Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: MIT
0002 /*
0003  * Copyright © 2014 Intel Corporation
0004  */
0005 
0006 /**
0007  * DOC: Logical Rings, Logical Ring Contexts and Execlists
0008  *
0009  * Motivation:
0010  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
0011  * These expanded contexts enable a number of new abilities, especially
0012  * "Execlists" (also implemented in this file).
0013  *
0014  * One of the main differences with the legacy HW contexts is that logical
0015  * ring contexts incorporate many more things to the context's state, like
0016  * PDPs or ringbuffer control registers:
0017  *
0018  * The reason why PDPs are included in the context is straightforward: as
0019  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
0020  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
0021  * instead, the GPU will do it for you on the context switch.
0022  *
0023  * But, what about the ringbuffer control registers (head, tail, etc..)?
0024  * shouldn't we just need a set of those per engine command streamer? This is
0025  * where the name "Logical Rings" starts to make sense: by virtualizing the
0026  * rings, the engine cs shifts to a new "ring buffer" with every context
0027  * switch. When you want to submit a workload to the GPU you: A) choose your
0028  * context, B) find its appropriate virtualized ring, C) write commands to it
0029  * and then, finally, D) tell the GPU to switch to that context.
0030  *
0031  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
0032  * to a contexts is via a context execution list, ergo "Execlists".
0033  *
0034  * LRC implementation:
0035  * Regarding the creation of contexts, we have:
0036  *
0037  * - One global default context.
0038  * - One local default context for each opened fd.
0039  * - One local extra context for each context create ioctl call.
0040  *
0041  * Now that ringbuffers belong per-context (and not per-engine, like before)
0042  * and that contexts are uniquely tied to a given engine (and not reusable,
0043  * like before) we need:
0044  *
0045  * - One ringbuffer per-engine inside each context.
0046  * - One backing object per-engine inside each context.
0047  *
0048  * The global default context starts its life with these new objects fully
0049  * allocated and populated. The local default context for each opened fd is
0050  * more complex, because we don't know at creation time which engine is going
0051  * to use them. To handle this, we have implemented a deferred creation of LR
0052  * contexts:
0053  *
0054  * The local context starts its life as a hollow or blank holder, that only
0055  * gets populated for a given engine once we receive an execbuffer. If later
0056  * on we receive another execbuffer ioctl for the same context but a different
0057  * engine, we allocate/populate a new ringbuffer and context backing object and
0058  * so on.
0059  *
0060  * Finally, regarding local contexts created using the ioctl call: as they are
0061  * only allowed with the render ring, we can allocate & populate them right
0062  * away (no need to defer anything, at least for now).
0063  *
0064  * Execlists implementation:
0065  * Execlists are the new method by which, on gen8+ hardware, workloads are
0066  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
0067  * This method works as follows:
0068  *
0069  * When a request is committed, its commands (the BB start and any leading or
0070  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
0071  * for the appropriate context. The tail pointer in the hardware context is not
0072  * updated at this time, but instead, kept by the driver in the ringbuffer
0073  * structure. A structure representing this request is added to a request queue
0074  * for the appropriate engine: this structure contains a copy of the context's
0075  * tail after the request was written to the ring buffer and a pointer to the
0076  * context itself.
0077  *
0078  * If the engine's request queue was empty before the request was added, the
0079  * queue is processed immediately. Otherwise the queue will be processed during
0080  * a context switch interrupt. In any case, elements on the queue will get sent
0081  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
0082  * globally unique 20-bits submission ID.
0083  *
0084  * When execution of a request completes, the GPU updates the context status
0085  * buffer with a context complete event and generates a context switch interrupt.
0086  * During the interrupt handling, the driver examines the events in the buffer:
0087  * for each context complete event, if the announced ID matches that on the head
0088  * of the request queue, then that request is retired and removed from the queue.
0089  *
0090  * After processing, if any requests were retired and the queue is not empty
0091  * then a new execution list can be submitted. The two requests at the front of
0092  * the queue are next to be submitted but since a context may not occur twice in
0093  * an execution list, if subsequent requests have the same ID as the first then
0094  * the two requests must be combined. This is done simply by discarding requests
0095  * at the head of the queue until either only one requests is left (in which case
0096  * we use a NULL second context) or the first two requests have unique IDs.
0097  *
0098  * By always executing the first two requests in the queue the driver ensures
0099  * that the GPU is kept as busy as possible. In the case where a single context
0100  * completes but a second context is still executing, the request for this second
0101  * context will be at the head of the queue when we remove the first one. This
0102  * request will then be resubmitted along with a new request for a different context,
0103  * which will cause the hardware to continue executing the second request and queue
0104  * the new request (the GPU detects the condition of a context getting preempted
0105  * with the same context and optimizes the context switch flow by not doing
0106  * preemption, but just sampling the new tail pointer).
0107  *
0108  */
0109 #include <linux/interrupt.h>
0110 #include <linux/string_helpers.h>
0111 
0112 #include "i915_drv.h"
0113 #include "i915_trace.h"
0114 #include "i915_vgpu.h"
0115 #include "gen8_engine_cs.h"
0116 #include "intel_breadcrumbs.h"
0117 #include "intel_context.h"
0118 #include "intel_engine_heartbeat.h"
0119 #include "intel_engine_pm.h"
0120 #include "intel_engine_regs.h"
0121 #include "intel_engine_stats.h"
0122 #include "intel_execlists_submission.h"
0123 #include "intel_gt.h"
0124 #include "intel_gt_irq.h"
0125 #include "intel_gt_pm.h"
0126 #include "intel_gt_regs.h"
0127 #include "intel_gt_requests.h"
0128 #include "intel_lrc.h"
0129 #include "intel_lrc_reg.h"
0130 #include "intel_mocs.h"
0131 #include "intel_reset.h"
0132 #include "intel_ring.h"
0133 #include "intel_workarounds.h"
0134 #include "shmem_utils.h"
0135 
0136 #define RING_EXECLIST_QFULL     (1 << 0x2)
0137 #define RING_EXECLIST1_VALID        (1 << 0x3)
0138 #define RING_EXECLIST0_VALID        (1 << 0x4)
0139 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
0140 #define RING_EXECLIST1_ACTIVE       (1 << 0x11)
0141 #define RING_EXECLIST0_ACTIVE       (1 << 0x12)
0142 
0143 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
0144 #define GEN8_CTX_STATUS_PREEMPTED   (1 << 1)
0145 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
0146 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
0147 #define GEN8_CTX_STATUS_COMPLETE    (1 << 4)
0148 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
0149 
0150 #define GEN8_CTX_STATUS_COMPLETED_MASK \
0151      (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
0152 
0153 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
0154 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
0155 #define GEN12_CSB_SW_CTX_ID_MASK        GENMASK(25, 15)
0156 #define GEN12_IDLE_CTX_ID       0x7FF
0157 #define GEN12_CSB_CTX_VALID(csb_dw) \
0158     (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
0159 
0160 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
0161 #define XEHP_CSB_SW_CTX_ID_MASK         GENMASK(31, 10)
0162 #define XEHP_IDLE_CTX_ID            0xFFFF
0163 #define XEHP_CSB_CTX_VALID(csb_dw) \
0164     (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
0165 
0166 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
0167 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
0168 
0169 struct virtual_engine {
0170     struct intel_engine_cs base;
0171     struct intel_context context;
0172     struct rcu_work rcu;
0173 
0174     /*
0175      * We allow only a single request through the virtual engine at a time
0176      * (each request in the timeline waits for the completion fence of
0177      * the previous before being submitted). By restricting ourselves to
0178      * only submitting a single request, each request is placed on to a
0179      * physical to maximise load spreading (by virtue of the late greedy
0180      * scheduling -- each real engine takes the next available request
0181      * upon idling).
0182      */
0183     struct i915_request *request;
0184 
0185     /*
0186      * We keep a rbtree of available virtual engines inside each physical
0187      * engine, sorted by priority. Here we preallocate the nodes we need
0188      * for the virtual engine, indexed by physical_engine->id.
0189      */
0190     struct ve_node {
0191         struct rb_node rb;
0192         int prio;
0193     } nodes[I915_NUM_ENGINES];
0194 
0195     /* And finally, which physical engines this virtual engine maps onto. */
0196     unsigned int num_siblings;
0197     struct intel_engine_cs *siblings[];
0198 };
0199 
0200 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
0201 {
0202     GEM_BUG_ON(!intel_engine_is_virtual(engine));
0203     return container_of(engine, struct virtual_engine, base);
0204 }
0205 
0206 static struct intel_context *
0207 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
0208              unsigned long flags);
0209 
0210 static struct i915_request *
0211 __active_request(const struct intel_timeline * const tl,
0212          struct i915_request *rq,
0213          int error)
0214 {
0215     struct i915_request *active = rq;
0216 
0217     list_for_each_entry_from_reverse(rq, &tl->requests, link) {
0218         if (__i915_request_is_complete(rq))
0219             break;
0220 
0221         if (error) {
0222             i915_request_set_error_once(rq, error);
0223             __i915_request_skip(rq);
0224         }
0225         active = rq;
0226     }
0227 
0228     return active;
0229 }
0230 
0231 static struct i915_request *
0232 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
0233 {
0234     return __active_request(tl, rq, 0);
0235 }
0236 
0237 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
0238 {
0239     /*
0240      * We inspect HWS_PREEMPT with a semaphore inside
0241      * engine->emit_fini_breadcrumb. If the dword is true,
0242      * the ring is paused as the semaphore will busywait
0243      * until the dword is false.
0244      */
0245     engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
0246     if (state)
0247         wmb();
0248 }
0249 
0250 static struct i915_priolist *to_priolist(struct rb_node *rb)
0251 {
0252     return rb_entry(rb, struct i915_priolist, node);
0253 }
0254 
0255 static int rq_prio(const struct i915_request *rq)
0256 {
0257     return READ_ONCE(rq->sched.attr.priority);
0258 }
0259 
0260 static int effective_prio(const struct i915_request *rq)
0261 {
0262     int prio = rq_prio(rq);
0263 
0264     /*
0265      * If this request is special and must not be interrupted at any
0266      * cost, so be it. Note we are only checking the most recent request
0267      * in the context and so may be masking an earlier vip request. It
0268      * is hoped that under the conditions where nopreempt is used, this
0269      * will not matter (i.e. all requests to that context will be
0270      * nopreempt for as long as desired).
0271      */
0272     if (i915_request_has_nopreempt(rq))
0273         prio = I915_PRIORITY_UNPREEMPTABLE;
0274 
0275     return prio;
0276 }
0277 
0278 static int queue_prio(const struct i915_sched_engine *sched_engine)
0279 {
0280     struct rb_node *rb;
0281 
0282     rb = rb_first_cached(&sched_engine->queue);
0283     if (!rb)
0284         return INT_MIN;
0285 
0286     return to_priolist(rb)->priority;
0287 }
0288 
0289 static int virtual_prio(const struct intel_engine_execlists *el)
0290 {
0291     struct rb_node *rb = rb_first_cached(&el->virtual);
0292 
0293     return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
0294 }
0295 
0296 static bool need_preempt(const struct intel_engine_cs *engine,
0297              const struct i915_request *rq)
0298 {
0299     int last_prio;
0300 
0301     if (!intel_engine_has_semaphores(engine))
0302         return false;
0303 
0304     /*
0305      * Check if the current priority hint merits a preemption attempt.
0306      *
0307      * We record the highest value priority we saw during rescheduling
0308      * prior to this dequeue, therefore we know that if it is strictly
0309      * less than the current tail of ESLP[0], we do not need to force
0310      * a preempt-to-idle cycle.
0311      *
0312      * However, the priority hint is a mere hint that we may need to
0313      * preempt. If that hint is stale or we may be trying to preempt
0314      * ourselves, ignore the request.
0315      *
0316      * More naturally we would write
0317      *      prio >= max(0, last);
0318      * except that we wish to prevent triggering preemption at the same
0319      * priority level: the task that is running should remain running
0320      * to preserve FIFO ordering of dependencies.
0321      */
0322     last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
0323     if (engine->sched_engine->queue_priority_hint <= last_prio)
0324         return false;
0325 
0326     /*
0327      * Check against the first request in ELSP[1], it will, thanks to the
0328      * power of PI, be the highest priority of that context.
0329      */
0330     if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
0331         rq_prio(list_next_entry(rq, sched.link)) > last_prio)
0332         return true;
0333 
0334     /*
0335      * If the inflight context did not trigger the preemption, then maybe
0336      * it was the set of queued requests? Pick the highest priority in
0337      * the queue (the first active priolist) and see if it deserves to be
0338      * running instead of ELSP[0].
0339      *
0340      * The highest priority request in the queue can not be either
0341      * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
0342      * context, it's priority would not exceed ELSP[0] aka last_prio.
0343      */
0344     return max(virtual_prio(&engine->execlists),
0345            queue_prio(engine->sched_engine)) > last_prio;
0346 }
0347 
0348 __maybe_unused static bool
0349 assert_priority_queue(const struct i915_request *prev,
0350               const struct i915_request *next)
0351 {
0352     /*
0353      * Without preemption, the prev may refer to the still active element
0354      * which we refuse to let go.
0355      *
0356      * Even with preemption, there are times when we think it is better not
0357      * to preempt and leave an ostensibly lower priority request in flight.
0358      */
0359     if (i915_request_is_active(prev))
0360         return true;
0361 
0362     return rq_prio(prev) >= rq_prio(next);
0363 }
0364 
0365 static struct i915_request *
0366 __unwind_incomplete_requests(struct intel_engine_cs *engine)
0367 {
0368     struct i915_request *rq, *rn, *active = NULL;
0369     struct list_head *pl;
0370     int prio = I915_PRIORITY_INVALID;
0371 
0372     lockdep_assert_held(&engine->sched_engine->lock);
0373 
0374     list_for_each_entry_safe_reverse(rq, rn,
0375                      &engine->sched_engine->requests,
0376                      sched.link) {
0377         if (__i915_request_is_complete(rq)) {
0378             list_del_init(&rq->sched.link);
0379             continue;
0380         }
0381 
0382         __i915_request_unsubmit(rq);
0383 
0384         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
0385         if (rq_prio(rq) != prio) {
0386             prio = rq_prio(rq);
0387             pl = i915_sched_lookup_priolist(engine->sched_engine,
0388                             prio);
0389         }
0390         GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
0391 
0392         list_move(&rq->sched.link, pl);
0393         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
0394 
0395         /* Check in case we rollback so far we wrap [size/2] */
0396         if (intel_ring_direction(rq->ring,
0397                      rq->tail,
0398                      rq->ring->tail + 8) > 0)
0399             rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
0400 
0401         active = rq;
0402     }
0403 
0404     return active;
0405 }
0406 
0407 struct i915_request *
0408 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
0409 {
0410     struct intel_engine_cs *engine =
0411         container_of(execlists, typeof(*engine), execlists);
0412 
0413     return __unwind_incomplete_requests(engine);
0414 }
0415 
0416 static void
0417 execlists_context_status_change(struct i915_request *rq, unsigned long status)
0418 {
0419     /*
0420      * Only used when GVT-g is enabled now. When GVT-g is disabled,
0421      * The compiler should eliminate this function as dead-code.
0422      */
0423     if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
0424         return;
0425 
0426     atomic_notifier_call_chain(&rq->engine->context_status_notifier,
0427                    status, rq);
0428 }
0429 
0430 static void reset_active(struct i915_request *rq,
0431              struct intel_engine_cs *engine)
0432 {
0433     struct intel_context * const ce = rq->context;
0434     u32 head;
0435 
0436     /*
0437      * The executing context has been cancelled. We want to prevent
0438      * further execution along this context and propagate the error on
0439      * to anything depending on its results.
0440      *
0441      * In __i915_request_submit(), we apply the -EIO and remove the
0442      * requests' payloads for any banned requests. But first, we must
0443      * rewind the context back to the start of the incomplete request so
0444      * that we do not jump back into the middle of the batch.
0445      *
0446      * We preserve the breadcrumbs and semaphores of the incomplete
0447      * requests so that inter-timeline dependencies (i.e other timelines)
0448      * remain correctly ordered. And we defer to __i915_request_submit()
0449      * so that all asynchronous waits are correctly handled.
