Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice (including the next
0012  * paragraph) shall be included in all copies or substantial portions of the
0013  * Software.
0014  *
0015  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0016  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0017  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0018  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
0019  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0020  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0021  * SOFTWARE.
0022  *
0023  * Authors:
0024  *    Zhi Wang <zhi.a.wang@intel.com>
0025  *
0026  * Contributors:
0027  *    Ping Gao <ping.a.gao@intel.com>
0028  *    Tina Zhang <tina.zhang@intel.com>
0029  *    Chanbin Du <changbin.du@intel.com>
0030  *    Min He <min.he@intel.com>
0031  *    Bing Niu <bing.niu@intel.com>
0032  *    Zhenyu Wang <zhenyuw@linux.intel.com>
0033  *
0034  */
0035 
0036 #include <linux/kthread.h>
0037 
0038 #include "gem/i915_gem_pm.h"
0039 #include "gt/intel_context.h"
0040 #include "gt/intel_execlists_submission.h"
0041 #include "gt/intel_gt_regs.h"
0042 #include "gt/intel_lrc.h"
0043 #include "gt/intel_ring.h"
0044 
0045 #include "i915_drv.h"
0046 #include "i915_gem_gtt.h"
0047 #include "i915_perf_oa_regs.h"
0048 #include "gvt.h"
0049 
0050 #define RING_CTX_OFF(x) \
0051     offsetof(struct execlist_ring_context, x)
0052 
0053 static void set_context_pdp_root_pointer(
0054         struct execlist_ring_context *ring_context,
0055         u32 pdp[8])
0056 {
0057     int i;
0058 
0059     for (i = 0; i < 8; i++)
0060         ring_context->pdps[i].val = pdp[7 - i];
0061 }
0062 
0063 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
0064 {
0065     struct execlist_ring_context *shadow_ring_context;
0066     struct intel_context *ctx = workload->req->context;
0067 
0068     if (WARN_ON(!workload->shadow_mm))
0069         return;
0070 
0071     if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
0072         return;
0073 
0074     shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
0075     set_context_pdp_root_pointer(shadow_ring_context,
0076             (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
0077 }
0078 
0079 /*
0080  * when populating shadow ctx from guest, we should not overrride oa related
0081  * registers, so that they will not be overlapped by guest oa configs. Thus
0082  * made it possible to capture oa data from host for both host and guests.
0083  */
0084 static void sr_oa_regs(struct intel_vgpu_workload *workload,
0085         u32 *reg_state, bool save)
0086 {
0087     struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
0088     u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
0089     u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
0090     int i = 0;
0091     u32 flex_mmio[] = {
0092         i915_mmio_reg_offset(EU_PERF_CNTL0),
0093         i915_mmio_reg_offset(EU_PERF_CNTL1),
0094         i915_mmio_reg_offset(EU_PERF_CNTL2),
0095         i915_mmio_reg_offset(EU_PERF_CNTL3),
0096         i915_mmio_reg_offset(EU_PERF_CNTL4),
0097         i915_mmio_reg_offset(EU_PERF_CNTL5),
0098         i915_mmio_reg_offset(EU_PERF_CNTL6),
0099     };
0100 
0101     if (workload->engine->id != RCS0)
0102         return;
0103 
0104     if (save) {
0105         workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
0106 
0107         for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
0108             u32 state_offset = ctx_flexeu0 + i * 2;
0109 
0110             workload->flex_mmio[i] = reg_state[state_offset + 1];
0111         }
0112     } else {
0113         reg_state[ctx_oactxctrl] =
0114             i915_mmio_reg_offset(GEN8_OACTXCONTROL);
0115         reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
0116 
0117         for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
0118             u32 state_offset = ctx_flexeu0 + i * 2;
0119             u32 mmio = flex_mmio[i];
0120 
0121             reg_state[state_offset] = mmio;
0122             reg_state[state_offset + 1] = workload->flex_mmio[i];
0123         }
0124     }
0125 }
0126 
0127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
0128 {
0129     struct intel_vgpu *vgpu = workload->vgpu;
0130     struct intel_gvt *gvt = vgpu->gvt;
0131     struct intel_context *ctx = workload->req->context;
0132     struct execlist_ring_context *shadow_ring_context;
0133     void *dst;
0134     void *context_base;
0135     unsigned long context_gpa, context_page_num;
0136     unsigned long gpa_base; /* first gpa of consecutive GPAs */
0137     unsigned long gpa_size; /* size of consecutive GPAs */
0138     struct intel_vgpu_submission *s = &vgpu->submission;
0139     int i;
0140     bool skip = false;
0141     int ring_id = workload->engine->id;
0142     int ret;
0143 
0144     GEM_BUG_ON(!intel_context_is_pinned(ctx));
0145 
0146     context_base = (void *) ctx->lrc_reg_state -
0147                 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
0148 
0149     shadow_ring_context = (void *) ctx->lrc_reg_state;
0150 
0151     sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
0152 #define COPY_REG(name) \
0153     intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
0154         + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
0155 #define COPY_REG_MASKED(name) {\
0156         intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
0157                           + RING_CTX_OFF(name.val),\
0158                           &shadow_ring_context->name.val, 4);\
0159         shadow_ring_context->name.val |= 0xffff << 16;\
0160     }
0161 
0162     COPY_REG_MASKED(ctx_ctrl);
0163     COPY_REG(ctx_timestamp);
0164 
0165     if (workload->engine->id == RCS0) {
0166         COPY_REG(bb_per_ctx_ptr);
0167         COPY_REG(rcs_indirect_ctx);
0168         COPY_REG(rcs_indirect_ctx_offset);
0169     } else if (workload->engine->id == BCS0)
0170         intel_gvt_read_gpa(vgpu,
0171                 workload->ring_context_gpa +
0172                 BCS_TILE_REGISTER_VAL_OFFSET,
0173                 (void *)shadow_ring_context +
0174                 BCS_TILE_REGISTER_VAL_OFFSET, 4);
0175 #undef COPY_REG
0176 #undef COPY_REG_MASKED
0177 
0178     /* don't copy Ring Context (the first 0x50 dwords),
0179      * only copy the Engine Context part from guest
0180      */
0181     intel_gvt_read_gpa(vgpu,
0182             workload->ring_context_gpa +
0183             RING_CTX_SIZE,
0184             (void *)shadow_ring_context +
0185             RING_CTX_SIZE,
0186             I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
0187 
0188     sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
0189 
0190     gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
0191             workload->engine->name, workload->ctx_desc.lrca,
0192             workload->ctx_desc.context_id,
0193             workload->ring_context_gpa);
0194 
0195     /* only need to ensure this context is not pinned/unpinned during the
0196      * period from last submission to this this submission.
0197      * Upon reaching this function, the currently submitted context is not
0198      * supposed to get unpinned. If a misbehaving guest driver ever does
0199      * this, it would corrupt itself.
0200      */
0201     if (s->last_ctx[ring_id].valid &&
0202             (s->last_ctx[ring_id].lrca ==
0203                 workload->ctx_desc.lrca) &&
0204             (s->last_ctx[ring_id].ring_context_gpa ==
0205                 workload->ring_context_gpa))
0206         skip = true;
0207 
0208     s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
0209     s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
0210 
0211     if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
0212         return 0;
0213 
0214     s->last_ctx[ring_id].valid = false;
0215     context_page_num = workload->engine->context_size;
0216     context_page_num = context_page_num >> PAGE_SHIFT;
0217 
0218     if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
0219         context_page_num = 19;
0220 
0221     /* find consecutive GPAs from gma until the first inconsecutive GPA.
