Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice (including the next
0012  * paragraph) shall be included in all copies or substantial portions of the
0013  * Software.
0014  *
0015  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0016  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0017  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0018  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
0019  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0020  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0021  * SOFTWARE.
0022  *
0023  * Authors:
0024  *    Kevin Tian <kevin.tian@intel.com>
0025  *    Eddie Dong <eddie.dong@intel.com>
0026  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
0027  *
0028  * Contributors:
0029  *    Min He <min.he@intel.com>
0030  *    Tina Zhang <tina.zhang@intel.com>
0031  *    Pei Zhang <pei.zhang@intel.com>
0032  *    Niu Bing <bing.niu@intel.com>
0033  *    Ping Gao <ping.a.gao@intel.com>
0034  *    Zhi Wang <zhi.a.wang@intel.com>
0035  *
0036 
0037  */
0038 
0039 #include "i915_drv.h"
0040 #include "i915_reg.h"
0041 #include "gvt.h"
0042 #include "i915_pvinfo.h"
0043 #include "intel_mchbar_regs.h"
0044 #include "display/intel_display_types.h"
0045 #include "display/intel_dmc_regs.h"
0046 #include "display/intel_fbc.h"
0047 #include "display/vlv_dsi_pll_regs.h"
0048 #include "gt/intel_gt_regs.h"
0049 
0050 /* XXX FIXME i915 has changed PP_XXX definition */
0051 #define PCH_PP_STATUS  _MMIO(0xc7200)
0052 #define PCH_PP_CONTROL _MMIO(0xc7204)
0053 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
0054 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
0055 #define PCH_PP_DIVISOR _MMIO(0xc7210)
0056 
0057 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
0058 {
0059     struct drm_i915_private *i915 = gvt->gt->i915;
0060 
0061     if (IS_BROADWELL(i915))
0062         return D_BDW;
0063     else if (IS_SKYLAKE(i915))
0064         return D_SKL;
0065     else if (IS_KABYLAKE(i915))
0066         return D_KBL;
0067     else if (IS_BROXTON(i915))
0068         return D_BXT;
0069     else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
0070         return D_CFL;
0071 
0072     return 0;
0073 }
0074 
0075 static bool intel_gvt_match_device(struct intel_gvt *gvt,
0076         unsigned long device)
0077 {
0078     return intel_gvt_get_device_type(gvt) & device;
0079 }
0080 
0081 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
0082     void *p_data, unsigned int bytes)
0083 {
0084     memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
0085 }
0086 
0087 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
0088     void *p_data, unsigned int bytes)
0089 {
0090     memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
0091 }
0092 
0093 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
0094                           unsigned int offset)
0095 {
0096     struct intel_gvt_mmio_info *e;
0097 
0098     hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
0099         if (e->offset == offset)
0100             return e;
0101     }
0102     return NULL;
0103 }
0104 
0105 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
0106                u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
0107                gvt_mmio_func read, gvt_mmio_func write)
0108 {
0109     struct intel_gvt_mmio_info *p;
0110     u32 start, end, i;
0111 
0112     if (!intel_gvt_match_device(gvt, device))
0113         return 0;
0114 
0115     if (WARN_ON(!IS_ALIGNED(offset, 4)))
0116         return -EINVAL;
0117 
0118     start = offset;
0119     end = offset + size;
0120 
0121     for (i = start; i < end; i += 4) {
0122         p = intel_gvt_find_mmio_info(gvt, i);
0123         if (!p) {
0124             WARN(1, "assign a handler to a non-tracked mmio %x\n",
0125                 i);
0126             return -ENODEV;
0127         }
0128         p->ro_mask = ro_mask;
0129         gvt->mmio.mmio_attribute[i / 4] = flags;
0130         if (read)
0131             p->read = read;
0132         if (write)
0133             p->write = write;
0134     }
0135     return 0;
0136 }
0137 
0138 /**
0139  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
0140  * @gvt: a GVT device
0141  * @offset: register offset
0142  *
0143  * Returns:
0144  * The engine containing the offset within its mmio page.
0145  */
0146 const struct intel_engine_cs *
0147 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
0148 {
0149     struct intel_engine_cs *engine;
0150     enum intel_engine_id id;
0151 
0152     offset &= ~GENMASK(11, 0);
0153     for_each_engine(engine, gvt->gt, id)
0154         if (engine->mmio_base == offset)
0155             return engine;
0156 
0157     return NULL;
0158 }
0159 
0160 #define offset_to_fence_num(offset) \
0161     ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
0162 
0163 #define fence_num_to_offset(num) \
0164     (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
0165 
0166 
0167 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
0168 {
0169     switch (reason) {
0170     case GVT_FAILSAFE_UNSUPPORTED_GUEST:
0171         pr_err("Detected your guest driver doesn't support GVT-g.\n");
0172         break;
0173     case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
0174         pr_err("Graphics resource is not enough for the guest\n");
0175         break;
0176     case GVT_FAILSAFE_GUEST_ERR:
0177         pr_err("GVT Internal error  for the guest\n");
0178         break;
0179     default:
0180         break;
0181     }
0182     pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
0183     vgpu->failsafe = true;
0184 }
0185 
0186 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
0187         unsigned int fence_num, void *p_data, unsigned int bytes)
0188 {
0189     unsigned int max_fence = vgpu_fence_sz(vgpu);
0190 
0191     if (fence_num >= max_fence) {
0192         gvt_vgpu_err("access oob fence reg %d/%d\n",
0193                  fence_num, max_fence);
0194 
0195         /* When guest access oob fence regs without access
0196          * pv_info first, we treat guest not supporting GVT,
0197          * and we will let vgpu enter failsafe mode.
0198          */
0199         if (!vgpu->pv_notified)
0200             enter_failsafe_mode(vgpu,
0201                     GVT_FAILSAFE_UNSUPPORTED_GUEST);
0202 
0203         memset(p_data, 0, bytes);
0204         return -EINVAL;
0205     }
0206     return 0;
0207 }
0208 
0209 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
0210         unsigned int offset, void *p_data, unsigned int bytes)
0211 {
0212     u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
0213 
0214     if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
0215         if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
0216             gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
0217         else if (!ips)
0218             gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
0219         else {
0220             /* All engines must be enabled together for vGPU,
0221              * since we don't know which engine the ppgtt will
0222              * bind to when shadowing.
0223              */
0224             gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
0225                      ips);
0226             return -EINVAL;
0227         }
0228     }
0229 
0230     write_vreg(vgpu, offset, p_data, bytes);
0231     return 0;
0232 }
0233 
0234 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
0235         void *p_data, unsigned int bytes)
0236 {
0237     int ret;
0238 
0239     ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
0240             p_data, bytes);
0241     if (ret)
0242         return ret;
0243     read_vreg(vgpu, off, p_data, bytes);
0244     return 0;
0245 }
0246 
0247 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
0248         void *p_data, unsigned int bytes)
0249 {
0250     struct intel_gvt *gvt = vgpu->gvt;
0251     unsigned int fence_num = offset_to_fence_num(off);
0252     int ret;
0253 
0254     ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
0255     if (ret)
0256         return ret;
0257     write_vreg(vgpu, off, p_data, bytes);
0258 
0259     mmio_hw_access_pre(gvt->gt);
0260     intel_vgpu_write_fence(vgpu, fence_num,
0261             vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
0262     mmio_hw_access_post(gvt->gt);
0263     return 0;
0264 }
0265 
0266 #define CALC_MODE_MASK_REG(old, new) \
0267     (((new) & GENMASK(31, 16)) \
0268      | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
0269      | ((new) & ((new) >> 16))))
0270 
0271 static int mul_force_wake_write(struct intel_vgpu *vgpu,
0272         unsigned int offset, void *p_data, unsigned int bytes)
0273 {
0274     u32 old, new;
0275     u32 ack_reg_offset;
0276 
0277     old = vgpu_vreg(vgpu, offset);
0278     new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
0279 
0280     if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
0281         switch (offset) {
0282         case FORCEWAKE_RENDER_GEN9_REG:
0283             ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
0284             break;
0285         case FORCEWAKE_GT_GEN9_REG:
0286             ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
0287             break;
0288         case FORCEWAKE_MEDIA_GEN9_REG:
0289             ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
0290             break;
0291         default:
0292             /*should not hit here*/
0293             gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
0294             return -EINVAL;
0295         }
0296     } else {
0297         ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
0298     }
0299 
0300     vgpu_vreg(vgpu, offset) = new;
0301     vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
0302     return 0;
0303 }
0304 
0305 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0306                 void *p_data, unsigned int bytes)
0307 {
0308     intel_engine_mask_t engine_mask = 0;
0309     u32 data;
0310 
0311     write_vreg(vgpu, offset, p_data, bytes);
0312     data = vgpu_vreg(vgpu, offset);
0313 
0314     if (data & GEN6_GRDOM_FULL) {
0315         gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
0316         engine_mask = ALL_ENGINES;
0317     } else {
0318         if (data & GEN6_GRDOM_RENDER) {
0319             gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
0320             engine_mask |= BIT(RCS0);
0321         }
0322         if (data & GEN6_GRDOM_MEDIA) {
0323             gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
0324             engine_mask |= BIT(VCS0);
0325         }
0326         if (data & GEN6_GRDOM_BLT) {
0327             gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
0328             engine_mask |= BIT(BCS0);
0329         }
0330         if (data & GEN6_GRDOM_VECS) {
0331             gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
0332             engine_mask |= BIT(VECS0);
0333         }
0334         if (data & GEN8_GRDOM_MEDIA2) {
0335             gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
0336             engine_mask |= BIT(VCS1);
0337         }
0338         if (data & GEN9_GRDOM_GUC) {
0339             gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
0340             vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
0341         }
0342         engine_mask &= vgpu->gvt->gt->info.engine_mask;
0343     }
0344 
0345     /* vgpu_lock already hold by emulate mmio r/w */
0346     intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
0347 
0348     /* sw will wait for the device to ack the reset request */
0349     vgpu_vreg(vgpu, offset) = 0;
0350 
0351     return 0;
0352 }
0353 
0354 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
0355         void *p_data, unsigned int bytes)
0356 {
0357     return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
0358 }
0359 
0360 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0361         void *p_data, unsigned int bytes)
0362 {
0363     return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
0364 }
0365 
0366 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
0367         unsigned int offset, void *p_data, unsigned int bytes)
0368 {
0369     write_vreg(vgpu, offset, p_data, bytes);
0370 
0371     if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
0372         vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
0373         vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
0374         vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
0375         vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
0376 
0377     } else
0378         vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
0379             ~(PP_ON | PP_SEQUENCE_POWER_DOWN
0380                     | PP_CYCLE_DELAY_ACTIVE);
0381     return 0;
0382 }
0383 
0384 static int transconf_mmio_write(struct intel_vgpu *vgpu,
0385         unsigned int offset, void *p_data, unsigned int bytes)
0386 {
0387     write_vreg(vgpu, offset, p_data, bytes);
0388 
0389     if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
0390         vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
0391     else
0392         vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
0393     return 0;
0394 }
0395 
0396 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0397         void *p_data, unsigned int bytes)
0398 {
0399     write_vreg(vgpu, offset, p_data, bytes);
0400 
0401     if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
0402         vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
0403     else
0404         vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
0405 
0406     if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
0407         vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
0408     else
0409         vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
0410 
0411     return 0;
0412 }
0413 
0414 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
0415         void *p_data, unsigned int bytes)
0416 {
0417     switch (offset) {
0418     case 0xe651c:
0419     case 0xe661c:
0420     case 0xe671c:
0421     case 0xe681c:
0422         vgpu_vreg(vgpu, offset) = 1 << 17;
0423         break;
0424     case 0xe6c04:
0425         vgpu_vreg(vgpu, offset) = 0x3;
0426         break;
0427     case 0xe6e1c:
0428         vgpu_vreg(vgpu, offset) = 0x2f << 16;
0429         break;
0430     default:
0431         return -EINVAL;
0432     }
0433 
0434     read_vreg(vgpu, offset, p_data, bytes);
0435     return 0;
0436 }
0437 
0438 /*
0439  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
0440  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
0441  *   setup_virtual_dp_monitor().
