Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright 2017 Advanced Micro Devices, Inc.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice shall be included in
0012  * all copies or substantial portions of the Software.
0013  *
0014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0017  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
0018  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0019  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0020  * OTHER DEALINGS IN THE SOFTWARE.
0021  *
0022  */
0023 #include "pp_debug.h"
0024 #include "smumgr.h"
0025 #include "smu_ucode_xfer_vi.h"
0026 #include "vegam_smumgr.h"
0027 #include "smu/smu_7_1_3_d.h"
0028 #include "smu/smu_7_1_3_sh_mask.h"
0029 #include "gmc/gmc_8_1_d.h"
0030 #include "gmc/gmc_8_1_sh_mask.h"
0031 #include "oss/oss_3_0_d.h"
0032 #include "gca/gfx_8_0_d.h"
0033 #include "bif/bif_5_0_d.h"
0034 #include "bif/bif_5_0_sh_mask.h"
0035 #include "ppatomctrl.h"
0036 #include "cgs_common.h"
0037 #include "smu7_ppsmc.h"
0038 
0039 #include "smu7_dyn_defaults.h"
0040 
0041 #include "smu7_hwmgr.h"
0042 #include "hardwaremanager.h"
0043 #include "atombios.h"
0044 #include "pppcielanes.h"
0045 
0046 #include "dce/dce_11_2_d.h"
0047 #include "dce/dce_11_2_sh_mask.h"
0048 
0049 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
0050 
0051 #define VOLTAGE_VID_OFFSET_SCALE1   625
0052 #define VOLTAGE_VID_OFFSET_SCALE2   100
0053 #define POWERTUNE_DEFAULT_SET_MAX    1
0054 #define VDDC_VDDCI_DELTA            200
0055 #define MC_CG_ARB_FREQ_F1           0x0b
0056 
0057 #define STRAP_ASIC_RO_LSB    2168
0058 #define STRAP_ASIC_RO_MSB    2175
0059 
0060 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
0061 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
0062 
0063 static const struct vegam_pt_defaults
0064 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
0065     /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
0066      * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
0067     { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
0068     { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
0069     { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
0070 };
0071 
0072 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
0073             {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
0074             {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
0075             {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
0076             {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
0077             {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
0078             {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
0079             {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
0080             {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
0081 
0082 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
0083 {
0084     struct vegam_smumgr *smu_data;
0085 
0086     smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
0087     if (smu_data == NULL)
0088         return -ENOMEM;
0089 
0090     hwmgr->smu_backend = smu_data;
0091 
0092     if (smu7_init(hwmgr)) {
0093         kfree(smu_data);
0094         return -EINVAL;
0095     }
0096 
0097     return 0;
0098 }
0099 
0100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
0101 {
0102     int result = 0;
0103 
0104     /* Wait for smc boot up */
0105     /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
0106 
0107     /* Assert reset */
0108     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0109                     SMC_SYSCON_RESET_CNTL, rst_reg, 1);
0110 
0111     result = smu7_upload_smu_firmware_image(hwmgr);
0112     if (result != 0)
0113         return result;
0114 
0115     /* Clear status */
0116     cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
0117 
0118     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0119                     SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
0120 
0121     /* De-assert reset */
0122     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0123                     SMC_SYSCON_RESET_CNTL, rst_reg, 0);
0124 
0125 
0126     PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
0127 
0128 
0129     /* Call Test SMU message with 0x20000 offset to trigger SMU start */
0130     smu7_send_msg_to_smc_offset(hwmgr);
0131 
0132     /* Wait done bit to be set */
0133     /* Check pass/failed indicator */
0134 
0135     PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
0136 
0137     if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0138                         SMU_STATUS, SMU_PASS))
0139         PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
0140 
0141     cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
0142 
0143     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0144                     SMC_SYSCON_RESET_CNTL, rst_reg, 1);
0145 
0146     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0147                     SMC_SYSCON_RESET_CNTL, rst_reg, 0);
0148 
0149     /* Wait for firmware to initialize */
0150     PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
0151 
0152     return result;
0153 }
0154 
0155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
0156 {
0157     int result = 0;
0158 
0159     /* wait for smc boot up */
0160     PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
0161 
0162     /* Clear firmware interrupt enable flag */
0163     /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
0164     cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
0165                 ixFIRMWARE_FLAGS, 0);
0166 
0167     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0168                     SMC_SYSCON_RESET_CNTL,
0169                     rst_reg, 1);
0170 
0171     result = smu7_upload_smu_firmware_image(hwmgr);
0172     if (result != 0)
0173         return result;
0174 
0175     /* Set smc instruct start point at 0x0 */
0176     smu7_program_jump_on_start(hwmgr);
0177 
0178     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0179                     SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
0180 
0181     PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
0182                     SMC_SYSCON_RESET_CNTL, rst_reg, 0);
0183 
0184     /* Wait for firmware to initialize */
0185 