0450      */
0451     ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
0452              rq->fence.context, rq->fence.seqno);
0453 
0454     /* On resubmission of the active request, payload will be scrubbed */
0455     if (__i915_request_is_complete(rq))
0456         head = rq->tail;
0457     else
0458         head = __active_request(ce->timeline, rq, -EIO)->head;
0459     head = intel_ring_wrap(ce->ring, head);
0460 
0461     /* Scrub the context image to prevent replaying the previous batch */
0462     lrc_init_regs(ce, engine, true);
0463 
0464     /* We've switched away, so this should be a no-op, but intent matters */
0465     ce->lrc.lrca = lrc_update_regs(ce, engine, head);
0466 }
0467 
0468 static bool bad_request(const struct i915_request *rq)
0469 {
0470     return rq->fence.error && i915_request_started(rq);
0471 }
0472 
0473 static struct intel_engine_cs *
0474 __execlists_schedule_in(struct i915_request *rq)
0475 {
0476     struct intel_engine_cs * const engine = rq->engine;
0477     struct intel_context * const ce = rq->context;
0478 
0479     intel_context_get(ce);
0480 
0481     if (unlikely(intel_context_is_closed(ce) &&
0482              !intel_engine_has_heartbeat(engine)))
0483         intel_context_set_exiting(ce);
0484 
0485     if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
0486         reset_active(rq, engine);
0487 
0488     if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
0489         lrc_check_regs(ce, engine, "before");
0490 
0491     if (ce->tag) {
0492         /* Use a fixed tag for OA and friends */
0493         GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
0494         ce->lrc.ccid = ce->tag;
0495     } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
0496         /* We don't need a strict matching tag, just different values */
0497         unsigned int tag = ffs(READ_ONCE(engine->context_tag));
0498 
0499         GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
0500         clear_bit(tag - 1, &engine->context_tag);
0501         ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
0502 
0503         BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
0504 
0505     } else {
0506         /* We don't need a strict matching tag, just different values */
0507         unsigned int tag = __ffs(engine->context_tag);
0508 
0509         GEM_BUG_ON(tag >= BITS_PER_LONG);
0510         __clear_bit(tag, &engine->context_tag);
0511         ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
0512 
0513         BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
0514     }
0515 
0516     ce->lrc.ccid |= engine->execlists.ccid;
0517 
0518     __intel_gt_pm_get(engine->gt);
0519     if (engine->fw_domain && !engine->fw_active++)
0520         intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
0521     execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
0522     intel_engine_context_in(engine);
0523 
0524     CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
0525 
0526     return engine;
0527 }
0528 
0529 static void execlists_schedule_in(struct i915_request *rq, int idx)
0530 {
0531     struct intel_context * const ce = rq->context;
0532     struct intel_engine_cs *old;
0533 
0534     GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
0535     trace_i915_request_in(rq, idx);
0536 
0537     old = ce->inflight;
0538     if (!old)
0539         old = __execlists_schedule_in(rq);
0540     WRITE_ONCE(ce->inflight, ptr_inc(old));
0541 
0542     GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
0543 }
0544 
0545 static void
0546 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
0547 {
0548     struct intel_engine_cs *engine = rq->engine;
0549 
0550     spin_lock_irq(&engine->sched_engine->lock);
0551 
0552     clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
0553     WRITE_ONCE(rq->engine, &ve->base);
0554     ve->base.submit_request(rq);
0555 
0556     spin_unlock_irq(&engine->sched_engine->lock);
0557 }
0558 
0559 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
0560 {
0561     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
0562     struct intel_engine_cs *engine = rq->engine;
0563 
0564     /*
0565      * After this point, the rq may be transferred to a new sibling, so
0566      * before we clear ce->inflight make sure that the context has been
0567      * removed from the b->signalers and furthermore we need to make sure
0568      * that the concurrent iterator in signal_irq_work is no longer
0569      * following ce->signal_link.
0570      */
0571     if (!list_empty(&ce->signals))
0572         intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
0573 
0574     /*
0575      * This engine is now too busy to run this virtual request, so
0576      * see if we can find an alternative engine for it to execute on.
0577      * Once a request has become bonded to this engine, we treat it the
0578      * same as other native request.
0579      */
0580     if (i915_request_in_priority_queue(rq) &&
0581         rq->execution_mask != engine->mask)
0582         resubmit_virtual_request(rq, ve);
0583 
0584     if (READ_ONCE(ve->request))
0585         tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
0586 }
0587 
0588 static void __execlists_schedule_out(struct i915_request * const rq,
0589                      struct intel_context * const ce)
0590 {
0591     struct intel_engine_cs * const engine = rq->engine;
0592     unsigned int ccid;
0593 
0594     /*
0595      * NB process_csb() is not under the engine->sched_engine->lock and hence
0596      * schedule_out can race with schedule_in meaning that we should
0597      * refrain from doing non-trivial work here.
0598      */
0599 
0600     CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
0601     GEM_BUG_ON(ce->inflight != engine);
0602 
0603     if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
0604         lrc_check_regs(ce, engine, "after");
0605 
0606     /*
0607      * If we have just completed this context, the engine may now be
0608      * idle and we want to re-enter powersaving.
0609      */
0610     if (intel_timeline_is_last(ce->timeline, rq) &&
0611         __i915_request_is_complete(rq))
0612         intel_engine_add_retire(engine, ce->timeline);
0613 
0614     ccid = ce->lrc.ccid;
0615     if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
0616         ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
0617         ccid &= XEHP_MAX_CONTEXT_HW_ID;
0618     } else {
0619         ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
0620         ccid &= GEN12_MAX_CONTEXT_HW_ID;
0621     }
0622 
0623     if (ccid < BITS_PER_LONG) {
0624         GEM_BUG_ON(ccid == 0);
0625         GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
0626         __set_bit(ccid - 1, &engine->context_tag);
0627     }
0628     intel_engine_context_out(engine);
0629     execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
0630     if (engine->fw_domain && !--engine->fw_active)
0631         intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
0632     intel_gt_pm_put_async(engine->gt);
0633 
0634     /*
0635      * If this is part of a virtual engine, its next request may
0636      * have been blocked waiting for access to the active context.
0637      * We have to kick all the siblings again in case we need to
0638      * switch (e.g. the next request is not runnable on this
0639      * engine). Hopefully, we will already have submitted the next
0640      * request before the tasklet runs and do not need to rebuild
0641      * each virtual tree and kick everyone again.
0642      */
0643     if (ce->engine != engine)
0644         kick_siblings(rq, ce);
0645 
0646     WRITE_ONCE(ce->inflight, NULL);
0647     intel_context_put(ce);
0648 }
0649 
0650 static inline void execlists_schedule_out(struct i915_request *rq)
0651 {
0652     struct intel_context * const ce = rq->context;
0653 
0654     trace_i915_request_out(rq);
0655 
0656     GEM_BUG_ON(!ce->inflight);
0657     ce->inflight = ptr_dec(ce->inflight);
0658     if (!__intel_context_inflight_count(ce->inflight))
0659         __execlists_schedule_out(rq, ce);
0660 
0661     i915_request_put(rq);
0662 }
0663 
0664 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
0665 {
0666     if (prio > I915_PRIORITY_NORMAL)
0667         return GEN12_CTX_PRIORITY_HIGH;
0668     else if (prio < I915_PRIORITY_NORMAL)
0669         return GEN12_CTX_PRIORITY_LOW;
0670     else
0671         return GEN12_CTX_PRIORITY_NORMAL;
0672 }
0673 
0674 static u64 execlists_update_context(struct i915_request *rq)
0675 {
0676     struct intel_context *ce = rq->context;
0677     u64 desc;
0678     u32 tail, prev;
0679 
0680     desc = ce->lrc.desc;
0681     if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
0682         desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
0683 
0684     /*
0685      * WaIdleLiteRestore:bdw,skl
0686      *
0687      * We should never submit the context with the same RING_TAIL twice
0688      * just in case we submit an empty ring, which confuses the HW.
0689      *
0690      * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
0691      * the normal request to be able to always advance the RING_TAIL on
0692      * subsequent resubmissions (for lite restore). Should that fail us,
0693      * and we try and submit the same tail again, force the context
0694      * reload.
0695      *
0696      * If we need to return to a preempted context, we need to skip the
0697      * lite-restore and force it to reload the RING_TAIL. Otherwise, the
0698      * HW has a tendency to ignore us rewinding the TAIL to the end of
0699      * an earlier request.
0700      */
0701     GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
0702     prev = rq->ring->tail;
0703     tail = intel_ring_set_tail(rq->ring, rq->tail);
0704     if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
0705         desc |= CTX_DESC_FORCE_RESTORE;
0706     ce->lrc_reg_state[CTX_RING_TAIL] = tail;
0707     rq->tail = rq->wa_tail;
0708 
0709     /*
0710      * Make sure the context image is complete before we submit it to HW.
0711      *
0712      * Ostensibly, writes (including the WCB) should be flushed prior to
0713      * an uncached write such as our mmio register access, the empirical
0714      * evidence (esp. on Braswell) suggests that the WC write into memory
0715      * may not be visible to the HW prior to the completion of the UC
0716      * register write and that we may begin execution from the context
0717      * before its image is complete leading to invalid PD chasing.
0718      */
0719     wmb();
0720 
0721     ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
0722     return desc;
0723 }
0724 
0725 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
0726 {
0727     if (execlists->ctrl_reg) {
0728         writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
0729         writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
0730     } else {
0731         writel(upper_32_bits(desc), execlists->submit_reg);
0732         writel(lower_32_bits(desc), execlists->submit_reg);
0733     }
0734 }
0735 
0736 static __maybe_unused char *
0737 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
0738 {
0739     if (!rq)
0740         return "";
0741 
0742     snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
0743          prefix,
0744          rq->context->lrc.ccid,
0745          rq->fence.context, rq->fence.seqno,
0746          __i915_request_is_complete(rq) ? "!" :
0747          __i915_request_has_started(rq) ? "*" :
0748          "",
0749          rq_prio(rq));
0750 
0751     return buf;
0752 }
0753 
0754 static __maybe_unused noinline void
0755 trace_ports(const struct intel_engine_execlists *execlists,
0756         const char *msg,
0757         struct i915_request * const *ports)
0758 {
0759     const struct intel_engine_cs *engine =
0760         container_of(execlists, typeof(*engine), execlists);
0761     char __maybe_unused p0[40], p1[40];
0762 
0763     if (!ports[0])
0764         return;
0765 
0766     ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
0767              dump_port(p0, sizeof(p0), "", ports[0]),
0768              dump_port(p1, sizeof(p1), ", ", ports[1]));
0769 }
0770 
0771 static bool
0772 reset_in_progress(const struct intel_engine_cs *engine)
0773 {
0774     return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
0775 }
0776 
0777 static __maybe_unused noinline bool
0778 assert_pending_valid(const struct intel_engine_execlists *execlists,
0779              const char *msg)
0780 {
0781     struct intel_engine_cs *engine =
0782         container_of(execlists, typeof(*engine), execlists);
0783     struct i915_request * const *port, *rq, *prev = NULL;
0784     struct intel_context *ce = NULL;
0785     u32 ccid = -1;
0786 
0787     trace_ports(execlists, msg, execlists->pending);
0788 
0789     /* We may be messing around with the lists during reset, lalala */
0790     if (reset_in_progress(engine))
0791         return true;
0792 
0793     if (!execlists->pending[0]) {
0794         GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
0795                   engine->name);
0796         return false;
0797     }
0798 
0799     if (execlists->pending[execlists_num_ports(execlists)]) {
0800         GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
0801                   engine->name, execlists_num_ports(execlists));
0802         return false;
0803     }
0804 
0805     for (port = execlists->pending; (rq = *port); port++) {
0806         unsigned long flags;
0807         bool ok = true;
0808 
0809         GEM_BUG_ON(!kref_read(&rq->fence.refcount));
0810         GEM_BUG_ON(!i915_request_is_active(rq));
0811 
0812         if (ce == rq->context) {
0813             GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
0814                       engine->name,
0815                       ce->timeline->fence_context,
0816                       port - execlists->pending);
0817             return false;
0818         }
0819         ce = rq->context;
0820 
0821         if (ccid == ce->lrc.ccid) {
0822             GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
0823                       engine->name,
0824                       ccid, ce->timeline->fence_context,
0825                       port - execlists->pending);
0826             return false;
0827         }
0828         ccid = ce->lrc.ccid;
0829 
0830         /*
0831          * Sentinels are supposed to be the last request so they flush
0832          * the current execution off the HW. Check that they are the only
0833          * request in the pending submission.
0834          *
0835          * NB: Due to the async nature of preempt-to-busy and request
0836          * cancellation we need to handle the case where request
0837          * becomes a sentinel in parallel to CSB processing.
0838          */
0839         if (prev && i915_request_has_sentinel(prev) &&
0840             !READ_ONCE(prev->fence.error)) {
0841             GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
0842                       engine->name,
0843                       ce->timeline->fence_context,
0844                       port - execlists->pending);
0845             return false;
0846         }
0847         prev = rq;
0848 
0849         /*
0850          * We want virtual requests to only be in the first slot so
0851          * that they are never stuck behind a hog and can be immediately
0852          * transferred onto the next idle engine.
0853          */
0854         if (rq->execution_mask != engine->mask &&
0855             port != execlists->pending) {
0856             GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
0857                       engine->name,
0858                       ce->timeline->fence_context,
0859                       port - execlists->pending);
0860             return false;
0861         }
0862 
0863         /* Hold tightly onto the lock to prevent concurrent retires! */
0864         if (!spin_trylock_irqsave(&rq->lock, flags))
0865             continue;
0866 
0867         if (__i915_request_is_complete(rq))
0868             goto unlock;
0869 
0870         if (i915_active_is_idle(&ce->active) &&
0871             !intel_context_is_barrier(ce)) {
0872             GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
0873                       engine->name,
0874                       ce->timeline->fence_context,
0875                       port - execlists->pending);
0876             ok = false;
0877             goto unlock;
0878         }
0879 
0880         if (!i915_vma_is_pinned(ce->state)) {
0881             GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
0882                       engine->name,
0883                       ce->timeline->fence_context,
0884                       port - execlists->pending);
0885             ok = false;
0886             goto unlock;
0887         }
0888 
0889         if (!i915_vma_is_pinned(ce->ring->vma)) {
0890             GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
0891                       engine->name,
0892                       ce->timeline->fence_context,
0893                       port - execlists->pending);
0894             ok = false;
0895             goto unlock;
0896         }
0897 
0898 unlock:
0899         spin_unlock_irqrestore(&rq->lock, flags);
0900         if (!ok)
0901             return false;
0902     }
0903 
0904     return ce;
0905 }
0906 
0907 static void execlists_submit_ports(struct intel_engine_cs *engine)
0908 {
0909     struct intel_engine_execlists *execlists = &engine->execlists;
0910     unsigned int n;
0911 
0912     GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
0913 
0914     /*
0915      * We can skip acquiring intel_runtime_pm_get() here as it was taken
0916      * on our behalf by the request (see i915_gem_mark_busy()) and it will
0917      * not be relinquished until the device is idle (see
0918      * i915_gem_idle_work_handler()). As a precaution, we make sure
0919      * that all ELSP are drained i.e. we have processed the CSB,
0920      * before allowing ourselves to idle and calling intel_runtime_pm_put().
0921      */
0922     GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
0923 
0924     /*
0925      * ELSQ note: the submit queue is not cleared after being submitted
0926      * to the HW so we need to make sure we always clean it up. This is
0927      * currently ensured by the fact that we always write the same number
0928      * of elsq entries, keep this in mind before changing the loop below.
0929      */
0930     for (n = execlists_num_ports(execlists); n--; ) {
0931         struct i915_request *rq = execlists->pending[n];
0932 
0933         write_desc(execlists,
0934                rq ? execlists_update_context(rq) : 0,
0935                n);
0936     }
0937 
0938     /* we need to manually load the submit queue */
0939     if (execlists->ctrl_reg)
0940         writel(EL_CTRL_LOAD, execlists->ctrl_reg);
0941 }
0942 
0943 static bool ctx_single_port_submission(const struct intel_context *ce)
0944 {
0945     return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
0946         intel_context_force_single_submission(ce));
0947 }
0948 
0949 static bool can_merge_ctx(const struct intel_context *prev,
0950               const struct intel_context *next)
0951 {
0952     if (prev != next)
0953         return false;
0954 
0955     if (ctx_single_port_submission(prev))
0956         return false;
0957 
0958     return true;
0959 }
0960 
0961 static unsigned long i915_request_flags(const struct i915_request *rq)
0962 {
0963     return READ_ONCE(rq->fence.flags);
0964 }
0965 
0966 static bool can_merge_rq(const struct i915_request *prev,
0967              const struct i915_request *next)
0968 {
0969     GEM_BUG_ON(prev == next);
0970     GEM_BUG_ON(!assert_priority_queue(prev, next));
0971 
0972     /*
0973      * We do not submit known completed requests. Therefore if the next
0974      * request is already completed, we can pretend to merge it in
0975      * with the previous context (and we will skip updating the ELSP
0976      * and tracking). Thus hopefully keeping the ELSP full with active
0977      * contexts, despite the best efforts of preempt-to-busy to confuse
0978      * us.
0979      */
0980     if (__i915_request_is_complete(next))
0981         return true;
0982 
0983     if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
0984              (BIT(I915_FENCE_FLAG_NOPREEMPT) |
0985               BIT(I915_FENCE_FLAG_SENTINEL))))
0986         return false;
0987 
0988     if (!can_merge_ctx(prev->context, next->context))
0989         return false;
0990 
0991     GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
0992     return true;
0993 }
0994 
0995 static bool virtual_matches(const struct virtual_engine *ve,
0996                 const struct i915_request *rq,
0997                 const struct intel_engine_cs *engine)
0998 {
0999     const struct intel_engine_cs *inflight;
1000 
1001     if (!rq)
1002         return false;
1003 
1004     if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1005         return false;
1006 
1007     /*
1008      * We track when the HW has completed saving the context image
1009      * (i.e. when we have seen the final CS event switching out of
1010      * the context) and must not overwrite the context image before
1011      * then. This restricts us to only using the active engine
1012      * while the previous virtualized request is inflight (so
1013      * we reuse the register offsets). This is a very small
1014      * hystersis on the greedy seelction algorithm.