0442  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
0443  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
0444  * So the correct sequence to find DP stream clock is:
0445  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
0446  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
0447  * Then Refresh rate then can be calculated based on follow equations:
0448  *   Pixel clock = h_total * v_total * refresh_rate
0449  *   stream clock = Pixel clock
0450  *   ls_clk = DP bitrate
0451  *   Link M/N = strm_clk / ls_clk
0452  */
0453 
0454 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
0455 {
0456     u32 dp_br = 0;
0457     u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
0458 
0459     switch (ddi_pll_sel) {
0460     case PORT_CLK_SEL_LCPLL_2700:
0461         dp_br = 270000 * 2;
0462         break;
0463     case PORT_CLK_SEL_LCPLL_1350:
0464         dp_br = 135000 * 2;
0465         break;
0466     case PORT_CLK_SEL_LCPLL_810:
0467         dp_br = 81000 * 2;
0468         break;
0469     case PORT_CLK_SEL_SPLL:
0470     {
0471         switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
0472         case SPLL_FREQ_810MHz:
0473             dp_br = 81000 * 2;
0474             break;
0475         case SPLL_FREQ_1350MHz:
0476             dp_br = 135000 * 2;
0477             break;
0478         case SPLL_FREQ_2700MHz:
0479             dp_br = 270000 * 2;
0480             break;
0481         default:
0482             gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
0483                     vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
0484             break;
0485         }
0486         break;
0487     }
0488     case PORT_CLK_SEL_WRPLL1:
0489     case PORT_CLK_SEL_WRPLL2:
0490     {
0491         u32 wrpll_ctl;
0492         int refclk, n, p, r;
0493 
0494         if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
0495             wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
0496         else
0497             wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
0498 
0499         switch (wrpll_ctl & WRPLL_REF_MASK) {
0500         case WRPLL_REF_PCH_SSC:
0501             refclk = vgpu->gvt->gt->i915->dpll.ref_clks.ssc;
0502             break;
0503         case WRPLL_REF_LCPLL:
0504             refclk = 2700000;
0505             break;
0506         default:
0507             gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
0508                     vgpu->id, port_name(port), wrpll_ctl);
0509             goto out;
0510         }
0511 
0512         r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
0513         p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
0514         n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
0515 
0516         dp_br = (refclk * n / 10) / (p * r) * 2;
0517         break;
0518     }
0519     default:
0520         gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
0521                 vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
0522         break;
0523     }
0524 
0525 out:
0526     return dp_br;
0527 }
0528 
0529 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
0530 {
0531     u32 dp_br = 0;
0532     int refclk = vgpu->gvt->gt->i915->dpll.ref_clks.nssc;
0533     enum dpio_phy phy = DPIO_PHY0;
0534     enum dpio_channel ch = DPIO_CH0;
0535     struct dpll clock = {0};
0536     u32 temp;
0537 
0538     /* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
0539     switch (port) {
0540     case PORT_A:
0541         phy = DPIO_PHY1;
0542         ch = DPIO_CH0;
0543         break;
0544     case PORT_B:
0545         phy = DPIO_PHY0;
0546         ch = DPIO_CH0;
0547         break;
0548     case PORT_C:
0549         phy = DPIO_PHY0;
0550         ch = DPIO_CH1;
0551         break;
0552     default:
0553         gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
0554         goto out;
0555     }
0556 
0557     temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
0558     if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
0559         gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
0560                 vgpu->id, port_name(port), temp);
0561         goto out;
0562     }
0563 
0564     clock.m1 = 2;
0565     clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
0566                  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
0567     if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
0568         clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
0569                       vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
0570     clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
0571                 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
0572     clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
0573                  vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
0574     clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
0575                  vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
0576     clock.m = clock.m1 * clock.m2;
0577     clock.p = clock.p1 * clock.p2 * 5;
0578 
0579     if (clock.n == 0 || clock.p == 0) {
0580         gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
0581         goto out;
0582     }
0583 
0584     clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
0585     clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
0586 
0587     dp_br = clock.dot;
0588 
0589 out:
0590     return dp_br;
0591 }
0592 
0593 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
0594 {
0595     u32 dp_br = 0;
0596     enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
0597 
0598     /* Find the enabled DPLL for the DDI/PORT */
0599     if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
0600         (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
0601         dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
0602             DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
0603             DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
0604     } else {
0605         gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
0606                 vgpu->id, port_name(port));
0607         return dp_br;
0608     }
0609 
0610     /* Find PLL output frequency from correct DPLL, and get bir rate */
0611     switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
0612         DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
0613         DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
0614         case DPLL_CTRL1_LINK_RATE_810:
0615             dp_br = 81000 * 2;
0616             break;
0617         case DPLL_CTRL1_LINK_RATE_1080:
0618             dp_br = 108000 * 2;
0619             break;
0620         case DPLL_CTRL1_LINK_RATE_1350:
0621             dp_br = 135000 * 2;
0622             break;
0623         case DPLL_CTRL1_LINK_RATE_1620:
0624             dp_br = 162000 * 2;
0625             break;
0626         case DPLL_CTRL1_LINK_RATE_2160:
0627             dp_br = 216000 * 2;
0628             break;
0629         case DPLL_CTRL1_LINK_RATE_2700:
0630             dp_br = 270000 * 2;
0631             break;
0632         default:
0633             dp_br = 0;
0634             gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
0635                     vgpu->id, port_name(port), dpll_id);
0636     }
0637 
0638     return dp_br;
0639 }
0640 
0641 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
0642 {
0643     struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
0644     enum port port;
0645     u32 dp_br, link_m, link_n, htotal, vtotal;
0646 
0647     /* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
0648     port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) &
0649         TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
0650     if (port != PORT_B && port != PORT_D) {
0651         gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
0652         return;
0653     }
0654 
0655     /* Calculate DP bitrate from PLL */
0656     if (IS_BROADWELL(dev_priv))
0657         dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
0658     else if (IS_BROXTON(dev_priv))
0659         dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
0660     else
0661         dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
0662 
0663     /* Get DP link symbol clock M/N */
0664     link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A));
0665     link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A));
0666 
0667     /* Get H/V total from transcoder timing */
0668     htotal = (vgpu_vreg_t(vgpu, HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
0669     vtotal = (vgpu_vreg_t(vgpu, VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
0670 
0671     if (dp_br && link_n && htotal && vtotal) {
0672         u64 pixel_clk = 0;
0673         u32 new_rate = 0;
0674         u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
0675 
0676         /* Calcuate pixel clock by (ls_clk * M / N) */
0677         pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
0678         pixel_clk *= MSEC_PER_SEC;
0679 
0680         /* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
0681         new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
0682 
0683         if (*old_rate != new_rate)
0684             *old_rate = new_rate;
0685 
0686         gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
0687                 vgpu->id, pipe_name(PIPE_A), new_rate);
0688     }
0689 }
0690 
0691 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0692         void *p_data, unsigned int bytes)
0693 {
0694     u32 data;
0695 
0696     write_vreg(vgpu, offset, p_data, bytes);
0697     data = vgpu_vreg(vgpu, offset);
0698 
0699     if (data & PIPECONF_ENABLE) {
0700         vgpu_vreg(vgpu, offset) |= PIPECONF_STATE_ENABLE;
0701         vgpu_update_refresh_rate(vgpu);
0702         vgpu_update_vblank_emulation(vgpu, true);
0703     } else {
0704         vgpu_vreg(vgpu, offset) &= ~PIPECONF_STATE_ENABLE;
0705         vgpu_update_vblank_emulation(vgpu, false);
0706     }
0707     return 0;
0708 }
0709 
0710 /* sorted in ascending order */
0711 static i915_reg_t force_nonpriv_white_list[] = {
0712     _MMIO(0xd80),
0713     GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
0714     GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
0715     CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
0716     PS_INVOCATION_COUNT, //_MMIO(0x2348)
0717     PS_DEPTH_COUNT, //_MMIO(0x2350)
0718     GEN8_CS_CHICKEN1,//_MMIO(0x2580)
0719     _MMIO(0x2690),
0720     _MMIO(0x2694),
0721     _MMIO(0x2698),
0722     _MMIO(0x2754),
0723     _MMIO(0x28a0),
0724     _MMIO(0x4de0),
0725     _MMIO(0x4de4),
0726     _MMIO(0x4dfc),
0727     GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
0728     _MMIO(0x7014),
0729     HDC_CHICKEN0,//_MMIO(0x7300)
0730     GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
0731     _MMIO(0x7700),
0732     _MMIO(0x7704),
0733     _MMIO(0x7708),
0734     _MMIO(0x770c),
0735     _MMIO(0x83a8),
0736     _MMIO(0xb110),
0737     GEN8_L3SQCREG4,//_MMIO(0xb118)
0738     _MMIO(0xe100),
0739     _MMIO(0xe18c),
0740     _MMIO(0xe48c),
0741     _MMIO(0xe5f4),
0742     _MMIO(0x64844),
0743 };
0744 
0745 /* a simple bsearch */
0746 static inline bool in_whitelist(u32 reg)
0747 {
0748     int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
0749     i915_reg_t *array = force_nonpriv_white_list;
0750 
0751     while (left < right) {
0752         int mid = (left + right)/2;
0753 
0754         if (reg > array[mid].reg)
0755             left = mid + 1;
0756         else if (reg < array[mid].reg)
0757             right = mid;
0758         else
0759             return true;
0760     }
0761     return false;
0762 }
0763 
0764 static int force_nonpriv_write(struct intel_vgpu *vgpu,
0765     unsigned int offset, void *p_data, unsigned int bytes)
0766 {
0767     u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
0768     const struct intel_engine_cs *engine =
0769         intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
0770 
0771     if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
0772         gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
0773             vgpu->id, offset, bytes);
0774         return -EINVAL;
0775     }
0776 
0777     if (!in_whitelist(reg_nonpriv) &&
0778         reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
0779         gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
0780             vgpu->id, reg_nonpriv, offset);
0781     } else
0782         intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
0783 
0784     return 0;
0785 }
0786 
0787 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0788         void *p_data, unsigned int bytes)
0789 {
0790     write_vreg(vgpu, offset, p_data, bytes);
0791 
0792     if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
0793         vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
0794     } else {
0795         vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
0796         if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
0797             vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
0798                 &= ~DP_TP_STATUS_AUTOTRAIN_DONE;
0799     }
0800     return 0;
0801 }
0802 
0803 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
0804         unsigned int offset, void *p_data, unsigned int bytes)
0805 {
0806     vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
0807     return 0;
0808 }
0809 
0810 #define FDI_LINK_TRAIN_PATTERN1         0
0811 #define FDI_LINK_TRAIN_PATTERN2         1
0812 
0813 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
0814 {
0815     u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
0816     u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
0817     u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
0818 
0819     if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
0820             (rx_ctl & FDI_RX_ENABLE) &&
0821             (rx_ctl & FDI_AUTO_TRAINING) &&
0822             (tx_ctl & DP_TP_CTL_ENABLE) &&
0823             (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
0824         return 1;
0825     else
0826         return 0;
