Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (C) 2016 Samsung Electronics Co.Ltd
0003  * Authors:
0004  *  Marek Szyprowski <m.szyprowski@samsung.com>
0005  *
0006  * DRM core plane blending related functions
0007  *
0008  * Permission to use, copy, modify, distribute, and sell this software and its
0009  * documentation for any purpose is hereby granted without fee, provided that
0010  * the above copyright notice appear in all copies and that both that copyright
0011  * notice and this permission notice appear in supporting documentation, and
0012  * that the name of the copyright holders not be used in advertising or
0013  * publicity pertaining to distribution of the software without specific,
0014  * written prior permission.  The copyright holders make no representations
0015  * about the suitability of this software for any purpose.  It is provided "as
0016  * is" without express or implied warranty.
0017  *
0018  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
0019  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
0020  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
0021  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
0022  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
0023  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
0024  * OF THIS SOFTWARE.
0025  */
0026 
0027 #include <linux/export.h>
0028 #include <linux/slab.h>
0029 #include <linux/sort.h>
0030 
0031 #include <drm/drm_atomic.h>
0032 #include <drm/drm_blend.h>
0033 #include <drm/drm_device.h>
0034 #include <drm/drm_print.h>
0035 
0036 #include "drm_crtc_internal.h"
0037 
0038 /**
0039  * DOC: overview
0040  *
0041  * The basic plane composition model supported by standard plane properties only
0042  * has a source rectangle (in logical pixels within the &drm_framebuffer), with
0043  * sub-pixel accuracy, which is scaled up to a pixel-aligned destination
0044  * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
0045  * defined by the horizontal and vertical visible pixels (stored in @hdisplay
0046  * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These
0047  * two rectangles are both stored in the &drm_plane_state.
0048  *
0049  * For the atomic ioctl the following standard (atomic) properties on the plane object
0050  * encode the basic plane composition model:
0051  *
0052  * SRC_X:
0053  *  X coordinate offset for the source rectangle within the
0054  *  &drm_framebuffer, in 16.16 fixed point. Must be positive.
0055  * SRC_Y:
0056  *  Y coordinate offset for the source rectangle within the
0057  *  &drm_framebuffer, in 16.16 fixed point. Must be positive.
0058  * SRC_W:
0059  *  Width for the source rectangle within the &drm_framebuffer, in 16.16
0060  *  fixed point. SRC_X plus SRC_W must be within the width of the source
0061  *  framebuffer. Must be positive.
0062  * SRC_H:
0063  *  Height for the source rectangle within the &drm_framebuffer, in 16.16
0064  *  fixed point. SRC_Y plus SRC_H must be within the height of the source
0065  *  framebuffer. Must be positive.
0066  * CRTC_X:
0067  *  X coordinate offset for the destination rectangle. Can be negative.
0068  * CRTC_Y:
0069  *  Y coordinate offset for the destination rectangle. Can be negative.
0070  * CRTC_W:
0071  *  Width for the destination rectangle. CRTC_X plus CRTC_W can extend past
0072  *  the currently visible horizontal area of the &drm_crtc.
0073  * CRTC_H:
0074  *  Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past
0075  *  the currently visible vertical area of the &drm_crtc.
0076  * FB_ID:
0077  *  Mode object ID of the &drm_framebuffer this plane should scan out.
0078  * CRTC_ID:
0079  *  Mode object ID of the &drm_crtc this plane should be connected to.
0080  *
0081  * Note that the source rectangle must fully lie within the bounds of the
0082  * &drm_framebuffer. The destination rectangle can lie outside of the visible
0083  * area of the current mode of the CRTC. It must be appropriately clipped by the
0084  * driver, which can be done by calling drm_plane_helper_check_update(). Drivers
0085  * are also allowed to round the subpixel sampling positions appropriately, but
0086  * only to the next full pixel. No pixel outside of the source rectangle may
0087  * ever be sampled, which is important when applying more sophisticated
0088  * filtering than just a bilinear one when scaling. The filtering mode when
0089  * scaling is unspecified.
