i915_request *prev;
1629 
1630     GEM_BUG_ON(!is_parallel_rq(rq));
1631 
1632     prev = request_to_parent(rq)->parallel.last_rq;
1633     if (prev) {
1634         if (!__i915_request_is_complete(prev)) {
1635             i915_sw_fence_await_sw_fence(&rq->submit,
1636                              &prev->submit,
1637                              &rq->submitq);
1638 
1639             if (rq->engine->sched_engine->schedule)
1640                 __i915_sched_node_add_dependency(&rq->sched,
1641                                  &prev->sched,
1642                                  &rq->dep,
1643                                  0);
1644         }
1645         i915_request_put(prev);
1646     }
1647 
1648     request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1649 
1650     return to_request(__i915_active_fence_set(&timeline->last_request,
1651                           &rq->fence));
1652 }
1653 
1654 static struct i915_request *
1655 __i915_request_ensure_ordering(struct i915_request *rq,
1656                    struct intel_timeline *timeline)
1657 {
1658     struct i915_request *prev;
1659 
1660     GEM_BUG_ON(is_parallel_rq(rq));
1661 
1662     prev = to_request(__i915_active_fence_set(&timeline->last_request,
1663                           &rq->fence));
1664 
1665     if (prev && !__i915_request_is_complete(prev)) {
1666         bool uses_guc = intel_engine_uses_guc(rq->engine);
1667         bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1668                       rq->engine->mask);
1669         bool same_context = prev->context == rq->context;
1670 
1671         /*
1672          * The requests are supposed to be kept in order. However,
1673          * we need to be wary in case the timeline->last_request
1674          * is used as a barrier for external modification to this
1675          * context.
1676          */
1677         GEM_BUG_ON(same_context &&
1678                i915_seqno_passed(prev->fence.seqno,
1679                          rq->fence.seqno));
1680 
1681         if ((same_context && uses_guc) || (!uses_guc && pow2))
1682             i915_sw_fence_await_sw_fence(&rq->submit,
1683                              &prev->submit,
1684                              &rq->submitq);
1685         else
1686             __i915_sw_fence_await_dma_fence(&rq->submit,
1687                             &prev->fence,
1688                             &rq->dmaq);
1689         if (rq->engine->sched_engine->schedule)
1690             __i915_sched_node_add_dependency(&rq->sched,
1691                              &prev->sched,
1692                              &rq->dep,
1693                              0);
1694     }
1695 
1696     return prev;
1697 }
1698 
1699 static struct i915_request *
1700 __i915_request_add_to_timeline(struct i915_request *rq)
1701 {
1702     struct intel_timeline *timeline = i915_request_timeline(rq);
1703     struct i915_request *prev;
1704 
1705     /*
1706      * Dependency tracking and request ordering along the timeline
1707      * is special cased so that we can eliminate redundant ordering
1708      * operations while building the request (we know that the timeline
1709      * itself is ordered, and here we guarantee it).
1710      *
1711      * As we know we will need to emit tracking along the timeline,
1712      * we embed the hooks into our request struct -- at the cost of
1713      * having to have specialised no-allocation interfaces (which will
1714      * be beneficial elsewhere).
1715      *
1716      * A second benefit to open-coding i915_request_await_request is
1717      * that we can apply a slight variant of the rules specialised
1718      * for timelines that jump between engines (such as virtual engines).
1719      * If we consider the case of virtual engine, we must emit a dma-fence
1720      * to prevent scheduling of the second request until the first is
1721      * complete (to maximise our greedy late load balancing) and this
1722      * precludes optimising to use semaphores serialisation of a single
1723      * timeline across engines.
1724      *
1725      * We do not order parallel submission requests on the timeline as each
1726      * parallel submission context has its own timeline and the ordering
1727      * rules for parallel requests are that they must be submitted in the
1728      * order received from the execbuf IOCTL. So rather than using the
1729      * timeline we store a pointer to last request submitted in the
1730      * relationship in the gem context and insert a submission fence
1731      * between that request and request passed into this function or
1732      * alternatively we use completion fence if gem context has a single
1733      * timeline and this is the first submission of an execbuf IOCTL.
1734      */
1735     if (likely(!is_parallel_rq(rq)))
1736         prev = __i915_request_ensure_ordering(rq, timeline);
1737     else
1738         prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1739 
1740     /*
1741      * Make sure that no request gazumped us - if it was allocated after
1742      * our i915_request_alloc() and called __i915_request_add() before
1743      * us, the timeline will hold its seqno which is later than ours.