0827 }
0828 
0829 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
0830         enum pipe pipe, unsigned int train_pattern)
0831 {
0832     i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
0833     unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
0834     unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
0835     unsigned int fdi_iir_check_bits;
0836 
0837     fdi_rx_imr = FDI_RX_IMR(pipe);
0838     fdi_tx_ctl = FDI_TX_CTL(pipe);
0839     fdi_rx_ctl = FDI_RX_CTL(pipe);
0840 
0841     if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
0842         fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
0843         fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
0844         fdi_iir_check_bits = FDI_RX_BIT_LOCK;
0845     } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
0846         fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
0847         fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
0848         fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
0849     } else {
0850         gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
0851         return -EINVAL;
0852     }
0853 
0854     fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
0855     fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
0856 
0857     /* If imr bit has been masked */
0858     if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
0859         return 0;
0860 
0861     if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
0862             == fdi_tx_check_bits)
0863         && ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
0864             == fdi_rx_check_bits))
0865         return 1;
0866     else
0867         return 0;
0868 }
0869 
0870 #define INVALID_INDEX (~0U)
0871 
0872 static unsigned int calc_index(unsigned int offset, unsigned int start,
0873     unsigned int next, unsigned int end, i915_reg_t i915_end)
0874 {
0875     unsigned int range = next - start;
0876 
0877     if (!end)
0878         end = i915_mmio_reg_offset(i915_end);
0879     if (offset < start || offset > end)
0880         return INVALID_INDEX;
0881     offset -= start;
0882     return offset / range;
0883 }
0884 
0885 #define FDI_RX_CTL_TO_PIPE(offset) \
0886     calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
0887 
0888 #define FDI_TX_CTL_TO_PIPE(offset) \
0889     calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
0890 
0891 #define FDI_RX_IMR_TO_PIPE(offset) \
0892     calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
0893 
0894 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
0895         unsigned int offset, void *p_data, unsigned int bytes)
0896 {
0897     i915_reg_t fdi_rx_iir;
0898     unsigned int index;
0899     int ret;
0900 
0901     if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
0902         index = FDI_RX_CTL_TO_PIPE(offset);
0903     else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
0904         index = FDI_TX_CTL_TO_PIPE(offset);
0905     else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
0906         index = FDI_RX_IMR_TO_PIPE(offset);
0907     else {
0908         gvt_vgpu_err("Unsupported registers %x\n", offset);
0909         return -EINVAL;
0910     }
0911 
0912     write_vreg(vgpu, offset, p_data, bytes);
0913 
0914     fdi_rx_iir = FDI_RX_IIR(index);
0915 
0916     ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
0917     if (ret < 0)
0918         return ret;
0919     if (ret)
0920         vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
0921 
0922     ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
0923     if (ret < 0)
0924         return ret;
0925     if (ret)
0926         vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
0927 
0928     if (offset == _FDI_RXA_CTL)
0929         if (fdi_auto_training_started(vgpu))
0930             vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
0931                 DP_TP_STATUS_AUTOTRAIN_DONE;
0932     return 0;
0933 }
0934 
0935 #define DP_TP_CTL_TO_PORT(offset) \
0936     calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
0937 
0938 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
0939         void *p_data, unsigned int bytes)
0940 {
0941     i915_reg_t status_reg;
0942     unsigned int index;
0943     u32 data;
0944 
0945     write_vreg(vgpu, offset, p_data, bytes);
0946 
0947     index = DP_TP_CTL_TO_PORT(offset);
0948     data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
0949     if (data == 0x2) {
0950         status_reg = DP_TP_STATUS(index);
0951         vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
0952     }
0953     return 0;
0954 }
0955 
0956 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
0957         unsigned int offset, void *p_data, unsigned int bytes)
0958 {
0959     u32 reg_val;
0960     u32 sticky_mask;
0961 
0962     reg_val = *((u32 *)p_data);
0963     sticky_mask = GENMASK(27, 26) | (1 << 24);
0964 
0965     vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
0966         (vgpu_vreg(vgpu, offset) & sticky_mask);
0967     vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
0968     return 0;
0969 }
0970 
0971 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
0972         unsigned int offset, void *p_data, unsigned int bytes)
0973 {
0974     u32 data;
0975 
0976     write_vreg(vgpu, offset, p_data, bytes);
0977     data = vgpu_vreg(vgpu, offset);
0978 
0979     if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
0980         vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
0981     return 0;
0982 }
0983 
0984 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
0985         unsigned int offset, void *p_data, unsigned int bytes)
0986 {
0987     u32 data;
0988 
0989     write_vreg(vgpu, offset, p_data, bytes);
0990     data = vgpu_vreg(vgpu, offset);
0991 
0992     if (data & FDI_MPHY_IOSFSB_RESET_CTL)
0993         vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
0994     else
0995         vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
0996     return 0;
0997 }
0998 
0999 #define DSPSURF_TO_PIPE(offset) \
1000     calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
1001 
1002 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1003         void *p_data, unsigned int bytes)
1004 {
1005     struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1006     u32 pipe = DSPSURF_TO_PIPE(offset);
1007     int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1008 
1009     write_vreg(vgpu, offset, p_data, bytes);
1010     vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1011 
1012     vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1013 
1014     if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP)
1015         intel_vgpu_trigger_virtual_event(vgpu, event);
1016     else
1017         set_bit(event, vgpu->irq.flip_done_event[pipe]);
1018 
1019     return 0;
1020 }
1021 
1022 #define SPRSURF_TO_PIPE(offset) \
1023     calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
1024 
1025 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1026         void *p_data, unsigned int bytes)
1027 {
1028     u32 pipe = SPRSURF_TO_PIPE(offset);
1029     int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1030 
1031     write_vreg(vgpu, offset, p_data, bytes);
1032     vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1033 
1034     if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1035         intel_vgpu_trigger_virtual_event(vgpu, event);
1036     else
1037         set_bit(event, vgpu->irq.flip_done_event[pipe]);
1038 
1039     return 0;
1040 }
1041 
1042 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1043                    unsigned int offset, void *p_data,
1044                    unsigned int bytes)
1045 {
1046     struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1047     enum pipe pipe = REG_50080_TO_PIPE(offset);
1048     enum plane_id plane = REG_50080_TO_PLANE(offset);
1049     int event = SKL_FLIP_EVENT(pipe, plane);
1050 
1051     write_vreg(vgpu, offset, p_data, bytes);
1052     if (plane == PLANE_PRIMARY) {
1053         vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1054         vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1055     } else {
1056         vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1057     }
1058 
1059     if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1060         intel_vgpu_trigger_virtual_event(vgpu, event);
1061     else
1062         set_bit(event, vgpu->irq.flip_done_event[pipe]);
1063 
1064     return 0;
1065 }
1066 
1067 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1068         unsigned int reg)
1069 {
1070     struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1071     enum intel_gvt_event_type event;
1072 
1073     if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1074         event = AUX_CHANNEL_A;
1075     else if (reg == _PCH_DPB_AUX_CH_CTL ||
1076          reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1077         event = AUX_CHANNEL_B;
1078     else if (reg == _PCH_DPC_AUX_CH_CTL ||
1079          reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1080         event = AUX_CHANNEL_C;
1081     else if (reg == _PCH_DPD_AUX_CH_CTL ||
1082          reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1083         event = AUX_CHANNEL_D;
1084     else {
1085         drm_WARN_ON(&dev_priv->drm, true);
1086         return -EINVAL;
1087     }
1088 
1089     intel_vgpu_trigger_virtual_event(vgpu, event);
1090     return 0;
1091 }
1092 
1093 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1094         unsigned int reg, int len, bool data_valid)
1095 {
1096     /* mark transaction done */
1097     value |= DP_AUX_CH_CTL_DONE;
1098     value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1099     value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1100 
1101     if (data_valid)
1102         value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1103     else
1104         value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1105 
1106     /* message size */
1107     value &= ~(0xf << 20);
1108     value |= (len << 20);
1109     vgpu_vreg(vgpu, reg) = value;
1110 
1111     if (value & DP_AUX_CH_CTL_INTERRUPT)
1112         return trigger_aux_channel_interrupt(vgpu, reg);
1113     return 0;
1114 }
1115 
1116 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1117         u8 t)
1118 {
1119     if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
1120         /* training pattern 1 for CR */
1121         /* set LANE0_CR_DONE, LANE1_CR_DONE */
1122         dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
1123         /* set LANE2_CR_DONE, LANE3_CR_DONE */
1124         dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
1125     } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1126             DPCD_TRAINING_PATTERN_2) {
1127         /* training pattern 2 for EQ */
1128         /* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1129         dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
1130         dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
1131         /* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1132         dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
1133         dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
1134         /* set INTERLANE_ALIGN_DONE */
1135         dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
1136             DPCD_INTERLANE_ALIGN_DONE;
1137     } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1138             DPCD_LINK_TRAINING_DISABLED) {
1139         /* finish link training */
1140         /* set sink status as synchronized */
1141         dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
1142     }
1143 }
1144 
1145 #define _REG_HSW_DP_AUX_CH_CTL(dp) \
1146     ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
1147 
1148 #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
1149 
1150 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1151 
1152 #define dpy_is_valid_port(port) \
1153         (((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1154 
1155 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1156         unsigned int offset, void *p_data, unsigned int bytes)
1157 {
1158     struct intel_vgpu_display *display = &vgpu->display;
1159     int msg, addr, ctrl, op, len;
1160     int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1161     struct intel_vgpu_dpcd_data *dpcd = NULL;
1162     struct intel_vgpu_port *port = NULL;
1163     u32 data;
1164 
1165     if (!dpy_is_valid_port(port_index)) {
1166         gvt_vgpu_err("Unsupported DP port access!\n");
1167         return 0;
1168     }
1169 
1170     write_vreg(vgpu, offset, p_data, bytes);
1171     data = vgpu_vreg(vgpu, offset);
1172 
1173     if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9)
1174         && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
1175         /* SKL DPB/C/D aux ctl register changed */
1176         return 0;
1177     } else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1178            offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
1179         /* write to the data registers */
1180         return 0;
1181     }
1182 
1183     if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1184         /* just want to clear the sticky bits */
1185         vgpu_vreg(vgpu, offset) = 0;
1186         return 0;
1187     }
1188 
1189     port = &display->ports[port_index];
1190     dpcd = port->dpcd;
1191 
1192     /* read out message from DATA1 register */
1193     msg = vgpu_vreg(vgpu, offset + 4);
1194     addr = (msg >> 8) & 0xffff;
1195     ctrl = (msg >> 24) & 0xff;
1196     len = msg & 0xff;
1197     op = ctrl >> 4;
1198 
1199     if (op == GVT_AUX_NATIVE_WRITE) {
1200         int t;
1201         u8 buf[16];
1202 
1203         if ((addr + len + 1) >= DPCD_SIZE) {
1204             /*
1205              * Write request exceeds what we supported,
1206              * DCPD spec: When a Source Device is writing a DPCD
1207              * address not supported by the Sink Device, the Sink
1208              * Device shall reply with AUX NACK and “M” equal to
1209              * zero.