0090  *
0091  * On top of this basic transformation additional properties can be exposed by
0092  * the driver:
0093  *
0094  * alpha:
0095  *  Alpha is setup with drm_plane_create_alpha_property(). It controls the
0096  *  plane-wide opacity, from transparent (0) to opaque (0xffff). It can be
0097  *  combined with pixel alpha.
0098  *  The pixel values in the framebuffers are expected to not be
0099  *  pre-multiplied by the global alpha associated to the plane.
0100  *
0101  * rotation:
0102  *  Rotation is set up with drm_plane_create_rotation_property(). It adds a
0103  *  rotation and reflection step between the source and destination rectangles.
0104  *  Without this property the rectangle is only scaled, but not rotated or
0105  *  reflected.
0106  *
0107  *  Possbile values:
0108  *
0109  *  "rotate-<degrees>":
0110  *      Signals that a drm plane is rotated <degrees> degrees in counter
0111  *      clockwise direction.
0112  *
0113  *  "reflect-<axis>":
0114  *      Signals that the contents of a drm plane is reflected along the
0115  *      <axis> axis, in the same way as mirroring.
0116  *
0117  *  reflect-x::
0118  *
0119  *          |o |    | o|
0120  *          |  | -> |  |
0121  *          | v|    |v |
0122  *
0123  *  reflect-y::
0124  *
0125  *          |o |    | ^|
0126  *          |  | -> |  |
0127  *          | v|    |o |
0128  *
0129  * zpos:
0130  *  Z position is set up with drm_plane_create_zpos_immutable_property() and
0131  *  drm_plane_create_zpos_property(). It controls the visibility of overlapping
0132  *  planes. Without this property the primary plane is always below the cursor
0133  *  plane, and ordering between all other planes is undefined. The positive
0134  *  Z axis points towards the user, i.e. planes with lower Z position values
0135  *  are underneath planes with higher Z position values. Two planes with the
0136  *  same Z position value have undefined ordering. Note that the Z position
0137  *  value can also be immutable, to inform userspace about the hard-coded
0138  *  stacking of planes, see drm_plane_create_zpos_immutable_property(). If
0139  *  any plane has a zpos property (either mutable or immutable), then all
0140  *  planes shall have a zpos property.
0141  *
0142  * pixel blend mode:
0143  *  Pixel blend mode is set up with drm_plane_create_blend_mode_property().
0144  *  It adds a blend mode for alpha blending equation selection, describing
0145  *  how the pixels from the current plane are composited with the
0146  *  background.
0147  *
0148  *   Three alpha blending equations are defined:
0149  *
0150  *   "None":
0151  *       Blend formula that ignores the pixel alpha::
0152  *
0153  *           out.rgb = plane_alpha * fg.rgb +
0154  *               (1 - plane_alpha) * bg.rgb
0155  *
0156  *   "Pre-multiplied":
0157  *       Blend formula that assumes the pixel color values
0158  *       have been already pre-multiplied with the alpha
0159  *       channel values::
0160  *
0161  *           out.rgb = plane_alpha * fg.rgb +
0162  *               (1 - (plane_alpha * fg.alpha)) * bg.rgb
0163  *
0164  *   "Coverage":
0165  *       Blend formula that assumes the pixel color values have not
0166  *       been pre-multiplied and will do so when blending them to the
0167  *       background color values::
0168  *
0169  *           out.rgb = plane_alpha * fg.alpha * fg.rgb +
0170  *               (1 - (plane_alpha * fg.alpha)) * bg.rgb
0171  *
0172  *   Using the following symbols:
0173  *
0174  *   "fg.rgb":
0175  *       Each of the RGB component values from the plane's pixel
0176  *   "fg.alpha":
0177  *       Alpha component value from the plane's pixel. If the plane's
0178  *       pixel format has no alpha component, then this is assumed to be
0179  *       1.0. In these cases, this property has no effect, as all three
0180  *       equations become equivalent.