0222      * read from the continuous GPAs into dst virtual address
0223      */
0224     gpa_size = 0;
0225     for (i = 2; i < context_page_num; i++) {
0226         context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
0227                 (u32)((workload->ctx_desc.lrca + i) <<
0228                 I915_GTT_PAGE_SHIFT));
0229         if (context_gpa == INTEL_GVT_INVALID_ADDR) {
0230             gvt_vgpu_err("Invalid guest context descriptor\n");
0231             return -EFAULT;
0232         }
0233 
0234         if (gpa_size == 0) {
0235             gpa_base = context_gpa;
0236             dst = context_base + (i << I915_GTT_PAGE_SHIFT);
0237         } else if (context_gpa != gpa_base + gpa_size)
0238             goto read;
0239 
0240         gpa_size += I915_GTT_PAGE_SIZE;
0241 
0242         if (i == context_page_num - 1)
0243             goto read;
0244 
0245         continue;
0246 
0247 read:
0248         intel_gvt_read_gpa(vgpu, gpa_base, dst, gpa_size);
0249         gpa_base = context_gpa;
0250         gpa_size = I915_GTT_PAGE_SIZE;
0251         dst = context_base + (i << I915_GTT_PAGE_SHIFT);
0252     }
0253     ret = intel_gvt_scan_engine_context(workload);
0254     if (ret) {
0255         gvt_vgpu_err("invalid cmd found in guest context pages\n");
0256         return ret;
0257     }
0258     s->last_ctx[ring_id].valid = true;
0259     return 0;
0260 }
0261 
0262 static inline bool is_gvt_request(struct i915_request *rq)
0263 {
0264     return intel_context_force_single_submission(rq->context);
0265 }
0266 
0267 static void save_ring_hw_state(struct intel_vgpu *vgpu,
0268                    const struct intel_engine_cs *engine)
0269 {
0270     struct intel_uncore *uncore = engine->uncore;
0271     i915_reg_t reg;
0272 
0273     reg = RING_INSTDONE(engine->mmio_base);
0274     vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
0275         intel_uncore_read(uncore, reg);
0276 
0277     reg = RING_ACTHD(engine->mmio_base);
0278     vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
0279         intel_uncore_read(uncore, reg);
0280 
0281     reg = RING_ACTHD_UDW(engine->mmio_base);
0282     vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
0283         intel_uncore_read(uncore, reg);
0284 }
0285 
0286 static int shadow_context_status_change(struct notifier_block *nb,
0287         unsigned long action, void *data)
0288 {
0289     struct i915_request *rq = data;
0290     struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
0291                 shadow_ctx_notifier_block[rq->engine->id]);
0292     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
0293     enum intel_engine_id ring_id = rq->engine->id;
0294     struct intel_vgpu_workload *workload;
0295     unsigned long flags;
0296 
0297     if (!is_gvt_request(rq)) {
0298         spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
0299         if (action == INTEL_CONTEXT_SCHEDULE_IN &&
0300             scheduler->engine_owner[ring_id]) {
0301             /* Switch ring from vGPU to host. */
0302             intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
0303                           NULL, rq->engine);
0304             scheduler->engine_owner[ring_id] = NULL;
0305         }
0306         spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
0307 
0308         return NOTIFY_OK;
0309     }
0310 
0311     workload = scheduler->current_workload[ring_id];
0312     if (unlikely(!workload))
0313         return NOTIFY_OK;
0314 
0315     switch (action) {
0316     case INTEL_CONTEXT_SCHEDULE_IN:
0317         spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
0318         if (workload->vgpu != scheduler->engine_owner[ring_id]) {
0319             /* Switch ring from host to vGPU or vGPU to vGPU. */
0320             intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
0321                           workload->vgpu, rq->engine);
0322             scheduler->engine_owner[ring_id] = workload->vgpu;
0323         } else
0324             gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
0325                       ring_id, workload->vgpu->id);
0326         spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
0327         atomic_set(&workload->shadow_ctx_active, 1);
0328         break;
0329     case INTEL_CONTEXT_SCHEDULE_OUT:
0330         save_ring_hw_state(workload->vgpu, rq->engine);
0331         atomic_set(&workload->shadow_ctx_active, 0);
0332         break;
0333     case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
0334         save_ring_hw_state(workload->vgpu, rq->engine);
0335         break;
0336     default:
0337         WARN_ON(1);
0338         return NOTIFY_OK;
0339     }
0340     wake_up(&workload->shadow_ctx_status_wq);
0341     return NOTIFY_OK;
0342 }
0343 
0344 static void
0345 shadow_context_descriptor_update(struct intel_context *ce,
0346                  struct intel_vgpu_workload *workload)
0347 {
0348     u64 desc = ce->lrc.desc;
0349 
0350     /*
0351      * Update bits 0-11 of the context descriptor which includes flags
0352      * like GEN8_CTX_* cached in desc_template
0353      */
0354     desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
0355     desc |= (u64)workload->ctx_desc.addressing_mode <<
0356         GEN8_CTX_ADDRESSING_MODE_SHIFT;
0357 
0358     ce->lrc.desc = desc;
0359 }
0360 
0361 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
0362 {
0363     struct intel_vgpu *vgpu = workload->vgpu;
0364     struct i915_request *req = workload->req;
0365     void *shadow_ring_buffer_va;
0366     u32 *cs;
0367     int err;
0368 
0369     if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context))
0370         intel_vgpu_restore_inhibit_context(vgpu, req);
0371 
0372     /*
0373      * To track whether a request has started on HW, we can emit a
0374      * breadcrumb at the beginning of the request and check its
0375      * timeline's HWSP to see if the breadcrumb has advanced past the
0376      * start of this request. Actually, the request must have the
0377      * init_breadcrumb if its timeline set has_init_bread_crumb, or the
0378      * scheduler might get a wrong state of it during reset. Since the
0379      * requests from gvt always set the has_init_breadcrumb flag, here
0380      * need to do the emit_init_breadcrumb for all the requests.