0186     PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
0187                     FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
0188 
0189     return result;
0190 }
0191 
0192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
0193 {
0194     int result = 0;
0195     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0196 
0197     /* Only start SMC if SMC RAM is not running */
0198     if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
0199         smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
0200                 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
0201         smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
0202                 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
0203 
0204         /* Check if SMU is running in protected mode */
0205         if (smu_data->protected_mode == 0)
0206             result = vegam_start_smu_in_non_protection_mode(hwmgr);
0207         else
0208             result = vegam_start_smu_in_protection_mode(hwmgr);
0209 
0210         if (result != 0)
0211             PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
0212     }
0213 
0214     /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
0215     smu7_read_smc_sram_dword(hwmgr,
0216             SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
0217             &(smu_data->smu7_data.soft_regs_start),
0218             0x40000);
0219 
0220     result = smu7_request_smu_load_fw(hwmgr);
0221 
0222     return result;
0223 }
0224 
0225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
0226 {
0227     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0228     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0229     uint32_t tmp;
0230     int result;
0231     bool error = false;
0232 
0233     result = smu7_read_smc_sram_dword(hwmgr,
0234             SMU7_FIRMWARE_HEADER_LOCATION +
0235             offsetof(SMU75_Firmware_Header, DpmTable),
0236             &tmp, SMC_RAM_END);
0237 
0238     if (0 == result)
0239         smu_data->smu7_data.dpm_table_start = tmp;
0240 
0241     error |= (0 != result);
0242 
0243     result = smu7_read_smc_sram_dword(hwmgr,
0244             SMU7_FIRMWARE_HEADER_LOCATION +
0245             offsetof(SMU75_Firmware_Header, SoftRegisters),
0246             &tmp, SMC_RAM_END);
0247 
0248     if (!result) {
0249         data->soft_regs_start = tmp;
0250         smu_data->smu7_data.soft_regs_start = tmp;
0251     }
0252 
0253     error |= (0 != result);
0254 
0255     result = smu7_read_smc_sram_dword(hwmgr,
0256             SMU7_FIRMWARE_HEADER_LOCATION +
0257             offsetof(SMU75_Firmware_Header, mcRegisterTable),
0258             &tmp, SMC_RAM_END);
0259 
0260     if (!result)
0261         smu_data->smu7_data.mc_reg_table_start = tmp;
0262 
0263     result = smu7_read_smc_sram_dword(hwmgr,
0264             SMU7_FIRMWARE_HEADER_LOCATION +
0265             offsetof(SMU75_Firmware_Header, FanTable),
0266             &tmp, SMC_RAM_END);
0267 
0268     if (!result)
0269         smu_data->smu7_data.fan_table_start = tmp;
0270 
0271     error |= (0 != result);
0272 
0273     result = smu7_read_smc_sram_dword(hwmgr,
0274             SMU7_FIRMWARE_HEADER_LOCATION +
0275             offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
0276             &tmp, SMC_RAM_END);
0277 
0278     if (!result)
0279         smu_data->smu7_data.arb_table_start = tmp;
0280 
0281     error |= (0 != result);
0282 
0283     result = smu7_read_smc_sram_dword(hwmgr,
0284             SMU7_FIRMWARE_HEADER_LOCATION +
0285             offsetof(SMU75_Firmware_Header, Version),
0286             &tmp, SMC_RAM_END);
0287 
0288     if (!result)
0289         hwmgr->microcode_version_info.SMC = tmp;
0290 
0291     error |= (0 != result);
0292 
0293     return error ? -1 : 0;
0294 }
0295 
0296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
0297 {
0298     return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
0299             CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
0300             ? true : false;
0301 }
0302 
0303 static uint32_t vegam_get_mac_definition(uint32_t value)
0304 {
0305     switch (value) {
0306     case SMU_MAX_LEVELS_GRAPHICS:
0307         return SMU75_MAX_LEVELS_GRAPHICS;
0308     case SMU_MAX_LEVELS_MEMORY:
0309         return SMU75_MAX_LEVELS_MEMORY;
0310     case SMU_MAX_LEVELS_LINK:
0311         return SMU75_MAX_LEVELS_LINK;
0312     case SMU_MAX_ENTRIES_SMIO:
0313         return SMU75_MAX_ENTRIES_SMIO;
0314     case SMU_MAX_LEVELS_VDDC:
0315         return SMU75_MAX_LEVELS_VDDC;
0316     case SMU_MAX_LEVELS_VDDGFX:
0317         return SMU75_MAX_LEVELS_VDDGFX;
0318     case SMU_MAX_LEVELS_VDDCI:
0319         return SMU75_MAX_LEVELS_VDDCI;
0320     case SMU_MAX_LEVELS_MVDD:
0321         return SMU75_MAX_LEVELS_MVDD;
0322     case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
0323         return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
0324                 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
0325     }
0326 
0327     pr_warn("can't get the mac of %x\n", value);
0328     return 0;
0329 }
0330 
0331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
0332 {
0333     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0334     uint32_t mm_boot_level_offset, mm_boot_level_value;
0335     struct phm_ppt_v1_information *table_info =
0336             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0337 
0338     smu_data->smc_state_table.UvdBootLevel = 0;
0339     if (table_info->mm_dep_table->count > 0)
0340         smu_data->smc_state_table.UvdBootLevel =
0341                 (uint8_t) (table_info->mm_dep_table->count - 1);
0342     mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
0343                         UvdBootLevel);
0344     mm_boot_level_offset /= 4;
0345     mm_boot_level_offset *= 4;
0346     mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
0347             CGS_IND_REG__SMC, mm_boot_level_offset);
0348     mm_boot_level_value &= 0x00FFFFFF;
0349     mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
0350     cgs_write_ind_register(hwmgr->device,
0351             CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
0352 
0353     if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0354             PHM_PlatformCaps_UVDDPM) ||