1015      */
1016     inflight = intel_context_inflight(&ve->context);
1017     if (inflight && inflight != engine)
1018         return false;
1019 
1020     return true;
1021 }
1022 
1023 static struct virtual_engine *
1024 first_virtual_engine(struct intel_engine_cs *engine)
1025 {
1026     struct intel_engine_execlists *el = &engine->execlists;
1027     struct rb_node *rb = rb_first_cached(&el->virtual);
1028 
1029     while (rb) {
1030         struct virtual_engine *ve =
1031             rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1032         struct i915_request *rq = READ_ONCE(ve->request);
1033 
1034         /* lazily cleanup after another engine handled rq */
1035         if (!rq || !virtual_matches(ve, rq, engine)) {
1036             rb_erase_cached(rb, &el->virtual);
1037             RB_CLEAR_NODE(rb);
1038             rb = rb_first_cached(&el->virtual);
1039             continue;
1040         }
1041 
1042         return ve;
1043     }
1044 
1045     return NULL;
1046 }
1047 
1048 static void virtual_xfer_context(struct virtual_engine *ve,
1049                  struct intel_engine_cs *engine)
1050 {
1051     unsigned int n;
1052 
1053     if (likely(engine == ve->siblings[0]))
1054         return;
1055 
1056     GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1057     if (!intel_engine_has_relative_mmio(engine))
1058         lrc_update_offsets(&ve->context, engine);
1059 
1060     /*
1061      * Move the bound engine to the top of the list for
1062      * future execution. We then kick this tasklet first
1063      * before checking others, so that we preferentially
1064      * reuse this set of bound registers.
1065      */
1066     for (n = 1; n < ve->num_siblings; n++) {
1067         if (ve->siblings[n] == engine) {
1068             swap(ve->siblings[n], ve->siblings[0]);
1069             break;
1070         }
1071     }
1072 }
1073 
1074 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1075 {
1076     LIST_HEAD(list);
1077 
1078     /*
1079      * We want to move the interrupted request to the back of
1080      * the round-robin list (i.e. its priority level), but
1081      * in doing so, we must then move all requests that were in
1082      * flight and were waiting for the interrupted request to
1083      * be run after it again.
1084      */
1085     do {
1086         struct i915_dependency *p;
1087 
1088         GEM_BUG_ON(i915_request_is_active(rq));
1089         list_move_tail(&rq->sched.link, pl);
1090 
1091         for_each_waiter(p, rq) {
1092             struct i915_request *w =
1093                 container_of(p->waiter, typeof(*w), sched);
1094 
1095             if (p->flags & I915_DEPENDENCY_WEAK)
1096                 continue;
1097 
1098             /* Leave semaphores spinning on the other engines */
1099             if (w->engine != rq->engine)
1100                 continue;
1101 
1102             /* No waiter should start before its signaler */
1103             GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1104                    __i915_request_has_started(w) &&
1105                    !__i915_request_is_complete(rq));
1106 
1107             if (!i915_request_is_ready(w))
1108                 continue;
1109 
1110             if (rq_prio(w) < rq_prio(rq))
1111                 continue;
1112 
1113             GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1114             GEM_BUG_ON(i915_request_is_active(w));
1115             list_move_tail(&w->sched.link, &list);
1116         }
1117 
1118         rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1119     } while (rq);
1120 }
1121 
1122 static void defer_active(struct intel_engine_cs *engine)
1123 {
1124     struct i915_request *rq;
1125 
1126     rq = __unwind_incomplete_requests(engine);
1127     if (!rq)
1128         return;
1129 
1130     defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1131                              rq_prio(rq)));
1132 }
1133 
1134 static bool
1135 timeslice_yield(const struct intel_engine_execlists *el,
1136         const struct i915_request *rq)
1137 {
1138     /*
1139      * Once bitten, forever smitten!
1140      *
1141      * If the active context ever busy-waited on a semaphore,
1142      * it will be treated as a hog until the end of its timeslice (i.e.
1143      * until it is scheduled out and replaced by a new submission,
1144      * possibly even its own lite-restore). The HW only sends an interrupt
1145      * on the first miss, and we do know if that semaphore has been
1146      * signaled, or even if it is now stuck on another semaphore. Play
1147      * safe, yield if it might be stuck -- it will be given a fresh
1148      * timeslice in the near future.
1149      */
1150     return rq->context->lrc.ccid == READ_ONCE(el->yield);
1151 }
1152 
1153 static bool needs_timeslice(const struct intel_engine_cs *engine,
1154                 const struct i915_request *rq)
1155 {
1156     if (!intel_engine_has_timeslices(engine))
1157         return false;
1158 
1159     /* If not currently active, or about to switch, wait for next event */
1160     if (!rq || __i915_request_is_complete(rq))
1161         return false;
1162 
1163     /* We do not need to start the timeslice until after the ACK */
1164     if (READ_ONCE(engine->execlists.pending[0]))
1165         return false;
1166 
1167     /* If ELSP[1] is occupied, always check to see if worth slicing */
1168     if (!list_is_last_rcu(&rq->sched.link,
1169                   &engine->sched_engine->requests)) {
1170         ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1171         return true;
1172     }
1173 
1174     /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1175     if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1176         ENGINE_TRACE(engine, "timeslice required for queue\n");
1177         return true;
1178     }
1179 
1180     if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1181         ENGINE_TRACE(engine, "timeslice required for virtual\n");
1182         return true;
1183     }
1184 
1185     return false;
1186 }
1187 
1188 static bool
1189 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1190 {
1191     const struct intel_engine_execlists *el = &engine->execlists;
1192 
1193     if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1194         return false;
1195 
1196     if (!needs_timeslice(engine, rq))
1197         return false;
1198 
1199     return timer_expired(&el->timer) || timeslice_yield(el, rq);
1200 }
1201 
1202 static unsigned long timeslice(const struct intel_engine_cs *engine)
1203 {
1204     return READ_ONCE(engine->props.timeslice_duration_ms);
1205 }
1206 
1207 static void start_timeslice(struct intel_engine_cs *engine)
1208 {
1209     struct intel_engine_execlists *el = &engine->execlists;
1210     unsigned long duration;
1211 
1212     /* Disable the timer if there is nothing to switch to */
1213     duration = 0;
1214     if (needs_timeslice(engine, *el->active)) {
1215         /* Avoid continually prolonging an active timeslice */
1216         if (timer_active(&el->timer)) {
1217             /*
1218              * If we just submitted a new ELSP after an old
1219              * context, that context may have already consumed
1220              * its timeslice, so recheck.
1221              */
1222             if (!timer_pending(&el->timer))
1223                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1224             return;
1225         }
1226 
1227         duration = timeslice(engine);
1228     }
1229 
1230     set_timer_ms(&el->timer, duration);
1231 }
1232 
1233 static void record_preemption(struct intel_engine_execlists *execlists)
1234 {
1235     (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1236 }
1237 
1238 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1239                         const struct i915_request *rq)
1240 {
1241     if (!rq)
1242         return 0;
1243 
1244     /* Only allow ourselves to force reset the currently active context */
1245     engine->execlists.preempt_target = rq;
1246 
1247     /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1248     if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1249         return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1250 
1251     return READ_ONCE(engine->props.preempt_timeout_ms);
1252 }
1253 
1254 static void set_preempt_timeout(struct intel_engine_cs *engine,
1255                 const struct i915_request *rq)
1256 {
1257     if (!intel_engine_has_preempt_reset(engine))
1258         return;
1259 
1260     set_timer_ms(&engine->execlists.preempt,
1261              active_preempt_timeout(engine, rq));
1262 }
1263 
1264 static bool completed(const struct i915_request *rq)
1265 {
1266     if (i915_request_has_sentinel(rq))
1267         return false;
1268 
1269     return __i915_request_is_complete(rq);
1270 }
1271 
1272 static void execlists_dequeue(struct intel_engine_cs *engine)
1273 {
1274     struct intel_engine_execlists * const execlists = &engine->execlists;
1275     struct i915_sched_engine * const sched_engine = engine->sched_engine;
1276     struct i915_request **port = execlists->pending;
1277     struct i915_request ** const last_port = port + execlists->port_mask;
1278     struct i915_request *last, * const *active;
1279     struct virtual_engine *ve;
1280     struct rb_node *rb;
1281     bool submit = false;
1282 
1283     /*
1284      * Hardware submission is through 2 ports. Conceptually each port
1285      * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1286      * static for a context, and unique to each, so we only execute
1287      * requests belonging to a single context from each ring. RING_HEAD
1288      * is maintained by the CS in the context image, it marks the place
1289      * where it got up to last time, and through RING_TAIL we tell the CS
1290      * where we want to execute up to this time.
1291      *
1292      * In this list the requests are in order of execution. Consecutive
1293      * requests from the same context are adjacent in the ringbuffer. We
1294      * can combine these requests into a single RING_TAIL update:
1295      *
1296      *              RING_HEAD...req1...req2
1297      *                                    ^- RING_TAIL
1298      * since to execute req2 the CS must first execute req1.
1299      *
1300      * Our goal then is to point each port to the end of a consecutive
1301      * sequence of requests as being the most optimal (fewest wake ups
1302      * and context switches) submission.
1303      */
1304 
1305     spin_lock(&sched_engine->lock);
1306 
1307     /*
1308      * If the queue is higher priority than the last
1309      * request in the currently active context, submit afresh.
1310      * We will resubmit again afterwards in case we need to split
1311      * the active context to interject the preemption request,
1312      * i.e. we will retrigger preemption following the ack in case
1313      * of trouble.
1314      *
1315      */
1316     active = execlists->active;
1317     while ((last = *active) && completed(last))
1318         active++;
1319 
1320     if (last) {
1321         if (need_preempt(engine, last)) {
1322             ENGINE_TRACE(engine,
1323                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1324                      last->fence.context,
1325                      last->fence.seqno,
1326                      last->sched.attr.priority,
1327                      sched_engine->queue_priority_hint);
1328             record_preemption(execlists);
1329 
1330             /*
1331              * Don't let the RING_HEAD advance past the breadcrumb
1332              * as we unwind (and until we resubmit) so that we do
1333              * not accidentally tell it to go backwards.
1334              */
1335             ring_set_paused(engine, 1);
1336 
1337             /*
1338              * Note that we have not stopped the GPU at this point,
1339              * so we are unwinding the incomplete requests as they
1340              * remain inflight and so by the time we do complete
1341              * the preemption, some of the unwound requests may
1342              * complete!
1343              */
1344             __unwind_incomplete_requests(engine);
1345 
1346             last = NULL;
1347         } else if (timeslice_expired(engine, last)) {
1348             ENGINE_TRACE(engine,
1349                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1350                      str_yes_no(timer_expired(&execlists->timer)),
1351                      last->fence.context, last->fence.seqno,
1352                      rq_prio(last),
1353                      sched_engine->queue_priority_hint,
1354                      str_yes_no(timeslice_yield(execlists, last)));
1355 
1356             /*
1357              * Consume this timeslice; ensure we start a new one.
1358              *
1359              * The timeslice expired, and we will unwind the
1360              * running contexts and recompute the next ELSP.
1361              * If that submit will be the same pair of contexts
1362              * (due to dependency ordering), we will skip the
1363              * submission. If we don't cancel the timer now,
1364              * we will see that the timer has expired and
1365              * reschedule the tasklet; continually until the
1366              * next context switch or other preemption event.
1367              *
1368              * Since we have decided to reschedule based on
1369              * consumption of this timeslice, if we submit the
1370              * same context again, grant it a full timeslice.
1371              */
1372             cancel_timer(&execlists->timer);
1373             ring_set_paused(engine, 1);
1374             defer_active(engine);
1375 
1376             /*
1377              * Unlike for preemption, if we rewind and continue
1378              * executing the same context as previously active,
1379              * the order of execution will remain the same and
1380              * the tail will only advance. We do not need to
1381              * force a full context restore, as a lite-restore
1382              * is sufficient to resample the monotonic TAIL.
1383              *
1384              * If we switch to any other context, similarly we
1385              * will not rewind TAIL of current context, and
1386              * normal save/restore will preserve state and allow
1387              * us to later continue executing the same request.
1388              */
1389             last = NULL;
1390         } else {
1391             /*
1392              * Otherwise if we already have a request pending
1393              * for execution after the current one, we can
1394              * just wait until the next CS event before
1395              * queuing more. In either case we will force a
1396              * lite-restore preemption event, but if we wait
1397              * we hopefully coalesce several updates into a single
1398              * submission.
1399              */
1400             if (active[1]) {
1401                 /*
1402                  * Even if ELSP[1] is occupied and not worthy
1403                  * of timeslices, our queue might be.
1404                  */
1405                 spin_unlock(&sched_engine->lock);
1406                 return;
1407             }
1408         }
1409     }
1410 
1411     /* XXX virtual is always taking precedence */
1412     while ((ve = first_virtual_engine(engine))) {
1413         struct i915_request *rq;
1414 
1415         spin_lock(&ve->base.sched_engine->lock);
1416 
1417         rq = ve->request;
1418         if (unlikely(!virtual_matches(ve, rq, engine)))
1419             goto unlock; /* lost the race to a sibling */
1420 
1421         GEM_BUG_ON(rq->engine != &ve->base);
1422         GEM_BUG_ON(rq->context != &ve->context);
1423 
1424         if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1425             spin_unlock(&ve->base.sched_engine->lock);
1426             break;
1427         }
1428 
1429         if (last && !can_merge_rq(last, rq)) {
1430             spin_unlock(&ve->base.sched_engine->lock);
1431             spin_unlock(&engine->sched_engine->lock);
1432             return; /* leave this for another sibling */
1433         }
1434 
1435         ENGINE_TRACE(engine,
1436                  "virtual rq=%llx:%lld%s, new engine? %s\n",
1437                  rq->fence.context,
1438                  rq->fence.seqno,
1439                  __i915_request_is_complete(rq) ? "!" :
1440                  __i915_request_has_started(rq) ? "*" :
1441                  "",
1442                  str_yes_no(engine != ve->siblings[0]));
1443 
1444         WRITE_ONCE(ve->request, NULL);
1445         WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1446 
1447         rb = &ve->nodes[engine->id].rb;
1448         rb_erase_cached(rb, &execlists->virtual);
1449         RB_CLEAR_NODE(rb);
1450 
1451         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1452         WRITE_ONCE(rq->engine, engine);
1453 
1454         if (__i915_request_submit(rq)) {
1455             /*
1456              * Only after we confirm that we will submit
1457              * this request (i.e. it has not already
1458              * completed), do we want to update the context.
1459              *
1460              * This serves two purposes. It avoids
1461              * unnecessary work if we are resubmitting an
1462              * already completed request after timeslicing.
1463              * But more importantly, it prevents us altering
1464              * ve->siblings[] on an idle context, where
1465              * we may be using ve->siblings[] in
1466              * virtual_context_enter / virtual_context_exit.
1467              */
1468             virtual_xfer_context(ve, engine);
1469             GEM_BUG_ON(ve->siblings[0] != engine);
1470 
1471             submit = true;
1472             last = rq;
1473         }
1474 
1475         i915_request_put(rq);
1476 unlock:
1477         spin_unlock(&ve->base.sched_engine->lock);
1478 
1479         /*
1480          * Hmm, we have a bunch of virtual engine requests,
1481          * but the first one was already completed (thanks
1482          * preempt-to-busy!). Keep looking at the veng queue
1483          * until we have no more relevant requests (i.e.
1484          * the normal submit queue has higher priority).
1485          */
1486         if (submit)
1487             break;
1488     }
1489 
1490     while ((rb = rb_first_cached(&sched_engine->queue))) {
1491         struct i915_priolist *p = to_priolist(rb);
1492         struct i915_request *rq, *rn;
1493 
1494         priolist_for_each_request_consume(rq, rn, p) {
1495             bool merge = true;
1496 
1497             /*
1498              * Can we combine this request with the current port?
1499              * It has to be the same context/ringbuffer and not
1500              * have any exceptions (e.g. GVT saying never to
1501              * combine contexts).
1502              *
1503              * If we can combine the requests, we can execute both
1504              * by updating the RING_TAIL to point to the end of the
1505              * second request, and so we never need to tell the
1506              * hardware about the first.
1507              */
1508             if (last && !can_merge_rq(last, rq)) {
1509                 /*
1510                  * If we are on the second port and cannot
1511                  * combine this request with the last, then we
1512                  * are done.
1513                  */
1514                 if (port == last_port)
1515                     goto done;
1516 
1517                 /*
1518                  * We must not populate both ELSP[] with the
1519                  * same LRCA, i.e. we must submit 2 different
1520                  * contexts if we submit 2 ELSP.