0381      */
0382     if (req->engine->emit_init_breadcrumb) {
0383         err = req->engine->emit_init_breadcrumb(req);
0384         if (err) {
0385             gvt_vgpu_err("fail to emit init breadcrumb\n");
0386             return err;
0387         }
0388     }
0389 
0390     /* allocate shadow ring buffer */
0391     cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
0392     if (IS_ERR(cs)) {
0393         gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
0394             workload->rb_len);
0395         return PTR_ERR(cs);
0396     }
0397 
0398     shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
0399 
0400     /* get shadow ring buffer va */
0401     workload->shadow_ring_buffer_va = cs;
0402 
0403     memcpy(cs, shadow_ring_buffer_va,
0404             workload->rb_len);
0405 
0406     cs += workload->rb_len / sizeof(u32);
0407     intel_ring_advance(workload->req, cs);
0408 
0409     return 0;
0410 }
0411 
0412 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
0413 {
0414     if (!wa_ctx->indirect_ctx.obj)
0415         return;
0416 
0417     i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
0418     i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
0419     i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
0420     i915_gem_object_put(wa_ctx->indirect_ctx.obj);
0421 
0422     wa_ctx->indirect_ctx.obj = NULL;
0423     wa_ctx->indirect_ctx.shadow_va = NULL;
0424 }
0425 
0426 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
0427 {
0428     struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
0429 
0430     /* This is not a good idea */
0431     sg->dma_address = addr;
0432 }
0433 
0434 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
0435                       struct intel_context *ce)
0436 {
0437     struct intel_vgpu_mm *mm = workload->shadow_mm;
0438     struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
0439     int i = 0;
0440 
0441     if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
0442         set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
0443     } else {
0444         for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
0445             struct i915_page_directory * const pd =
0446                 i915_pd_entry(ppgtt->pd, i);
0447             /* skip now as current i915 ppgtt alloc won't allocate
0448                top level pdp for non 4-level table, won't impact
0449                shadow ppgtt. */
0450             if (!pd)
0451                 break;
0452 
0453             set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
0454         }
0455     }
0456 }
0457 
0458 static int
0459 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
0460 {
0461     struct intel_vgpu *vgpu = workload->vgpu;
0462     struct intel_vgpu_submission *s = &vgpu->submission;
0463     struct i915_request *rq;
0464 
0465     if (workload->req)
0466         return 0;
0467 
0468     rq = i915_request_create(s->shadow[workload->engine->id]);
0469     if (IS_ERR(rq)) {
0470         gvt_vgpu_err("fail to allocate gem request\n");
0471         return PTR_ERR(rq);
0472     }
0473 
0474     workload->req = i915_request_get(rq);
0475     return 0;
0476 }
0477 
0478 /**
0479  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
0480  * shadow it as well, include ringbuffer,wa_ctx and ctx.
0481  * @workload: an abstract entity for each execlist submission.
0482  *
0483  * This function is called before the workload submitting to i915, to make
0484  * sure the content of the workload is valid.
0485  */
0486 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
0487 {
0488     struct intel_vgpu *vgpu = workload->vgpu;
0489     struct intel_vgpu_submission *s = &vgpu->submission;
0490     int ret;
0491 
0492     lockdep_assert_held(&vgpu->vgpu_lock);
0493 
0494     if (workload->shadow)
0495         return 0;
0496 
0497     if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
0498         shadow_context_descriptor_update(s->shadow[workload->engine->id],
0499                          workload);
0500 
0501     ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
0502     if (ret)
0503         return ret;
0504 
0505     if (workload->engine->id == RCS0 &&
0506         workload->wa_ctx.indirect_ctx.size) {
0507         ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
0508         if (ret)
0509             goto err_shadow;
0510     }
0511 
0512     workload->shadow = true;
0513     return 0;
0514 
0515 err_shadow:
0516     release_shadow_wa_ctx(&workload->wa_ctx);
0517     return ret;
0518 }
0519 
0520 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
0521 
0522 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
0523 {
0524     struct intel_gvt *gvt = workload->vgpu->gvt;
0525     const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
0526     struct intel_vgpu_shadow_bb *bb;
0527     struct i915_gem_ww_ctx ww;
0528     int ret;
0529 
0530     list_for_each_entry(bb, &workload->shadow_bb, list) {
0531         /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
0532          * is only updated into ring_scan_buffer, not real ring address
0533          * allocated in later copy_workload_to_ring_buffer. pls be noted
0534          * shadow_ring_buffer_va is now pointed to real ring buffer va
0535          * in copy_workload_to_ring_buffer.
0536          */
0537 
0538         if (bb->bb_offset)
0539             bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
0540                 + bb->bb_offset;
0541 
0542         /*
0543          * For non-priv bb, scan&shadow is only for
0544          * debugging purpose, so the content of shadow bb
0545          * is the same as original bb. Therefore,
0546          * here, rather than switch to shadow bb's gma
0547          * address, we directly use original batch buffer's
0548          * gma address, and send original bb to hardware
0549          * directly
0550          */
0551         if (!bb->ppgtt) {
0552             i915_gem_ww_ctx_init(&ww, false);
0553 retry:
0554             i915_gem_object_lock(bb->obj, &ww);
0555 
0556             bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
0557                                   NULL, 0, 0, 0);
0558             if (IS_ERR(bb->vma)) {
0559                 ret = PTR_ERR(bb->vma);
0560                 if (ret == -EDEADLK) {
0561                     ret = i915_gem_ww_ctx_backoff(&ww);
0562                     if (!ret)
0563                         goto retry;
0564                 }
0565                 goto err;
0566             }
0567 
0568             /* relocate shadow batch buffer */
0569             bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
0570             if (gmadr_bytes == 8)
0571                 bb->bb_start_cmd_va[2] = 0;
0572 
0573             ret = i915_vma_move_to_active(bb->vma,
0574                               workload->req,
0575                               0);
0576             if (ret)
0577                 goto err;
0578 
0579             /* No one is going to touch shadow bb from now on. */
0580             i915_gem_object_flush_map(bb->obj);
0581             i915_gem_ww_ctx_fini(&ww);
0582         }
0583     }
0584     return 0;
0585 err:
0586     i915_gem_ww_ctx_fini(&ww);
0587     release_shadow_batch_buffer(workload);
0588     return ret;
0589 }
0590 
0591 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
0592 {
0593     struct intel_vgpu_workload *workload =
0594         container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
0595     struct i915_request *rq = workload->req;
0596     struct execlist_ring_context *shadow_ring_context =
0597         (struct execlist_ring_context *)rq->context->lrc_reg_state;
0598 
0599     shadow_ring_context->bb_per_ctx_ptr.val =
0600         (shadow_ring_context->bb_per_ctx_ptr.val &
0601         (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
0602     shadow_ring_context->rcs_indirect_ctx.val =
0603         (shadow_ring_context->rcs_indirect_ctx.val &
0604         (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
0605 }
0606 
0607 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
0608 {
0609     struct i915_vma *vma;
0610     unsigned char *per_ctx_va =
0611         (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
0612         wa_ctx->indirect_ctx.size;
0613     struct i915_gem_ww_ctx ww;
0614     int ret;
0615 
0616     if (wa_ctx->indirect_ctx.size == 0)
0617         return 0;
0618 
0619     i915_gem_ww_ctx_init(&ww, false);
0620 retry:
0621     i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
0622 
0623     vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
0624                       0, CACHELINE_BYTES, 0);
0625     if (IS_ERR(vma)) {
0626         ret = PTR_ERR(vma);
0627         if (ret == -EDEADLK) {
0628             ret = i915_gem_ww_ctx_backoff(&ww);
0629             if (!ret)
0630                 goto retry;
0631         }
0632         return ret;
0633     }
0634 
0635     i915_gem_ww_ctx_fini(&ww);
0636 
0637     /* FIXME: we are not tracking our pinned VMA leaving it
0638      * up to the core to fix up the stray pin_count upon
0639      * free.