0181  *   "bg.rgb":
0182  *       Each of the RGB component values from the background
0183  *   "plane_alpha":
0184  *       Plane alpha value set by the plane "alpha" property. If the
0185  *       plane does not expose the "alpha" property, then this is
0186  *       assumed to be 1.0
0187  *
0188  * Note that all the property extensions described here apply either to the
0189  * plane or the CRTC (e.g. for the background color, which currently is not
0190  * exposed and assumed to be black).
0191  *
0192  * SCALING_FILTER:
0193  *     Indicates scaling filter to be used for plane scaler
0194  *
0195  *     The value of this property can be one of the following:
0196  *
0197  *     Default:
0198  *             Driver's default scaling filter
0199  *     Nearest Neighbor:
0200  *             Nearest Neighbor scaling filter
0201  *
0202  * Drivers can set up this property for a plane by calling
0203  * drm_plane_create_scaling_filter_property
0204  */
0205 
0206 /**
0207  * drm_plane_create_alpha_property - create a new alpha property
0208  * @plane: drm plane
0209  *
0210  * This function creates a generic, mutable, alpha property and enables support
0211  * for it in the DRM core. It is attached to @plane.
0212  *
0213  * The alpha property will be allowed to be within the bounds of 0
0214  * (transparent) to 0xffff (opaque).
0215  *
0216  * Returns:
0217  * 0 on success, negative error code on failure.
0218  */
0219 int drm_plane_create_alpha_property(struct drm_plane *plane)
0220 {
0221     struct drm_property *prop;
0222 
0223     prop = drm_property_create_range(plane->dev, 0, "alpha",
0224                      0, DRM_BLEND_ALPHA_OPAQUE);
0225     if (!prop)
0226         return -ENOMEM;
0227 
0228     drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE);
0229     plane->alpha_property = prop;
0230 
0231     if (plane->state)
0232         plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE;
0233 
0234     return 0;
0235 }
0236 EXPORT_SYMBOL(drm_plane_create_alpha_property);
0237 
0238 /**
0239  * drm_plane_create_rotation_property - create a new rotation property
0240  * @plane: drm plane
0241  * @rotation: initial value of the rotation property
0242  * @supported_rotations: bitmask of supported rotations and reflections
0243  *
0244  * This creates a new property with the selected support for transformations.
0245  *
0246  * Since a rotation by 180° degress is the same as reflecting both along the x
0247  * and the y axis the rotation property is somewhat redundant. Drivers can use
0248  * drm_rotation_simplify() to normalize values of this property.
0249  *
0250  * The property exposed to userspace is a bitmask property (see
0251  * drm_property_create_bitmask()) called "rotation" and has the following
0252  * bitmask enumaration values:
0253  *
0254  * DRM_MODE_ROTATE_0:
0255  *  "rotate-0"
0256  * DRM_MODE_ROTATE_90:
0257  *  "rotate-90"
0258  * DRM_MODE_ROTATE_180:
0259  *  "rotate-180"
0260  * DRM_MODE_ROTATE_270:
0261  *  "rotate-270"
0262  * DRM_MODE_REFLECT_X:
0263  *  "reflect-x"
0264  * DRM_MODE_REFLECT_Y:
0265  *  "reflect-y"
0266  *
0267  * Rotation is the specified amount in degrees in counter clockwise direction,
0268  * the X and Y axis are within the source rectangle, i.e.  the X/Y axis before
0269  * rotation. After reflection, the rotation is applied to the image sampled from
0270  * the source rectangle, before scaling it to fit the destination rectangle.
