Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
0004  * Author: Liviu Dudau <Liviu.Dudau@arm.com>
0005  *
0006  * ARM Mali DP500/DP550/DP650 driver (crtc operations)
0007  */
0008 
0009 #include <linux/clk.h>
0010 #include <linux/pm_runtime.h>
0011 
0012 #include <video/videomode.h>
0013 
0014 #include <drm/drm_atomic.h>
0015 #include <drm/drm_atomic_helper.h>
0016 #include <drm/drm_crtc.h>
0017 #include <drm/drm_framebuffer.h>
0018 #include <drm/drm_print.h>
0019 #include <drm/drm_probe_helper.h>
0020 #include <drm/drm_vblank.h>
0021 
0022 #include "malidp_drv.h"
0023 #include "malidp_hw.h"
0024 
0025 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
0026                            const struct drm_display_mode *mode)
0027 {
0028     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0029     struct malidp_hw_device *hwdev = malidp->dev;
0030 
0031     /*
0032      * check that the hardware can drive the required clock rate,
0033      * but skip the check if the clock is meant to be disabled (req_rate = 0)
0034      */
0035     long rate, req_rate = mode->crtc_clock * 1000;
0036 
0037     if (req_rate) {
0038         rate = clk_round_rate(hwdev->pxlclk, req_rate);
0039         if (rate != req_rate) {
0040             DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
0041                      req_rate);
0042             return MODE_NOCLOCK;
0043         }
0044     }
0045 
0046     return MODE_OK;
0047 }
0048 
0049 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
0050                       struct drm_atomic_state *state)
0051 {
0052     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0053     struct malidp_hw_device *hwdev = malidp->dev;
0054     struct videomode vm;
0055     int err = pm_runtime_get_sync(crtc->dev->dev);
0056 
0057     if (err < 0) {
0058         DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
0059         return;
0060     }
0061 
0062     drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
0063     clk_prepare_enable(hwdev->pxlclk);
0064 
0065     /* We rely on firmware to set mclk to a sensible level. */
0066     clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
0067 
0068     hwdev->hw->modeset(hwdev, &vm);
0069     hwdev->hw->leave_config_mode(hwdev);
0070     drm_crtc_vblank_on(crtc);
0071 }
0072 
0073 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
0074                        struct drm_atomic_state *state)
0075 {
0076     struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
0077                                      crtc);
0078     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0079     struct malidp_hw_device *hwdev = malidp->dev;
0080     int err;
0081 
0082     /* always disable planes on the CRTC that is being turned off */
0083     drm_atomic_helper_disable_planes_on_crtc(old_state, false);
0084 
0085     drm_crtc_vblank_off(crtc);
0086     hwdev->hw->enter_config_mode(hwdev);
0087 
0088     clk_disable_unprepare(hwdev->pxlclk);
0089 
0090     err = pm_runtime_put(crtc->dev->dev);
0091     if (err < 0) {
0092         DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
0093     }
0094 }
0095 
0096 static const struct gamma_curve_segment {
0097     u16 start;
0098     u16 end;
0099 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
0100     /* sector 0 */
0101     {    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
0102     {    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
0103     {    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
0104     {   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
0105     /* sector 1 */
0106     {   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
0107     /* sector 2 */
0108     {   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
0109     /* sector 3 */
0110     {   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
0111     /* sector 4 */
0112     {  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
0113     /* sector 5 */
0114     {  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
0115     /* sector 6 */
0116     {  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
0117     { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
0118     { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
0119     { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
0120     { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
0121     { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
0122     { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
0123 };
0124 
0125 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
0126 
0127 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
0128                     u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
0129 {
0130     struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
0131     int i;
0132 
0133     for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
0134         u32 a, b, delta_in, out_start, out_end;
0135 
0136         delta_in = segments[i].end - segments[i].start;
0137         /* DP has 12-bit internal precision for its LUTs. */
0138         out_start = drm_color_lut_extract(lut[segments[i].start].green,
0139                           12);
0140         out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
0141         a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
0142         b = out_start;
0143         coeffs[i] = DE_COEFTAB_DATA(a, b);
0144     }
0145 }
0146 
0147 /*
0148  * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
0149  * reject any LUTs that use distinct red, green, and blue curves.