1744      */
1745     GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1746 
1747     return prev;
1748 }
1749 
1750 /*
1751  * NB: This function is not allowed to fail. Doing so would mean the the
1752  * request is not being tracked for completion but the work itself is
1753  * going to happen on the hardware. This would be a Bad Thing(tm).
1754  */
1755 struct i915_request *__i915_request_commit(struct i915_request *rq)
1756 {
1757     struct intel_engine_cs *engine = rq->engine;
1758     struct intel_ring *ring = rq->ring;
1759     u32 *cs;
1760 
1761     RQ_TRACE(rq, "\n");
1762 
1763     /*
1764      * To ensure that this call will not fail, space for its emissions
1765      * should already have been reserved in the ring buffer. Let the ring
1766      * know that it is time to use that space up.
1767      */
1768     GEM_BUG_ON(rq->reserved_space > ring->space);
1769     rq->reserved_space = 0;
1770     rq->emitted_jiffies = jiffies;
1771 
1772     /*
1773      * Record the position of the start of the breadcrumb so that
1774      * should we detect the updated seqno part-way through the
1775      * GPU processing the request, we never over-estimate the
1776      * position of the ring's HEAD.
1777      */
1778     cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1779     GEM_BUG_ON(IS_ERR(cs));
1780     rq->postfix = intel_ring_offset(rq, cs);
1781 
1782     return __i915_request_add_to_timeline(rq);
1783 }
1784 
1785 void __i915_request_queue_bh(struct i915_request *rq)
1786 {
1787     i915_sw_fence_commit(&rq->semaphore);
1788     i915_sw_fence_commit(&rq->submit);
1789 }
1790 
1791 void __i915_request_queue(struct i915_request *rq,
1792               const struct i915_sched_attr *attr)
1793 {
1794     /*
1795      * Let the backend know a new request has arrived that may need
1796      * to adjust the existing execution schedule due to a high priority
1797      * request - i.e. we may want to preempt the current request in order
1798      * to run a high priority dependency chain *before* we can execute this
1799      * request.
1800      *
1801      * This is called before the request is ready to run so that we can
1802      * decide whether to preempt the entire chain so that it is ready to
1803      * run at the earliest possible convenience.
1804      */
1805     if (attr && rq->engine->sched_engine->schedule)
1806         rq->engine->sched_engine->schedule(rq, attr);
1807 
1808     local_bh_disable();
1809     __i915_request_queue_bh(rq);
1810     local_bh_enable(); /* kick tasklets */
1811 }
1812 
1813 void i915_request_add(struct i915_request *rq)
1814 {
1815     struct intel_timeline * const tl = i915_request_timeline(rq);
1816     struct i915_sched_attr attr = {};
1817     struct i915_gem_context *ctx;
1818 
1819     lockdep_assert_held(&tl->mutex);
1820     lockdep_unpin_lock(&tl->mutex, rq->cookie);
1821 
1822     trace_i915_request_add(rq);
1823     __i915_request_commit(rq);
1824 
1825     /* XXX placeholder for selftests */
1826     rcu_read_lock();
1827     ctx = rcu_dereference(rq->context->gem_context);
1828     if (ctx)
1829         attr = ctx->sched;
1830     rcu_read_unlock();
1831 
1832     __i915_request_queue(rq, &attr);
1833 
1834     mutex_unlock(&tl->mutex);
1835 }
1836 
1837 static unsigned long local_clock_ns(unsigned int *cpu)
1838 {
1839     unsigned long t;
1840 
1841     /*
1842      * Cheaply and approximately convert from nanoseconds to microseconds.
1843      * The result and subsequent calculations are also defined in the same
1844      * approximate microseconds units. The principal source of timing
1845      * error here is from the simple truncation.
1846      *
1847      * Note that local_clock() is only defined wrt to the current CPU;
1848      * the comparisons are no longer valid if we switch CPUs. Instead of
1849      * blocking preemption for the entire busywait, we can detect the CPU
1850      * switch and use that as indicator of system load and a reason to
1851      * stop busywaiting, see busywait_stop().
1852      */
1853     *cpu = get_cpu();
1854     t = local_clock();
1855     put_cpu();
1856 
1857     return t;
1858 }
1859 
1860 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1861 {
1862     unsigned int this_cpu;
1863 
1864     if (time_after(local_clock_ns(&this_cpu), timeout))
1865         return true;
1866 
1867     return this_cpu != cpu;
1868 }
1869 
1870 static bool __i915_spin_request(struct i915_request * const rq, int state)
1871 {
1872     unsigned long timeout_ns;
1873     unsigned int cpu;
1874 
1875     /*
1876      * Only wait for the request if we know it is likely to complete.