0271  */
0272 int drm_plane_create_rotation_property(struct drm_plane *plane,
0273                        unsigned int rotation,
0274                        unsigned int supported_rotations)
0275 {
0276     static const struct drm_prop_enum_list props[] = {
0277         { __builtin_ffs(DRM_MODE_ROTATE_0) - 1,   "rotate-0" },
0278         { __builtin_ffs(DRM_MODE_ROTATE_90) - 1,  "rotate-90" },
0279         { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" },
0280         { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" },
0281         { __builtin_ffs(DRM_MODE_REFLECT_X) - 1,  "reflect-x" },
0282         { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1,  "reflect-y" },
0283     };
0284     struct drm_property *prop;
0285 
0286     WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0);
0287     WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK));
0288     WARN_ON(rotation & ~supported_rotations);
0289 
0290     prop = drm_property_create_bitmask(plane->dev, 0, "rotation",
0291                        props, ARRAY_SIZE(props),
0292                        supported_rotations);
0293     if (!prop)
0294         return -ENOMEM;
0295 
0296     drm_object_attach_property(&plane->base, prop, rotation);
0297 
0298     if (plane->state)
0299         plane->state->rotation = rotation;
0300 
0301     plane->rotation_property = prop;
0302 
0303     return 0;
0304 }
0305 EXPORT_SYMBOL(drm_plane_create_rotation_property);
0306 
0307 /**
0308  * drm_rotation_simplify() - Try to simplify the rotation
0309  * @rotation: Rotation to be simplified
0310  * @supported_rotations: Supported rotations
0311  *
0312  * Attempt to simplify the rotation to a form that is supported.
0313  * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X
0314  * one could call this function like this:
0315  *
0316  * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 |
0317  *                       DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 |
0318  *                       DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y);
0319  *
0320  * to eliminate the DRM_MODE_REFLECT_X flag. Depending on what kind of
0321  * transforms the hardware supports, this function may not
0322  * be able to produce a supported transform, so the caller should
0323  * check the result afterwards.
0324  */
0325 unsigned int drm_rotation_simplify(unsigned int rotation,
0326                    unsigned int supported_rotations)
0327 {
0328     if (rotation & ~supported_rotations) {
0329         rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y;
0330         rotation = (rotation & DRM_MODE_REFLECT_MASK) |
0331                 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1)
0332                 % 4);
0333     }
0334 
0335     return rotation;
0336 }
0337 EXPORT_SYMBOL(drm_rotation_simplify);
0338 
0339 /**
0340  * drm_plane_create_zpos_property - create mutable zpos property
0341  * @plane: drm plane
0342  * @zpos: initial value of zpos property
0343  * @min: minimal possible value of zpos property
0344  * @max: maximal possible value of zpos property
0345  *
0346  * This function initializes generic mutable zpos property and enables support
0347  * for it in drm core. Drivers can then attach this property to planes to enable
0348  * support for configurable planes arrangement during blending operation.
0349  * Drivers that attach a mutable zpos property to any plane should call the
0350  * drm_atomic_normalize_zpos() helper during their implementation of
0351  * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos
0352  * values and store them in &drm_plane_state.normalized_zpos. Usually min
0353  * should be set to 0 and max to maximal number of planes for given crtc - 1.
0354  *
0355  * If zpos of some planes cannot be changed (like fixed background or
0356  * cursor/topmost planes), drivers shall adjust the min/max values and assign
0357  * those planes immutable zpos properties with lower or higher values (for more
0358  * information, see drm_plane_create_zpos_immutable_property() function). In such
0359  * case drivers shall also assign proper initial zpos values for all planes in
0360  * its plane_reset() callback, so the planes will be always sorted properly.
0361  *
0362  * See also drm_atomic_normalize_zpos().
0363  *
0364  * The property exposed to userspace is called "zpos".
0365  *
0366  * Returns:
0367  * Zero on success, negative errno on failure.
0368  */
0369 int drm_plane_create_zpos_property(struct drm_plane *plane,
0370                    unsigned int zpos,
0371                    unsigned int min, unsigned int max)
0372 {
0373     struct drm_property *prop;
0374 
0375     prop = drm_property_create_range(plane->dev, 0, "zpos", min, max);
0376     if (!prop)
0377         return -ENOMEM;
0378 
0379     drm_object_attach_property(&plane->base, prop, zpos);
0380 
0381     plane->zpos_property = prop;
0382 
0383     if (plane->state) {
0384         plane->state->zpos = zpos;
0385         plane->state->normalized_zpos = zpos;
0386     }
0387 
0388     return 0;
0389 }
0390 EXPORT_SYMBOL(drm_plane_create_zpos_property);
0391 
0392 /**
0393  * drm_plane_create_zpos_immutable_property - create immuttable zpos property
0394  * @plane: drm plane
0395  * @zpos: value of zpos property
0396  *
0397  * This function initializes generic immutable zpos property and enables
0398  * support for it in drm core. Using this property driver lets userspace
0399  * to get the arrangement of the planes for blending operation and notifies
0400  * it that the hardware (or driver) doesn't support changing of the planes'
0401  * order. For mutable zpos see drm_plane_create_zpos_property().