0150  */
0151 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
0152                       struct drm_crtc_state *state)
0153 {
0154     struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
0155     struct drm_color_lut *lut;
0156     size_t lut_size;
0157     int i;
0158 
0159     if (!state->color_mgmt_changed || !state->gamma_lut)
0160         return 0;
0161 
0162     if (crtc->state->gamma_lut &&
0163         (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
0164         return 0;
0165 
0166     if (state->gamma_lut->length % sizeof(struct drm_color_lut))
0167         return -EINVAL;
0168 
0169     lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
0170     if (lut_size != MALIDP_GAMMA_LUT_SIZE)
0171         return -EINVAL;
0172 
0173     lut = (struct drm_color_lut *)state->gamma_lut->data;
0174     for (i = 0; i < lut_size; ++i)
0175         if (!((lut[i].red == lut[i].green) &&
0176               (lut[i].red == lut[i].blue)))
0177             return -EINVAL;
0178 
0179     if (!state->mode_changed) {
0180         int ret;
0181 
0182         state->mode_changed = true;
0183         /*
0184          * Kerneldoc for drm_atomic_helper_check_modeset mandates that
0185          * it be invoked when the driver sets ->mode_changed. Since
0186          * changing the gamma LUT doesn't depend on any external
0187          * resources, it is safe to call it only once.
0188          */
0189         ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
0190         if (ret)
0191             return ret;
0192     }
0193 
0194     malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
0195     return 0;
0196 }
0197 
0198 /*
0199  * Check if there is a new CTM and if it contains valid input. Valid here means
0200  * that the number is inside the representable range for a Q3.12 number,
0201  * excluding truncating the fractional part of the input data.
0202  *
0203  * The COLORADJ registers can be changed atomically.
0204  */
0205 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
0206                     struct drm_crtc_state *state)
0207 {
0208     struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
0209     struct drm_color_ctm *ctm;
0210     int i;
0211 
0212     if (!state->color_mgmt_changed)
0213         return 0;
0214 
0215     if (!state->ctm)
0216         return 0;
0217 
0218     if (crtc->state->ctm && (crtc->state->ctm->base.id ==
0219                  state->ctm->base.id))
0220         return 0;
0221 
0222     /*
0223      * The size of the ctm is checked in
0224      * drm_atomic_replace_property_blob_from_id.
0225      */
0226     ctm = (struct drm_color_ctm *)state->ctm->data;
0227     for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
0228         /* Convert from S31.32 to Q3.12. */
0229         s64 val = ctm->matrix[i];
0230         u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
0231               GENMASK_ULL(14, 0);
0232 
0233         /*
0234          * Convert to 2s complement and check the destination's top bit
0235          * for overflow. NB: Can't check before converting or it'd
0236          * incorrectly reject the case:
0237          * sign == 1
0238          * mag == 0x2000
0239          */
0240         if (val & BIT_ULL(63))
0241             mag = ~mag + 1;
0242         if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
0243             return -EINVAL;
0244         mc->coloradj_coeffs[i] = mag;
0245     }
0246 
0247     return 0;
0248 }
0249 
0250 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
0251                         struct drm_crtc_state *state)
0252 {
0253     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0254     struct malidp_hw_device *hwdev = malidp->dev;
0255     struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
0256     struct malidp_se_config *s = &cs->scaler_config;
0257     struct drm_plane *plane;
0258     struct videomode vm;
0259     const struct drm_plane_state *pstate;
0260     u32 h_upscale_factor = 0; /* U16.16 */
0261     u32 v_upscale_factor = 0; /* U16.16 */
0262     u8 scaling = cs->scaled_planes_mask;
0263     int ret;
0264 
0265     if (!scaling) {
0266         s->scale_enable = false;
0267         goto mclk_calc;
0268     }
0269 
0270     /* The scaling engine can only handle one plane at a time. */
0271     if (scaling & (scaling - 1))
0272         return -EINVAL;
0273 
0274     drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
0275         struct malidp_plane *mp = to_malidp_plane(plane);
0276         u32 phase;
0277 
0278         if (!(mp->layer->id & scaling))
0279             continue;
0280 
0281         /*
0282          * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
0283          * to get the U16.16 result.