0355         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0356             PHM_PlatformCaps_StablePState))
0357         smum_send_msg_to_smc_with_parameter(hwmgr,
0358                 PPSMC_MSG_UVDDPM_SetEnabledMask,
0359                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
0360                 NULL);
0361     return 0;
0362 }
0363 
0364 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
0365 {
0366     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0367     uint32_t mm_boot_level_offset, mm_boot_level_value;
0368     struct phm_ppt_v1_information *table_info =
0369             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0370 
0371     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0372                     PHM_PlatformCaps_StablePState))
0373         smu_data->smc_state_table.VceBootLevel =
0374             (uint8_t) (table_info->mm_dep_table->count - 1);
0375     else
0376         smu_data->smc_state_table.VceBootLevel = 0;
0377 
0378     mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
0379                     offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
0380     mm_boot_level_offset /= 4;
0381     mm_boot_level_offset *= 4;
0382     mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
0383             CGS_IND_REG__SMC, mm_boot_level_offset);
0384     mm_boot_level_value &= 0xFF00FFFF;
0385     mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
0386     cgs_write_ind_register(hwmgr->device,
0387             CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
0388 
0389     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
0390         smum_send_msg_to_smc_with_parameter(hwmgr,
0391                 PPSMC_MSG_VCEDPM_SetEnabledMask,
0392                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
0393                 NULL);
0394     return 0;
0395 }
0396 
0397 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
0398 {
0399     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0400     struct phm_ppt_v1_information *table_info =
0401             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0402     struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
0403     int max_entry, i;
0404 
0405     max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
0406                         SMU75_MAX_LEVELS_LINK :
0407                         pcie_table->count;
0408     /* Setup BIF_SCLK levels */
0409     for (i = 0; i < max_entry; i++)
0410         smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
0411     return 0;
0412 }
0413 
0414 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
0415 {
0416     switch (type) {
0417     case SMU_UVD_TABLE:
0418         vegam_update_uvd_smc_table(hwmgr);
0419         break;
0420     case SMU_VCE_TABLE:
0421         vegam_update_vce_smc_table(hwmgr);
0422         break;
0423     case SMU_BIF_TABLE:
0424         vegam_update_bif_smc_table(hwmgr);
0425         break;
0426     default:
0427         break;
0428     }
0429     return 0;
0430 }
0431 
0432 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
0433 {
0434     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0435     struct  phm_ppt_v1_information *table_info =
0436             (struct  phm_ppt_v1_information *)(hwmgr->pptable);
0437 
0438     if (table_info &&
0439             table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
0440             table_info->cac_dtp_table->usPowerTuneDataSetID)
0441         smu_data->power_tune_defaults =
0442                 &vegam_power_tune_data_set_array
0443                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
0444     else
0445         smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
0446 
0447 }
0448 
0449 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
0450             SMU75_Discrete_DpmTable *table)
0451 {
0452     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0453     uint32_t count, level;
0454 
0455     if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
0456         count = data->mvdd_voltage_table.count;
0457         if (count > SMU_MAX_SMIO_LEVELS)
0458             count = SMU_MAX_SMIO_LEVELS;
0459         for (level = 0; level < count; level++) {
0460             table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
0461                     data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
0462             /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
0463             table->SmioTable2.Pattern[level].Smio =
0464                 (uint8_t) level;
0465             table->Smio[level] |=
0466                 data->mvdd_voltage_table.entries[level].smio_low;
0467         }
0468         table->SmioMask2 = data->mvdd_voltage_table.mask_low;
0469 
0470         table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
0471     }
0472 
0473     return 0;
0474 }
0475 
0476 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
0477                     struct SMU75_Discrete_DpmTable *table)
0478 {
0479     uint32_t count, level;
0480     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0481 
0482     count = data->vddci_voltage_table.count;
0483 
0484     if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
0485         if (count > SMU_MAX_SMIO_LEVELS)
0486             count = SMU_MAX_SMIO_LEVELS;
0487         for (level = 0; level < count; ++level) {
0488             table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
0489                     data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
0490             table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
0491 
0492             table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
0493         }
0494     }
0495 
0496     table->SmioMask1 = data->vddci_voltage_table.mask_low;
0497 
0498     return 0;
0499 }
0500 
0501 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
0502         struct SMU75_Discrete_DpmTable *table)
0503 {
0504     uint32_t count;
0505     uint8_t index;
0506     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0507     struct phm_ppt_v1_information *table_info =
0508             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0509     struct phm_ppt_v1_voltage_lookup_table *lookup_table =
0510             table_info->vddc_lookup_table;
0511     /* tables is already swapped, so in order to use the value from it,
0512      * we need to swap it back.