0402  *
0403  * The property exposed to userspace is called "zpos".
0404  *
0405  * Returns:
0406  * Zero on success, negative errno on failure.
0407  */
0408 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane,
0409                          unsigned int zpos)
0410 {
0411     struct drm_property *prop;
0412 
0413     prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE,
0414                      "zpos", zpos, zpos);
0415     if (!prop)
0416         return -ENOMEM;
0417 
0418     drm_object_attach_property(&plane->base, prop, zpos);
0419 
0420     plane->zpos_property = prop;
0421 
0422     if (plane->state) {
0423         plane->state->zpos = zpos;
0424         plane->state->normalized_zpos = zpos;
0425     }
0426 
0427     return 0;
0428 }
0429 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property);
0430 
0431 static int drm_atomic_state_zpos_cmp(const void *a, const void *b)
0432 {
0433     const struct drm_plane_state *sa = *(struct drm_plane_state **)a;
0434     const struct drm_plane_state *sb = *(struct drm_plane_state **)b;
0435 
0436     if (sa->zpos != sb->zpos)
0437         return sa->zpos - sb->zpos;
0438     else
0439         return sa->plane->base.id - sb->plane->base.id;
0440 }
0441 
0442 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc,
0443                       struct drm_crtc_state *crtc_state)
0444 {
0445     struct drm_atomic_state *state = crtc_state->state;
0446     struct drm_device *dev = crtc->dev;
0447     int total_planes = dev->mode_config.num_total_plane;
0448     struct drm_plane_state **states;
0449     struct drm_plane *plane;
0450     int i, n = 0;
0451     int ret = 0;
0452 
0453     DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n",
0454              crtc->base.id, crtc->name);
0455 
0456     states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL);
0457     if (!states)
0458         return -ENOMEM;
0459 
0460     /*
0461      * Normalization process might create new states for planes which
0462      * normalized_zpos has to be recalculated.
0463      */
0464     drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) {
0465         struct drm_plane_state *plane_state =
0466             drm_atomic_get_plane_state(state, plane);
0467         if (IS_ERR(plane_state)) {
0468             ret = PTR_ERR(plane_state);
0469             goto done;
0470         }
0471         states[n++] = plane_state;
0472         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n",
0473                  plane->base.id, plane->name,
0474                  plane_state->zpos);
0475     }
0476 
0477     sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL);
0478 
0479     for (i = 0; i < n; i++) {
0480         plane = states[i]->plane;
0481 
0482         states[i]->normalized_zpos = i;
0483         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n",
0484                  plane->base.id, plane->name, i);
0485     }
0486     crtc_state->zpos_changed = true;
0487 
0488 done:
0489     kfree(states);
0490     return ret;
0491 }
0492 
0493 /**
0494  * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs
0495  * @dev: DRM device
0496  * @state: atomic state of DRM device
0497  *
0498  * This function calculates normalized zpos value for all modified planes in
0499  * the provided atomic state of DRM device.
0500  *
0501  * For every CRTC this function checks new states of all planes assigned to
0502  * it and calculates normalized zpos value for these planes. Planes are compared
0503  * first by their zpos values, then by plane id (if zpos is equal). The plane
0504  * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos
0505  * is then filled with unique values from 0 to number of active planes in crtc
0506  * minus one.