0640      */
0641 
0642     wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
0643 
0644     wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
0645     memset(per_ctx_va, 0, CACHELINE_BYTES);
0646 
0647     update_wa_ctx_2_shadow_ctx(wa_ctx);
0648     return 0;
0649 }
0650 
0651 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
0652 {
0653     vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
0654         workload->rb_start;
0655 }
0656 
0657 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
0658 {
0659     struct intel_vgpu_shadow_bb *bb, *pos;
0660 
0661     if (list_empty(&workload->shadow_bb))
0662         return;
0663 
0664     bb = list_first_entry(&workload->shadow_bb,
0665             struct intel_vgpu_shadow_bb, list);
0666 
0667     list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
0668         if (bb->obj) {
0669             i915_gem_object_lock(bb->obj, NULL);
0670             if (bb->va && !IS_ERR(bb->va))
0671                 i915_gem_object_unpin_map(bb->obj);
0672 
0673             if (bb->vma && !IS_ERR(bb->vma))
0674                 i915_vma_unpin(bb->vma);
0675 
0676             i915_gem_object_unlock(bb->obj);
0677             i915_gem_object_put(bb->obj);
0678         }
0679         list_del(&bb->list);
0680         kfree(bb);
0681     }
0682 }
0683 
0684 static int
0685 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
0686 {
0687     struct intel_vgpu *vgpu = workload->vgpu;
0688     struct intel_vgpu_mm *m;
0689     int ret = 0;
0690 
0691     ret = intel_vgpu_pin_mm(workload->shadow_mm);
0692     if (ret) {
0693         gvt_vgpu_err("fail to vgpu pin mm\n");
0694         return ret;
0695     }
0696 
0697     if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
0698         !workload->shadow_mm->ppgtt_mm.shadowed) {
0699         gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
0700         return -EINVAL;
0701     }
0702 
0703     if (!list_empty(&workload->lri_shadow_mm)) {
0704         list_for_each_entry(m, &workload->lri_shadow_mm,
0705                     ppgtt_mm.link) {
0706             ret = intel_vgpu_pin_mm(m);
0707             if (ret) {
0708                 list_for_each_entry_from_reverse(m,
0709                                  &workload->lri_shadow_mm,
0710                                  ppgtt_mm.link)
0711                     intel_vgpu_unpin_mm(m);
0712                 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
0713                 break;
0714             }
0715         }
0716     }
0717 
0718     if (ret)
0719         intel_vgpu_unpin_mm(workload->shadow_mm);
0720 
0721     return ret;
0722 }
0723 
0724 static void
0725 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
0726 {
0727     struct intel_vgpu_mm *m;
0728 
0729     if (!list_empty(&workload->lri_shadow_mm)) {
0730         list_for_each_entry(m, &workload->lri_shadow_mm,
0731                     ppgtt_mm.link)
0732             intel_vgpu_unpin_mm(m);
0733     }
0734     intel_vgpu_unpin_mm(workload->shadow_mm);
0735 }
0736 
0737 static int prepare_workload(struct intel_vgpu_workload *workload)
0738 {
0739     struct intel_vgpu *vgpu = workload->vgpu;
0740     struct intel_vgpu_submission *s = &vgpu->submission;
0741     int ret = 0;
0742 
0743     ret = intel_vgpu_shadow_mm_pin(workload);
0744     if (ret) {
0745         gvt_vgpu_err("fail to pin shadow mm\n");
0746         return ret;
0747     }
0748 
0749     update_shadow_pdps(workload);
0750 
0751     set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
0752 
0753     ret = intel_vgpu_sync_oos_pages(workload->vgpu);
0754     if (ret) {
0755         gvt_vgpu_err("fail to vgpu sync oos pages\n");
0756         goto err_unpin_mm;
0757     }
0758 
0759     ret = intel_vgpu_flush_post_shadow(workload->vgpu);
0760     if (ret) {
0761         gvt_vgpu_err("fail to flush post shadow\n");
0762         goto err_unpin_mm;
0763     }
0764 
0765     ret = copy_workload_to_ring_buffer(workload);
0766     if (ret) {
0767         gvt_vgpu_err("fail to generate request\n");
0768         goto err_unpin_mm;
0769     }
0770 
0771     ret = prepare_shadow_batch_buffer(workload);
0772     if (ret) {
0773         gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
0774         goto err_unpin_mm;
0775     }
0776 
0777     ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
0778     if (ret) {
0779         gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
0780         goto err_shadow_batch;
0781     }
0782 
0783     if (workload->prepare) {
0784         ret = workload->prepare(workload);
0785         if (ret)
0786             goto err_shadow_wa_ctx;
0787     }
0788 
0789     return 0;
0790 err_shadow_wa_ctx:
0791     release_shadow_wa_ctx(&workload->wa_ctx);
0792 err_shadow_batch:
0793     release_shadow_batch_buffer(workload);
0794 err_unpin_mm:
0795     intel_vgpu_shadow_mm_unpin(workload);
0796     return ret;
0797 }
0798 
0799 static int dispatch_workload(struct intel_vgpu_workload *workload)
0800 {
0801     struct intel_vgpu *vgpu = workload->vgpu;
0802     struct i915_request *rq;
0803     int ret;
0804 
0805     gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
0806               workload->engine->name, workload);
0807 
0808     mutex_lock(&vgpu->vgpu_lock);
0809 
0810     ret = intel_gvt_workload_req_alloc(workload);
0811     if (ret)
0812         goto err_req;
0813 
0814     ret = intel_gvt_scan_and_shadow_workload(workload);
0815     if (ret)
0816         goto out;
0817 
0818     ret = populate_shadow_context(workload);
0819     if (ret) {
0820         release_shadow_wa_ctx(&workload->wa_ctx);
0821         goto out;
0822     }
0823 
0824     ret = prepare_workload(workload);
0825 out:
0826     if (ret) {
0827         /* We might still need to add request with
0828          * clean ctx to retire it properly..
0829          */
0830         rq = fetch_and_zero(&workload->req);
0831         i915_request_put(rq);
0832     }
0833 
0834     if (!IS_ERR_OR_NULL(workload->req)) {
0835         gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
0836                   workload->engine->name, workload->req);
0837         i915_request_add(workload->req);
0838         workload->dispatched = true;
0839     }
0840 err_req:
0841     if (ret)
0842         workload->status = ret;
0843     mutex_unlock(&vgpu->vgpu_lock);
0844     return ret;
0845 }
0846 
0847 static struct intel_vgpu_workload *
0848 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
0849 {
0850     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
0851     struct intel_vgpu_workload *workload = NULL;
0852 
0853     mutex_lock(&gvt->sched_lock);
0854 
0855     /*
0856      * no current vgpu / will be scheduled out / no workload
0857      * bail out
0858      */
0859     if (!scheduler->current_vgpu) {
0860         gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
0861         goto out;
0862     }
0863 
0864     if (scheduler->need_reschedule) {
0865         gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
0866         goto out;
0867     }
0868 
0869     if (!scheduler->current_vgpu->active ||
0870         list_empty(workload_q_head(scheduler->current_vgpu, engine)))
0871         goto out;
0872 
0873     /*
0874      * still have current workload, maybe the workload disptacher
0875      * fail to submit it for some reason, resubmit it.
0876      */
0877     if (scheduler->current_workload[engine->id]) {
0878         workload = scheduler->current_workload[engine->id];
0879         gvt_dbg_sched("ring %s still have current workload %p\n",
0880                   engine->name, workload);
0881         goto out;
0882     }
0883 
0884     /*
0885      * pick a workload as current workload
0886      * once current workload is set, schedule policy routines
0887      * will wait the current workload is finished when trying to
0888      * schedule out a vgpu.