0513      * We are populating vddc CAC data to BapmVddc table
0514      * in split and merged mode
0515      */
0516     for (count = 0; count < lookup_table->count; count++) {
0517         index = phm_get_voltage_index(lookup_table,
0518                 data->vddc_voltage_table.entries[count].value);
0519         table->BapmVddcVidLoSidd[count] =
0520                 convert_to_vid(lookup_table->entries[index].us_cac_low);
0521         table->BapmVddcVidHiSidd[count] =
0522                 convert_to_vid(lookup_table->entries[index].us_cac_mid);
0523         table->BapmVddcVidHiSidd2[count] =
0524                 convert_to_vid(lookup_table->entries[index].us_cac_high);
0525     }
0526 
0527     return 0;
0528 }
0529 
0530 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
0531         struct SMU75_Discrete_DpmTable *table)
0532 {
0533     vegam_populate_smc_vddci_table(hwmgr, table);
0534     vegam_populate_smc_mvdd_table(hwmgr, table);
0535     vegam_populate_cac_table(hwmgr, table);
0536 
0537     return 0;
0538 }
0539 
0540 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
0541         struct SMU75_Discrete_Ulv *state)
0542 {
0543     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0544     struct phm_ppt_v1_information *table_info =
0545             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0546 
0547     state->CcPwrDynRm = 0;
0548     state->CcPwrDynRm1 = 0;
0549 
0550     state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
0551     state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
0552             VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
0553 
0554     state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
0555 
0556     CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
0557     CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
0558     CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
0559 
0560     return 0;
0561 }
0562 
0563 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
0564         struct SMU75_Discrete_DpmTable *table)
0565 {
0566     return vegam_populate_ulv_level(hwmgr, &table->Ulv);
0567 }
0568 
0569 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
0570         struct SMU75_Discrete_DpmTable *table)
0571 {
0572     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0573     struct vegam_smumgr *smu_data =
0574             (struct vegam_smumgr *)(hwmgr->smu_backend);
0575     struct smu7_dpm_table *dpm_table = &data->dpm_table;
0576     int i;
0577 
0578     /* Index (dpm_table->pcie_speed_table.count)
0579      * is reserved for PCIE boot level. */
0580     for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
0581         table->LinkLevel[i].PcieGenSpeed  =
0582                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
0583         table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
0584                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
0585         table->LinkLevel[i].EnabledForActivity = 1;
0586         table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
0587         table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
0588         table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
0589     }
0590 
0591     smu_data->smc_state_table.LinkLevelCount =
0592             (uint8_t)dpm_table->pcie_speed_table.count;
0593 
0594 /* To Do move to hwmgr */
0595     data->dpm_level_enable_mask.pcie_dpm_enable_mask =
0596             phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
0597 
0598     return 0;
0599 }
0600 
0601 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
0602         struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
0603         uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
0604 {
0605     uint32_t i;
0606     uint16_t vddci;
0607     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0608 
0609     *voltage = *mvdd = 0;
0610 
0611     /* clock - voltage dependency table is empty table */
0612     if (dep_table->count == 0)
0613         return -EINVAL;
0614 
0615     for (i = 0; i < dep_table->count; i++) {
0616         /* find first sclk bigger than request */
0617         if (dep_table->entries[i].clk >= clock) {
0618             *voltage |= (dep_table->entries[i].vddc *
0619                     VOLTAGE_SCALE) << VDDC_SHIFT;
0620             if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
0621                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
0622                         VOLTAGE_SCALE) << VDDCI_SHIFT;
0623             else if (dep_table->entries[i].vddci)
0624                 *voltage |= (dep_table->entries[i].vddci *
0625                         VOLTAGE_SCALE) << VDDCI_SHIFT;
0626             else {
0627                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
0628                         (dep_table->entries[i].vddc -
0629                                 (uint16_t)VDDC_VDDCI_DELTA));
0630                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
0631             }
0632 
0633             if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
0634                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
0635                     VOLTAGE_SCALE;
0636             else if (dep_table->entries[i].mvdd)
0637                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
0638                     VOLTAGE_SCALE;
0639 
0640             *voltage |= 1 << PHASES_SHIFT;
0641             return 0;
0642         }
0643     }
0644 
0645     /* sclk is bigger than max sclk in the dependence table */
0646     *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
0647 
0648     if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
0649         *voltage |= (data->vbios_boot_state.vddci_bootup_value *
0650                 VOLTAGE_SCALE) << VDDCI_SHIFT;
0651     else if (dep_table->entries[i - 1].vddci)
0652         *voltage |= (dep_table->entries[i - 1].vddci *
0653                 VOLTAGE_SCALE) << VDDC_SHIFT;
0654     else {
0655         vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
0656                 (dep_table->entries[i - 1].vddc -
0657                         (uint16_t)VDDC_VDDCI_DELTA));
0658 
0659         *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
0660     }
0661 
0662     if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
0663         *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
0664     else if (dep_table->entries[i].mvdd)
0665         *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
0666 
0667     return 0;
0668 }
0669 
0670 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
0671                    SMU75_Discrete_DpmTable  *table)
0672 {
0673     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0674     uint32_t i, ref_clk;
0675 
0676     struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
0677 
0678     ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
0679 
0680     if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
0681         for (i = 0; i < NUM_SCLK_RANGE; i++) {
0682             table->SclkFcwRangeTable[i].vco_setting =
0683                     range_table_from_vbios.entry[i].ucVco_setting;
0684             table->SclkFcwRangeTable[i].postdiv =
0685                     range_table_from_vbios.entry[i].ucPostdiv;
0686             table->SclkFcwRangeTable[i].fcw_pcc =
0687                     range_table_from_vbios.entry[i].usFcw_pcc;
0688 
0689             table->SclkFcwRangeTable[i].fcw_trans_upper =
0690                     range_table_from_vbios.entry[i].usFcw_trans_upper;
0691             table->SclkFcwRangeTable[i].fcw_trans_lower =
0692                     range_table_from_vbios.entry[i].usRcw_trans_lower;
0693 
0694             CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