1521                  */
1522                 if (last->context == rq->context)
1523                     goto done;
1524 
1525                 if (i915_request_has_sentinel(last))
1526                     goto done;
1527 
1528                 /*
1529                  * We avoid submitting virtual requests into
1530                  * the secondary ports so that we can migrate
1531                  * the request immediately to another engine
1532                  * rather than wait for the primary request.
1533                  */
1534                 if (rq->execution_mask != engine->mask)
1535                     goto done;
1536 
1537                 /*
1538                  * If GVT overrides us we only ever submit
1539                  * port[0], leaving port[1] empty. Note that we
1540                  * also have to be careful that we don't queue
1541                  * the same context (even though a different
1542                  * request) to the second port.
1543                  */
1544                 if (ctx_single_port_submission(last->context) ||
1545                     ctx_single_port_submission(rq->context))
1546                     goto done;
1547 
1548                 merge = false;
1549             }
1550 
1551             if (__i915_request_submit(rq)) {
1552                 if (!merge) {
1553                     *port++ = i915_request_get(last);
1554                     last = NULL;
1555                 }
1556 
1557                 GEM_BUG_ON(last &&
1558                        !can_merge_ctx(last->context,
1559                               rq->context));
1560                 GEM_BUG_ON(last &&
1561                        i915_seqno_passed(last->fence.seqno,
1562                                  rq->fence.seqno));
1563 
1564                 submit = true;
1565                 last = rq;
1566             }
1567         }
1568 
1569         rb_erase_cached(&p->node, &sched_engine->queue);
1570         i915_priolist_free(p);
1571     }
1572 done:
1573     *port++ = i915_request_get(last);
1574 
1575     /*
1576      * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1577      *
1578      * We choose the priority hint such that if we add a request of greater
1579      * priority than this, we kick the submission tasklet to decide on
1580      * the right order of submitting the requests to hardware. We must
1581      * also be prepared to reorder requests as they are in-flight on the
1582      * HW. We derive the priority hint then as the first "hole" in
1583      * the HW submission ports and if there are no available slots,
1584      * the priority of the lowest executing request, i.e. last.
1585      *
1586      * When we do receive a higher priority request ready to run from the
1587      * user, see queue_request(), the priority hint is bumped to that
1588      * request triggering preemption on the next dequeue (or subsequent
1589      * interrupt for secondary ports).
1590      */
1591     sched_engine->queue_priority_hint = queue_prio(sched_engine);
1592     i915_sched_engine_reset_on_empty(sched_engine);
1593     spin_unlock(&sched_engine->lock);
1594 
1595     /*
1596      * We can skip poking the HW if we ended up with exactly the same set
1597      * of requests as currently running, e.g. trying to timeslice a pair
1598      * of ordered contexts.
1599      */
1600     if (submit &&
1601         memcmp(active,
1602            execlists->pending,
1603            (port - execlists->pending) * sizeof(*port))) {
1604         *port = NULL;
1605         while (port-- != execlists->pending)
1606             execlists_schedule_in(*port, port - execlists->pending);
1607 
1608         WRITE_ONCE(execlists->yield, -1);
1609         set_preempt_timeout(engine, *active);
1610         execlists_submit_ports(engine);
1611     } else {
1612         ring_set_paused(engine, 0);
1613         while (port-- != execlists->pending)
1614             i915_request_put(*port);
1615         *execlists->pending = NULL;
1616     }
1617 }
1618 
1619 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1620 {
1621     local_irq_disable(); /* Suspend interrupts across request submission */
1622     execlists_dequeue(engine);
1623     local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1624 }
1625 
1626 static void clear_ports(struct i915_request **ports, int count)
1627 {
1628     memset_p((void **)ports, NULL, count);
1629 }
1630 
1631 static void
1632 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1633 {
1634     /* A memcpy_p() would be very useful here! */
1635     while (count--)
1636         WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1637 }
1638 
1639 static struct i915_request **
1640 cancel_port_requests(struct intel_engine_execlists * const execlists,
1641              struct i915_request **inactive)
1642 {
1643     struct i915_request * const *port;
1644 
1645     for (port = execlists->pending; *port; port++)
1646         *inactive++ = *port;
1647     clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1648 
1649     /* Mark the end of active before we overwrite *active */
1650     for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1651         *inactive++ = *port;
1652     clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1653 
1654     smp_wmb(); /* complete the seqlock for execlists_active() */
1655     WRITE_ONCE(execlists->active, execlists->inflight);
1656 
1657     /* Having cancelled all outstanding process_csb(), stop their timers */
1658     GEM_BUG_ON(execlists->pending[0]);
1659     cancel_timer(&execlists->timer);
1660     cancel_timer(&execlists->preempt);
1661 
1662     return inactive;
1663 }
1664 
1665 /*
1666  * Starting with Gen12, the status has a new format:
1667  *
1668  *     bit  0:     switched to new queue
1669  *     bit  1:     reserved
1670  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1671  *                 switch detail is set to "wait on semaphore"
1672  *     bits 3-5:   engine class
1673  *     bits 6-11:  engine instance
1674  *     bits 12-14: reserved
1675  *     bits 15-25: sw context id of the lrc the GT switched to
1676  *     bits 26-31: sw counter of the lrc the GT switched to
1677  *     bits 32-35: context switch detail
1678  *                  - 0: ctx complete
1679  *                  - 1: wait on sync flip
1680  *                  - 2: wait on vblank
1681  *                  - 3: wait on scanline
1682  *                  - 4: wait on semaphore
1683  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1684  *                       WAIT_FOR_EVENT)
1685  *     bit  36:    reserved
1686  *     bits 37-43: wait detail (for switch detail 1 to 4)
1687  *     bits 44-46: reserved
1688  *     bits 47-57: sw context id of the lrc the GT switched away from
1689  *     bits 58-63: sw counter of the lrc the GT switched away from
1690  *
1691  * Xe_HP csb shuffles things around compared to TGL:
1692  *
1693  *     bits 0-3:   context switch detail (same possible values as TGL)
1694  *     bits 4-9:   engine instance
1695  *     bits 10-25: sw context id of the lrc the GT switched to
1696  *     bits 26-31: sw counter of the lrc the GT switched to
1697  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1698  *                 switch detail is set to "wait on semaphore"
1699  *     bit  33:    switched to new queue
1700  *     bits 34-41: wait detail (for switch detail 1 to 4)
1701  *     bits 42-57: sw context id of the lrc the GT switched away from
1702  *     bits 58-63: sw counter of the lrc the GT switched away from
1703  */
1704 static inline bool
1705 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1706           u8 switch_detail)
1707 {
1708     /*
1709      * The context switch detail is not guaranteed to be 5 when a preemption
1710      * occurs, so we can't just check for that. The check below works for
1711      * all the cases we care about, including preemptions of WAIT
1712      * instructions and lite-restore. Preempt-to-idle via the CTRL register
1713      * would require some extra handling, but we don't support that.
1714      */
1715     if (!ctx_away_valid || new_queue) {
1716         GEM_BUG_ON(!ctx_to_valid);
1717         return true;
1718     }
1719 
1720     /*
1721      * switch detail = 5 is covered by the case above and we do not expect a
1722      * context switch on an unsuccessful wait instruction since we always
1723      * use polling mode.
1724      */
1725     GEM_BUG_ON(switch_detail);
1726     return false;
1727 }
1728 
1729 static bool xehp_csb_parse(const u64 csb)
1730 {
1731     return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1732                  XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1733                  upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1734                  GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1735 }
1736 
1737 static bool gen12_csb_parse(const u64 csb)
1738 {
1739     return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1740                  GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1741                  lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1742                  GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1743 }
1744 
1745 static bool gen8_csb_parse(const u64 csb)
1746 {
1747     return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1748 }
1749 
1750 static noinline u64
1751 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1752 {
1753     u64 entry;
1754 
1755     /*
1756      * Reading from the HWSP has one particular advantage: we can detect
1757      * a stale entry. Since the write into HWSP is broken, we have no reason
1758      * to trust the HW at all, the mmio entry may equally be unordered, so
1759      * we prefer the path that is self-checking and as a last resort,
1760      * return the mmio value.
1761      *
1762      * tgl,dg1:HSDES#22011327657
1763      */
1764     preempt_disable();
1765     if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1766         int idx = csb - engine->execlists.csb_status;
1767         int status;
1768 
1769         status = GEN8_EXECLISTS_STATUS_BUF;
1770         if (idx >= 6) {
1771             status = GEN11_EXECLISTS_STATUS_BUF2;
1772             idx -= 6;
1773         }
1774         status += sizeof(u64) * idx;
1775 
1776         entry = intel_uncore_read64(engine->uncore,
1777                         _MMIO(engine->mmio_base + status));
1778     }
1779     preempt_enable();
1780 
1781     return entry;
1782 }
1783 
1784 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1785 {
1786     u64 entry = READ_ONCE(*csb);
1787 
1788     /*
1789      * Unfortunately, the GPU does not always serialise its write
1790      * of the CSB entries before its write of the CSB pointer, at least
1791      * from the perspective of the CPU, using what is known as a Global
1792      * Observation Point. We may read a new CSB tail pointer, but then
1793      * read the stale CSB entries, causing us to misinterpret the
1794      * context-switch events, and eventually declare the GPU hung.
1795      *
1796      * icl:HSDES#1806554093
1797      * tgl:HSDES#22011248461
1798      */
1799     if (unlikely(entry == -1))
1800         entry = wa_csb_read(engine, csb);
1801 
1802     /* Consume this entry so that we can spot its future reuse. */
1803     WRITE_ONCE(*csb, -1);
1804 
1805     /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1806     return entry;
1807 }
1808 
1809 static void new_timeslice(struct intel_engine_execlists *el)
1810 {
1811     /* By cancelling, we will start afresh in start_timeslice() */
1812     cancel_timer(&el->timer);
1813 }
1814 
1815 static struct i915_request **
1816 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1817 {
1818     struct intel_engine_execlists * const execlists = &engine->execlists;
1819     u64 * const buf = execlists->csb_status;
1820     const u8 num_entries = execlists->csb_size;
1821     struct i915_request **prev;
1822     u8 head, tail;
1823 
1824     /*
1825      * As we modify our execlists state tracking we require exclusive
1826      * access. Either we are inside the tasklet, or the tasklet is disabled
1827      * and we assume that is only inside the reset paths and so serialised.
1828      */
1829     GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1830            !reset_in_progress(engine));
1831 
1832     /*
1833      * Note that csb_write, csb_status may be either in HWSP or mmio.
1834      * When reading from the csb_write mmio register, we have to be
1835      * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1836      * the low 4bits. As it happens we know the next 4bits are always
1837      * zero and so we can simply masked off the low u8 of the register
1838      * and treat it identically to reading from the HWSP (without having
1839      * to use explicit shifting and masking, and probably bifurcating
1840      * the code to handle the legacy mmio read).
1841      */
1842     head = execlists->csb_head;
1843     tail = READ_ONCE(*execlists->csb_write);
1844     if (unlikely(head == tail))
1845         return inactive;
1846 
1847     /*
1848      * We will consume all events from HW, or at least pretend to.
1849      *
1850      * The sequence of events from the HW is deterministic, and derived
1851      * from our writes to the ELSP, with a smidgen of variability for
1852      * the arrival of the asynchronous requests wrt to the inflight
1853      * execution. If the HW sends an event that does not correspond with
1854      * the one we are expecting, we have to abandon all hope as we lose
1855      * all tracking of what the engine is actually executing. We will
1856      * only detect we are out of sequence with the HW when we get an
1857      * 'impossible' event because we have already drained our own
1858      * preemption/promotion queue. If this occurs, we know that we likely
1859      * lost track of execution earlier and must unwind and restart, the
1860      * simplest way is by stop processing the event queue and force the
1861      * engine to reset.
1862      */
1863     execlists->csb_head = tail;
1864     ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1865 
1866     /*
1867      * Hopefully paired with a wmb() in HW!
1868      *
1869      * We must complete the read of the write pointer before any reads
1870      * from the CSB, so that we do not see stale values. Without an rmb
1871      * (lfence) the HW may speculatively perform the CSB[] reads *before*
1872      * we perform the READ_ONCE(*csb_write).
1873      */
1874     rmb();
1875 
1876     /* Remember who was last running under the timer */
1877     prev = inactive;
1878     *prev = NULL;
1879 
1880     do {
1881         bool promote;
1882         u64 csb;
1883 
1884         if (++head == num_entries)
1885             head = 0;
1886 
1887         /*
1888          * We are flying near dragons again.
1889          *
1890          * We hold a reference to the request in execlist_port[]
1891          * but no more than that. We are operating in softirq
1892          * context and so cannot hold any mutex or sleep. That
1893          * prevents us stopping the requests we are processing
1894          * in port[] from being retired simultaneously (the
1895          * breadcrumb will be complete before we see the
1896          * context-switch). As we only hold the reference to the
1897          * request, any pointer chasing underneath the request
1898          * is subject to a potential use-after-free. Thus we
1899          * store all of the bookkeeping within port[] as
1900          * required, and avoid using unguarded pointers beneath
1901          * request itself. The same applies to the atomic
1902          * status notifier.
1903          */
1904 
1905         csb = csb_read(engine, buf + head);
1906         ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1907                  head, upper_32_bits(csb), lower_32_bits(csb));
1908 
1909         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1910             promote = xehp_csb_parse(csb);
1911         else if (GRAPHICS_VER(engine->i915) >= 12)
1912             promote = gen12_csb_parse(csb);
1913         else
1914             promote = gen8_csb_parse(csb);
1915         if (promote) {
1916             struct i915_request * const *old = execlists->active;
1917 
1918             if (GEM_WARN_ON(!*execlists->pending)) {
1919                 execlists->error_interrupt |= ERROR_CSB;
1920                 break;
1921             }
1922 
1923             ring_set_paused(engine, 0);
1924 
1925             /* Point active to the new ELSP; prevent overwriting */
1926             WRITE_ONCE(execlists->active, execlists->pending);
1927             smp_wmb(); /* notify execlists_active() */
1928 
1929             /* cancel old inflight, prepare for switch */
1930             trace_ports(execlists, "preempted", old);
1931             while (*old)
1932                 *inactive++ = *old++;
1933 
1934             /* switch pending to inflight */
1935             GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1936             copy_ports(execlists->inflight,
1937                    execlists->pending,
1938                    execlists_num_ports(execlists));
1939             smp_wmb(); /* complete the seqlock */
1940             WRITE_ONCE(execlists->active, execlists->inflight);
1941 
1942             /* XXX Magic delay for tgl */
1943             ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1944 
1945             WRITE_ONCE(execlists->pending[0], NULL);
1946         } else {
1947             if (GEM_WARN_ON(!*execlists->active)) {
1948                 execlists->error_interrupt |= ERROR_CSB;
1949                 break;
1950             }
1951 
1952             /* port0 completed, advanced to port1 */
1953             trace_ports(execlists, "completed", execlists->active);
1954 
1955             /*
1956              * We rely on the hardware being strongly
1957              * ordered, that the breadcrumb write is
1958              * coherent (visible from the CPU) before the
1959              * user interrupt is processed. One might assume
1960              * that the breadcrumb write being before the
1961              * user interrupt and the CS event for the context
1962              * switch would therefore be before the CS event
1963              * itself...
1964              */
1965             if (GEM_SHOW_DEBUG() &&
1966                 !__i915_request_is_complete(*execlists->active)) {
1967                 struct i915_request *rq = *execlists->active;
1968                 const u32 *regs __maybe_unused =
1969                     rq->context->lrc_reg_state;
1970 
1971                 ENGINE_TRACE(engine,
1972                          "context completed before request!\n");
1973                 ENGINE_TRACE(engine,
1974                          "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1975                          ENGINE_READ(engine, RING_START),
1976                          ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1977                          ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1978                          ENGINE_READ(engine, RING_CTL),
1979                          ENGINE_READ(engine, RING_MI_MODE));
1980                 ENGINE_TRACE(engine,
1981                          "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1982                          i915_ggtt_offset(rq->ring->vma),
1983                          rq->head, rq->tail,
1984                          rq->fence.context,
1985                          lower_32_bits(rq->fence.seqno),
1986                          hwsp_seqno(rq));
1987                 ENGINE_TRACE(engine,
1988                          "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1989                          regs[CTX_RING_START],
1990                          regs[CTX_RING_HEAD],
1991                          regs[CTX_RING_TAIL]);
1992             }
1993 
1994             *inactive++ = *execlists->active++;
1995 
1996             GEM_BUG_ON(execlists->active - execlists->inflight >
1997                    execlists_num_ports(execlists));
1998         }
1999     } while (head != tail);
2000 
2001     /*
2002      * Gen11 has proven to fail wrt global observation point between
2003      * entry and tail update, failing on the ordering and thus
2004      * we see an old entry in the context status buffer.
2005      *
2006      * Forcibly evict out entries for the next gpu csb update,
2007      * to increase the odds that we get a fresh entries with non
2008      * working hardware. The cost for doing so comes out mostly with
2009      * the wash as hardware, working or not, will need to do the
2010      * invalidation before.