0889      */
0890     scheduler->current_workload[engine->id] =
0891         list_first_entry(workload_q_head(scheduler->current_vgpu,
0892                          engine),
0893                  struct intel_vgpu_workload, list);
0894 
0895     workload = scheduler->current_workload[engine->id];
0896 
0897     gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
0898 
0899     atomic_inc(&workload->vgpu->submission.running_workload_num);
0900 out:
0901     mutex_unlock(&gvt->sched_lock);
0902     return workload;
0903 }
0904 
0905 static void update_guest_pdps(struct intel_vgpu *vgpu,
0906                   u64 ring_context_gpa, u32 pdp[8])
0907 {
0908     u64 gpa;
0909     int i;
0910 
0911     gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
0912 
0913     for (i = 0; i < 8; i++)
0914         intel_gvt_write_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4);
0915 }
0916 
0917 static __maybe_unused bool
0918 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
0919 {
0920     if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
0921         u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
0922 
0923         if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
0924             gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
0925             return false;
0926         }
0927         return true;
0928     } else {
0929         /* see comment in LRI handler in cmd_parser.c */
0930         gvt_dbg_mm("invalid shadow mm type\n");
0931         return false;
0932     }
0933 }
0934 
0935 static void update_guest_context(struct intel_vgpu_workload *workload)
0936 {
0937     struct i915_request *rq = workload->req;
0938     struct intel_vgpu *vgpu = workload->vgpu;
0939     struct execlist_ring_context *shadow_ring_context;
0940     struct intel_context *ctx = workload->req->context;
0941     void *context_base;
0942     void *src;
0943     unsigned long context_gpa, context_page_num;
0944     unsigned long gpa_base; /* first gpa of consecutive GPAs */
0945     unsigned long gpa_size; /* size of consecutive GPAs*/
0946     int i;
0947     u32 ring_base;
0948     u32 head, tail;
0949     u16 wrap_count;
0950 
0951     gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
0952               workload->ctx_desc.lrca);
0953 
0954     GEM_BUG_ON(!intel_context_is_pinned(ctx));
0955 
0956     head = workload->rb_head;
0957     tail = workload->rb_tail;
0958     wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
0959 
0960     if (tail < head) {
0961         if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
0962             wrap_count = 0;
0963         else
0964             wrap_count += 1;
0965     }
0966 
0967     head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
0968 
0969     ring_base = rq->engine->mmio_base;
0970     vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
0971     vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
0972 
0973     context_page_num = rq->engine->context_size;
0974     context_page_num = context_page_num >> PAGE_SHIFT;
0975 
0976     if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
0977         context_page_num = 19;
0978 
0979     context_base = (void *) ctx->lrc_reg_state -
0980             (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
0981 
0982     /* find consecutive GPAs from gma until the first inconsecutive GPA.
0983      * write to the consecutive GPAs from src virtual address
0984      */
0985     gpa_size = 0;
0986     for (i = 2; i < context_page_num; i++) {
0987         context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
0988                 (u32)((workload->ctx_desc.lrca + i) <<
0989                     I915_GTT_PAGE_SHIFT));
0990         if (context_gpa == INTEL_GVT_INVALID_ADDR) {
0991             gvt_vgpu_err("invalid guest context descriptor\n");
0992             return;
0993         }
0994 
0995         if (gpa_size == 0) {
0996             gpa_base = context_gpa;
0997             src = context_base + (i << I915_GTT_PAGE_SHIFT);
0998         } else if (context_gpa != gpa_base + gpa_size)
0999             goto write;
1000 
1001         gpa_size += I915_GTT_PAGE_SIZE;
1002 
1003         if (i == context_page_num - 1)
1004             goto write;
1005 
1006         continue;
1007 
1008 write:
1009         intel_gvt_write_gpa(vgpu, gpa_base, src, gpa_size);
1010         gpa_base = context_gpa;
1011         gpa_size = I915_GTT_PAGE_SIZE;
1012         src = context_base + (i << I915_GTT_PAGE_SHIFT);
1013     }
1014 
1015     intel_gvt_write_gpa(vgpu, workload->ring_context_gpa +
1016         RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
1017 
1018     shadow_ring_context = (void *) ctx->lrc_reg_state;
1019 
1020     if (!list_empty(&workload->lri_shadow_mm)) {
1021         struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
1022                               struct intel_vgpu_mm,
1023                               ppgtt_mm.link);
1024         GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
1025         update_guest_pdps(vgpu, workload->ring_context_gpa,
1026                   (void *)m->ppgtt_mm.guest_pdps);
1027     }
1028 
1029 #define COPY_REG(name) \
1030     intel_gvt_write_gpa(vgpu, workload->ring_context_gpa + \
1031         RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
1032 
1033     COPY_REG(ctx_ctrl);
1034     COPY_REG(ctx_timestamp);
1035 
1036 #undef COPY_REG
1037 
1038     intel_gvt_write_gpa(vgpu,
1039             workload->ring_context_gpa +
1040             sizeof(*shadow_ring_context),
1041             (void *)shadow_ring_context +
1042             sizeof(*shadow_ring_context),
1043             I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1044 }
1045 
1046 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1047                 intel_engine_mask_t engine_mask)
1048 {
1049     struct intel_vgpu_submission *s = &vgpu->submission;
1050     struct intel_engine_cs *engine;
1051     struct intel_vgpu_workload *pos, *n;
1052     intel_engine_mask_t tmp;
1053 
1054     /* free the unsubmited workloads in the queues. */
1055     for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
1056         list_for_each_entry_safe(pos, n,
1057             &s->workload_q_head[engine->id], list) {
1058             list_del_init(&pos->list);
1059             intel_vgpu_destroy_workload(pos);
1060         }
1061         clear_bit(engine->id, s->shadow_ctx_desc_updated);
1062     }
1063 }
1064 
1065 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1066 {
1067     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068     struct intel_vgpu_workload *workload =
1069         scheduler->current_workload[ring_id];
1070     struct intel_vgpu *vgpu = workload->vgpu;
1071     struct intel_vgpu_submission *s = &vgpu->submission;
1072     struct i915_request *rq = workload->req;
1073     int event;
1074 
1075     mutex_lock(&vgpu->vgpu_lock);
1076     mutex_lock(&gvt->sched_lock);
1077 
1078     /* For the workload w/ request, needs to wait for the context
1079      * switch to make sure request is completed.
1080      * For the workload w/o request, directly complete the workload.
1081      */
1082     if (rq) {
1083         wait_event(workload->shadow_ctx_status_wq,
1084                !atomic_read(&workload->shadow_ctx_active));
1085 
1086         /* If this request caused GPU hang, req->fence.error will
1087          * be set to -EIO. Use -EIO to set workload status so
1088          * that when this request caused GPU hang, didn't trigger
1089          * context switch interrupt to guest.
1090          */
1091         if (likely(workload->status == -EINPROGRESS)) {
1092             if (workload->req->fence.error == -EIO)
1093                 workload->status = -EIO;
1094             else
1095                 workload->status = 0;
1096         }
1097 
1098         if (!workload->status &&
1099             !(vgpu->resetting_eng & BIT(ring_id))) {
1100             update_guest_context(workload);
1101 
1102             for_each_set_bit(event, workload->pending_events,
1103                      INTEL_GVT_EVENT_MAX)
1104                 intel_vgpu_trigger_virtual_event(vgpu, event);
1105         }
1106 
1107         i915_request_put(fetch_and_zero(&workload->req));
1108     }
1109 
1110     gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1111             ring_id, workload, workload->status);
1112 
1113     scheduler->current_workload[ring_id] = NULL;
1114 
1115     list_del_init(&workload->list);
1116 
1117     if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1118         /* if workload->status is not successful means HW GPU
1119          * has occurred GPU hang or something wrong with i915/GVT,
1120          * and GVT won't inject context switch interrupt to guest.