0507  *
0508  * RETURNS
0509  * Zero for success or -errno
0510  */
0511 int drm_atomic_normalize_zpos(struct drm_device *dev,
0512                   struct drm_atomic_state *state)
0513 {
0514     struct drm_crtc *crtc;
0515     struct drm_crtc_state *old_crtc_state, *new_crtc_state;
0516     struct drm_plane *plane;
0517     struct drm_plane_state *old_plane_state, *new_plane_state;
0518     int i, ret = 0;
0519 
0520     for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
0521         crtc = new_plane_state->crtc;
0522         if (!crtc)
0523             continue;
0524         if (old_plane_state->zpos != new_plane_state->zpos) {
0525             new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
0526             new_crtc_state->zpos_changed = true;
0527         }
0528     }
0529 
0530     for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
0531         if (old_crtc_state->plane_mask != new_crtc_state->plane_mask ||
0532             new_crtc_state->zpos_changed) {
0533             ret = drm_atomic_helper_crtc_normalize_zpos(crtc,
0534                                     new_crtc_state);
0535             if (ret)
0536                 return ret;
0537         }
0538     }
0539     return 0;
0540 }
0541 EXPORT_SYMBOL(drm_atomic_normalize_zpos);
0542 
0543 /**
0544  * drm_plane_create_blend_mode_property - create a new blend mode property
0545  * @plane: drm plane
0546  * @supported_modes: bitmask of supported modes, must include
0547  *           BIT(DRM_MODE_BLEND_PREMULTI). Current DRM assumption is
0548  *           that alpha is premultiplied, and old userspace can break if
0549  *           the property defaults to anything else.
0550  *
0551  * This creates a new property describing the blend mode.
0552  *
0553  * The property exposed to userspace is an enumeration property (see
0554  * drm_property_create_enum()) called "pixel blend mode" and has the
0555  * following enumeration values:
0556  *
0557  * "None":
0558  *  Blend formula that ignores the pixel alpha.
0559  *
0560  * "Pre-multiplied":
0561  *  Blend formula that assumes the pixel color values have been already
0562  *  pre-multiplied with the alpha channel values.
0563  *
0564  * "Coverage":
0565  *  Blend formula that assumes the pixel color values have not been
0566  *  pre-multiplied and will do so when blending them to the background color
0567  *  values.
0568  *
0569  * RETURNS:
0570  * Zero for success or -errno
0571  */
0572 int drm_plane_create_blend_mode_property(struct drm_plane *plane,
0573                      unsigned int supported_modes)
0574 {
0575     struct drm_device *dev = plane->dev;
0576     struct drm_property *prop;
0577     static const struct drm_prop_enum_list props[] = {
0578         { DRM_MODE_BLEND_PIXEL_NONE, "None" },
0579         { DRM_MODE_BLEND_PREMULTI, "Pre-multiplied" },
0580         { DRM_MODE_BLEND_COVERAGE, "Coverage" },
0581     };
0582     unsigned int valid_mode_mask = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
0583                        BIT(DRM_MODE_BLEND_PREMULTI)   |
0584                        BIT(DRM_MODE_BLEND_COVERAGE);
0585     int i;
0586 
0587     if (WARN_ON((supported_modes & ~valid_mode_mask) ||
0588             ((supported_modes & BIT(DRM_MODE_BLEND_PREMULTI)) == 0)))
0589         return -EINVAL;
0590 
0591     prop = drm_property_create(dev, DRM_MODE_PROP_ENUM,
0592                    "pixel blend mode",
0593                    hweight32(supported_modes));
0594     if (!prop)
0595         return -ENOMEM;
0596 
0597     for (i = 0; i < ARRAY_SIZE(props); i++) {
0598         int ret;
0599 
0600         if (!(BIT(props[i].type) & supported_modes))
0601             continue;
0602 
0603         ret = drm_property_add_enum(prop, props[i].type,
0604                         props[i].name);
0605 
0606         if (ret) {
0607             drm_property_destroy(dev, prop);
0608 
0609             return ret;
0610         }
0611     }
0612 
0613     drm_object_attach_property(&plane->base, prop, DRM_MODE_BLEND_PREMULTI);
0614     plane->blend_mode_property = prop;
0615 
0616     return 0;
0617 }
0618 EXPORT_SYMBOL(drm_plane_create_blend_mode_property);