1210              */
1211 
1212             /* NAK the write */
1213             vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1214             dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1215             return 0;
1216         }
1217 
1218         /*
1219          * Write request format: Headr (command + address + size) occupies
1220          * 4 bytes, followed by (len + 1) bytes of data. See details at
1221          * intel_dp_aux_transfer().
1222          */
1223         if ((len + 1 + 4) > AUX_BURST_SIZE) {
1224             gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1225             return -EINVAL;
1226         }
1227 
1228         /* unpack data from vreg to buf */
1229         for (t = 0; t < 4; t++) {
1230             u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1231 
1232             buf[t * 4] = (r >> 24) & 0xff;
1233             buf[t * 4 + 1] = (r >> 16) & 0xff;
1234             buf[t * 4 + 2] = (r >> 8) & 0xff;
1235             buf[t * 4 + 3] = r & 0xff;
1236         }
1237 
1238         /* write to virtual DPCD */
1239         if (dpcd && dpcd->data_valid) {
1240             for (t = 0; t <= len; t++) {
1241                 int p = addr + t;
1242 
1243                 dpcd->data[p] = buf[t];
1244                 /* check for link training */
1245                 if (p == DPCD_TRAINING_PATTERN_SET)
1246                     dp_aux_ch_ctl_link_training(dpcd,
1247                             buf[t]);
1248             }
1249         }
1250 
1251         /* ACK the write */
1252         vgpu_vreg(vgpu, offset + 4) = 0;
1253         dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1254                 dpcd && dpcd->data_valid);
1255         return 0;
1256     }
1257 
1258     if (op == GVT_AUX_NATIVE_READ) {
1259         int idx, i, ret = 0;
1260 
1261         if ((addr + len + 1) >= DPCD_SIZE) {
1262             /*
1263              * read request exceeds what we supported
1264              * DPCD spec: A Sink Device receiving a Native AUX CH
1265              * read request for an unsupported DPCD address must
1266              * reply with an AUX ACK and read data set equal to
1267              * zero instead of replying with AUX NACK.
1268              */
1269 
1270             /* ACK the READ*/
1271             vgpu_vreg(vgpu, offset + 4) = 0;
1272             vgpu_vreg(vgpu, offset + 8) = 0;
1273             vgpu_vreg(vgpu, offset + 12) = 0;
1274             vgpu_vreg(vgpu, offset + 16) = 0;
1275             vgpu_vreg(vgpu, offset + 20) = 0;
1276 
1277             dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1278                     true);
1279             return 0;
1280         }
1281 
1282         for (idx = 1; idx <= 5; idx++) {
1283             /* clear the data registers */
1284             vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1285         }
1286 
1287         /*
1288          * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1289          */
1290         if ((len + 2) > AUX_BURST_SIZE) {
1291             gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1292             return -EINVAL;
1293         }
1294 
1295         /* read from virtual DPCD to vreg */
1296         /* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1297         if (dpcd && dpcd->data_valid) {
1298             for (i = 1; i <= (len + 1); i++) {
1299                 int t;
1300 
1301                 t = dpcd->data[addr + i - 1];
1302                 t <<= (24 - 8 * (i % 4));
1303                 ret |= t;
1304 
1305                 if ((i % 4 == 3) || (i == (len + 1))) {
1306                     vgpu_vreg(vgpu, offset +
1307                             (i / 4 + 1) * 4) = ret;
1308                     ret = 0;
1309                 }
1310             }
1311         }
1312         dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1313                 dpcd && dpcd->data_valid);
1314         return 0;
1315     }
1316 
1317     /* i2c transaction starts */
1318     intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1319 
1320     if (data & DP_AUX_CH_CTL_INTERRUPT)
1321         trigger_aux_channel_interrupt(vgpu, offset);
1322     return 0;
1323 }
1324 
1325 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1326         void *p_data, unsigned int bytes)
1327 {
1328     *(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1329     write_vreg(vgpu, offset, p_data, bytes);
1330     return 0;
1331 }
1332 
1333 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1334         void *p_data, unsigned int bytes)
1335 {
1336     bool vga_disable;
1337 
1338     write_vreg(vgpu, offset, p_data, bytes);
1339     vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1340 
1341     gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1342             vga_disable ? "Disable" : "Enable");
1343     return 0;
1344 }
1345 
1346 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1347         unsigned int sbi_offset)
1348 {
1349     struct intel_vgpu_display *display = &vgpu->display;
1350     int num = display->sbi.number;
1351     int i;
1352 
1353     for (i = 0; i < num; ++i)
1354         if (display->sbi.registers[i].offset == sbi_offset)
1355             break;
1356 
1357     if (i == num)
1358         return 0;
1359 
1360     return display->sbi.registers[i].value;
1361 }
1362 
1363 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1364         unsigned int offset, u32 value)
1365 {
1366     struct intel_vgpu_display *display = &vgpu->display;
1367     int num = display->sbi.number;
1368     int i;
1369 
1370     for (i = 0; i < num; ++i) {
1371         if (display->sbi.registers[i].offset == offset)
1372             break;
1373     }
1374 
1375     if (i == num) {
1376         if (num == SBI_REG_MAX) {
1377             gvt_vgpu_err("SBI caching meets maximum limits\n");
1378             return;
1379         }
1380         display->sbi.number++;
1381     }
1382 
1383     display->sbi.registers[i].offset = offset;
1384     display->sbi.registers[i].value = value;
1385 }
1386 
1387 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1388         void *p_data, unsigned int bytes)
1389 {
1390     if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1391                 SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1392         unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1393                 SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1394         vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1395                 sbi_offset);
1396     }
1397     read_vreg(vgpu, offset, p_data, bytes);
1398     return 0;
1399 }
1400 
1401 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1402         void *p_data, unsigned int bytes)
1403 {
1404     u32 data;
1405 
1406     write_vreg(vgpu, offset, p_data, bytes);
1407     data = vgpu_vreg(vgpu, offset);
1408 
1409     data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1410     data |= SBI_READY;
1411 
1412     data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1413     data |= SBI_RESPONSE_SUCCESS;
1414 
1415     vgpu_vreg(vgpu, offset) = data;
1416 
1417     if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1418                 SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1419         unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1420                 SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1421 
1422         write_virtual_sbi_register(vgpu, sbi_offset,
1423                        vgpu_vreg_t(vgpu, SBI_DATA));
1424     }
1425     return 0;
1426 }
1427 
1428 #define _vgtif_reg(x) \
1429     (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1430 
1431 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1432         void *p_data, unsigned int bytes)
1433 {
1434     bool invalid_read = false;
1435 
1436     read_vreg(vgpu, offset, p_data, bytes);
1437 
1438     switch (offset) {
1439     case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1440         if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1441             invalid_read = true;
1442         break;
1443     case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1444         _vgtif_reg(avail_rs.fence_num):
1445         if (offset + bytes >
1446             _vgtif_reg(avail_rs.fence_num) + 4)
1447             invalid_read = true;
1448         break;
1449     case 0x78010:   /* vgt_caps */
1450     case 0x7881c:
1451         break;
1452     default:
1453         invalid_read = true;
1454         break;
1455     }
1456     if (invalid_read)
1457         gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1458                 offset, bytes, *(u32 *)p_data);
1459     vgpu->pv_notified = true;
1460     return 0;
1461 }
1462 
1463 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1464 {
1465     enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1466     struct intel_vgpu_mm *mm;
1467     u64 *pdps;
1468 
1469     pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1470 
1471     switch (notification) {
1472     case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1473         root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1474         fallthrough;
1475     case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1476         mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1477         return PTR_ERR_OR_ZERO(mm);
1478     case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1479     case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1480         return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1481     case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1482     case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1483     case 1: /* Remove this in guest driver. */
1484         break;
1485     default:
1486         gvt_vgpu_err("Invalid PV notification %d\n", notification);
1487     }
1488     return 0;
1489 }
1490 
1491 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1492 {
1493     struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1494     char *env[3] = {NULL, NULL, NULL};
1495     char vmid_str[20];
1496     char display_ready_str[20];
1497 
1498     snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1499     env[0] = display_ready_str;
1500 
1501     snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1502     env[1] = vmid_str;
1503 
1504     return kobject_uevent_env(kobj, KOBJ_ADD, env);
1505 }
1506 
1507 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1508         void *p_data, unsigned int bytes)
1509 {
1510     u32 data = *(u32 *)p_data;
1511     bool invalid_write = false;
1512 
1513     switch (offset) {
1514     case _vgtif_reg(display_ready):
1515         send_display_ready_uevent(vgpu, data ? 1 : 0);
1516         break;
1517     case _vgtif_reg(g2v_notify):
1518         handle_g2v_notification(vgpu, data);
1519         break;
1520     /* add xhot and yhot to handled list to avoid error log */
1521     case _vgtif_reg(cursor_x_hot):
1522     case _vgtif_reg(cursor_y_hot):
1523     case _vgtif_reg(pdp[0].lo):
1524     case _vgtif_reg(pdp[0].hi):
1525     case _vgtif_reg(pdp[1].lo):
1526     case _vgtif_reg(pdp[1].hi):
1527     case _vgtif_reg(pdp[2].lo):
1528     case _vgtif_reg(pdp[2].hi):
1529     case _vgtif_reg(pdp[3].lo):
1530     case _vgtif_reg(pdp[3].hi):
1531     case _vgtif_reg(execlist_context_descriptor_lo):
1532     case _vgtif_reg(execlist_context_descriptor_hi):
1533         break;
1534     case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1535         invalid_write = true;
1536         enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1537         break;
1538     default:
1539         invalid_write = true;
1540         gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1541                 offset, bytes, data);
1542         break;
1543     }
1544 
1545     if (!invalid_write)
1546         write_vreg(vgpu, offset, p_data, bytes);