0695             CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
0696             CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
0697         }
0698         return;
0699     }
0700 
0701     for (i = 0; i < NUM_SCLK_RANGE; i++) {
0702         smu_data->range_table[i].trans_lower_frequency =
0703                 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
0704         smu_data->range_table[i].trans_upper_frequency =
0705                 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
0706 
0707         table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
0708         table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
0709         table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
0710 
0711         table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
0712         table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
0713 
0714         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
0715         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
0716         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
0717     }
0718 }
0719 
0720 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
0721         uint32_t clock, SMU_SclkSetting *sclk_setting)
0722 {
0723     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0724     const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
0725     struct pp_atomctrl_clock_dividers_ai dividers;
0726     uint32_t ref_clock;
0727     uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
0728     uint8_t i;
0729     int result;
0730     uint64_t temp;
0731 
0732     sclk_setting->SclkFrequency = clock;
0733     /* get the engine clock dividers for this clock value */
0734     result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
0735     if (result == 0) {
0736         sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
0737         sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
0738         sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
0739         sclk_setting->PllRange = dividers.ucSclkPllRange;
0740         sclk_setting->Sclk_slew_rate = 0x400;
0741         sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
0742         sclk_setting->Pcc_down_slew_rate = 0xffff;
0743         sclk_setting->SSc_En = dividers.ucSscEnable;
0744         sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
0745         sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
0746         sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
0747         return result;
0748     }
0749 
0750     ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
0751 
0752     for (i = 0; i < NUM_SCLK_RANGE; i++) {
0753         if (clock > smu_data->range_table[i].trans_lower_frequency
0754         && clock <= smu_data->range_table[i].trans_upper_frequency) {
0755             sclk_setting->PllRange = i;
0756             break;
0757         }
0758     }
0759 
0760     sclk_setting->Fcw_int = (uint16_t)
0761             ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
0762                     ref_clock);
0763     temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
0764     temp <<= 0x10;
0765     do_div(temp, ref_clock);
0766     sclk_setting->Fcw_frac = temp & 0xffff;
0767 
0768     pcc_target_percent = 10; /*  Hardcode 10% for now. */
0769     pcc_target_freq = clock - (clock * pcc_target_percent / 100);
0770     sclk_setting->Pcc_fcw_int = (uint16_t)
0771             ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
0772                     ref_clock);
0773 
0774     ss_target_percent = 2; /*  Hardcode 2% for now. */
0775     sclk_setting->SSc_En = 0;
0776     if (ss_target_percent) {
0777         sclk_setting->SSc_En = 1;
0778         ss_target_freq = clock - (clock * ss_target_percent / 100);
0779         sclk_setting->Fcw1_int = (uint16_t)
0780                 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
0781                         ref_clock);
0782         temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
0783         temp <<= 0x10;
0784         do_div(temp, ref_clock);
0785         sclk_setting->Fcw1_frac = temp & 0xffff;
0786     }
0787 
0788     return 0;
0789 }
0790 
0791 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
0792         uint32_t clock_insr)
0793 {
0794     uint8_t i;
0795     uint32_t temp;
0796     uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
0797 
0798     PP_ASSERT_WITH_CODE((clock >= min),
0799             "Engine clock can't satisfy stutter requirement!",
0800             return 0);
0801     for (i = 31;  ; i--) {
0802         temp = clock / (i + 1);
0803 
0804         if (temp >= min || i == 0)
0805             break;
0806     }
0807     return i;
0808 }
0809 
0810 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
0811         uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
0812 {
0813     int result;
0814     /* PP_Clocks minClocks; */
0815     uint32_t mvdd;
0816     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0817     struct phm_ppt_v1_information *table_info =
0818             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0819     SMU_SclkSetting curr_sclk_setting = { 0 };
0820 
0821     result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
0822 
0823     /* populate graphics levels */
0824     result = vegam_get_dependency_volt_by_clk(hwmgr,
0825             table_info->vdd_dep_on_sclk, clock,
0826             &level->MinVoltage, &mvdd);
0827 
0828     PP_ASSERT_WITH_CODE((0 == result),
0829             "can not find VDDC voltage value for "
0830             "VDDC engine clock dependency table",
0831             return result);
0832     level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
0833 
0834     level->CcPwrDynRm = 0;
0835     level->CcPwrDynRm1 = 0;
0836     level->EnabledForActivity = 0;
0837     level->EnabledForThrottle = 1;
0838     level->VoltageDownHyst = 0;
0839     level->PowerThrottle = 0;
0840     data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
0841 
0842     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
0843         level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
0844                                 hwmgr->display_config->min_core_set_clock_in_sr);
0845 
0846     level->SclkSetting = curr_sclk_setting;
0847 
0848     CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
0849     CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
0850     CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
0851     CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
0852     CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
0853     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
0854     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
0855     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
0856     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
0857     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
0858     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
0859     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
0860     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
0861     CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
0862     return 0;
0863 }
0864 
0865 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
0866 {
0867     struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
0868     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
0869     struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
0870     struct phm_ppt_v1_information *table_info =
0871             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0872     struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
0873     uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
0874     int result = 0;
0875     uint32_t array = smu_data->smu7_data.dpm_table_start +