2011      */
2012     drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2013 
2014     /*
2015      * We assume that any event reflects a change in context flow
2016      * and merits a fresh timeslice. We reinstall the timer after
2017      * inspecting the queue to see if we need to resumbit.
2018      */
2019     if (*prev != *execlists->active) { /* elide lite-restores */
2020         /*
2021          * Note the inherent discrepancy between the HW runtime,
2022          * recorded as part of the context switch, and the CPU
2023          * adjustment for active contexts. We have to hope that
2024          * the delay in processing the CS event is very small
2025          * and consistent. It works to our advantage to have
2026          * the CPU adjustment _undershoot_ (i.e. start later than)
2027          * the CS timestamp so we never overreport the runtime
2028          * and correct overselves later when updating from HW.
2029          */
2030         if (*prev)
2031             lrc_runtime_stop((*prev)->context);
2032         if (*execlists->active)
2033             lrc_runtime_start((*execlists->active)->context);
2034         new_timeslice(execlists);
2035     }
2036 
2037     return inactive;
2038 }
2039 
2040 static void post_process_csb(struct i915_request **port,
2041                  struct i915_request **last)
2042 {
2043     while (port != last)
2044         execlists_schedule_out(*port++);
2045 }
2046 
2047 static void __execlists_hold(struct i915_request *rq)
2048 {
2049     LIST_HEAD(list);
2050 
2051     do {
2052         struct i915_dependency *p;
2053 
2054         if (i915_request_is_active(rq))
2055             __i915_request_unsubmit(rq);
2056 
2057         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2058         list_move_tail(&rq->sched.link,
2059                    &rq->engine->sched_engine->hold);
2060         i915_request_set_hold(rq);
2061         RQ_TRACE(rq, "on hold\n");
2062 
2063         for_each_waiter(p, rq) {
2064             struct i915_request *w =
2065                 container_of(p->waiter, typeof(*w), sched);
2066 
2067             if (p->flags & I915_DEPENDENCY_WEAK)
2068                 continue;
2069 
2070             /* Leave semaphores spinning on the other engines */
2071             if (w->engine != rq->engine)
2072                 continue;
2073 
2074             if (!i915_request_is_ready(w))
2075                 continue;
2076 
2077             if (__i915_request_is_complete(w))
2078                 continue;
2079 
2080             if (i915_request_on_hold(w))
2081                 continue;
2082 
2083             list_move_tail(&w->sched.link, &list);
2084         }
2085 
2086         rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2087     } while (rq);
2088 }
2089 
2090 static bool execlists_hold(struct intel_engine_cs *engine,
2091                struct i915_request *rq)
2092 {
2093     if (i915_request_on_hold(rq))
2094         return false;
2095 
2096     spin_lock_irq(&engine->sched_engine->lock);
2097 
2098     if (__i915_request_is_complete(rq)) { /* too late! */
2099         rq = NULL;
2100         goto unlock;
2101     }
2102 
2103     /*
2104      * Transfer this request onto the hold queue to prevent it
2105      * being resumbitted to HW (and potentially completed) before we have
2106      * released it. Since we may have already submitted following
2107      * requests, we need to remove those as well.
2108      */
2109     GEM_BUG_ON(i915_request_on_hold(rq));
2110     GEM_BUG_ON(rq->engine != engine);
2111     __execlists_hold(rq);
2112     GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2113 
2114 unlock:
2115     spin_unlock_irq(&engine->sched_engine->lock);
2116     return rq;
2117 }
2118 
2119 static bool hold_request(const struct i915_request *rq)
2120 {
2121     struct i915_dependency *p;
2122     bool result = false;
2123 
2124     /*
2125      * If one of our ancestors is on hold, we must also be on hold,
2126      * otherwise we will bypass it and execute before it.
2127      */
2128     rcu_read_lock();
2129     for_each_signaler(p, rq) {
2130         const struct i915_request *s =
2131             container_of(p->signaler, typeof(*s), sched);
2132 
2133         if (s->engine != rq->engine)
2134             continue;
2135 
2136         result = i915_request_on_hold(s);
2137         if (result)
2138             break;
2139     }
2140     rcu_read_unlock();
2141 
2142     return result;
2143 }
2144 
2145 static void __execlists_unhold(struct i915_request *rq)
2146 {
2147     LIST_HEAD(list);
2148 
2149     do {
2150         struct i915_dependency *p;
2151 
2152         RQ_TRACE(rq, "hold release\n");
2153 
2154         GEM_BUG_ON(!i915_request_on_hold(rq));
2155         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2156 
2157         i915_request_clear_hold(rq);
2158         list_move_tail(&rq->sched.link,
2159                    i915_sched_lookup_priolist(rq->engine->sched_engine,
2160                               rq_prio(rq)));
2161         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2162 
2163         /* Also release any children on this engine that are ready */
2164         for_each_waiter(p, rq) {
2165             struct i915_request *w =
2166                 container_of(p->waiter, typeof(*w), sched);
2167 
2168             if (p->flags & I915_DEPENDENCY_WEAK)
2169                 continue;
2170 
2171             if (w->engine != rq->engine)
2172                 continue;
2173 
2174             if (!i915_request_on_hold(w))
2175                 continue;
2176 
2177             /* Check that no other parents are also on hold */
2178             if (hold_request(w))
2179                 continue;
2180 
2181             list_move_tail(&w->sched.link, &list);
2182         }
2183 
2184         rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2185     } while (rq);
2186 }
2187 
2188 static void execlists_unhold(struct intel_engine_cs *engine,
2189                  struct i915_request *rq)
2190 {
2191     spin_lock_irq(&engine->sched_engine->lock);
2192 
2193     /*
2194      * Move this request back to the priority queue, and all of its
2195      * children and grandchildren that were suspended along with it.
2196      */
2197     __execlists_unhold(rq);
2198 
2199     if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2200         engine->sched_engine->queue_priority_hint = rq_prio(rq);
2201         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2202     }
2203 
2204     spin_unlock_irq(&engine->sched_engine->lock);
2205 }
2206 
2207 struct execlists_capture {
2208     struct work_struct work;
2209     struct i915_request *rq;
2210     struct i915_gpu_coredump *error;
2211 };
2212 
2213 static void execlists_capture_work(struct work_struct *work)
2214 {
2215     struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2216     const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2217         __GFP_NOWARN;
2218     struct intel_engine_cs *engine = cap->rq->engine;
2219     struct intel_gt_coredump *gt = cap->error->gt;
2220     struct intel_engine_capture_vma *vma;
2221 
2222     /* Compress all the objects attached to the request, slow! */
2223     vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2224     if (vma) {
2225         struct i915_vma_compress *compress =
2226             i915_vma_capture_prepare(gt);
2227 
2228         intel_engine_coredump_add_vma(gt->engine, vma, compress);
2229         i915_vma_capture_finish(gt, compress);
2230     }
2231 
2232     gt->simulated = gt->engine->simulated;
2233     cap->error->simulated = gt->simulated;
2234 
2235     /* Publish the error state, and announce it to the world */
2236     i915_error_state_store(cap->error);
2237     i915_gpu_coredump_put(cap->error);
2238 
2239     /* Return this request and all that depend upon it for signaling */
2240     execlists_unhold(engine, cap->rq);
2241     i915_request_put(cap->rq);
2242 
2243     kfree(cap);
2244 }
2245 
2246 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2247 {
2248     const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2249     struct execlists_capture *cap;
2250 
2251     cap = kmalloc(sizeof(*cap), gfp);
2252     if (!cap)
2253         return NULL;
2254 
2255     cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2256     if (!cap->error)
2257         goto err_cap;
2258 
2259     cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2260     if (!cap->error->gt)
2261         goto err_gpu;
2262 
2263     cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2264     if (!cap->error->gt->engine)
2265         goto err_gt;
2266 
2267     cap->error->gt->engine->hung = true;
2268 
2269     return cap;
2270 
2271 err_gt:
2272     kfree(cap->error->gt);
2273 err_gpu:
2274     kfree(cap->error);
2275 err_cap:
2276     kfree(cap);
2277     return NULL;
2278 }
2279 
2280 static struct i915_request *
2281 active_context(struct intel_engine_cs *engine, u32 ccid)
2282 {
2283     const struct intel_engine_execlists * const el = &engine->execlists;
2284     struct i915_request * const *port, *rq;
2285 
2286     /*
2287      * Use the most recent result from process_csb(), but just in case
2288      * we trigger an error (via interrupt) before the first CS event has
2289      * been written, peek at the next submission.
2290      */
2291 
2292     for (port = el->active; (rq = *port); port++) {
2293         if (rq->context->lrc.ccid == ccid) {
2294             ENGINE_TRACE(engine,
2295                      "ccid:%x found at active:%zd\n",
2296                      ccid, port - el->active);
2297             return rq;
2298         }
2299     }
2300 
2301     for (port = el->pending; (rq = *port); port++) {
2302         if (rq->context->lrc.ccid == ccid) {
2303             ENGINE_TRACE(engine,
2304                      "ccid:%x found at pending:%zd\n",
2305                      ccid, port - el->pending);
2306             return rq;
2307         }
2308     }
2309 
2310     ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2311     return NULL;
2312 }
2313 
2314 static u32 active_ccid(struct intel_engine_cs *engine)
2315 {
2316     return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2317 }
2318 
2319 static void execlists_capture(struct intel_engine_cs *engine)
2320 {
2321     struct execlists_capture *cap;
2322 
2323     if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2324         return;
2325 
2326     /*
2327      * We need to _quickly_ capture the engine state before we reset.
2328      * We are inside an atomic section (softirq) here and we are delaying
2329      * the forced preemption event.
2330      */
2331     cap = capture_regs(engine);
2332     if (!cap)
2333         return;
2334 
2335     spin_lock_irq(&engine->sched_engine->lock);
2336     cap->rq = active_context(engine, active_ccid(engine));
2337     if (cap->rq) {
2338         cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2339         cap->rq = i915_request_get_rcu(cap->rq);
2340     }
2341     spin_unlock_irq(&engine->sched_engine->lock);
2342     if (!cap->rq)
2343         goto err_free;
2344 
2345     /*
2346      * Remove the request from the execlists queue, and take ownership
2347      * of the request. We pass it to our worker who will _slowly_ compress
2348      * all the pages the _user_ requested for debugging their batch, after
2349      * which we return it to the queue for signaling.
2350      *
2351      * By removing them from the execlists queue, we also remove the
2352      * requests from being processed by __unwind_incomplete_requests()
2353      * during the intel_engine_reset(), and so they will *not* be replayed
2354      * afterwards.
2355      *
2356      * Note that because we have not yet reset the engine at this point,
2357      * it is possible for the request that we have identified as being
2358      * guilty, did in fact complete and we will then hit an arbitration
2359      * point allowing the outstanding preemption to succeed. The likelihood
2360      * of that is very low (as capturing of the engine registers should be
2361      * fast enough to run inside an irq-off atomic section!), so we will
2362      * simply hold that request accountable for being non-preemptible
2363      * long enough to force the reset.
2364      */
2365     if (!execlists_hold(engine, cap->rq))
2366         goto err_rq;
2367 
2368     INIT_WORK(&cap->work, execlists_capture_work);
2369     schedule_work(&cap->work);
2370     return;
2371 
2372 err_rq:
2373     i915_request_put(cap->rq);
2374 err_free:
2375     i915_gpu_coredump_put(cap->error);
2376     kfree(cap);
2377 }
2378 
2379 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2380 {
2381     const unsigned int bit = I915_RESET_ENGINE + engine->id;
2382     unsigned long *lock = &engine->gt->reset.flags;
2383 
2384     if (!intel_has_reset_engine(engine->gt))
2385         return;
2386 
2387     if (test_and_set_bit(bit, lock))
2388         return;
2389 
2390     ENGINE_TRACE(engine, "reset for %s\n", msg);
2391 
2392     /* Mark this tasklet as disabled to avoid waiting for it to complete */
2393     tasklet_disable_nosync(&engine->sched_engine->tasklet);
2394 
2395     ring_set_paused(engine, 1); /* Freeze the current request in place */
2396     execlists_capture(engine);
2397     intel_engine_reset(engine, msg);
2398 
2399     tasklet_enable(&engine->sched_engine->tasklet);
2400     clear_and_wake_up_bit(bit, lock);
2401 }
2402 
2403 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2404 {
2405     const struct timer_list *t = &engine->execlists.preempt;
2406 
2407     if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2408         return false;
2409 
2410     if (!timer_expired(t))
2411         return false;
2412 
2413     return engine->execlists.pending[0];
2414 }
2415 
2416 /*
2417  * Check the unread Context Status Buffers and manage the submission of new
2418  * contexts to the ELSP accordingly.
2419  */
2420 static void execlists_submission_tasklet(struct tasklet_struct *t)
2421 {
2422     struct i915_sched_engine *sched_engine =
2423         from_tasklet(sched_engine, t, tasklet);
2424     struct intel_engine_cs * const engine = sched_engine->private_data;
2425     struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2426     struct i915_request **inactive;
2427 
2428     rcu_read_lock();
2429     inactive = process_csb(engine, post);
2430     GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2431 
2432     if (unlikely(preempt_timeout(engine))) {
2433         const struct i915_request *rq = *engine->execlists.active;
2434 
2435         /*
2436          * If after the preempt-timeout expired, we are still on the
2437          * same active request/context as before we initiated the
2438          * preemption, reset the engine.
2439          *
2440          * However, if we have processed a CS event to switch contexts,
2441          * but not yet processed the CS event for the pending
2442          * preemption, reset the timer allowing the new context to
2443          * gracefully exit.