1547 
1548     return 0;
1549 }
1550 
1551 static int pf_write(struct intel_vgpu *vgpu,
1552         unsigned int offset, void *p_data, unsigned int bytes)
1553 {
1554     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1555     u32 val = *(u32 *)p_data;
1556 
1557     if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1558        offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1559        offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) {
1560         drm_WARN_ONCE(&i915->drm, true,
1561                   "VM(%d): guest is trying to scaling a plane\n",
1562                   vgpu->id);
1563         return 0;
1564     }
1565 
1566     return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1567 }
1568 
1569 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1570         unsigned int offset, void *p_data, unsigned int bytes)
1571 {
1572     write_vreg(vgpu, offset, p_data, bytes);
1573 
1574     if (vgpu_vreg(vgpu, offset) &
1575         HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1576         vgpu_vreg(vgpu, offset) |=
1577             HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1578     else
1579         vgpu_vreg(vgpu, offset) &=
1580             ~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1581     return 0;
1582 }
1583 
1584 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1585         unsigned int offset, void *p_data, unsigned int bytes)
1586 {
1587     write_vreg(vgpu, offset, p_data, bytes);
1588 
1589     if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1590         vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1591     else
1592         vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1593 
1594     return 0;
1595 }
1596 
1597 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1598     unsigned int offset, void *p_data, unsigned int bytes)
1599 {
1600     write_vreg(vgpu, offset, p_data, bytes);
1601 
1602     if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1603         vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1604     return 0;
1605 }
1606 
1607 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1608         void *p_data, unsigned int bytes)
1609 {
1610     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1611     u32 mode;
1612 
1613     write_vreg(vgpu, offset, p_data, bytes);
1614     mode = vgpu_vreg(vgpu, offset);
1615 
1616     if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1617         drm_WARN_ONCE(&i915->drm, 1,
1618                 "VM(%d): iGVT-g doesn't support GuC\n",
1619                 vgpu->id);
1620         return 0;
1621     }
1622 
1623     return 0;
1624 }
1625 
1626 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1627         void *p_data, unsigned int bytes)
1628 {
1629     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1630     u32 trtte = *(u32 *)p_data;
1631 
1632     if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1633         drm_WARN(&i915->drm, 1,
1634                 "VM(%d): Use physical address for TRTT!\n",
1635                 vgpu->id);
1636         return -EINVAL;
1637     }
1638     write_vreg(vgpu, offset, p_data, bytes);
1639 
1640     return 0;
1641 }
1642 
1643 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1644         void *p_data, unsigned int bytes)
1645 {
1646     write_vreg(vgpu, offset, p_data, bytes);
1647     return 0;
1648 }
1649 
1650 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1651         void *p_data, unsigned int bytes)
1652 {
1653     u32 v = 0;
1654 
1655     if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1656         v |= (1 << 0);
1657 
1658     if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1659         v |= (1 << 8);
1660 
1661     if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1662         v |= (1 << 16);
1663 
1664     if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1665         v |= (1 << 24);
1666 
1667     vgpu_vreg(vgpu, offset) = v;
1668 
1669     return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1670 }
1671 
1672 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1673         void *p_data, unsigned int bytes)
1674 {
1675     u32 value = *(u32 *)p_data;
1676     u32 cmd = value & 0xff;
1677     u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1678 
1679     switch (cmd) {
1680     case GEN9_PCODE_READ_MEM_LATENCY:
1681         if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1682             IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1683             IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1684             IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1685             /**
1686              * "Read memory latency" command on gen9.
1687              * Below memory latency values are read
1688              * from skylake platform.
1689              */
1690             if (!*data0)
1691                 *data0 = 0x1e1a1100;
1692             else
1693                 *data0 = 0x61514b3d;
1694         } else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1695             /**
1696              * "Read memory latency" command on gen9.
1697              * Below memory latency values are read
1698              * from Broxton MRB.
1699              */
1700             if (!*data0)
1701                 *data0 = 0x16080707;
1702             else
1703                 *data0 = 0x16161616;
1704         }
1705         break;
1706     case SKL_PCODE_CDCLK_CONTROL:
1707         if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1708             IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1709             IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1710             IS_COMETLAKE(vgpu->gvt->gt->i915))
1711             *data0 = SKL_CDCLK_READY_FOR_CHANGE;
1712         break;
1713     case GEN6_PCODE_READ_RC6VIDS:
1714         *data0 |= 0x1;
1715         break;
1716     }
1717 
1718     gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1719              vgpu->id, value, *data0);
1720     /**
1721      * PCODE_READY clear means ready for pcode read/write,
1722      * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1723      * always emulate as pcode read/write success and ready for access
1724      * anytime, since we don't touch real physical registers here.
1725      */
1726     value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1727     return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1728 }
1729 
1730 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1731         void *p_data, unsigned int bytes)
1732 {
1733     u32 value = *(u32 *)p_data;
1734     const struct intel_engine_cs *engine =
1735         intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1736 
1737     if (value != 0 &&
1738         !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1739         gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1740                   offset, value);
1741         return -EINVAL;
1742     }
1743 
1744     /*
1745      * Need to emulate all the HWSP register write to ensure host can
1746      * update the VM CSB status correctly. Here listed registers can
1747      * support BDW, SKL or other platforms with same HWSP registers.
1748      */
1749     if (unlikely(!engine)) {
1750         gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1751                  offset);
1752         return -EINVAL;
1753     }
1754     vgpu->hws_pga[engine->id] = value;
1755     gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1756              vgpu->id, value, offset);
1757 
1758     return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1759 }
1760 
1761 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1762         unsigned int offset, void *p_data, unsigned int bytes)
1763 {
1764     u32 v = *(u32 *)p_data;
1765 
1766     if (IS_BROXTON(vgpu->gvt->gt->i915))
1767         v &= (1 << 31) | (1 << 29);
1768     else
1769         v &= (1 << 31) | (1 << 29) | (1 << 9) |
1770             (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1771     v |= (v >> 1);
1772 
1773     return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1774 }
1775 
1776 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1777         void *p_data, unsigned int bytes)
1778 {
1779     u32 v = *(u32 *)p_data;
1780 
1781     /* other bits are MBZ. */
1782     v &= (1 << 31) | (1 << 30);
1783     v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1784 
1785     vgpu_vreg(vgpu, offset) = v;
1786 
1787     return 0;
1788 }
1789 
1790 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1791         unsigned int offset, void *p_data, unsigned int bytes)
1792 {
1793     u32 v = *(u32 *)p_data;
1794 
1795     if (v & BXT_DE_PLL_PLL_ENABLE)
1796         v |= BXT_DE_PLL_LOCK;
1797 
1798     vgpu_vreg(vgpu, offset) = v;
1799 
1800     return 0;
1801 }
1802 
1803 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1804         unsigned int offset, void *p_data, unsigned int bytes)
1805 {
1806     u32 v = *(u32 *)p_data;
1807 
1808     if (v & PORT_PLL_ENABLE)
1809         v |= PORT_PLL_LOCK;
1810 
1811     vgpu_vreg(vgpu, offset) = v;
1812 
1813     return 0;
1814 }
1815 
1816 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1817         unsigned int offset, void *p_data, unsigned int bytes)
1818 {
1819     u32 v = *(u32 *)p_data;
1820     u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1821 
1822     switch (offset) {
1823     case _PHY_CTL_FAMILY_EDP:
1824         vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1825         break;
1826     case _PHY_CTL_FAMILY_DDI:
1827         vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1828         vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1829         break;
1830     }
1831 
1832     vgpu_vreg(vgpu, offset) = v;
1833 
1834     return 0;
1835 }
1836 
1837 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1838         unsigned int offset, void *p_data, unsigned int bytes)
1839 {
1840     u32 v = vgpu_vreg(vgpu, offset);
1841 
1842     v &= ~UNIQUE_TRANGE_EN_METHOD;
1843 
1844     vgpu_vreg(vgpu, offset) = v;
1845 
1846     return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1847 }
1848 
1849 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1850         unsigned int offset, void *p_data, unsigned int bytes)
1851 {
1852     u32 v = *(u32 *)p_data;
1853 
1854     if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1855         vgpu_vreg(vgpu, offset - 0x600) = v;
1856         vgpu_vreg(vgpu, offset - 0x800) = v;
1857     } else {
1858         vgpu_vreg(vgpu, offset - 0x400) = v;
1859         vgpu_vreg(vgpu, offset - 0x600) = v;
1860     }
1861 
1862     vgpu_vreg(vgpu, offset) = v;
1863 
1864     return 0;
1865 }
1866 
1867 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1868         unsigned int offset, void *p_data, unsigned int bytes)
1869 {
1870     u32 v = *(u32 *)p_data;
1871 
1872     if (v & BIT(0)) {
1873         vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1874             ~PHY_RESERVED;
1875         vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1876             PHY_POWER_GOOD;
1877     }
1878 
1879     if (v & BIT(1)) {
1880         vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1881             ~PHY_RESERVED;
1882         vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1883             PHY_POWER_GOOD;
1884     }
1885 
1886 
1887     vgpu_vreg(vgpu, offset) = v;
1888 
1889     return 0;
1890 }
1891 
1892 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1893         unsigned int offset, void *p_data, unsigned int bytes)
1894 {
1895     vgpu_vreg(vgpu, offset) = 0;
1896     return 0;
1897 }
1898 
1899 /*
1900  * FixMe:
1901  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1902  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1903  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1904  * these MI_BATCH_BUFFER.