1877      *
1878      * We don't track the timestamps around requests, nor the average
1879      * request length, so we do not have a good indicator that this
1880      * request will complete within the timeout. What we do know is the
1881      * order in which requests are executed by the context and so we can
1882      * tell if the request has been started. If the request is not even
1883      * running yet, it is a fair assumption that it will not complete
1884      * within our relatively short timeout.
1885      */
1886     if (!i915_request_is_running(rq))
1887         return false;
1888 
1889     /*
1890      * When waiting for high frequency requests, e.g. during synchronous
1891      * rendering split between the CPU and GPU, the finite amount of time
1892      * required to set up the irq and wait upon it limits the response
1893      * rate. By busywaiting on the request completion for a short while we
1894      * can service the high frequency waits as quick as possible. However,
1895      * if it is a slow request, we want to sleep as quickly as possible.
1896      * The tradeoff between waiting and sleeping is roughly the time it
1897      * takes to sleep on a request, on the order of a microsecond.
1898      */
1899 
1900     timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1901     timeout_ns += local_clock_ns(&cpu);
1902     do {
1903         if (dma_fence_is_signaled(&rq->fence))
1904             return true;
1905 
1906         if (signal_pending_state(state, current))
1907             break;
1908 
1909         if (busywait_stop(timeout_ns, cpu))
1910             break;
1911 
1912         cpu_relax();
1913     } while (!need_resched());
1914 
1915     return false;
1916 }
1917 
1918 struct request_wait {
1919     struct dma_fence_cb cb;
1920     struct task_struct *tsk;
1921 };
1922 
1923 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1924 {
1925     struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1926 
1927     wake_up_process(fetch_and_zero(&wait->tsk));
1928 }
1929 
1930 /**
1931  * i915_request_wait_timeout - wait until execution of request has finished
1932  * @rq: the request to wait upon
1933  * @flags: how to wait
1934  * @timeout: how long to wait in jiffies
1935  *
1936  * i915_request_wait_timeout() waits for the request to be completed, for a
1937  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1938  * unbounded wait).
1939  *
1940  * Returns the remaining time (in jiffies) if the request completed, which may
1941  * be zero if the request is unfinished after the timeout expires.
1942  * If the timeout is 0, it will return 1 if the fence is signaled.
1943  *
1944  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1945  * pending before the request completes.
1946  *
1947  * NOTE: This function has the same wait semantics as dma-fence.
1948  */
1949 long i915_request_wait_timeout(struct i915_request *rq,
1950                    unsigned int flags,
1951                    long timeout)
1952 {
1953     const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1954         TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1955     struct request_wait wait;
1956 
1957     might_sleep();
1958     GEM_BUG_ON(timeout < 0);
1959 
1960     if (dma_fence_is_signaled(&rq->fence))
1961         return timeout ?: 1;
1962 
1963     if (!timeout)
1964         return -ETIME;
1965 
1966     trace_i915_request_wait_begin(rq, flags);
1967 
1968     /*
1969      * We must never wait on the GPU while holding a lock as we
1970      * may need to perform a GPU reset. So while we don't need to
1971      * serialise wait/reset with an explicit lock, we do want
1972      * lockdep to detect potential dependency cycles.
1973      */
1974     mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1975 
1976     /*
1977      * Optimistic spin before touching IRQs.
1978      *
1979      * We may use a rather large value here to offset the penalty of
1980      * switching away from the active task. Frequently, the client will
1981      * wait upon an old swapbuffer to throttle itself to remain within a
1982      * frame of the gpu. If the client is running in lockstep with the gpu,
1983      * then it should not be waiting long at all, and a sleep now will incur
1984      * extra scheduler latency in producing the next frame. To try to
1985      * avoid adding the cost of enabling/disabling the interrupt to the
1986      * short wait, we first spin to see if the request would have completed
1987      * in the time taken to setup the interrupt.
1988      *
1989      * We need upto 5us to enable the irq, and upto 20us to hide the
1990      * scheduler latency of a context switch, ignoring the secondary
1991      * impacts from a context switch such as cache eviction.