0284          */
0285         h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
0286                        pstate->src_w);
0287         v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
0288                        pstate->src_h);
0289 
0290         s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
0291                       (v_upscale_factor >> 16) >= 2);
0292 
0293         if (pstate->rotation & MALIDP_ROTATED_MASK) {
0294             s->input_w = pstate->src_h >> 16;
0295             s->input_h = pstate->src_w >> 16;
0296         } else {
0297             s->input_w = pstate->src_w >> 16;
0298             s->input_h = pstate->src_h >> 16;
0299         }
0300 
0301         s->output_w = pstate->crtc_w;
0302         s->output_h = pstate->crtc_h;
0303 
0304 #define SE_N_PHASE 4
0305 #define SE_SHIFT_N_PHASE 12
0306         /* Calculate initial_phase and delta_phase for horizontal. */
0307         phase = s->input_w;
0308         s->h_init_phase =
0309                 ((phase << SE_N_PHASE) / s->output_w + 1) / 2;
0310 
0311         phase = s->input_w;
0312         phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
0313         s->h_delta_phase = phase / s->output_w;
0314 
0315         /* Same for vertical. */
0316         phase = s->input_h;
0317         s->v_init_phase =
0318                 ((phase << SE_N_PHASE) / s->output_h + 1) / 2;
0319 
0320         phase = s->input_h;
0321         phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
0322         s->v_delta_phase = phase / s->output_h;
0323 #undef SE_N_PHASE
0324 #undef SE_SHIFT_N_PHASE
0325         s->plane_src_id = mp->layer->id;
0326     }
0327 
0328     s->scale_enable = true;
0329     s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
0330     s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
0331 
0332 mclk_calc:
0333     drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
0334     ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
0335     if (ret < 0)
0336         return -EINVAL;
0337     return 0;
0338 }
0339 
0340 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
0341                     struct drm_atomic_state *state)
0342 {
0343     struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
0344                                       crtc);
0345     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0346     struct malidp_hw_device *hwdev = malidp->dev;
0347     struct drm_plane *plane;
0348     const struct drm_plane_state *pstate;
0349     u32 rot_mem_free, rot_mem_usable;
0350     int rotated_planes = 0;
0351     int ret;
0352 
0353     /*
0354      * check if there is enough rotation memory available for planes
0355      * that need 90° and 270° rotion or planes that are compressed.
0356      * Each plane has set its required memory size in the ->plane_check()
0357      * callback, here we only make sure that the sums are less that the
0358      * total usable memory.
0359      *
0360      * The rotation memory allocation algorithm (for each plane):
0361      *  a. If no more rotated or compressed planes exist, all remaining
0362      *     rotate memory in the bank is available for use by the plane.
0363      *  b. If other rotated or compressed planes exist, and plane's
0364      *     layer ID is DE_VIDEO1, it can use all the memory from first bank
0365      *     if secondary rotation memory bank is available, otherwise it can
0366      *     use up to half the bank's memory.
0367      *  c. If other rotated or compressed planes exist, and plane's layer ID
0368      *     is not DE_VIDEO1, it can use half of the available memory.
0369      *
0370      * Note: this algorithm assumes that the order in which the planes are
0371      * checked always has DE_VIDEO1 plane first in the list if it is
0372      * rotated. Because that is how we create the planes in the first
0373      * place, under current DRM version things work, but if ever the order
0374      * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
0375      * changes, we need to pre-sort the planes before validation.
0376      */
0377 
0378     /* first count the number of rotated planes */
0379     drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
0380         struct drm_framebuffer *fb = pstate->fb;
0381 
0382         if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
0383             rotated_planes++;
0384     }
0385 
0386     rot_mem_free = hwdev->rotation_memory[0];
0387     /*
0388      * if we have more than 1 plane using rotation memory, use the second
0389      * block of rotation memory as well
0390      */
0391     if (rotated_planes > 1)
0392         rot_mem_free += hwdev->rotation_memory[1];
0393 
0394     /* now validate the rotation memory requirements */
0395     drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
0396         struct malidp_plane *mp = to_malidp_plane(plane);
0397         struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
0398         struct drm_framebuffer *fb = pstate->fb;
0399 
0400         if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
0401             /* process current plane */
0402             rotated_planes--;
0403 
0404             if (!rotated_planes) {
0405                 /* no more rotated planes, we can use what's left */
0406                 rot_mem_usable = rot_mem_free;
0407             } else {
0408                 if ((mp->layer->id != DE_VIDEO1) ||