1905  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1906  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1907  * The performance is still expected to be low, will need further improvement.
1908  */
1909 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1910                   void *p_data, unsigned int bytes)
1911 {
1912     u64 pat =
1913         GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1914         GEN8_PPAT(1, 0) |
1915         GEN8_PPAT(2, 0) |
1916         GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1917         GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1918         GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1919         GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1920         GEN8_PPAT(7, CHV_PPAT_SNOOP);
1921 
1922     vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1923 
1924     return 0;
1925 }
1926 
1927 static int guc_status_read(struct intel_vgpu *vgpu,
1928                unsigned int offset, void *p_data,
1929                unsigned int bytes)
1930 {
1931     /* keep MIA_IN_RESET before clearing */
1932     read_vreg(vgpu, offset, p_data, bytes);
1933     vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1934     return 0;
1935 }
1936 
1937 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1938         unsigned int offset, void *p_data, unsigned int bytes)
1939 {
1940     struct intel_gvt *gvt = vgpu->gvt;
1941     const struct intel_engine_cs *engine =
1942         intel_gvt_render_mmio_to_engine(gvt, offset);
1943 
1944     /**
1945      * Read HW reg in following case
1946      * a. the offset isn't a ring mmio
1947      * b. the offset's ring is running on hw.
1948      * c. the offset is ring time stamp mmio
1949      */
1950 
1951     if (!engine ||
1952         vgpu == gvt->scheduler.engine_owner[engine->id] ||
1953         offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1954         offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1955         mmio_hw_access_pre(gvt->gt);
1956         vgpu_vreg(vgpu, offset) =
1957             intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1958         mmio_hw_access_post(gvt->gt);
1959     }
1960 
1961     return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1962 }
1963 
1964 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1965         void *p_data, unsigned int bytes)
1966 {
1967     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1968     const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1969     struct intel_vgpu_execlist *execlist;
1970     u32 data = *(u32 *)p_data;
1971     int ret = 0;
1972 
1973     if (drm_WARN_ON(&i915->drm, !engine))
1974         return -EINVAL;
1975 
1976     /*
1977      * Due to d3_entered is used to indicate skipping PPGTT invalidation on
1978      * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
1979      * vGPU reset if in resuming.
1980      * In S0ix exit, the device power state also transite from D3 to D0 as
1981      * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
1982      * S0ix exit, all engines continue to work. However the d3_entered
1983      * remains set which will break next vGPU reset logic (miss the expected
1984      * PPGTT invalidation).
1985      * Engines can only work in D0. Thus the 1st elsp write gives GVT a
1986      * chance to clear d3_entered.
1987      */
1988     if (vgpu->d3_entered)
1989         vgpu->d3_entered = false;
1990 
1991     execlist = &vgpu->submission.execlist[engine->id];
1992 
1993     execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
1994     if (execlist->elsp_dwords.index == 3) {
1995         ret = intel_vgpu_submit_execlist(vgpu, engine);
1996         if(ret)
1997             gvt_vgpu_err("fail submit workload on ring %s\n",
1998                      engine->name);
1999     }
2000 
2001     ++execlist->elsp_dwords.index;
2002     execlist->elsp_dwords.index &= 0x3;
2003     return ret;
2004 }
2005 
2006 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2007         void *p_data, unsigned int bytes)
2008 {
2009     u32 data = *(u32 *)p_data;
2010     const struct intel_engine_cs *engine =
2011         intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2012     bool enable_execlist;
2013     int ret;
2014 
2015     (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2016     if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2017         IS_COMETLAKE(vgpu->gvt->gt->i915))
2018         (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2019     write_vreg(vgpu, offset, p_data, bytes);
2020 
2021     if (IS_MASKED_BITS_ENABLED(data, 1)) {
2022         enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2023         return 0;
2024     }
2025 
2026     if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2027          IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2028         IS_MASKED_BITS_ENABLED(data, 2)) {
2029         enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2030         return 0;
2031     }
2032 
2033     /* when PPGTT mode enabled, we will check if guest has called
2034      * pvinfo, if not, we will treat this guest as non-gvtg-aware
2035      * guest, and stop emulating its cfg space, mmio, gtt, etc.
2036      */
2037     if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2038         IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2039         !vgpu->pv_notified) {
2040         enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2041         return 0;
2042     }
2043     if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2044         IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2045         enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2046 
2047         gvt_dbg_core("EXECLIST %s on ring %s\n",
2048                  (enable_execlist ? "enabling" : "disabling"),
2049                  engine->name);
2050 
2051         if (!enable_execlist)
2052             return 0;
2053 
2054         ret = intel_vgpu_select_submission_ops(vgpu,
2055                                engine->mask,
2056                                INTEL_VGPU_EXECLIST_SUBMISSION);
2057         if (ret)
2058             return ret;
2059 
2060         intel_vgpu_start_schedule(vgpu);
2061     }
2062     return 0;
2063 }
2064 
2065 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2066         unsigned int offset, void *p_data, unsigned int bytes)
2067 {
2068     unsigned int id = 0;
2069 
2070     write_vreg(vgpu, offset, p_data, bytes);
2071     vgpu_vreg(vgpu, offset) = 0;
2072 
2073     switch (offset) {
2074     case 0x4260:
2075         id = RCS0;
2076         break;
2077     case 0x4264:
2078         id = VCS0;
2079         break;
2080     case 0x4268:
2081         id = VCS1;
2082         break;
2083     case 0x426c:
2084         id = BCS0;
2085         break;
2086     case 0x4270:
2087         id = VECS0;
2088         break;
2089     default:
2090         return -EINVAL;
2091     }
2092     set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2093 
2094     return 0;
2095 }
2096 
2097 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2098     unsigned int offset, void *p_data, unsigned int bytes)
2099 {
2100     u32 data;
2101 
2102     write_vreg(vgpu, offset, p_data, bytes);
2103     data = vgpu_vreg(vgpu, offset);
2104 
2105     if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2106         data |= RESET_CTL_READY_TO_RESET;
2107     else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2108         data &= ~RESET_CTL_READY_TO_RESET;
2109 
2110     vgpu_vreg(vgpu, offset) = data;
2111     return 0;
2112 }
2113 
2114 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2115                     unsigned int offset, void *p_data,
2116                     unsigned int bytes)
2117 {
2118     u32 data = *(u32 *)p_data;
2119 
2120     (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2121     write_vreg(vgpu, offset, p_data, bytes);
2122 
2123     if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2124         IS_MASKED_BITS_ENABLED(data, 0x8))
2125         enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2126 
2127     return 0;
2128 }
2129 
2130 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2131     ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2132         s, f, am, rm, d, r, w); \
2133     if (ret) \
2134         return ret; \
2135 } while (0)
2136 
2137 #define MMIO_DH(reg, d, r, w) \
2138     MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2139 
2140 #define MMIO_DFH(reg, d, f, r, w) \
2141     MMIO_F(reg, 4, f, 0, 0, d, r, w)
2142 
2143 #define MMIO_GM(reg, d, r, w) \
2144     MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2145 
2146 #define MMIO_GM_RDR(reg, d, r, w) \
2147     MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2148 
2149 #define MMIO_RO(reg, d, f, rm, r, w) \
2150     MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2151 
2152 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2153     MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2154     MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2155     MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2156     MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2157     if (HAS_ENGINE(gvt->gt, VCS1)) \
2158         MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2159 } while (0)
2160 
2161 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2162     MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2163 
2164 #define MMIO_RING_GM(prefix, d, r, w) \
2165     MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2166 
2167 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2168     MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2169 
2170 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2171     MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2172 
2173 static int init_generic_mmio_info(struct intel_gvt *gvt)
2174 {
2175     struct drm_i915_private *dev_priv = gvt->gt->i915;
2176     int ret;
2177 
2178     MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2179         intel_vgpu_reg_imr_handler);
2180 
2181     MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2182     MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2183     MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2184 
2185     MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2186 
2187 
2188     MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2189         gamw_echo_dev_rw_ia_write);
2190 
2191     MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2192     MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2193     MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2194 
2195 #define RING_REG(base) _MMIO((base) + 0x28)
2196     MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2197 #undef RING_REG
2198 
2199 #define RING_REG(base) _MMIO((base) + 0x134)
2200     MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2201 #undef RING_REG
2202 
2203 #define RING_REG(base) _MMIO((base) + 0x6c)
2204     MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2205 #undef RING_REG
2206     MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2207 
2208     MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2209     MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2210     MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2211 
2212     MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2213     MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2214     MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2215     MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2216     MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2217 
2218     /* RING MODE */
2219 #define RING_REG(base) _MMIO((base) + 0x29c)
2220     MMIO_RING_DFH(RING_REG, D_ALL,
2221         F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2222         ring_mode_mmio_write);
2223 #undef RING_REG
2224 
2225     MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2226         NULL, NULL);
2227     MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2228             NULL, NULL);
2229     MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2230             mmio_read_from_hw, NULL);
2231     MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2232             mmio_read_from_hw, NULL);
2233 
2234     MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2235     MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2236         NULL, NULL);
2237     MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2238     MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2239     MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2240 
2241     MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2242     MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2243     MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2244     MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2245          F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2246     MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2247     MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2248     MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2249         NULL, NULL);
2250     MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2251          NULL, NULL);
2252     MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2253     MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2254     MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2255     MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2256     MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2257     MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2258     MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2259     MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2260     MMIO_DFH(HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2261     MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2262 
2263     /* display */
2264     MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write);
2265     MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write);
2266     MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write);
2267     MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write);
2268     MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2269     MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2270         reg50080_mmio_write);
2271     MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2272     MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2273         reg50080_mmio_write);
2274     MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2275     MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2276         reg50080_mmio_write);
2277     MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2278     MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2279         reg50080_mmio_write);
2280     MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2281     MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2282         reg50080_mmio_write);
2283     MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2284     MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2285         reg50080_mmio_write);
2286 
2287     MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2288         gmbus_mmio_write);
2289     MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2290 
2291     MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2292         dp_aux_ch_ctl_mmio_write);
2293     MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2294         dp_aux_ch_ctl_mmio_write);
2295     MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2296         dp_aux_ch_ctl_mmio_write);
2297 
2298     MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2299 
2300     MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2301     MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2302 
2303     MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2304     MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2305     MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2306     MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2307     MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2308     MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2309     MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2310     MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2311     MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2312     MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2313     MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2314     MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2315     MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2316     MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2317     MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2318     MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2319 
2320     MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2321         PORTA_HOTPLUG_STATUS_MASK
2322         | PORTB_HOTPLUG_STATUS_MASK
2323         | PORTC_HOTPLUG_STATUS_MASK
2324         | PORTD_HOTPLUG_STATUS_MASK,
2325         NULL, NULL);
2326 
2327     MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2328     MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2329     MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2330     MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2331     MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2332 
2333     MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL,
2334         dp_aux_ch_ctl_mmio_write);
2335 
2336     MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2337     MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2338     MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2339     MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2340     MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2341 
2342     MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2343     MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2344     MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2345     MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2346     MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2347 
2348     MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2349     MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2350     MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2351     MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2352     MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2353 
2354     MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2355     MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2356     MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2357     MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2358 
2359     MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2360     MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2361     MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2362     MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2363     MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2364     MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2365     MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2366     MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2367     MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2368     MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2369     MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2370     MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2371     MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2372 
2373     MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2374     MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2375     MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2376 
2377     MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2378     MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2379 
2380     MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2381     MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2382 
2383     MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2384     MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2385     MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2386     MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2387     MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2388     MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2389 