1992      *
1993      * The scheme used for low-latency IO is called "hybrid interrupt
1994      * polling". The suggestion there is to sleep until just before you
1995      * expect to be woken by the device interrupt and then poll for its
1996      * completion. That requires having a good predictor for the request
1997      * duration, which we currently lack.
1998      */
1999     if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2000         __i915_spin_request(rq, state))
2001         goto out;
2002 
2003     /*
2004      * This client is about to stall waiting for the GPU. In many cases
2005      * this is undesirable and limits the throughput of the system, as
2006      * many clients cannot continue processing user input/output whilst
2007      * blocked. RPS autotuning may take tens of milliseconds to respond
2008      * to the GPU load and thus incurs additional latency for the client.
2009      * We can circumvent that by promoting the GPU frequency to maximum
2010      * before we sleep. This makes the GPU throttle up much more quickly
2011      * (good for benchmarks and user experience, e.g. window animations),
2012      * but at a cost of spending more power processing the workload
2013      * (bad for battery).
2014      */
2015     if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2016         intel_rps_boost(rq);
2017 
2018     wait.tsk = current;
2019     if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2020         goto out;
2021 
2022     /*
2023      * Flush the submission tasklet, but only if it may help this request.
2024      *
2025      * We sometimes experience some latency between the HW interrupts and
2026      * tasklet execution (mostly due to ksoftirqd latency, but it can also
2027      * be due to lazy CS events), so lets run the tasklet manually if there
2028      * is a chance it may submit this request. If the request is not ready
2029      * to run, as it is waiting for other fences to be signaled, flushing
2030      * the tasklet is busy work without any advantage for this client.
2031      *
2032      * If the HW is being lazy, this is the last chance before we go to
2033      * sleep to catch any pending events. We will check periodically in
2034      * the heartbeat to flush the submission tasklets as a last resort
2035      * for unhappy HW.
2036      */
2037     if (i915_request_is_ready(rq))
2038         __intel_engine_flush_submission(rq->engine, false);
2039 
2040     for (;;) {
2041         set_current_state(state);
2042 
2043         if (dma_fence_is_signaled(&rq->fence))
2044             break;
2045 
2046         if (signal_pending_state(state, current)) {
2047             timeout = -ERESTARTSYS;
2048             break;
2049         }
2050 
2051         if (!timeout) {
2052             timeout = -ETIME;
2053             break;
2054         }
2055 
2056         timeout = io_schedule_timeout(timeout);
2057     }
2058     __set_current_state(TASK_RUNNING);
2059 
2060     if (READ_ONCE(wait.tsk))
2061         dma_fence_remove_callback(&rq->fence, &wait.cb);
2062     GEM_BUG_ON(!list_empty(&wait.cb.node));
2063 
2064 out:
2065     mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2066     trace_i915_request_wait_end(rq);
2067     return timeout;
2068 }
2069 
2070 /**
2071  * i915_request_wait - wait until execution of request has finished
2072  * @rq: the request to wait upon
2073  * @flags: how to wait
2074  * @timeout: how long to wait in jiffies
2075  *
2076  * i915_request_wait() waits for the request to be completed, for a
2077  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2078  * unbounded wait).
2079  *
2080  * Returns the remaining time (in jiffies) if the request completed, which may
2081  * be zero or -ETIME if the request is unfinished after the timeout expires.
2082  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2083  * pending before the request completes.