0876             offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
0877     uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
0878             SMU75_MAX_LEVELS_GRAPHICS;
0879     struct SMU75_Discrete_GraphicsLevel *levels =
0880             smu_data->smc_state_table.GraphicsLevel;
0881     uint32_t i, max_entry;
0882     uint8_t hightest_pcie_level_enabled = 0,
0883         lowest_pcie_level_enabled = 0,
0884         mid_pcie_level_enabled = 0,
0885         count = 0;
0886 
0887     vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
0888 
0889     for (i = 0; i < dpm_table->sclk_table.count; i++) {
0890 
0891         result = vegam_populate_single_graphic_level(hwmgr,
0892                 dpm_table->sclk_table.dpm_levels[i].value,
0893                 &(smu_data->smc_state_table.GraphicsLevel[i]));
0894         if (result)
0895             return result;
0896 
0897         levels[i].UpHyst = (uint8_t)
0898                 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
0899         levels[i].DownHyst = (uint8_t)
0900                 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
0901         /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
0902         if (i > 1)
0903             levels[i].DeepSleepDivId = 0;
0904     }
0905     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0906                     PHM_PlatformCaps_SPLLShutdownSupport))
0907         smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
0908 
0909     smu_data->smc_state_table.GraphicsDpmLevelCount =
0910             (uint8_t)dpm_table->sclk_table.count;
0911     hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
0912             phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
0913 
0914     for (i = 0; i < dpm_table->sclk_table.count; i++)
0915         levels[i].EnabledForActivity =
0916                 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
0917 
0918     if (pcie_table != NULL) {
0919         PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
0920                 "There must be 1 or more PCIE levels defined in PPTable.",
0921                 return -EINVAL);
0922         max_entry = pcie_entry_cnt - 1;
0923         for (i = 0; i < dpm_table->sclk_table.count; i++)
0924             levels[i].pcieDpmLevel =
0925                     (uint8_t) ((i < max_entry) ? i : max_entry);
0926     } else {
0927         while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
0928                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
0929                         (1 << (hightest_pcie_level_enabled + 1))) != 0))
0930             hightest_pcie_level_enabled++;
0931 
0932         while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
0933                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
0934                         (1 << lowest_pcie_level_enabled)) == 0))
0935             lowest_pcie_level_enabled++;
0936 
0937         while ((count < hightest_pcie_level_enabled) &&
0938                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
0939                         (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
0940             count++;
0941 
0942         mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
0943                 hightest_pcie_level_enabled ?
0944                         (lowest_pcie_level_enabled + 1 + count) :
0945                         hightest_pcie_level_enabled;
0946 
0947         /* set pcieDpmLevel to hightest_pcie_level_enabled */
0948         for (i = 2; i < dpm_table->sclk_table.count; i++)
0949             levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
0950 
0951         /* set pcieDpmLevel to lowest_pcie_level_enabled */
0952         levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
0953 
0954         /* set pcieDpmLevel to mid_pcie_level_enabled */
0955         levels[1].pcieDpmLevel = mid_pcie_level_enabled;
0956     }
0957     /* level count will send to smc once at init smc table and never change */
0958     result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
0959             (uint32_t)array_size, SMC_RAM_END);
0960 
0961     return result;
0962 }
0963 
0964 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
0965         uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
0966 {
0967     struct pp_atomctrl_memory_clock_param_ai mpll_param;
0968 
0969     PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
0970             clock, &mpll_param),
0971             "Failed to retrieve memory pll parameter.",
0972             return -EINVAL);
0973 
0974     mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
0975     mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
0976     mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
0977     mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
0978 
0979     return 0;
0980 }
0981 
0982 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
0983         uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
0984 {
0985     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0986     struct phm_ppt_v1_information *table_info =
0987             (struct phm_ppt_v1_information *)(hwmgr->pptable);
0988     int result = 0;
0989     uint32_t mclk_stutter_mode_threshold = 60000;
0990 
0991 
0992     if (table_info->vdd_dep_on_mclk) {
0993         result = vegam_get_dependency_volt_by_clk(hwmgr,
0994                 table_info->vdd_dep_on_mclk, clock,
0995                 &mem_level->MinVoltage, &mem_level->MinMvdd);
0996         PP_ASSERT_WITH_CODE(!result,
0997                 "can not find MinVddc voltage value from memory "
0998                 "VDDC voltage dependency table", return result);
0999     }
1000 
1001     result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1002     PP_ASSERT_WITH_CODE(!result,
1003             "Failed to calculate mclk params.",
1004             return -EINVAL);
1005 
1006     mem_level->EnabledForThrottle = 1;
1007     mem_level->EnabledForActivity = 0;
1008     mem_level->VoltageDownHyst = 0;
1009     mem_level->ActivityLevel = (uint16_t)
1010             (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1011     mem_level->StutterEnable = false;
1012     mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1013 
1014     data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1015     data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1016 
1017     if (mclk_stutter_mode_threshold &&
1018         (clock <= mclk_stutter_mode_threshold) &&
1019         (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1020                 STUTTER_ENABLE) & 0x1))
1021         mem_level->StutterEnable = true;
1022 
1023     if (!result) {
1024         CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1025         CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1026         CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1027         CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1028         CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1029         CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1030     }
1031 
1032     return result;
1033 }
1034 
1035 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1036 {
1037     struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1038     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1039     struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1040     int result;
1041     /* populate MCLK dpm table to SMU7 */
1042     uint32_t array = smu_data->smu7_data.dpm_table_start +
1043             offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1044     uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1045             SMU75_MAX_LEVELS_MEMORY;
1046     struct SMU75_Discrete_MemoryLevel *levels =
1047             smu_data->smc_state_table.MemoryLevel;