2444          */
2445         cancel_timer(&engine->execlists.preempt);
2446         if (rq == engine->execlists.preempt_target)
2447             engine->execlists.error_interrupt |= ERROR_PREEMPT;
2448         else
2449             set_timer_ms(&engine->execlists.preempt,
2450                      active_preempt_timeout(engine, rq));
2451     }
2452 
2453     if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2454         const char *msg;
2455 
2456         /* Generate the error message in priority wrt to the user! */
2457         if (engine->execlists.error_interrupt & GENMASK(15, 0))
2458             msg = "CS error"; /* thrown by a user payload */
2459         else if (engine->execlists.error_interrupt & ERROR_CSB)
2460             msg = "invalid CSB event";
2461         else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2462             msg = "preemption time out";
2463         else
2464             msg = "internal error";
2465 
2466         engine->execlists.error_interrupt = 0;
2467         execlists_reset(engine, msg);
2468     }
2469 
2470     if (!engine->execlists.pending[0]) {
2471         execlists_dequeue_irq(engine);
2472         start_timeslice(engine);
2473     }
2474 
2475     post_process_csb(post, inactive);
2476     rcu_read_unlock();
2477 }
2478 
2479 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2480 {
2481     bool tasklet = false;
2482 
2483     if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2484         u32 eir;
2485 
2486         /* Upper 16b are the enabling mask, rsvd for internal errors */
2487         eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2488         ENGINE_TRACE(engine, "CS error: %x\n", eir);
2489 
2490         /* Disable the error interrupt until after the reset */
2491         if (likely(eir)) {
2492             ENGINE_WRITE(engine, RING_EMR, ~0u);
2493             ENGINE_WRITE(engine, RING_EIR, eir);
2494             WRITE_ONCE(engine->execlists.error_interrupt, eir);
2495             tasklet = true;
2496         }
2497     }
2498 
2499     if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2500         WRITE_ONCE(engine->execlists.yield,
2501                ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2502         ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2503                  engine->execlists.yield);
2504         if (del_timer(&engine->execlists.timer))
2505             tasklet = true;
2506     }
2507 
2508     if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2509         tasklet = true;
2510 
2511     if (iir & GT_RENDER_USER_INTERRUPT)
2512         intel_engine_signal_breadcrumbs(engine);
2513 
2514     if (tasklet)
2515         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2516 }
2517 
2518 static void __execlists_kick(struct intel_engine_execlists *execlists)
2519 {
2520     struct intel_engine_cs *engine =
2521         container_of(execlists, typeof(*engine), execlists);
2522 
2523     /* Kick the tasklet for some interrupt coalescing and reset handling */
2524     tasklet_hi_schedule(&engine->sched_engine->tasklet);
2525 }
2526 
2527 #define execlists_kick(t, member) \
2528     __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2529 
2530 static void execlists_timeslice(struct timer_list *timer)
2531 {
2532     execlists_kick(timer, timer);
2533 }
2534 
2535 static void execlists_preempt(struct timer_list *timer)
2536 {
2537     execlists_kick(timer, preempt);
2538 }
2539 
2540 static void queue_request(struct intel_engine_cs *engine,
2541               struct i915_request *rq)
2542 {
2543     GEM_BUG_ON(!list_empty(&rq->sched.link));
2544     list_add_tail(&rq->sched.link,
2545               i915_sched_lookup_priolist(engine->sched_engine,
2546                          rq_prio(rq)));
2547     set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2548 }
2549 
2550 static bool submit_queue(struct intel_engine_cs *engine,
2551              const struct i915_request *rq)
2552 {
2553     struct i915_sched_engine *sched_engine = engine->sched_engine;
2554 
2555     if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2556         return false;
2557 
2558     sched_engine->queue_priority_hint = rq_prio(rq);
2559     return true;
2560 }
2561 
2562 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2563                  const struct i915_request *rq)
2564 {
2565     GEM_BUG_ON(i915_request_on_hold(rq));
2566     return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2567 }
2568 
2569 static void execlists_submit_request(struct i915_request *request)
2570 {
2571     struct intel_engine_cs *engine = request->engine;
2572     unsigned long flags;
2573 
2574     /* Will be called from irq-context when using foreign fences. */
2575     spin_lock_irqsave(&engine->sched_engine->lock, flags);
2576 
2577     if (unlikely(ancestor_on_hold(engine, request))) {
2578         RQ_TRACE(request, "ancestor on hold\n");
2579         list_add_tail(&request->sched.link,
2580                   &engine->sched_engine->hold);
2581         i915_request_set_hold(request);
2582     } else {
2583         queue_request(engine, request);
2584 
2585         GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2586         GEM_BUG_ON(list_empty(&request->sched.link));
2587 
2588         if (submit_queue(engine, request))
2589             __execlists_kick(&engine->execlists);
2590     }
2591 
2592     spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2593 }
2594 
2595 static int
2596 __execlists_context_pre_pin(struct intel_context *ce,
2597                 struct intel_engine_cs *engine,
2598                 struct i915_gem_ww_ctx *ww, void **vaddr)
2599 {
2600     int err;
2601 
2602     err = lrc_pre_pin(ce, engine, ww, vaddr);
2603     if (err)
2604         return err;
2605 
2606     if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2607         lrc_init_state(ce, engine, *vaddr);
2608 
2609         __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2610     }
2611 
2612     return 0;
2613 }
2614 
2615 static int execlists_context_pre_pin(struct intel_context *ce,
2616                      struct i915_gem_ww_ctx *ww,
2617                      void **vaddr)
2618 {
2619     return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2620 }
2621 
2622 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2623 {
2624     return lrc_pin(ce, ce->engine, vaddr);
2625 }
2626 
2627 static int execlists_context_alloc(struct intel_context *ce)
2628 {
2629     return lrc_alloc(ce, ce->engine);
2630 }
2631 
2632 static void execlists_context_cancel_request(struct intel_context *ce,
2633                          struct i915_request *rq)
2634 {
2635     struct intel_engine_cs *engine = NULL;
2636 
2637     i915_request_active_engine(rq, &engine);
2638 
2639     if (engine && intel_engine_pulse(engine))
2640         intel_gt_handle_error(engine->gt, engine->mask, 0,
2641                       "request cancellation by %s",
2642                       current->comm);
2643 }
2644 
2645 static struct intel_context *
2646 execlists_create_parallel(struct intel_engine_cs **engines,
2647               unsigned int num_siblings,
2648               unsigned int width)
2649 {
2650     struct intel_context *parent = NULL, *ce, *err;
2651     int i;
2652 
2653     GEM_BUG_ON(num_siblings != 1);
2654 
2655     for (i = 0; i < width; ++i) {
2656         ce = intel_context_create(engines[i]);
2657         if (IS_ERR(ce)) {
2658             err = ce;
2659             goto unwind;
2660         }
2661 
2662         if (i == 0)
2663             parent = ce;
2664         else
2665             intel_context_bind_parent_child(parent, ce);
2666     }
2667 
2668     parent->parallel.fence_context = dma_fence_context_alloc(1);
2669 
2670     intel_context_set_nopreempt(parent);
2671     for_each_child(parent, ce)
2672         intel_context_set_nopreempt(ce);
2673 
2674     return parent;
2675 
2676 unwind:
2677     if (parent)
2678         intel_context_put(parent);
2679     return err;
2680 }
2681 
2682 static const struct intel_context_ops execlists_context_ops = {
2683     .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2684 
2685     .alloc = execlists_context_alloc,
2686 
2687     .cancel_request = execlists_context_cancel_request,
2688 
2689     .pre_pin = execlists_context_pre_pin,
2690     .pin = execlists_context_pin,
2691     .unpin = lrc_unpin,
2692     .post_unpin = lrc_post_unpin,
2693 
2694     .enter = intel_context_enter_engine,
2695     .exit = intel_context_exit_engine,
2696 
2697     .reset = lrc_reset,
2698     .destroy = lrc_destroy,
2699 
2700     .create_parallel = execlists_create_parallel,
2701     .create_virtual = execlists_create_virtual,
2702 };
2703 
2704 static int emit_pdps(struct i915_request *rq)
2705 {
2706     const struct intel_engine_cs * const engine = rq->engine;
2707     struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2708     int err, i;
2709     u32 *cs;
2710 
2711     GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2712 
2713     /*
2714      * Beware ye of the dragons, this sequence is magic!
2715      *
2716      * Small changes to this sequence can cause anything from
2717      * GPU hangs to forcewake errors and machine lockups!
2718      */
2719 
2720     cs = intel_ring_begin(rq, 2);
2721     if (IS_ERR(cs))
2722         return PTR_ERR(cs);
2723 
2724     *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2725     *cs++ = MI_NOOP;
2726     intel_ring_advance(rq, cs);
2727 
2728     /* Flush any residual operations from the context load */
2729     err = engine->emit_flush(rq, EMIT_FLUSH);
2730     if (err)
2731         return err;
2732 
2733     /* Magic required to prevent forcewake errors! */
2734     err = engine->emit_flush(rq, EMIT_INVALIDATE);
2735     if (err)
2736         return err;
2737 
2738     cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2739     if (IS_ERR(cs))
2740         return PTR_ERR(cs);
2741 
2742     /* Ensure the LRI have landed before we invalidate & continue */
2743     *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2744     for (i = GEN8_3LVL_PDPES; i--; ) {
2745         const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2746         u32 base = engine->mmio_base;
2747 
2748         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2749         *cs++ = upper_32_bits(pd_daddr);
2750         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2751         *cs++ = lower_32_bits(pd_daddr);
2752     }
2753     *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2754     intel_ring_advance(rq, cs);
2755 
2756     intel_ring_advance(rq, cs);
2757 
2758     return 0;
2759 }
2760 
2761 static int execlists_request_alloc(struct i915_request *request)
2762 {
2763     int ret;
2764 
2765     GEM_BUG_ON(!intel_context_is_pinned(request->context));
2766 
2767     /*
2768      * Flush enough space to reduce the likelihood of waiting after
2769      * we start building the request - in which case we will just
2770      * have to repeat work.
2771      */
2772     request->reserved_space += EXECLISTS_REQUEST_SIZE;
2773 
2774     /*
2775      * Note that after this point, we have committed to using
2776      * this request as it is being used to both track the
2777      * state of engine initialisation and liveness of the
2778      * golden renderstate above. Think twice before you try
2779      * to cancel/unwind this request now.
2780      */
2781 
2782     if (!i915_vm_is_4lvl(request->context->vm)) {
2783         ret = emit_pdps(request);
2784         if (ret)
2785             return ret;
2786     }
2787 
2788     /* Unconditionally invalidate GPU caches and TLBs. */
2789     ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2790     if (ret)
2791         return ret;
2792 
2793     request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2794     return 0;
2795 }
2796 
2797 static void reset_csb_pointers(struct intel_engine_cs *engine)
2798 {
2799     struct intel_engine_execlists * const execlists = &engine->execlists;
2800     const unsigned int reset_value = execlists->csb_size - 1;
2801 
2802     ring_set_paused(engine, 0);
2803 
2804     /*
2805      * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2806      * Bludgeon them with a mmio update to be sure.
2807      */
2808     ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2809              0xffff << 16 | reset_value << 8 | reset_value);
2810     ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2811 
2812     /*
2813      * After a reset, the HW starts writing into CSB entry [0]. We
2814      * therefore have to set our HEAD pointer back one entry so that
2815      * the *first* entry we check is entry 0. To complicate this further,
2816      * as we don't wait for the first interrupt after reset, we have to
2817      * fake the HW write to point back to the last entry so that our
2818      * inline comparison of our cached head position against the last HW
2819      * write works even before the first interrupt.
2820      */
2821     execlists->csb_head = reset_value;
2822     WRITE_ONCE(*execlists->csb_write, reset_value);
2823     wmb(); /* Make sure this is visible to HW (paranoia?) */
2824 
2825     /* Check that the GPU does indeed update the CSB entries! */
2826     memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2827     drm_clflush_virt_range(execlists->csb_status,
2828                    execlists->csb_size *
2829                    sizeof(execlists->csb_status));
2830 
2831     /* Once more for luck and our trusty paranoia */
2832     ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2833              0xffff << 16 | reset_value << 8 | reset_value);
2834     ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2835 
2836     GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2837 }
2838 
2839 static void sanitize_hwsp(struct intel_engine_cs *engine)
2840 {
2841     struct intel_timeline *tl;
2842 
2843     list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2844         intel_timeline_reset_seqno(tl);
2845 }
2846 
2847 static void execlists_sanitize(struct intel_engine_cs *engine)
2848 {
2849     GEM_BUG_ON(execlists_active(&engine->execlists));
2850 
2851     /*
2852      * Poison residual state on resume, in case the suspend didn't!
2853      *
2854      * We have to assume that across suspend/resume (or other loss
2855      * of control) that the contents of our pinned buffers has been
2856      * lost, replaced by garbage. Since this doesn't always happen,
2857      * let's poison such state so that we more quickly spot when
2858      * we falsely assume it has been preserved.
2859      */
2860     if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2861         memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2862 
2863     reset_csb_pointers(engine);
2864 
2865     /*
2866      * The kernel_context HWSP is stored in the status_page. As above,
2867      * that may be lost on resume/initialisation, and so we need to
2868      * reset the value in the HWSP.
2869      */
2870     sanitize_hwsp(engine);
2871 
2872     /* And scrub the dirty cachelines for the HWSP */
2873     drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2874 
2875     intel_engine_reset_pinned_contexts(engine);
2876 }
2877 
2878 static void enable_error_interrupt(struct intel_engine_cs *engine)
2879 {
2880     u32 status;
2881 
2882     engine->execlists.error_interrupt = 0;
2883     ENGINE_WRITE(engine, RING_EMR, ~0u);
2884     ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2885 
2886     status = ENGINE_READ(engine, RING_ESR);
2887     if (unlikely(status)) {
2888         drm_err(&engine->i915->drm,
2889             "engine '%s' resumed still in error: %08x\n",
2890             engine->name, status);
2891         __intel_gt_reset(engine->gt, engine->mask);
2892     }
2893 
2894     /*
2895      * On current gen8+, we have 2 signals to play with
2896      *
2897      * - I915_ERROR_INSTUCTION (bit 0)
2898      *
2899      *    Generate an error if the command parser encounters an invalid
2900      *    instruction
2901      *
2902      *    This is a fatal error.
2903      *
2904      * - CP_PRIV (bit 2)
2905      *
2906      *    Generate an error on privilege violation (where the CP replaces
2907      *    the instruction with a no-op). This also fires for writes into
2908      *    read-only scratch pages.
2909      *
2910      *    This is a non-fatal error, parsing continues.
2911      *
2912      * * there are a few others defined for odd HW that we do not use
2913      *
2914      * Since CP_PRIV fires for cases where we have chosen to ignore the
2915      * error (as the HW is validating and suppressing the mistakes), we
2916      * only unmask the instruction error bit.
2917      */
2918     ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2919 }
2920 
2921 static void enable_execlists(struct intel_engine_cs *engine)
2922 {
2923     u32 mode;
2924 
2925     assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2926 
2927     intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2928 
2929     if (GRAPHICS_VER(engine->i915) >= 11)
2930         mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2931     else
2932         mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2933     ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2934 
2935     ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2936 
2937     ENGINE_WRITE_FW(engine,
2938             RING_HWS_PGA,
2939             i915_ggtt_offset(engine->status_page.vma));
2940     ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2941 
2942     enable_error_interrupt(engine);
2943 }
2944 
2945 static int execlists_resume(struct intel_engine_cs *engine)
2946 {
2947     intel_mocs_init_engine(engine);
2948     intel_breadcrumbs_reset(engine->breadcrumbs);
2949 
2950     enable_execlists(engine);
2951 
2952     if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2953         xehp_enable_ccs_engines(engine);
2954 
2955     return 0;
2956 }
2957 
2958 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2959 {
2960     ENGINE_TRACE(engine, "depth<-%d\n",
2961              atomic_read(&engine->sched_engine->tasklet.count));
2962 
2963     /*
2964      * Prevent request submission to the hardware until we have
2965      * completed the reset in i915_gem_reset_finish(). If a request
2966      * is completed by one engine, it may then queue a request
2967      * to a second via its execlists->tasklet *just* as we are
2968      * calling engine->resume() and also writing the ELSP.
2969      * Turning off the execlists->tasklet until the reset is over
2970      * prevents the race.
2971      */
2972     __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2973     GEM_BUG_ON(!reset_in_progress(engine));
2974 
2975     /*
2976      * We stop engines, otherwise we might get failed reset and a
2977      * dead gpu (on elk). Also as modern gpu as kbl can suffer
2978      * from system hang if batchbuffer is progressing when
2979      * the reset is issued, regardless of READY_TO_RESET ack.
2980      * Thus assume it is best to stop engines on all gens
2981      * where we have a gpu reset.
2982      *
2983      * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2984      *
2985      * FIXME: Wa for more modern gens needs to be validated
2986      */
2987     ring_set_paused(engine, 1);
2988     intel_engine_stop_cs(engine);
2989 
2990     /*
2991      * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
2992      * to wait for any pending mi force wakeups
2993      */
2994     if (IS_GRAPHICS_VER(engine->i915, 11, 12))
2995         intel_engine_wait_for_pending_mi_fw(engine);
2996 
2997     engine->execlists.reset_ccid = active_ccid(engine);
2998 }
2999 
3000 static struct i915_request **
3001 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3002 {
3003     struct intel_engine_execlists * const execlists = &engine->execlists;
3004 
3005     drm_clflush_virt_range(execlists->csb_write,
3006                    sizeof(execlists->csb_write[0]));
3007 
3008     inactive = process_csb(engine, inactive); /* drain preemption events */
3009 
3010     /* Following the reset, we need to reload the CSB read/write pointers */
3011     reset_csb_pointers(engine);
3012 
3013     return inactive;
3014 }
3015 
3016 static void
3017 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3018 {
3019     struct intel_context *ce;
3020     struct i915_request *rq;
3021     u32 head;
3022 
3023     /*
3024      * Save the currently executing context, even if we completed
3025      * its request, it was still running at the time of the
3026      * reset and will have been clobbered.
3027      */
3028     rq = active_context(engine, engine->execlists.reset_ccid);
3029     if (!rq)
3030         return;
3031 
3032     ce = rq->context;
3033     GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3034 
3035     if (__i915_request_is_complete(rq)) {
3036         /* Idle context; tidy up the ring so we can restart afresh */
3037         head = intel_ring_wrap(ce->ring, rq->tail);
3038         goto out_replay;
3039     }
3040 
3041     /* We still have requests in-flight; the engine should be active */
3042     GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3043 
3044     /* Context has requests still in-flight; it should not be idle! */
3045     GEM_BUG_ON(i915_active_is_idle(&ce->active));
3046 
3047     rq = active_request(ce->timeline, rq);
3048     head = intel_ring_wrap(ce->ring, rq->head);
3049     GEM_BUG_ON(head == ce->ring->tail);
3050 
3051     /*
3052      * If this request hasn't started yet, e.g. it is waiting on a
3053      * semaphore, we need to avoid skipping the request or else we
3054      * break the signaling chain. However, if the context is corrupt
3055      * the request will not restart and we will be stuck with a wedged
3056      * device. It is quite often the case that if we issue a reset
3057      * while the GPU is loading the context image, that the context
3058      * image becomes corrupt.
3059      *
3060      * Otherwise, if we have not started yet, the request should replay
3061      * perfectly and we do not need to flag the result as being erroneous.
3062      */
3063     if (!__i915_request_has_started(rq))
3064         goto out_replay;
3065 
3066     /*
3067      * If the request was innocent, we leave the request in the ELSP
3068      * and will try to replay it on restarting. The context image may
3069      * have been corrupted by the reset, in which case we may have
3070      * to service a new GPU hang, but more likely we can continue on
3071      * without impact.
3072      *
3073      * If the request was guilty, we presume the context is corrupt
3074      * and have to at least restore the RING register in the context
3075      * image back to the expected values to skip over the guilty request.
3076      */
3077     __i915_request_reset(rq, stalled);
3078 
3079     /*
3080      * We want a simple context + ring to execute the breadcrumb update.
3081      * We cannot rely on the context being intact across the GPU hang,
3082      * so clear it and rebuild just what we need for the breadcrumb.
3083      * All pending requests for this context will be zapped, and any
3084      * future request will be after userspace has had the opportunity
3085      * to recreate its own state.