2390     MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2391     MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2392     MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2393     MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2394 
2395     MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2396     MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2397     MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2398 
2399     MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2400     MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2401     MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2402     MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2403     MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2404     MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2405     MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2406     MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2407     MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2408     MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2409     MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2410     MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2411     MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2412     MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2413     MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2414     MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2415     MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2416 
2417     MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2418     MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2419     MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2420     MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2421     MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2422     MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2423     MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2424     MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2425     MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2426     MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2427     MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2428 
2429     MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2430     MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2431     MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2432 
2433     return 0;
2434 }
2435 
2436 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2437 {
2438     int ret;
2439 
2440     MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2441     MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2442     MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2443 
2444     MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2445     MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2446     MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2447 
2448     MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2449     MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2450     MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2451 
2452     MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2453     MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2454     MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2455 
2456     MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2457         intel_vgpu_reg_imr_handler);
2458     MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2459         intel_vgpu_reg_ier_handler);
2460     MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2461         intel_vgpu_reg_iir_handler);
2462 
2463     MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2464         intel_vgpu_reg_imr_handler);
2465     MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2466         intel_vgpu_reg_ier_handler);
2467     MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2468         intel_vgpu_reg_iir_handler);
2469 
2470     MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2471         intel_vgpu_reg_imr_handler);
2472     MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2473         intel_vgpu_reg_ier_handler);
2474     MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2475         intel_vgpu_reg_iir_handler);
2476 
2477     MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2478     MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2479     MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2480 
2481     MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2482     MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2483     MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2484 
2485     MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2486     MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2487     MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2488 
2489     MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2490         intel_vgpu_reg_master_irq_handler);
2491 
2492     MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2493         mmio_read_from_hw, NULL);
2494 
2495 #define RING_REG(base) _MMIO((base) + 0xd0)
2496     MMIO_RING_F(RING_REG, 4, F_RO, 0,
2497         ~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2498         ring_reset_ctl_write);
2499 #undef RING_REG
2500 
2501 #define RING_REG(base) _MMIO((base) + 0x230)
2502     MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2503 #undef RING_REG
2504 
2505 #define RING_REG(base) _MMIO((base) + 0x234)
2506     MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2507         NULL, NULL);
2508 #undef RING_REG
2509 
2510 #define RING_REG(base) _MMIO((base) + 0x244)
2511     MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2512 #undef RING_REG
2513 
2514 #define RING_REG(base) _MMIO((base) + 0x370)
2515     MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2516 #undef RING_REG
2517 
2518 #define RING_REG(base) _MMIO((base) + 0x3a0)
2519     MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2520 #undef RING_REG
2521 
2522     MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2523 
2524 #define RING_REG(base) _MMIO((base) + 0x270)
2525     MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2526 #undef RING_REG
2527 
2528     MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2529 
2530     MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2531 
2532     MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2533         NULL, NULL);
2534     MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2535         NULL, NULL);
2536     MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2537 
2538     MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2539     MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2540     MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2541     MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2542     MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2543 
2544     MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2545         D_BDW_PLUS, NULL, force_nonpriv_write);
2546 
2547     MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2548 
2549     MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2550 
2551     MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2552     MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2553     MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2554     MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2555 
2556     MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2557 
2558     MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2559     MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2560     MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2561     MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2562     MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2563     MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2564     MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2565     MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2566     MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2567     MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2568     return 0;
2569 }
2570 
2571 static int init_skl_mmio_info(struct intel_gvt *gvt)
2572 {
2573     struct drm_i915_private *dev_priv = gvt->gt->i915;
2574     int ret;
2575 
2576     MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2577     MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2578     MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2579     MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2580     MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2581     MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2582 
2583     MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2584                         dp_aux_ch_ctl_mmio_write);
2585     MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2586                         dp_aux_ch_ctl_mmio_write);
2587     MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2588                         dp_aux_ch_ctl_mmio_write);
2589 
2590     MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2591 
2592     MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2593 
2594     MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2595     MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2596     MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2597     MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2598     MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2599     MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2600 
2601     MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2602     MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2603     MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2604     MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2605     MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2606     MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2607 
2608     MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2609     MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2610     MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2611     MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2612     MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2613     MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2614 
2615     MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2616     MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2617     MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2618     MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2619     MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2620     MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2621 
2622     MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2623     MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2624     MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2625     MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2626 
2627     MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2628     MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2629     MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2630     MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2631 
2632     MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2633     MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2634     MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2635     MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2636 
2637     MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2638     MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2639     MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2640 
2641     MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2642     MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2643     MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2644 
2645     MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2646     MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2647     MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2648 
2649     MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2650     MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2651     MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2652 
2653     MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2654     MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2655     MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2656 
2657     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2658     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2659     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2660     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2661 
2662     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2663     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2664     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2665     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2666 
2667     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2668     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2669     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2670     MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2671 
2672     MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2673     MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2674     MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2675     MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2676 
2677     MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2678     MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2679     MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2680     MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2681 
2682     MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2683     MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2684     MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2685     MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2686 
2687     MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2688     MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2689     MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2690     MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2691 
2692     MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2693     MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2694     MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2695     MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2696 
2697     MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2698     MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2699     MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2700     MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2701 
2702     MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2703 
2704     MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2705         NULL, NULL);
2706     MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2707         NULL, NULL);
2708 
2709     MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2710          F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2711     MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2712         NULL, NULL);
2713 
2714     /* TRTT */
2715     MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2716     MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2717     MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2718     MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2719     MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2720     MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2721          NULL, gen9_trtte_write);
2722     MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2723          NULL, gen9_trtt_chicken_write);
2724 
2725     MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2726     MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2727 
2728 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2729     MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2730               NULL, csfe_chicken1_mmio_write);
2731 #undef CSFE_CHICKEN1_REG
2732     MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2733          NULL, NULL);
2734     MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2735          NULL, NULL);
2736 
2737     MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2738     MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2739 
2740     return 0;
2741 }
2742 
2743 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2744 {
2745     int ret;
2746 
2747     MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2748     MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2749         NULL, bxt_phy_ctl_family_write);
2750     MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2751         NULL, bxt_phy_ctl_family_write);
2752     MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2753         NULL, bxt_port_pll_enable_write);
2754     MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2755         NULL, bxt_port_pll_enable_write);
2756     MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2757         bxt_port_pll_enable_write);
2758 
2759     MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2760         NULL, bxt_pcs_dw12_grp_write);
2761     MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT,
2762         bxt_port_tx_dw3_read, NULL);
2763     MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2764         NULL, bxt_pcs_dw12_grp_write);
2765     MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT,
2766         bxt_port_tx_dw3_read, NULL);
2767     MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2768         NULL, bxt_pcs_dw12_grp_write);
2769     MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT,
2770         bxt_port_tx_dw3_read, NULL);
2771     MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2772     MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2773     MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2774     MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2775     MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2776            0, 0, D_BXT, NULL, NULL);
2777     MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2778            0, 0, D_BXT, NULL, NULL);
2779     MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2780            0, 0, D_BXT, NULL, NULL);
2781     MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2782            0, 0, D_BXT, NULL, NULL);
2783 
2784     MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2785 
2786     MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2787 
2788     return 0;
2789 }
2790 
2791 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2792                           unsigned int offset)
2793 {
2794     struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2795     int num = gvt->mmio.num_mmio_block;
2796     int i;
2797 
2798     for (i = 0; i < num; i++, block++) {
2799         if (offset >= i915_mmio_reg_offset(block->offset) &&
2800             offset < i915_mmio_reg_offset(block->offset) + block->size)
2801             return block;
2802     }
2803     return NULL;
2804 }
2805 
2806 /**
2807  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2808  * @gvt: GVT device
2809  *
2810  * This function is called at the driver unloading stage, to clean up the MMIO
2811  * information table of GVT device
2812  *
2813  */
2814 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2815 {
2816     struct hlist_node *tmp;
2817     struct intel_gvt_mmio_info *e;
2818     int i;
2819 
2820     hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2821         kfree(e);
2822 
2823     kfree(gvt->mmio.mmio_block);
2824     gvt->mmio.mmio_block = NULL;
2825     gvt->mmio.num_mmio_block = 0;
2826 
2827     vfree(gvt->mmio.mmio_attribute);
2828     gvt->mmio.mmio_attribute = NULL;
2829 }
2830 
2831 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2832                u32 size)
2833 {
2834     struct intel_gvt *gvt = iter->data;
2835     struct intel_gvt_mmio_info *info, *p;
2836     u32 start, end, i;
2837 
2838     if (WARN_ON(!IS_ALIGNED(offset, 4)))
2839         return -EINVAL;
2840 
2841     start = offset;
2842     end = offset + size;
2843 
2844     for (i = start; i < end; i += 4) {
2845         p = intel_gvt_find_mmio_info(gvt, i);
2846         if (p) {
2847             WARN(1, "dup mmio definition offset %x\n",
2848                 info->offset);
2849 
2850             /* We return -EEXIST here to make GVT-g load fail.