1048     uint32_t i;
1049 
1050     for (i = 0; i < dpm_table->mclk_table.count; i++) {
1051         PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1052                 "can not populate memory level as memory clock is zero",
1053                 return -EINVAL);
1054         result = vegam_populate_single_memory_level(hwmgr,
1055                 dpm_table->mclk_table.dpm_levels[i].value,
1056                 &levels[i]);
1057 
1058         if (result)
1059             return result;
1060 
1061         levels[i].UpHyst = (uint8_t)
1062                 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1063         levels[i].DownHyst = (uint8_t)
1064                 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1065     }
1066 
1067     smu_data->smc_state_table.MemoryDpmLevelCount =
1068             (uint8_t)dpm_table->mclk_table.count;
1069     hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1070             phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1071 
1072     for (i = 0; i < dpm_table->mclk_table.count; i++)
1073         levels[i].EnabledForActivity =
1074                 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1075 
1076     levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1077             PPSMC_DISPLAY_WATERMARK_HIGH;
1078 
1079     /* level count will send to smc once at init smc table and never change */
1080     result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1081             (uint32_t)array_size, SMC_RAM_END);
1082 
1083     return result;
1084 }
1085 
1086 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1087         uint32_t mclk, SMIO_Pattern *smio_pat)
1088 {
1089     const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1090     struct phm_ppt_v1_information *table_info =
1091             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1092     uint32_t i = 0;
1093 
1094     if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1095         /* find mvdd value which clock is more than request */
1096         for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1097             if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1098                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1099                 break;
1100             }
1101         }
1102         PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1103                 "MVDD Voltage is outside the supported range.",
1104                 return -EINVAL);
1105     } else
1106         return -EINVAL;
1107 
1108     return 0;
1109 }
1110 
1111 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1112         SMU75_Discrete_DpmTable *table)
1113 {
1114     int result = 0;
1115     uint32_t sclk_frequency;
1116     const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1117     struct phm_ppt_v1_information *table_info =
1118             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1119     SMIO_Pattern vol_level;
1120     uint32_t mvdd;
1121 
1122     table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1123 
1124     /* Get MinVoltage and Frequency from DPM0,
1125      * already converted to SMC_UL */
1126     sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1127     result = vegam_get_dependency_volt_by_clk(hwmgr,
1128             table_info->vdd_dep_on_sclk,
1129             sclk_frequency,
1130             &table->ACPILevel.MinVoltage, &mvdd);
1131     PP_ASSERT_WITH_CODE(!result,
1132             "Cannot find ACPI VDDC voltage value "
1133             "in Clock Dependency Table",
1134             );
1135 
1136     result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1137             &(table->ACPILevel.SclkSetting));
1138     PP_ASSERT_WITH_CODE(!result,
1139             "Error retrieving Engine Clock dividers from VBIOS.",
1140             return result);
1141 
1142     table->ACPILevel.DeepSleepDivId = 0;
1143     table->ACPILevel.CcPwrDynRm = 0;
1144     table->ACPILevel.CcPwrDynRm1 = 0;
1145 
1146     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1147     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1148     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1149     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1150 
1151     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1152     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1153     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1154     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1155     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1156     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1157     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1158     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1159     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1160     CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1161 
1162 
1163     /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1164     table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1165     result = vegam_get_dependency_volt_by_clk(hwmgr,
1166             table_info->vdd_dep_on_mclk,
1167             table->MemoryACPILevel.MclkFrequency,
1168             &table->MemoryACPILevel.MinVoltage, &mvdd);
1169     PP_ASSERT_WITH_CODE((0 == result),
1170             "Cannot find ACPI VDDCI voltage value "
1171             "in Clock Dependency Table",
1172             );
1173 
1174     if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1175         table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1176     else
1177         table->MemoryACPILevel.MinMvdd = 0;
1178 
1179     table->MemoryACPILevel.StutterEnable = false;
1180 
1181     table->MemoryACPILevel.EnabledForThrottle = 0;
1182     table->MemoryACPILevel.EnabledForActivity = 0;
1183     table->MemoryACPILevel.UpHyst = 0;
1184     table->MemoryACPILevel.DownHyst = 100;
1185     table->MemoryACPILevel.VoltageDownHyst = 0;
1186     table->MemoryACPILevel.ActivityLevel =
1187         PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1188 
1189     CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1190     CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1191 
1192     return result;
1193 }
1194 
1195 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1196         SMU75_Discrete_DpmTable *table)
1197 {
1198     int result = -EINVAL;
1199     uint8_t count;
1200     struct pp_atomctrl_clock_dividers_vi dividers;
1201     struct phm_ppt_v1_information *table_info =
1202             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1203     struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1204             table_info->mm_dep_table;
1205     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1206     uint32_t vddci;
1207 
1208     table->VceLevelCount = (uint8_t)(mm_table->count);
1209     table->VceBootLevel = 0;
1210 
1211     for (count = 0; count < table->VceLevelCount; count++) {
1212         table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1213         table->VceLevel[count].MinVoltage = 0;
1214         table->VceLevel[count].MinVoltage |=
1215                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1216 
1217         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1218             vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1219                         mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1220         else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1221             vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1222         else
1223             vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1224 
1225 
1226         table->VceLevel[count].MinVoltage |=
1227                 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1228         table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1229 