1121          * So this error is a vGPU hang actually to the guest.
1122          * According to this we should emunlate a vGPU hang. If
1123          * there are pending workloads which are already submitted
1124          * from guest, we should clean them up like HW GPU does.
1125          *
1126          * if it is in middle of engine resetting, the pending
1127          * workloads won't be submitted to HW GPU and will be
1128          * cleaned up during the resetting process later, so doing
1129          * the workload clean up here doesn't have any impact.
1130          **/
1131         intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1132     }
1133 
1134     workload->complete(workload);
1135 
1136     intel_vgpu_shadow_mm_unpin(workload);
1137     intel_vgpu_destroy_workload(workload);
1138 
1139     atomic_dec(&s->running_workload_num);
1140     wake_up(&scheduler->workload_complete_wq);
1141 
1142     if (gvt->scheduler.need_reschedule)
1143         intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1144 
1145     mutex_unlock(&gvt->sched_lock);
1146     mutex_unlock(&vgpu->vgpu_lock);
1147 }
1148 
1149 static int workload_thread(void *arg)
1150 {
1151     struct intel_engine_cs *engine = arg;
1152     const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9;
1153     struct intel_gvt *gvt = engine->i915->gvt;
1154     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1155     struct intel_vgpu_workload *workload = NULL;
1156     struct intel_vgpu *vgpu = NULL;
1157     int ret;
1158     DEFINE_WAIT_FUNC(wait, woken_wake_function);
1159 
1160     gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1161 
1162     while (!kthread_should_stop()) {
1163         intel_wakeref_t wakeref;
1164 
1165         add_wait_queue(&scheduler->waitq[engine->id], &wait);
1166         do {
1167             workload = pick_next_workload(gvt, engine);
1168             if (workload)
1169                 break;
1170             wait_woken(&wait, TASK_INTERRUPTIBLE,
1171                    MAX_SCHEDULE_TIMEOUT);
1172         } while (!kthread_should_stop());
1173         remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1174 
1175         if (!workload)
1176             break;
1177 
1178         gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1179                   engine->name, workload,
1180                   workload->vgpu->id);
1181 
1182         wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1183 
1184         gvt_dbg_sched("ring %s will dispatch workload %p\n",
1185                   engine->name, workload);
1186 
1187         if (need_force_wake)
1188             intel_uncore_forcewake_get(engine->uncore,
1189                            FORCEWAKE_ALL);
1190         /*
1191          * Update the vReg of the vGPU which submitted this
1192          * workload. The vGPU may use these registers for checking
1193          * the context state. The value comes from GPU commands
1194          * in this workload.
1195          */
1196         update_vreg_in_ctx(workload);
1197 
1198         ret = dispatch_workload(workload);
1199 
1200         if (ret) {
1201             vgpu = workload->vgpu;
1202             gvt_vgpu_err("fail to dispatch workload, skip\n");
1203             goto complete;
1204         }
1205 
1206         gvt_dbg_sched("ring %s wait workload %p\n",
1207                   engine->name, workload);
1208         i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1209 
1210 complete:
1211         gvt_dbg_sched("will complete workload %p, status: %d\n",
1212                   workload, workload->status);
1213 
1214         complete_current_workload(gvt, engine->id);
1215 
1216         if (need_force_wake)
1217             intel_uncore_forcewake_put(engine->uncore,
1218                            FORCEWAKE_ALL);
1219 
1220         intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1221         if (ret && (vgpu_is_vm_unhealthy(ret)))
1222             enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1223     }
1224     return 0;
1225 }
1226 
1227 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1228 {
1229     struct intel_vgpu_submission *s = &vgpu->submission;
1230     struct intel_gvt *gvt = vgpu->gvt;
1231     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1232 
1233     if (atomic_read(&s->running_workload_num)) {
1234         gvt_dbg_sched("wait vgpu idle\n");
1235 
1236         wait_event(scheduler->workload_complete_wq,
1237                 !atomic_read(&s->running_workload_num));
1238     }
1239 }
1240 
1241 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1242 {
1243     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1244     struct intel_engine_cs *engine;
1245     enum intel_engine_id i;
1246 
1247     gvt_dbg_core("clean workload scheduler\n");
1248 
1249     for_each_engine(engine, gvt->gt, i) {
1250         atomic_notifier_chain_unregister(
1251                     &engine->context_status_notifier,
1252                     &gvt->shadow_ctx_notifier_block[i]);
1253         kthread_stop(scheduler->thread[i]);
1254     }
1255 }
1256 
1257 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1258 {
1259     struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1260     struct intel_engine_cs *engine;
1261     enum intel_engine_id i;
1262     int ret;
1263 
1264     gvt_dbg_core("init workload scheduler\n");
1265 
1266     init_waitqueue_head(&scheduler->workload_complete_wq);
1267 
1268     for_each_engine(engine, gvt->gt, i) {
1269         init_waitqueue_head(&scheduler->waitq[i]);
1270 
1271         scheduler->thread[i] = kthread_run(workload_thread, engine,
1272                            "gvt:%s", engine->name);
1273         if (IS_ERR(scheduler->thread[i])) {
1274             gvt_err("fail to create workload thread\n");
1275             ret = PTR_ERR(scheduler->thread[i]);
1276             goto err;
1277         }
1278 
1279         gvt->shadow_ctx_notifier_block[i].notifier_call =
1280                     shadow_context_status_change;
1281         atomic_notifier_chain_register(&engine->context_status_notifier,
1282                     &gvt->shadow_ctx_notifier_block[i]);
1283     }
1284 
1285     return 0;
1286 
1287 err:
1288     intel_gvt_clean_workload_scheduler(gvt);
1289     return ret;
1290 }
1291 
1292 static void
1293 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1294                 struct i915_ppgtt *ppgtt)
1295 {
1296     int i;
1297 
1298     if (i915_vm_is_4lvl(&ppgtt->vm)) {
1299         set_dma_address(ppgtt->pd, s->i915_context_pml4);
1300     } else {
1301         for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1302             struct i915_page_directory * const pd =
1303                 i915_pd_entry(ppgtt->pd, i);
1304 
1305             set_dma_address(pd, s->i915_context_pdps[i]);
1306         }
1307     }
1308 }
1309 
1310 /**
1311  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1312  * @vgpu: a vGPU
1313  *
1314  * This function is called when a vGPU is being destroyed.
1315  *
1316  */
1317 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1318 {
1319     struct intel_vgpu_submission *s = &vgpu->submission;
1320     struct intel_engine_cs *engine;
1321     enum intel_engine_id id;
1322 
1323     intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1324 
1325     i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1326     for_each_engine(engine, vgpu->gvt->gt, id)
1327         intel_context_put(s->shadow[id]);
1328 
1329     kmem_cache_destroy(s->workloads);
1330 }
1331 
1332 
1333 /**
1334  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1335  * @vgpu: a vGPU
1336  * @engine_mask: engines expected to be reset
1337  *
1338  * This function is called when a vGPU is being destroyed.