2851              * So duplicated MMIO can be found as soon as
2852              * possible.
2853              */
2854             return -EEXIST;
2855         }
2856 
2857         info = kzalloc(sizeof(*info), GFP_KERNEL);
2858         if (!info)
2859             return -ENOMEM;
2860 
2861         info->offset = i;
2862         info->read = intel_vgpu_default_mmio_read;
2863         info->write = intel_vgpu_default_mmio_write;
2864         INIT_HLIST_NODE(&info->node);
2865         hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2866         gvt->mmio.num_tracked_mmio++;
2867     }
2868     return 0;
2869 }
2870 
2871 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2872                  u32 offset, u32 size)
2873 {
2874     struct intel_gvt *gvt = iter->data;
2875     struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2876     void *ret;
2877 
2878     ret = krealloc(block,
2879              (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2880              GFP_KERNEL);
2881     if (!ret)
2882         return -ENOMEM;
2883 
2884     gvt->mmio.mmio_block = block = ret;
2885 
2886     block += gvt->mmio.num_mmio_block;
2887 
2888     memset(block, 0, sizeof(*block));
2889 
2890     block->offset = _MMIO(offset);
2891     block->size = size;
2892 
2893     gvt->mmio.num_mmio_block++;
2894 
2895     return 0;
2896 }
2897 
2898 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2899               u32 size)
2900 {
2901     if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2902         return handle_mmio(iter, offset, size);
2903     else
2904         return handle_mmio_block(iter, offset, size);
2905 }
2906 
2907 static int init_mmio_info(struct intel_gvt *gvt)
2908 {
2909     struct intel_gvt_mmio_table_iter iter = {
2910         .i915 = gvt->gt->i915,
2911         .data = gvt,
2912         .handle_mmio_cb = handle_mmio_cb,
2913     };
2914 
2915     return intel_gvt_iterate_mmio_table(&iter);
2916 }
2917 
2918 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2919 {
2920     struct gvt_mmio_block *block;
2921 
2922     block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2923     if (!block) {
2924         WARN(1, "fail to assign handlers to mmio block %x\n",
2925              i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2926         return -ENODEV;
2927     }
2928 
2929     block->read = pvinfo_mmio_read;
2930     block->write = pvinfo_mmio_write;
2931 
2932     return 0;
2933 }
2934 
2935 /**
2936  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2937  * @gvt: GVT device
2938  *
2939  * This function is called at the initialization stage, to setup the MMIO
2940  * information table for GVT device
2941  *
2942  * Returns:
2943  * zero on success, negative if failed.
2944  */
2945 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2946 {
2947     struct intel_gvt_device_info *info = &gvt->device_info;
2948     struct drm_i915_private *i915 = gvt->gt->i915;
2949     int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2950     int ret;
2951 
2952     gvt->mmio.mmio_attribute = vzalloc(size);
2953     if (!gvt->mmio.mmio_attribute)
2954         return -ENOMEM;
2955 
2956     ret = init_mmio_info(gvt);
2957     if (ret)
2958         goto err;
2959 
2960     ret = init_mmio_block_handlers(gvt);
2961     if (ret)
2962         goto err;
2963 
2964     ret = init_generic_mmio_info(gvt);
2965     if (ret)
2966         goto err;
2967 
2968     if (IS_BROADWELL(i915)) {
2969         ret = init_bdw_mmio_info(gvt);
2970         if (ret)
2971             goto err;
2972     } else if (IS_SKYLAKE(i915) ||
2973            IS_KABYLAKE(i915) ||
2974            IS_COFFEELAKE(i915) ||
2975            IS_COMETLAKE(i915)) {
2976         ret = init_bdw_mmio_info(gvt);
2977         if (ret)
2978             goto err;
2979         ret = init_skl_mmio_info(gvt);
2980         if (ret)
2981             goto err;
2982     } else if (IS_BROXTON(i915)) {
2983         ret = init_bdw_mmio_info(gvt);
2984         if (ret)
2985             goto err;
2986         ret = init_skl_mmio_info(gvt);
2987         if (ret)
2988             goto err;
2989         ret = init_bxt_mmio_info(gvt);
2990         if (ret)
2991             goto err;
2992     }
2993 
2994     return 0;
2995 err:
2996     intel_gvt_clean_mmio_info(gvt);
2997     return ret;
2998 }
2999 
3000 /**
3001  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3002  * @gvt: a GVT device
3003  * @handler: the handler
3004  * @data: private data given to handler
3005  *
3006  * Returns:
3007  * Zero on success, negative error code if failed.
3008  */
3009 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3010     int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3011     void *data)
3012 {
3013     struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3014     struct intel_gvt_mmio_info *e;
3015     int i, j, ret;
3016 
3017     hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3018         ret = handler(gvt, e->offset, data);
3019         if (ret)
3020             return ret;
3021     }
3022 
3023     for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3024         /* pvinfo data doesn't come from hw mmio */
3025         if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3026             continue;
3027 
3028         for (j = 0; j < block->size; j += 4) {
3029             ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3030             if (ret)
3031                 return ret;
3032         }
3033     }
3034     return 0;
3035 }
3036 
3037 /**
3038  * intel_vgpu_default_mmio_read - default MMIO read handler
3039  * @vgpu: a vGPU
3040  * @offset: access offset
3041  * @p_data: data return buffer
3042  * @bytes: access data length
3043  *
3044  * Returns:
3045  * Zero on success, negative error code if failed.
3046  */
3047 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3048         void *p_data, unsigned int bytes)
3049 {
3050     read_vreg(vgpu, offset, p_data, bytes);
3051     return 0;
3052 }
3053 
3054 /**
3055  * intel_vgpu_default_mmio_write() - default MMIO write handler
3056  * @vgpu: a vGPU
3057  * @offset: access offset
3058  * @p_data: write data buffer
3059  * @bytes: access data length
3060  *
3061  * Returns:
3062  * Zero on success, negative error code if failed.
3063  */
3064 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3065         void *p_data, unsigned int bytes)
3066 {
3067     write_vreg(vgpu, offset, p_data, bytes);
3068     return 0;
3069 }
3070 
3071 /**
3072  * intel_vgpu_mask_mmio_write - write mask register
3073  * @vgpu: a vGPU
3074  * @offset: access offset
3075  * @p_data: write data buffer
3076  * @bytes: access data length
3077  *
3078  * Returns:
3079  * Zero on success, negative error code if failed.
3080  */
3081 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3082         void *p_data, unsigned int bytes)
3083 {
3084     u32 mask, old_vreg;
3085 
3086     old_vreg = vgpu_vreg(vgpu, offset);
3087     write_vreg(vgpu, offset, p_data, bytes);
3088     mask = vgpu_vreg(vgpu, offset) >> 16;
3089     vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3090                 (vgpu_vreg(vgpu, offset) & mask);
3091 
3092     return 0;
3093 }
3094 
3095 /**
3096  * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
3097  * force-nopriv register
3098  *
3099  * @gvt: a GVT device
3100  * @offset: register offset
3101  *
3102  * Returns:
3103  * True if the register is in force-nonpriv whitelist;
3104  * False if outside;
3105  */
3106 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
3107                       unsigned int offset)
3108 {
3109     return in_whitelist(offset);
3110 }
3111 
3112 /**
3113  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3114  * @vgpu: a vGPU
3115  * @offset: register offset
3116  * @pdata: data buffer
3117  * @bytes: data length
3118  * @is_read: read or write
3119  *
3120  * Returns:
3121  * Zero on success, negative error code if failed.
3122  */
3123 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3124                void *pdata, unsigned int bytes, bool is_read)
3125 {
3126     struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3127     struct intel_gvt *gvt = vgpu->gvt;
3128     struct intel_gvt_mmio_info *mmio_info;
3129     struct gvt_mmio_block *mmio_block;
3130     gvt_mmio_func func;
3131     int ret;
3132 
3133     if (drm_WARN_ON(&i915->drm, bytes > 8))
3134         return -EINVAL;
3135 
3136     /*
3137      * Handle special MMIO blocks.
3138      */
3139     mmio_block = find_mmio_block(gvt, offset);
3140     if (mmio_block) {
3141         func = is_read ? mmio_block->read : mmio_block->write;
3142         if (func)
3143             return func(vgpu, offset, pdata, bytes);
3144         goto default_rw;
3145     }
3146 
3147     /*
3148      * Normal tracked MMIOs.
3149      */
3150     mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3151     if (!mmio_info) {
3152         gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3153         goto default_rw;
3154     }
3155 
3156     if (is_read)
3157         return mmio_info->read(vgpu, offset, pdata, bytes);
3158     else {
3159         u64 ro_mask = mmio_info->ro_mask;
3160         u32 old_vreg = 0;
3161         u64 data = 0;
3162 
3163         if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3164             old_vreg = vgpu_vreg(vgpu, offset);
3165         }
3166 
3167         if (likely(!ro_mask))
3168             ret = mmio_info->write(vgpu, offset, pdata, bytes);
3169         else if (!~ro_mask) {
3170             gvt_vgpu_err("try to write RO reg %x\n", offset);
3171             return 0;
3172         } else {
3173             /* keep the RO bits in the virtual register */
3174             memcpy(&data, pdata, bytes);
3175             data &= ~ro_mask;
3176             data |= vgpu_vreg(vgpu, offset) & ro_mask;
3177             ret = mmio_info->write(vgpu, offset, &data, bytes);
3178         }
3179 
3180         /* higher 16bits of mode ctl regs are mask bits for change */
3181         if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3182             u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3183 
3184             vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3185                     | (vgpu_vreg(vgpu, offset) & mask);
3186         }
3187     }
3188 
3189     return ret;
3190 
3191 default_rw:
3192     return is_read ?
3193         intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3194         intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3195 }
3196 
3197 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3198 {
3199     struct intel_vgpu *vgpu;
3200     int i, id;
3201 
3202     idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3203         mmio_hw_access_pre(gvt->gt);
3204         for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3205             intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3206         mmio_hw_access_post(gvt->gt);
3207     }
3208 }
3209 
3210 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3211 {
3212     struct intel_vgpu *vgpu = data;
3213     struct drm_i915_private *dev_priv = gvt->gt->i915;
3214 
3215     if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3216         intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3217 
3218     return 0;
3219 }
3220 
3221 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3222 {
3223     struct intel_vgpu *vgpu;
3224     int id;
3225 
3226     idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3227         mmio_hw_access_pre(gvt->gt);
3228         intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3229         mmio_hw_access_post(gvt->gt);
3230     }
3231 }