0409                     (hwdev->rotation_memory[1] == 0))
0410                     rot_mem_usable = rot_mem_free / 2;
0411                 else
0412                     rot_mem_usable = hwdev->rotation_memory[0];
0413             }
0414 
0415             rot_mem_free -= rot_mem_usable;
0416 
0417             if (ms->rotmem_size > rot_mem_usable)
0418                 return -EINVAL;
0419         }
0420     }
0421 
0422     /* If only the writeback routing has changed, we don't need a modeset */
0423     if (crtc_state->connectors_changed) {
0424         u32 old_mask = crtc->state->connector_mask;
0425         u32 new_mask = crtc_state->connector_mask;
0426 
0427         if ((old_mask ^ new_mask) ==
0428             (1 << drm_connector_index(&malidp->mw_connector.base)))
0429             crtc_state->connectors_changed = false;
0430     }
0431 
0432     ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state);
0433     ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state);
0434     ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state);
0435 
0436     return ret;
0437 }
0438 
0439 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
0440     .mode_valid = malidp_crtc_mode_valid,
0441     .atomic_check = malidp_crtc_atomic_check,
0442     .atomic_enable = malidp_crtc_atomic_enable,
0443     .atomic_disable = malidp_crtc_atomic_disable,
0444 };
0445 
0446 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
0447 {
0448     struct malidp_crtc_state *state, *old_state;
0449 
0450     if (WARN_ON(!crtc->state))
0451         return NULL;
0452 
0453     old_state = to_malidp_crtc_state(crtc->state);
0454     state = kmalloc(sizeof(*state), GFP_KERNEL);
0455     if (!state)
0456         return NULL;
0457 
0458     __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
0459     memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
0460            sizeof(state->gamma_coeffs));
0461     memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
0462            sizeof(state->coloradj_coeffs));
0463     memcpy(&state->scaler_config, &old_state->scaler_config,
0464            sizeof(state->scaler_config));
0465     state->scaled_planes_mask = 0;
0466 
0467     return &state->base;
0468 }
0469 
0470 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
0471                       struct drm_crtc_state *state)
0472 {
0473     struct malidp_crtc_state *mali_state = NULL;
0474 
0475     if (state) {
0476         mali_state = to_malidp_crtc_state(state);
0477         __drm_atomic_helper_crtc_destroy_state(state);
0478     }
0479 
0480     kfree(mali_state);
0481 }
0482 
0483 static void malidp_crtc_reset(struct drm_crtc *crtc)
0484 {
0485     struct malidp_crtc_state *state =
0486         kzalloc(sizeof(*state), GFP_KERNEL);
0487 
0488     if (crtc->state)
0489         malidp_crtc_destroy_state(crtc, crtc->state);
0490 
0491     if (state)
0492         __drm_atomic_helper_crtc_reset(crtc, &state->base);
0493     else
0494         __drm_atomic_helper_crtc_reset(crtc, NULL);
0495 }
0496 
0497 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
0498 {
0499     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0500     struct malidp_hw_device *hwdev = malidp->dev;
0501 
0502     malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
0503                  hwdev->hw->map.de_irq_map.vsync_irq);
0504     return 0;
0505 }
0506 
0507 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
0508 {
0509     struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
0510     struct malidp_hw_device *hwdev = malidp->dev;
0511 
0512     malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
0513                   hwdev->hw->map.de_irq_map.vsync_irq);
0514 }
0515 
0516 static const struct drm_crtc_funcs malidp_crtc_funcs = {
0517     .destroy = drm_crtc_cleanup,
0518     .set_config = drm_atomic_helper_set_config,
0519     .page_flip = drm_atomic_helper_page_flip,
0520     .reset = malidp_crtc_reset,
0521     .atomic_duplicate_state = malidp_crtc_duplicate_state,
0522     .atomic_destroy_state = malidp_crtc_destroy_state,
0523     .enable_vblank = malidp_crtc_enable_vblank,
0524     .disable_vblank = malidp_crtc_disable_vblank,
0525 };
0526 
0527 int malidp_crtc_init(struct drm_device *drm)
0528 {
0529     struct malidp_drm *malidp = drm->dev_private;
0530     struct drm_plane *primary = NULL, *plane;
0531     int ret;
0532 
0533     ret = malidp_de_planes_init(drm);
0534     if (ret < 0) {
0535         DRM_ERROR("Failed to initialise planes\n");
0536         return ret;
0537     }
0538 
0539     drm_for_each_plane(plane, drm) {
0540         if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
0541             primary = plane;
0542             break;
0543         }
0544     }
0545 
0546     if (!primary) {
0547         DRM_ERROR("no primary plane found\n");
0548         return -EINVAL;
0549     }
0550 
0551     ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
0552                     &malidp_crtc_funcs, NULL);
0553     if (ret)
0554         return ret;
0555 
0556     drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
0557     drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
0558     /* No inverse-gamma: it is per-plane. */
0559     drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
0560 
0561     malidp_se_set_enh_coeffs(malidp->dev);
0562 
0563     return 0;
0564 }