1339  *
1340  */
1341 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1342                  intel_engine_mask_t engine_mask)
1343 {
1344     struct intel_vgpu_submission *s = &vgpu->submission;
1345 
1346     if (!s->active)
1347         return;
1348 
1349     intel_vgpu_clean_workloads(vgpu, engine_mask);
1350     s->ops->reset(vgpu, engine_mask);
1351 }
1352 
1353 static void
1354 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1355                  struct i915_ppgtt *ppgtt)
1356 {
1357     int i;
1358 
1359     if (i915_vm_is_4lvl(&ppgtt->vm)) {
1360         s->i915_context_pml4 = px_dma(ppgtt->pd);
1361     } else {
1362         for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1363             struct i915_page_directory * const pd =
1364                 i915_pd_entry(ppgtt->pd, i);
1365 
1366             s->i915_context_pdps[i] = px_dma(pd);
1367         }
1368     }
1369 }
1370 
1371 /**
1372  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1373  * @vgpu: a vGPU
1374  *
1375  * This function is called when a vGPU is being created.
1376  *
1377  * Returns:
1378  * Zero on success, negative error code if failed.
1379  *
1380  */
1381 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1382 {
1383     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1384     struct intel_vgpu_submission *s = &vgpu->submission;
1385     struct intel_engine_cs *engine;
1386     struct i915_ppgtt *ppgtt;
1387     enum intel_engine_id i;
1388     int ret;
1389 
1390     ppgtt = i915_ppgtt_create(to_gt(i915), I915_BO_ALLOC_PM_EARLY);
1391     if (IS_ERR(ppgtt))
1392         return PTR_ERR(ppgtt);
1393 
1394     i915_context_ppgtt_root_save(s, ppgtt);
1395 
1396     for_each_engine(engine, vgpu->gvt->gt, i) {
1397         struct intel_context *ce;
1398 
1399         INIT_LIST_HEAD(&s->workload_q_head[i]);
1400         s->shadow[i] = ERR_PTR(-EINVAL);
1401 
1402         ce = intel_context_create(engine);
1403         if (IS_ERR(ce)) {
1404             ret = PTR_ERR(ce);
1405             goto out_shadow_ctx;
1406         }
1407 
1408         i915_vm_put(ce->vm);
1409         ce->vm = i915_vm_get(&ppgtt->vm);
1410         intel_context_set_single_submission(ce);
1411 
1412         /* Max ring buffer size */
1413         if (!intel_uc_wants_guc_submission(&engine->gt->uc))
1414             ce->ring_size = SZ_2M;
1415 
1416         s->shadow[i] = ce;
1417     }
1418 
1419     bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1420 
1421     s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1422                           sizeof(struct intel_vgpu_workload), 0,
1423                           SLAB_HWCACHE_ALIGN,
1424                           offsetof(struct intel_vgpu_workload, rb_tail),
1425                           sizeof_field(struct intel_vgpu_workload, rb_tail),
1426                           NULL);
1427 
1428     if (!s->workloads) {
1429         ret = -ENOMEM;
1430         goto out_shadow_ctx;
1431     }
1432 
1433     atomic_set(&s->running_workload_num, 0);
1434     bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1435 
1436     memset(s->last_ctx, 0, sizeof(s->last_ctx));
1437 
1438     i915_vm_put(&ppgtt->vm);
1439     return 0;
1440 
1441 out_shadow_ctx:
1442     i915_context_ppgtt_root_restore(s, ppgtt);
1443     for_each_engine(engine, vgpu->gvt->gt, i) {
1444         if (IS_ERR(s->shadow[i]))
1445             break;
1446 
1447         intel_context_put(s->shadow[i]);
1448     }
1449     i915_vm_put(&ppgtt->vm);
1450     return ret;
1451 }
1452 
1453 /**
1454  * intel_vgpu_select_submission_ops - select virtual submission interface
1455  * @vgpu: a vGPU
1456  * @engine_mask: either ALL_ENGINES or target engine mask
1457  * @interface: expected vGPU virtual submission interface
1458  *
1459  * This function is called when guest configures submission interface.
1460  *
1461  * Returns:
1462  * Zero on success, negative error code if failed.
1463  *
1464  */
1465 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1466                      intel_engine_mask_t engine_mask,
1467                      unsigned int interface)
1468 {
1469     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1470     struct intel_vgpu_submission *s = &vgpu->submission;
1471     const struct intel_vgpu_submission_ops *ops[] = {
1472         [INTEL_VGPU_EXECLIST_SUBMISSION] =
1473             &intel_vgpu_execlist_submission_ops,
1474     };
1475     int ret;
1476 
1477     if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1478         return -EINVAL;
1479 
1480     if (drm_WARN_ON(&i915->drm,
1481             interface == 0 && engine_mask != ALL_ENGINES))
1482         return -EINVAL;
1483 
1484     if (s->active)
1485         s->ops->clean(vgpu, engine_mask);
1486 
1487     if (interface == 0) {
1488         s->ops = NULL;
1489         s->virtual_submission_interface = 0;
1490         s->active = false;
1491         gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1492         return 0;
1493     }
1494 
1495     ret = ops[interface]->init(vgpu, engine_mask);
1496     if (ret)
1497         return ret;
1498 
1499     s->ops = ops[interface];
1500     s->virtual_submission_interface = interface;
1501     s->active = true;
1502 
1503     gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1504             vgpu->id, s->ops->name);
1505 
1506     return 0;
1507 }
1508 
1509 /**
1510  * intel_vgpu_destroy_workload - destroy a vGPU workload
1511  * @workload: workload to destroy
1512  *
1513  * This function is called when destroy a vGPU workload.
1514  *
1515  */
1516 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1517 {
1518     struct intel_vgpu_submission *s = &workload->vgpu->submission;
1519 
1520     intel_context_unpin(s->shadow[workload->engine->id]);
1521     release_shadow_batch_buffer(workload);
1522     release_shadow_wa_ctx(&workload->wa_ctx);
1523 
1524     if (!list_empty(&workload->lri_shadow_mm)) {
1525         struct intel_vgpu_mm *m, *mm;
1526         list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1527                      ppgtt_mm.link) {
1528             list_del(&m->ppgtt_mm.link);
1529             intel_vgpu_mm_put(m);
1530         }
1531     }
1532 
1533     GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1534     if (workload->shadow_mm)
1535         intel_vgpu_mm_put(workload->shadow_mm);
1536 
1537     kmem_cache_free(s->workloads, workload);
1538 }
1539 
1540 static struct intel_vgpu_workload *
1541 alloc_workload(struct intel_vgpu *vgpu)
1542 {
1543     struct intel_vgpu_submission *s = &vgpu->submission;
1544     struct intel_vgpu_workload *workload;
1545 
1546     workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1547     if (!workload)
1548         return ERR_PTR(-ENOMEM);
1549 
1550     INIT_LIST_HEAD(&workload->list);
1551     INIT_LIST_HEAD(&workload->shadow_bb);
1552     INIT_LIST_HEAD(&workload->lri_shadow_mm);
1553 
1554     init_waitqueue_head(&workload->shadow_ctx_status_wq);
1555     atomic_set(&workload->shadow_ctx_active, 0);
1556 
1557     workload->status = -EINPROGRESS;
1558     workload->vgpu = vgpu;
1559 
1560     return workload;
1561 }
1562 
1563 #define RING_CTX_OFF(x) \
1564     offsetof(struct execlist_ring_context, x)
1565 
1566 static void read_guest_pdps(struct intel_vgpu *vgpu,
1567         u64 ring_context_gpa, u32 pdp[8])
1568 {
1569     u64 gpa;
1570     int i;
1571 
1572     gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1573 
1574     for (i = 0; i < 8; i++)
1575         intel_gvt_read_gpa(vgpu,
1576                 gpa + i * 8, &pdp[7 - i], 4);
1577 }
1578 
1579 static int prepare_mm(struct intel_vgpu_workload *workload)
1580 {
1581     struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1582     struct intel_vgpu_mm *mm;
1583     struct intel_vgpu *vgpu = workload->vgpu;
1584     enum intel_gvt_gtt_type root_entry_type;
1585     u64 pdps[GVT_RING_CTX_NR_PDPS];
1586 
1587     switch (desc->addressing_mode) {
1588     case 1: /* legacy 32-bit */
1589         root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1590         break;
1591     case 3: /* legacy 64-bit */
1592         root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1593         break;
1594     default:
1595         gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1596         return -EINVAL;
1597     }
1598 
1599     read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1600 
1601     mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1602     if (IS_ERR(mm))
1603         return PTR_ERR(mm);
1604 
1605     workload->shadow_mm = mm;
1606     return 0;
1607 }
1608 
1609 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1610         ((a)->lrca == (b)->lrca))
1611 
1612 /**
1613  * intel_vgpu_create_workload - create a vGPU workload
1614  * @vgpu: a vGPU
1615  * @engine: the engine
1616  * @desc: a guest context descriptor
1617  *
1618  * This function is called when creating a vGPU workload.