2084  *
2085  * NOTE: This function behaves differently from dma-fence wait semantics for
2086  * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2087  */
2088 long i915_request_wait(struct i915_request *rq,
2089                unsigned int flags,
2090                long timeout)
2091 {
2092     long ret = i915_request_wait_timeout(rq, flags, timeout);
2093 
2094     if (!ret)
2095         return -ETIME;
2096 
2097     if (ret > 0 && !timeout)
2098         return 0;
2099 
2100     return ret;
2101 }
2102 
2103 static int print_sched_attr(const struct i915_sched_attr *attr,
2104                 char *buf, int x, int len)
2105 {
2106     if (attr->priority == I915_PRIORITY_INVALID)
2107         return x;
2108 
2109     x += snprintf(buf + x, len - x,
2110               " prio=%d", attr->priority);
2111 
2112     return x;
2113 }
2114 
2115 static char queue_status(const struct i915_request *rq)
2116 {
2117     if (i915_request_is_active(rq))
2118         return 'E';
2119 
2120     if (i915_request_is_ready(rq))
2121         return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2122 
2123     return 'U';
2124 }
2125 
2126 static const char *run_status(const struct i915_request *rq)
2127 {
2128     if (__i915_request_is_complete(rq))
2129         return "!";
2130 
2131     if (__i915_request_has_started(rq))
2132         return "*";
2133 
2134     if (!i915_sw_fence_signaled(&rq->semaphore))
2135         return "&";
2136 
2137     return "";
2138 }
2139 
2140 static const char *fence_status(const struct i915_request *rq)
2141 {
2142     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2143         return "+";
2144 
2145     if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2146         return "-";
2147 
2148     return "";
2149 }
2150 
2151 void i915_request_show(struct drm_printer *m,
2152                const struct i915_request *rq,
2153                const char *prefix,
2154                int indent)
2155 {
2156     const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2157     char buf[80] = "";
2158     int x = 0;
2159 
2160     /*
2161      * The prefix is used to show the queue status, for which we use
2162      * the following flags:
2163      *
2164      *  U [Unready]
2165      *    - initial status upon being submitted by the user
2166      *
2167      *    - the request is not ready for execution as it is waiting
2168      *      for external fences
2169      *
2170      *  R [Ready]
2171      *    - all fences the request was waiting on have been signaled,
2172      *      and the request is now ready for execution and will be
2173      *      in a backend queue
2174      *
2175      *    - a ready request may still need to wait on semaphores
2176      *      [internal fences]
2177      *
2178      *  V [Ready/virtual]
2179      *    - same as ready, but queued over multiple backends
2180      *
2181      *  E [Executing]
2182      *    - the request has been transferred from the backend queue and
2183      *      submitted for execution on HW
2184      *
2185      *    - a completed request may still be regarded as executing, its
2186      *      status may not be updated until it is retired and removed
2187      *      from the lists
2188      */
2189 
2190     x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2191 
2192     drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2193            prefix, indent, "                ",
2194            queue_status(rq),
2195            rq->fence.context, rq->fence.seqno,
2196            run_status(rq),
2197            fence_status(rq),
2198            buf,
2199            jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2200            name);
2201 }
2202 
2203 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2204 {
2205     u32 ring = ENGINE_READ(engine, RING_START);
2206 
2207     return ring == i915_ggtt_offset(rq->ring->vma);
2208 }
2209 
2210 static bool match_ring(struct i915_request *rq)
2211 {
2212     struct intel_engine_cs *engine;
2213     bool found;
2214     int i;
2215 
2216     if (!intel_engine_is_virtual(rq->engine))
2217         return engine_match_ring(rq->engine, rq);
2218 
2219     found = false;
2220     i = 0;
2221     while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2222         found = engine_match_ring(engine, rq);
2223         if (found)
2224             break;
2225     }
2226 
2227     return found;
2228 }
2229 
2230 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2231 {
2232     if (i915_request_completed(rq))
2233         return I915_REQUEST_COMPLETE;
2234 
2235     if (!i915_request_started(rq))
2236         return I915_REQUEST_PENDING;
2237 
2238     if (match_ring(rq))
2239         return I915_REQUEST_ACTIVE;
2240 
2241     return I915_REQUEST_QUEUED;
2242 }
2243 
2244 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2245 #include "selftests/mock_request.c"
2246 #include "selftests/i915_request.c"
2247 #endif
2248 
2249 void i915_request_module_exit(void)
2250 {
2251     kmem_cache_destroy(slab_execute_cbs);
2252     kmem_cache_destroy(slab_requests);
2253 }
2254 
2255 int __init i915_request_module_init(void)
2256 {
2257     slab_requests =
2258         kmem_cache_create("i915_request",
2259                   sizeof(struct i915_request),
2260                   __alignof__(struct i915_request),
2261                   SLAB_HWCACHE_ALIGN |
2262                   SLAB_RECLAIM_ACCOUNT |
2263                   SLAB_TYPESAFE_BY_RCU,
2264                   __i915_request_ctor);
2265     if (!slab_requests)
2266         return -ENOMEM;
2267 
2268     slab_execute_cbs = KMEM_CACHE(execute_cb,
2269                          SLAB_HWCACHE_ALIGN |
2270                          SLAB_RECLAIM_ACCOUNT |
2271                          SLAB_TYPESAFE_BY_RCU);
2272     if (!slab_execute_cbs)
2273         goto err_requests;
2274 
2275     return 0;
2276 
2277 err_requests:
2278     kmem_cache_destroy(slab_requests);
2279     return -ENOMEM;
2280 }