3086      */
3087 out_replay:
3088     ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3089              head, ce->ring->tail);
3090     lrc_reset_regs(ce, engine);
3091     ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3092 }
3093 
3094 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3095 {
3096     struct intel_engine_execlists * const execlists = &engine->execlists;
3097     struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3098     struct i915_request **inactive;
3099 
3100     rcu_read_lock();
3101     inactive = reset_csb(engine, post);
3102 
3103     execlists_reset_active(engine, true);
3104 
3105     inactive = cancel_port_requests(execlists, inactive);
3106     post_process_csb(post, inactive);
3107     rcu_read_unlock();
3108 }
3109 
3110 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3111 {
3112     unsigned long flags;
3113 
3114     ENGINE_TRACE(engine, "\n");
3115 
3116     /* Process the csb, find the guilty context and throw away */
3117     execlists_reset_csb(engine, stalled);
3118 
3119     /* Push back any incomplete requests for replay after the reset. */
3120     rcu_read_lock();
3121     spin_lock_irqsave(&engine->sched_engine->lock, flags);
3122     __unwind_incomplete_requests(engine);
3123     spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3124     rcu_read_unlock();
3125 }
3126 
3127 static void nop_submission_tasklet(struct tasklet_struct *t)
3128 {
3129     struct i915_sched_engine *sched_engine =
3130         from_tasklet(sched_engine, t, tasklet);
3131     struct intel_engine_cs * const engine = sched_engine->private_data;
3132 
3133     /* The driver is wedged; don't process any more events. */
3134     WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3135 }
3136 
3137 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3138 {
3139     struct intel_engine_execlists * const execlists = &engine->execlists;
3140     struct i915_sched_engine * const sched_engine = engine->sched_engine;
3141     struct i915_request *rq, *rn;
3142     struct rb_node *rb;
3143     unsigned long flags;
3144 
3145     ENGINE_TRACE(engine, "\n");
3146 
3147     /*
3148      * Before we call engine->cancel_requests(), we should have exclusive
3149      * access to the submission state. This is arranged for us by the
3150      * caller disabling the interrupt generation, the tasklet and other
3151      * threads that may then access the same state, giving us a free hand
3152      * to reset state. However, we still need to let lockdep be aware that
3153      * we know this state may be accessed in hardirq context, so we
3154      * disable the irq around this manipulation and we want to keep
3155      * the spinlock focused on its duties and not accidentally conflate
3156      * coverage to the submission's irq state. (Similarly, although we
3157      * shouldn't need to disable irq around the manipulation of the
3158      * submission's irq state, we also wish to remind ourselves that
3159      * it is irq state.)
3160      */
3161     execlists_reset_csb(engine, true);
3162 
3163     rcu_read_lock();
3164     spin_lock_irqsave(&engine->sched_engine->lock, flags);
3165 
3166     /* Mark all executing requests as skipped. */
3167     list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3168         i915_request_put(i915_request_mark_eio(rq));
3169     intel_engine_signal_breadcrumbs(engine);
3170 
3171     /* Flush the queued requests to the timeline list (for retiring). */
3172     while ((rb = rb_first_cached(&sched_engine->queue))) {
3173         struct i915_priolist *p = to_priolist(rb);
3174 
3175         priolist_for_each_request_consume(rq, rn, p) {
3176             if (i915_request_mark_eio(rq)) {
3177                 __i915_request_submit(rq);
3178                 i915_request_put(rq);
3179             }
3180         }
3181 
3182         rb_erase_cached(&p->node, &sched_engine->queue);
3183         i915_priolist_free(p);
3184     }
3185 
3186     /* On-hold requests will be flushed to timeline upon their release */
3187     list_for_each_entry(rq, &sched_engine->hold, sched.link)
3188         i915_request_put(i915_request_mark_eio(rq));
3189 
3190     /* Cancel all attached virtual engines */
3191     while ((rb = rb_first_cached(&execlists->virtual))) {
3192         struct virtual_engine *ve =
3193             rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3194 
3195         rb_erase_cached(rb, &execlists->virtual);
3196         RB_CLEAR_NODE(rb);
3197 
3198         spin_lock(&ve->base.sched_engine->lock);
3199         rq = fetch_and_zero(&ve->request);
3200         if (rq) {
3201             if (i915_request_mark_eio(rq)) {
3202                 rq->engine = engine;
3203                 __i915_request_submit(rq);
3204                 i915_request_put(rq);
3205             }
3206             i915_request_put(rq);
3207 
3208             ve->base.sched_engine->queue_priority_hint = INT_MIN;
3209         }
3210         spin_unlock(&ve->base.sched_engine->lock);
3211     }
3212 
3213     /* Remaining _unready_ requests will be nop'ed when submitted */
3214 
3215     sched_engine->queue_priority_hint = INT_MIN;
3216     sched_engine->queue = RB_ROOT_CACHED;
3217 
3218     GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3219     engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3220 
3221     spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3222     rcu_read_unlock();
3223 }
3224 
3225 static void execlists_reset_finish(struct intel_engine_cs *engine)
3226 {
3227     struct intel_engine_execlists * const execlists = &engine->execlists;
3228 
3229     /*
3230      * After a GPU reset, we may have requests to replay. Do so now while
3231      * we still have the forcewake to be sure that the GPU is not allowed
3232      * to sleep before we restart and reload a context.
3233      *
3234      * If the GPU reset fails, the engine may still be alive with requests
3235      * inflight. We expect those to complete, or for the device to be
3236      * reset as the next level of recovery, and as a final resort we
3237      * will declare the device wedged.
3238      */
3239     GEM_BUG_ON(!reset_in_progress(engine));
3240 
3241     /* And kick in case we missed a new request submission. */
3242     if (__tasklet_enable(&engine->sched_engine->tasklet))
3243         __execlists_kick(execlists);
3244 
3245     ENGINE_TRACE(engine, "depth->%d\n",
3246              atomic_read(&engine->sched_engine->tasklet.count));
3247 }
3248 
3249 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3250 {
3251     ENGINE_WRITE(engine, RING_IMR,
3252              ~(engine->irq_enable_mask | engine->irq_keep_mask));
3253     ENGINE_POSTING_READ(engine, RING_IMR);
3254 }
3255 
3256 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3257 {
3258     ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3259 }
3260 
3261 static void execlists_park(struct intel_engine_cs *engine)
3262 {
3263     cancel_timer(&engine->execlists.timer);
3264     cancel_timer(&engine->execlists.preempt);
3265 }
3266 
3267 static void add_to_engine(struct i915_request *rq)
3268 {
3269     lockdep_assert_held(&rq->engine->sched_engine->lock);
3270     list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3271 }
3272 
3273 static void remove_from_engine(struct i915_request *rq)
3274 {
3275     struct intel_engine_cs *engine, *locked;
3276 
3277     /*
3278      * Virtual engines complicate acquiring the engine timeline lock,
3279      * as their rq->engine pointer is not stable until under that
3280      * engine lock. The simple ploy we use is to take the lock then
3281      * check that the rq still belongs to the newly locked engine.
3282      */
3283     locked = READ_ONCE(rq->engine);
3284     spin_lock_irq(&locked->sched_engine->lock);
3285     while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3286         spin_unlock(&locked->sched_engine->lock);
3287         spin_lock(&engine->sched_engine->lock);
3288         locked = engine;
3289     }
3290     list_del_init(&rq->sched.link);
3291 
3292     clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3293     clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3294 
3295     /* Prevent further __await_execution() registering a cb, then flush */
3296     set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3297 
3298     spin_unlock_irq(&locked->sched_engine->lock);
3299 
3300     i915_request_notify_execute_cb_imm(rq);
3301 }
3302 
3303 static bool can_preempt(struct intel_engine_cs *engine)
3304 {
3305     if (GRAPHICS_VER(engine->i915) > 8)
3306         return true;
3307 
3308     /* GPGPU on bdw requires extra w/a; not implemented */
3309     return engine->class != RENDER_CLASS;
3310 }
3311 
3312 static void kick_execlists(const struct i915_request *rq, int prio)
3313 {
3314     struct intel_engine_cs *engine = rq->engine;
3315     struct i915_sched_engine *sched_engine = engine->sched_engine;
3316     const struct i915_request *inflight;
3317 
3318     /*
3319      * We only need to kick the tasklet once for the high priority
3320      * new context we add into the queue.
3321      */
3322     if (prio <= sched_engine->queue_priority_hint)
3323         return;
3324 
3325     rcu_read_lock();
3326 
3327     /* Nothing currently active? We're overdue for a submission! */
3328     inflight = execlists_active(&engine->execlists);
3329     if (!inflight)
3330         goto unlock;
3331 
3332     /*
3333      * If we are already the currently executing context, don't
3334      * bother evaluating if we should preempt ourselves.
3335      */
3336     if (inflight->context == rq->context)
3337         goto unlock;
3338 
3339     ENGINE_TRACE(engine,
3340              "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3341              prio,
3342              rq->fence.context, rq->fence.seqno,
3343              inflight->fence.context, inflight->fence.seqno,
3344              inflight->sched.attr.priority);
3345 
3346     sched_engine->queue_priority_hint = prio;
3347 
3348     /*
3349      * Allow preemption of low -> normal -> high, but we do
3350      * not allow low priority tasks to preempt other low priority
3351      * tasks under the impression that latency for low priority
3352      * tasks does not matter (as much as background throughput),
3353      * so kiss.
3354      */
3355     if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3356         tasklet_hi_schedule(&sched_engine->tasklet);
3357 
3358 unlock:
3359     rcu_read_unlock();
3360 }
3361 
3362 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3363 {
3364     engine->submit_request = execlists_submit_request;
3365     engine->sched_engine->schedule = i915_schedule;
3366     engine->sched_engine->kick_backend = kick_execlists;
3367     engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3368 }
3369 
3370 static void execlists_shutdown(struct intel_engine_cs *engine)
3371 {
3372     /* Synchronise with residual timers and any softirq they raise */
3373     del_timer_sync(&engine->execlists.timer);
3374     del_timer_sync(&engine->execlists.preempt);
3375     tasklet_kill(&engine->sched_engine->tasklet);
3376 }
3377 
3378 static void execlists_release(struct intel_engine_cs *engine)
3379 {
3380     engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3381 
3382     execlists_shutdown(engine);
3383 
3384     intel_engine_cleanup_common(engine);
3385     lrc_fini_wa_ctx(engine);
3386 }
3387 
3388 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3389                        ktime_t *now)
3390 {
3391     struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3392     ktime_t total = stats->total;
3393 
3394     /*
3395      * If the engine is executing something at the moment
3396      * add it to the total.
3397      */
3398     *now = ktime_get();
3399     if (READ_ONCE(stats->active))
3400         total = ktime_add(total, ktime_sub(*now, stats->start));
3401 
3402     return total;
3403 }
3404 
3405 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3406                      ktime_t *now)
3407 {
3408     struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3409     unsigned int seq;
3410     ktime_t total;
3411 
3412     do {
3413         seq = read_seqcount_begin(&stats->lock);
3414         total = __execlists_engine_busyness(engine, now);
3415     } while (read_seqcount_retry(&stats->lock, seq));
3416 
3417     return total;
3418 }
3419 
3420 static void
3421 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3422 {
3423     /* Default vfuncs which can be overridden by each engine. */
3424 
3425     engine->resume = execlists_resume;
3426 
3427     engine->cops = &execlists_context_ops;
3428     engine->request_alloc = execlists_request_alloc;
3429     engine->add_active_request = add_to_engine;
3430     engine->remove_active_request = remove_from_engine;
3431 
3432     engine->reset.prepare = execlists_reset_prepare;
3433     engine->reset.rewind = execlists_reset_rewind;
3434     engine->reset.cancel = execlists_reset_cancel;
3435     engine->reset.finish = execlists_reset_finish;
3436 
3437     engine->park = execlists_park;
3438     engine->unpark = NULL;
3439 
3440     engine->emit_flush = gen8_emit_flush_xcs;
3441     engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3442     engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3443     if (GRAPHICS_VER(engine->i915) >= 12) {
3444         engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3445         engine->emit_flush = gen12_emit_flush_xcs;
3446     }
3447     engine->set_default_submission = execlists_set_default_submission;
3448 
3449     if (GRAPHICS_VER(engine->i915) < 11) {
3450         engine->irq_enable = gen8_logical_ring_enable_irq;
3451         engine->irq_disable = gen8_logical_ring_disable_irq;
3452     } else {
3453         /*
3454          * TODO: On Gen11 interrupt masks need to be clear
3455          * to allow C6 entry. Keep interrupts enabled at
3456          * and take the hit of generating extra interrupts
3457          * until a more refined solution exists.
3458          */
3459     }
3460     intel_engine_set_irq_handler(engine, execlists_irq_handler);
3461 
3462     engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3463     if (!intel_vgpu_active(engine->i915)) {
3464         engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3465         if (can_preempt(engine)) {
3466             engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3467             if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3468                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3469         }
3470     }
3471 
3472     if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3473         if (intel_engine_has_preemption(engine))
3474             engine->emit_bb_start = gen125_emit_bb_start;
3475         else
3476             engine->emit_bb_start = gen125_emit_bb_start_noarb;
3477     } else {
3478         if (intel_engine_has_preemption(engine))
3479             engine->emit_bb_start = gen8_emit_bb_start;
3480         else
3481             engine->emit_bb_start = gen8_emit_bb_start_noarb;
3482     }
3483 
3484     engine->busyness = execlists_engine_busyness;
3485 }
3486 
3487 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3488 {
3489     unsigned int shift = 0;
3490 
3491     if (GRAPHICS_VER(engine->i915) < 11) {
3492         const u8 irq_shifts[] = {
3493             [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3494             [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3495             [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3496             [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3497             [VECS0] = GEN8_VECS_IRQ_SHIFT,
3498         };
3499 
3500         shift = irq_shifts[engine->id];
3501     }
3502 
3503     engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3504     engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3505     engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3506     engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3507 }
3508 
3509 static void rcs_submission_override(struct intel_engine_cs *engine)
3510 {
3511     switch (GRAPHICS_VER(engine->i915)) {
3512     case 12:
3513         engine->emit_flush = gen12_emit_flush_rcs;
3514         engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3515         break;
3516     case 11:
3517         engine->emit_flush = gen11_emit_flush_rcs;
3518         engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3519         break;
3520     default:
3521         engine->emit_flush = gen8_emit_flush_rcs;
3522         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3523         break;
3524     }
3525 }
3526 
3527 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3528 {
3529     struct intel_engine_execlists * const execlists = &engine->execlists;
3530     struct drm_i915_private *i915 = engine->i915;
3531     struct intel_uncore *uncore = engine->uncore;
3532     u32 base = engine->mmio_base;
3533 
3534     tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3535     timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3536     timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3537 
3538     logical_ring_default_vfuncs(engine);
3539     logical_ring_default_irqs(engine);
3540 
3541     if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3542         rcs_submission_override(engine);
3543 
3544     lrc_init_wa_ctx(engine);
3545 
3546     if (HAS_LOGICAL_RING_ELSQ(i915)) {
3547         execlists->submit_reg = uncore->regs +
3548             i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3549         execlists->ctrl_reg = uncore->regs +
3550             i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3551 
3552         engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3553                     RING_EXECLIST_CONTROL(engine->mmio_base),
3554                     FW_REG_WRITE);
3555     } else {
3556         execlists->submit_reg = uncore->regs +
3557             i915_mmio_reg_offset(RING_ELSP(base));
3558     }
3559 
3560     execlists->csb_status =
3561         (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3562 
3563     execlists->csb_write =
3564         &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3565 
3566     if (GRAPHICS_VER(i915) < 11)
3567         execlists->csb_size = GEN8_CSB_ENTRIES;
3568     else
3569         execlists->csb_size = GEN11_CSB_ENTRIES;
3570 
3571     engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3572     if (GRAPHICS_VER(engine->i915) >= 11 &&
3573         GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3574         execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3575         execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3576     }
3577 
3578     /* Finally, take ownership and responsibility for cleanup! */
3579     engine->sanitize = execlists_sanitize;
3580     engine->release = execlists_release;
3581 
3582     return 0;
3583 }
3584 
3585 static struct list_head *virtual_queue(struct virtual_engine *ve)
3586 {
3587     return &ve->base.sched_engine->default_priolist.requests;
3588 }
3589 
3590 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3591 {
3592     struct virtual_engine *ve =
3593         container_of(wrk, typeof(*ve), rcu.work);
3594     unsigned int n;
3595 
3596     GEM_BUG_ON(ve->context.inflight);
3597 
3598     /* Preempt-to-busy may leave a stale request behind. */
3599     if (unlikely(ve->request)) {
3600         struct i915_request *old;
3601 
3602         spin_lock_irq(&ve->base.sched_engine->lock);
3603 
3604         old = fetch_and_zero(&ve->request);
3605         if (old) {
3606             GEM_BUG_ON(!__i915_request_is_complete(old));
3607             __i915_request_submit(old);
3608             i915_request_put(old);
3609         }
3610 
3611         spin_unlock_irq(&ve->base.sched_engine->lock);
3612     }
3613 
3614     /*
3615      * Flush the tasklet in case it is still running on another core.