1619  *
1620  * Returns:
1621  * struct intel_vgpu_workload * on success, negative error code in
1622  * pointer if failed.
1623  *
1624  */
1625 struct intel_vgpu_workload *
1626 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1627                const struct intel_engine_cs *engine,
1628                struct execlist_ctx_descriptor_format *desc)
1629 {
1630     struct intel_vgpu_submission *s = &vgpu->submission;
1631     struct list_head *q = workload_q_head(vgpu, engine);
1632     struct intel_vgpu_workload *last_workload = NULL;
1633     struct intel_vgpu_workload *workload = NULL;
1634     u64 ring_context_gpa;
1635     u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1636     u32 guest_head;
1637     int ret;
1638 
1639     ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1640             (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1641     if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1642         gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1643         return ERR_PTR(-EINVAL);
1644     }
1645 
1646     intel_gvt_read_gpa(vgpu, ring_context_gpa +
1647             RING_CTX_OFF(ring_header.val), &head, 4);
1648 
1649     intel_gvt_read_gpa(vgpu, ring_context_gpa +
1650             RING_CTX_OFF(ring_tail.val), &tail, 4);
1651 
1652     guest_head = head;
1653 
1654     head &= RB_HEAD_OFF_MASK;
1655     tail &= RB_TAIL_OFF_MASK;
1656 
1657     list_for_each_entry_reverse(last_workload, q, list) {
1658 
1659         if (same_context(&last_workload->ctx_desc, desc)) {
1660             gvt_dbg_el("ring %s cur workload == last\n",
1661                    engine->name);
1662             gvt_dbg_el("ctx head %x real head %lx\n", head,
1663                    last_workload->rb_tail);
1664             /*
1665              * cannot use guest context head pointer here,
1666              * as it might not be updated at this time
1667              */
1668             head = last_workload->rb_tail;
1669             break;
1670         }
1671     }
1672 
1673     gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1674 
1675     /* record some ring buffer register values for scan and shadow */
1676     intel_gvt_read_gpa(vgpu, ring_context_gpa +
1677             RING_CTX_OFF(rb_start.val), &start, 4);
1678     intel_gvt_read_gpa(vgpu, ring_context_gpa +
1679             RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1680     intel_gvt_read_gpa(vgpu, ring_context_gpa +
1681             RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1682 
1683     if (!intel_gvt_ggtt_validate_range(vgpu, start,
1684                 _RING_CTL_BUF_SIZE(ctl))) {
1685         gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1686         return ERR_PTR(-EINVAL);
1687     }
1688 
1689     workload = alloc_workload(vgpu);
1690     if (IS_ERR(workload))
1691         return workload;
1692 
1693     workload->engine = engine;
1694     workload->ctx_desc = *desc;
1695     workload->ring_context_gpa = ring_context_gpa;
1696     workload->rb_head = head;
1697     workload->guest_rb_head = guest_head;
1698     workload->rb_tail = tail;
1699     workload->rb_start = start;
1700     workload->rb_ctl = ctl;
1701 
1702     if (engine->id == RCS0) {
1703         intel_gvt_read_gpa(vgpu, ring_context_gpa +
1704             RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1705         intel_gvt_read_gpa(vgpu, ring_context_gpa +
1706             RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1707 
1708         workload->wa_ctx.indirect_ctx.guest_gma =
1709             indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1710         workload->wa_ctx.indirect_ctx.size =
1711             (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1712             CACHELINE_BYTES;
1713 
1714         if (workload->wa_ctx.indirect_ctx.size != 0) {
1715             if (!intel_gvt_ggtt_validate_range(vgpu,
1716                 workload->wa_ctx.indirect_ctx.guest_gma,
1717                 workload->wa_ctx.indirect_ctx.size)) {
1718                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1719                     workload->wa_ctx.indirect_ctx.guest_gma);
1720                 kmem_cache_free(s->workloads, workload);
1721                 return ERR_PTR(-EINVAL);
1722             }
1723         }
1724 
1725         workload->wa_ctx.per_ctx.guest_gma =
1726             per_ctx & PER_CTX_ADDR_MASK;
1727         workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1728         if (workload->wa_ctx.per_ctx.valid) {
1729             if (!intel_gvt_ggtt_validate_range(vgpu,
1730                 workload->wa_ctx.per_ctx.guest_gma,
1731                 CACHELINE_BYTES)) {
1732                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1733                     workload->wa_ctx.per_ctx.guest_gma);
1734                 kmem_cache_free(s->workloads, workload);
1735                 return ERR_PTR(-EINVAL);
1736             }
1737         }
1738     }
1739 
1740     gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1741            workload, engine->name, head, tail, start, ctl);
1742 
1743     ret = prepare_mm(workload);
1744     if (ret) {
1745         kmem_cache_free(s->workloads, workload);
1746         return ERR_PTR(ret);
1747     }
1748 
1749     /* Only scan and shadow the first workload in the queue
1750      * as there is only one pre-allocated buf-obj for shadow.
1751      */
1752     if (list_empty(q)) {
1753         intel_wakeref_t wakeref;
1754 
1755         with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1756             ret = intel_gvt_scan_and_shadow_workload(workload);
1757     }
1758 
1759     if (ret) {
1760         if (vgpu_is_vm_unhealthy(ret))
1761             enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1762         intel_vgpu_destroy_workload(workload);
1763         return ERR_PTR(ret);
1764     }
1765 
1766     ret = intel_context_pin(s->shadow[engine->id]);
1767     if (ret) {
1768         intel_vgpu_destroy_workload(workload);
1769         return ERR_PTR(ret);
1770     }
1771 
1772     return workload;
1773 }
1774 
1775 /**
1776  * intel_vgpu_queue_workload - Qeue a vGPU workload
1777  * @workload: the workload to queue in
1778  */
1779 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1780 {
1781     list_add_tail(&workload->list,
1782               workload_q_head(workload->vgpu, workload->engine));
1783     intel_gvt_kick_schedule(workload->vgpu->gvt);
1784     wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1785 }