3616      *
3617      * This needs to be done before we remove ourselves from the siblings'
3618      * rbtrees as in the case it is running in parallel, it may reinsert
3619      * the rb_node into a sibling.
3620      */
3621     tasklet_kill(&ve->base.sched_engine->tasklet);
3622 
3623     /* Decouple ourselves from the siblings, no more access allowed. */
3624     for (n = 0; n < ve->num_siblings; n++) {
3625         struct intel_engine_cs *sibling = ve->siblings[n];
3626         struct rb_node *node = &ve->nodes[sibling->id].rb;
3627 
3628         if (RB_EMPTY_NODE(node))
3629             continue;
3630 
3631         spin_lock_irq(&sibling->sched_engine->lock);
3632 
3633         /* Detachment is lazily performed in the sched_engine->tasklet */
3634         if (!RB_EMPTY_NODE(node))
3635             rb_erase_cached(node, &sibling->execlists.virtual);
3636 
3637         spin_unlock_irq(&sibling->sched_engine->lock);
3638     }
3639     GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3640     GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3641 
3642     lrc_fini(&ve->context);
3643     intel_context_fini(&ve->context);
3644 
3645     if (ve->base.breadcrumbs)
3646         intel_breadcrumbs_put(ve->base.breadcrumbs);
3647     if (ve->base.sched_engine)
3648         i915_sched_engine_put(ve->base.sched_engine);
3649     intel_engine_free_request_pool(&ve->base);
3650 
3651     kfree(ve);
3652 }
3653 
3654 static void virtual_context_destroy(struct kref *kref)
3655 {
3656     struct virtual_engine *ve =
3657         container_of(kref, typeof(*ve), context.ref);
3658 
3659     GEM_BUG_ON(!list_empty(&ve->context.signals));
3660 
3661     /*
3662      * When destroying the virtual engine, we have to be aware that
3663      * it may still be in use from an hardirq/softirq context causing
3664      * the resubmission of a completed request (background completion
3665      * due to preempt-to-busy). Before we can free the engine, we need
3666      * to flush the submission code and tasklets that are still potentially
3667      * accessing the engine. Flushing the tasklets requires process context,
3668      * and since we can guard the resubmit onto the engine with an RCU read
3669      * lock, we can delegate the free of the engine to an RCU worker.
3670      */
3671     INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3672     queue_rcu_work(system_wq, &ve->rcu);
3673 }
3674 
3675 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3676 {
3677     int swp;
3678 
3679     /*
3680      * Pick a random sibling on starting to help spread the load around.
3681      *
3682      * New contexts are typically created with exactly the same order
3683      * of siblings, and often started in batches. Due to the way we iterate
3684      * the array of sibling when submitting requests, sibling[0] is
3685      * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3686      * randomised across the system, we also help spread the load by the
3687      * first engine we inspect being different each time.
3688      *
3689      * NB This does not force us to execute on this engine, it will just
3690      * typically be the first we inspect for submission.
3691      */
3692     swp = prandom_u32_max(ve->num_siblings);
3693     if (swp)
3694         swap(ve->siblings[swp], ve->siblings[0]);
3695 }
3696 
3697 static int virtual_context_alloc(struct intel_context *ce)
3698 {
3699     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3700 
3701     return lrc_alloc(ce, ve->siblings[0]);
3702 }
3703 
3704 static int virtual_context_pre_pin(struct intel_context *ce,
3705                    struct i915_gem_ww_ctx *ww,
3706                    void **vaddr)
3707 {
3708     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3709 
3710      /* Note: we must use a real engine class for setting up reg state */
3711     return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3712 }
3713 
3714 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3715 {
3716     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3717 
3718     return lrc_pin(ce, ve->siblings[0], vaddr);
3719 }
3720 
3721 static void virtual_context_enter(struct intel_context *ce)
3722 {
3723     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3724     unsigned int n;
3725 
3726     for (n = 0; n < ve->num_siblings; n++)
3727         intel_engine_pm_get(ve->siblings[n]);
3728 
3729     intel_timeline_enter(ce->timeline);
3730 }
3731 
3732 static void virtual_context_exit(struct intel_context *ce)
3733 {
3734     struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3735     unsigned int n;
3736 
3737     intel_timeline_exit(ce->timeline);
3738 
3739     for (n = 0; n < ve->num_siblings; n++)
3740         intel_engine_pm_put(ve->siblings[n]);
3741 }
3742 
3743 static struct intel_engine_cs *
3744 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3745 {
3746     struct virtual_engine *ve = to_virtual_engine(engine);
3747 
3748     if (sibling >= ve->num_siblings)
3749         return NULL;
3750 
3751     return ve->siblings[sibling];
3752 }
3753 
3754 static const struct intel_context_ops virtual_context_ops = {
3755     .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3756 
3757     .alloc = virtual_context_alloc,
3758 
3759     .cancel_request = execlists_context_cancel_request,
3760 
3761     .pre_pin = virtual_context_pre_pin,
3762     .pin = virtual_context_pin,
3763     .unpin = lrc_unpin,
3764     .post_unpin = lrc_post_unpin,
3765 
3766     .enter = virtual_context_enter,
3767     .exit = virtual_context_exit,
3768 
3769     .destroy = virtual_context_destroy,
3770 
3771     .get_sibling = virtual_get_sibling,
3772 };
3773 
3774 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3775 {
3776     struct i915_request *rq;
3777     intel_engine_mask_t mask;
3778 
3779     rq = READ_ONCE(ve->request);
3780     if (!rq)
3781         return 0;
3782 
3783     /* The rq is ready for submission; rq->execution_mask is now stable. */
3784     mask = rq->execution_mask;
3785     if (unlikely(!mask)) {
3786         /* Invalid selection, submit to a random engine in error */
3787         i915_request_set_error_once(rq, -ENODEV);
3788         mask = ve->siblings[0]->mask;
3789     }
3790 
3791     ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3792              rq->fence.context, rq->fence.seqno,
3793              mask, ve->base.sched_engine->queue_priority_hint);
3794 
3795     return mask;
3796 }
3797 
3798 static void virtual_submission_tasklet(struct tasklet_struct *t)
3799 {
3800     struct i915_sched_engine *sched_engine =
3801         from_tasklet(sched_engine, t, tasklet);
3802     struct virtual_engine * const ve =
3803         (struct virtual_engine *)sched_engine->private_data;
3804     const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3805     intel_engine_mask_t mask;
3806     unsigned int n;
3807 
3808     rcu_read_lock();
3809     mask = virtual_submission_mask(ve);
3810     rcu_read_unlock();
3811     if (unlikely(!mask))
3812         return;
3813 
3814     for (n = 0; n < ve->num_siblings; n++) {
3815         struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3816         struct ve_node * const node = &ve->nodes[sibling->id];
3817         struct rb_node **parent, *rb;
3818         bool first;
3819 
3820         if (!READ_ONCE(ve->request))
3821             break; /* already handled by a sibling's tasklet */
3822 
3823         spin_lock_irq(&sibling->sched_engine->lock);
3824 
3825         if (unlikely(!(mask & sibling->mask))) {
3826             if (!RB_EMPTY_NODE(&node->rb)) {
3827                 rb_erase_cached(&node->rb,
3828                         &sibling->execlists.virtual);
3829                 RB_CLEAR_NODE(&node->rb);
3830             }
3831 
3832             goto unlock_engine;
3833         }
3834 
3835         if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3836             /*
3837              * Cheat and avoid rebalancing the tree if we can
3838              * reuse this node in situ.
3839              */
3840             first = rb_first_cached(&sibling->execlists.virtual) ==
3841                 &node->rb;
3842             if (prio == node->prio || (prio > node->prio && first))
3843                 goto submit_engine;
3844 
3845             rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3846         }
3847 
3848         rb = NULL;
3849         first = true;
3850         parent = &sibling->execlists.virtual.rb_root.rb_node;
3851         while (*parent) {
3852             struct ve_node *other;
3853 
3854             rb = *parent;
3855             other = rb_entry(rb, typeof(*other), rb);
3856             if (prio > other->prio) {
3857                 parent = &rb->rb_left;
3858             } else {
3859                 parent = &rb->rb_right;
3860                 first = false;
3861             }
3862         }
3863 
3864         rb_link_node(&node->rb, rb, parent);
3865         rb_insert_color_cached(&node->rb,
3866                        &sibling->execlists.virtual,
3867                        first);
3868 
3869 submit_engine:
3870         GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3871         node->prio = prio;
3872         if (first && prio > sibling->sched_engine->queue_priority_hint)
3873             tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3874 
3875 unlock_engine:
3876         spin_unlock_irq(&sibling->sched_engine->lock);
3877 
3878         if (intel_context_inflight(&ve->context))
3879             break;
3880     }
3881 }
3882 
3883 static void virtual_submit_request(struct i915_request *rq)
3884 {
3885     struct virtual_engine *ve = to_virtual_engine(rq->engine);
3886     unsigned long flags;
3887 
3888     ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3889              rq->fence.context,
3890              rq->fence.seqno);
3891 
3892     GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3893 
3894     spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3895 
3896     /* By the time we resubmit a request, it may be completed */
3897     if (__i915_request_is_complete(rq)) {
3898         __i915_request_submit(rq);
3899         goto unlock;
3900     }
3901 
3902     if (ve->request) { /* background completion from preempt-to-busy */
3903         GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3904         __i915_request_submit(ve->request);
3905         i915_request_put(ve->request);
3906     }
3907 
3908     ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3909     ve->request = i915_request_get(rq);
3910 
3911     GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3912     list_move_tail(&rq->sched.link, virtual_queue(ve));
3913 
3914     tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3915 
3916 unlock:
3917     spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3918 }
3919 
3920 static struct intel_context *
3921 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3922              unsigned long flags)
3923 {
3924     struct virtual_engine *ve;
3925     unsigned int n;
3926     int err;
3927 
3928     ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3929     if (!ve)
3930         return ERR_PTR(-ENOMEM);
3931 
3932     ve->base.i915 = siblings[0]->i915;
3933     ve->base.gt = siblings[0]->gt;
3934     ve->base.uncore = siblings[0]->uncore;
3935     ve->base.id = -1;
3936 
3937     ve->base.class = OTHER_CLASS;
3938     ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3939     ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3940     ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3941 
3942     /*
3943      * The decision on whether to submit a request using semaphores
3944      * depends on the saturated state of the engine. We only compute
3945      * this during HW submission of the request, and we need for this
3946      * state to be globally applied to all requests being submitted
3947      * to this engine. Virtual engines encompass more than one physical
3948      * engine and so we cannot accurately tell in advance if one of those
3949      * engines is already saturated and so cannot afford to use a semaphore
3950      * and be pessimized in priority for doing so -- if we are the only
3951      * context using semaphores after all other clients have stopped, we
3952      * will be starved on the saturated system. Such a global switch for
3953      * semaphores is less than ideal, but alas is the current compromise.
3954      */
3955     ve->base.saturated = ALL_ENGINES;
3956 
3957     snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3958 
3959     intel_engine_init_execlists(&ve->base);
3960 
3961     ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3962     if (!ve->base.sched_engine) {
3963         err = -ENOMEM;
3964         goto err_put;
3965     }
3966     ve->base.sched_engine->private_data = &ve->base;
3967 
3968     ve->base.cops = &virtual_context_ops;
3969     ve->base.request_alloc = execlists_request_alloc;
3970 
3971     ve->base.sched_engine->schedule = i915_schedule;
3972     ve->base.sched_engine->kick_backend = kick_execlists;
3973     ve->base.submit_request = virtual_submit_request;
3974 
3975     INIT_LIST_HEAD(virtual_queue(ve));
3976     tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3977 
3978     intel_context_init(&ve->context, &ve->base);
3979 
3980     ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3981     if (!ve->base.breadcrumbs) {
3982         err = -ENOMEM;
3983         goto err_put;
3984     }
3985 
3986     for (n = 0; n < count; n++) {
3987         struct intel_engine_cs *sibling = siblings[n];
3988 
3989         GEM_BUG_ON(!is_power_of_2(sibling->mask));
3990         if (sibling->mask & ve->base.mask) {
3991             DRM_DEBUG("duplicate %s entry in load balancer\n",
3992                   sibling->name);
3993             err = -EINVAL;
3994             goto err_put;
3995         }
3996 
3997         /*
3998          * The virtual engine implementation is tightly coupled to
3999          * the execlists backend -- we push out request directly
4000          * into a tree inside each physical engine. We could support
4001          * layering if we handle cloning of the requests and
4002          * submitting a copy into each backend.
4003          */
4004         if (sibling->sched_engine->tasklet.callback !=
4005             execlists_submission_tasklet) {
4006             err = -ENODEV;
4007             goto err_put;
4008         }
4009 
4010         GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4011         RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4012 
4013         ve->siblings[ve->num_siblings++] = sibling;
4014         ve->base.mask |= sibling->mask;
4015         ve->base.logical_mask |= sibling->logical_mask;
4016 
4017         /*
4018          * All physical engines must be compatible for their emission
4019          * functions (as we build the instructions during request
4020          * construction and do not alter them before submission
4021          * on the physical engine). We use the engine class as a guide
4022          * here, although that could be refined.
4023          */
4024         if (ve->base.class != OTHER_CLASS) {
4025             if (ve->base.class != sibling->class) {
4026                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
4027                       sibling->class, ve->base.class);
4028                 err = -EINVAL;
4029                 goto err_put;
4030             }
4031             continue;
4032         }
4033 
4034         ve->base.class = sibling->class;
4035         ve->base.uabi_class = sibling->uabi_class;
4036         snprintf(ve->base.name, sizeof(ve->base.name),
4037              "v%dx%d", ve->base.class, count);
4038         ve->base.context_size = sibling->context_size;
4039 
4040         ve->base.add_active_request = sibling->add_active_request;
4041         ve->base.remove_active_request = sibling->remove_active_request;
4042         ve->base.emit_bb_start = sibling->emit_bb_start;
4043         ve->base.emit_flush = sibling->emit_flush;
4044         ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4045         ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4046         ve->base.emit_fini_breadcrumb_dw =
4047             sibling->emit_fini_breadcrumb_dw;
4048 
4049         ve->base.flags = sibling->flags;
4050     }
4051 
4052     ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4053 
4054     virtual_engine_initial_hint(ve);
4055     return &ve->context;
4056 
4057 err_put:
4058     intel_context_put(&ve->context);
4059     return ERR_PTR(err);
4060 }
4061 
4062 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4063                    struct drm_printer *m,
4064                    void (*show_request)(struct drm_printer *m,
4065                             const struct i915_request *rq,
4066                             const char *prefix,
4067                             int indent),
4068                    unsigned int max)
4069 {
4070     const struct intel_engine_execlists *execlists = &engine->execlists;
4071     struct i915_sched_engine *sched_engine = engine->sched_engine;
4072     struct i915_request *rq, *last;
4073     unsigned long flags;
4074     unsigned int count;
4075     struct rb_node *rb;
4076 
4077     spin_lock_irqsave(&sched_engine->lock, flags);
4078 
4079     last = NULL;
4080     count = 0;
4081     list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4082         if (count++ < max - 1)
4083             show_request(m, rq, "\t\t", 0);
4084         else
4085             last = rq;
4086     }
4087     if (last) {
4088         if (count > max) {
4089             drm_printf(m,
4090                    "\t\t...skipping %d executing requests...\n",
4091                    count - max);
4092         }
4093         show_request(m, last, "\t\t", 0);
4094     }
4095 
4096     if (sched_engine->queue_priority_hint != INT_MIN)
4097         drm_printf(m, "\t\tQueue priority hint: %d\n",
4098                READ_ONCE(sched_engine->queue_priority_hint));
4099 
4100     last = NULL;
4101     count = 0;
4102     for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4103         struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4104 
4105         priolist_for_each_request(rq, p) {
4106             if (count++ < max - 1)
4107                 show_request(m, rq, "\t\t", 0);
4108             else
4109                 last = rq;
4110         }
4111     }
4112     if (last) {
4113         if (count > max) {
4114             drm_printf(m,
4115                    "\t\t...skipping %d queued requests...\n",
4116                    count - max);
4117         }
4118         show_request(m, last, "\t\t", 0);
4119     }
4120 
4121     last = NULL;
4122     count = 0;
4123     for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4124         struct virtual_engine *ve =
4125             rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4126         struct i915_request *rq = READ_ONCE(ve->request);
4127 
4128         if (rq) {
4129             if (count++ < max - 1)
4130                 show_request(m, rq, "\t\t", 0);
4131             else
4132                 last = rq;
4133         }
4134     }
4135     if (last) {
4136         if (count > max) {
4137             drm_printf(m,
4138                    "\t\t...skipping %d virtual requests...\n",
4139                    count - max);
4140         }
4141         show_request(m, last, "\t\t", 0);
4142     }
4143 
4144     spin_unlock_irqrestore(&sched_engine->lock, flags);
4145 }
4146 
4147 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4148 #include "selftest_execlists.c"
4149 #endif