1230         /*retrieve divider value for VBIOS */
1231         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1232                 table->VceLevel[count].Frequency, &dividers);
1233         PP_ASSERT_WITH_CODE((0 == result),
1234                 "can not find divide id for VCE engine clock",
1235                 return result);
1236 
1237         table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1238 
1239         CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1240         CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1241     }
1242     return result;
1243 }
1244 
1245 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1246         int32_t eng_clock, int32_t mem_clock,
1247         SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1248 {
1249     uint32_t dram_timing;
1250     uint32_t dram_timing2;
1251     uint32_t burst_time;
1252     uint32_t rfsh_rate;
1253     uint32_t misc3;
1254 
1255     int result;
1256 
1257     result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1258             eng_clock, mem_clock);
1259     PP_ASSERT_WITH_CODE(result == 0,
1260             "Error calling VBIOS to set DRAM_TIMING.",
1261             return result);
1262 
1263     dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1264     dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1265     burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1266     rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1267     misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1268 
1269     arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1270     arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1271     arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1272     arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1273     arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1274 
1275     return 0;
1276 }
1277 
1278 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1279 {
1280     struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1281     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1282     struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1283     uint32_t i, j;
1284     int result = 0;
1285 
1286     memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1287 
1288     for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1289         for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1290             result = vegam_populate_memory_timing_parameters(hwmgr,
1291                     hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1292                     hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1293                     &arb_regs.entries[i][j]);
1294             if (result)
1295                 return result;
1296         }
1297     }
1298 
1299     result = smu7_copy_bytes_to_smc(
1300             hwmgr,
1301             smu_data->smu7_data.arb_table_start,
1302             (uint8_t *)&arb_regs,
1303             sizeof(SMU75_Discrete_MCArbDramTimingTable),
1304             SMC_RAM_END);
1305     return result;
1306 }
1307 
1308 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1309         struct SMU75_Discrete_DpmTable *table)
1310 {
1311     int result = -EINVAL;
1312     uint8_t count;
1313     struct pp_atomctrl_clock_dividers_vi dividers;
1314     struct phm_ppt_v1_information *table_info =
1315             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1316     struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1317             table_info->mm_dep_table;
1318     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1319     uint32_t vddci;
1320 
1321     table->UvdLevelCount = (uint8_t)(mm_table->count);
1322     table->UvdBootLevel = 0;
1323 
1324     for (count = 0; count < table->UvdLevelCount; count++) {
1325         table->UvdLevel[count].MinVoltage = 0;
1326         table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1327         table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1328         table->UvdLevel[count].MinVoltage |=
1329                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1330 
1331         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1332             vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1333                         mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1334         else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1335             vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1336         else
1337             vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1338 
1339         table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1340         table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1341 
1342         /* retrieve divider value for VBIOS */
1343         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1344                 table->UvdLevel[count].VclkFrequency, &dividers);
1345         PP_ASSERT_WITH_CODE((0 == result),
1346                 "can not find divide id for Vclk clock", return result);
1347 
1348         table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1349 
1350         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1351                 table->UvdLevel[count].DclkFrequency, &dividers);
1352         PP_ASSERT_WITH_CODE((0 == result),
1353                 "can not find divide id for Dclk clock", return result);
1354 
1355         table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1356 
1357         CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1358         CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1359         CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1360     }
1361 
1362     return result;
1363 }
1364 
1365 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1366         struct SMU75_Discrete_DpmTable *table)
1367 {
1368     int result = 0;
1369     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1370 
1371     table->GraphicsBootLevel = 0;
1372     table->MemoryBootLevel = 0;
1373 
1374     /* find boot level from dpm table */
1375     result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1376             data->vbios_boot_state.sclk_bootup_value,
1377             (uint32_t *)&(table->GraphicsBootLevel));
1378     if (result)
1379         return result;
1380 
1381     result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1382             data->vbios_boot_state.mclk_bootup_value,
1383             (uint32_t *)&(table->MemoryBootLevel));
1384 
1385     if (result)
1386         return result;
1387 
1388     table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1389             VOLTAGE_SCALE;
1390     table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1391             VOLTAGE_SCALE;
1392     table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1393             VOLTAGE_SCALE;
1394 
1395     CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1396     CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1397     CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1398 
1399     return 0;
1400 }
1401 
1402 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1403 {
1404     struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1405     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1406     struct phm_ppt_v1_information *table_info =
1407             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1408     uint8_t count, level;
1409 
1410     count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1411 
1412     for (level = 0; level < count; level++) {
1413         if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1414                 hw_data->vbios_boot_state.sclk_bootup_value) {
1415             smu_data->smc_state_table.GraphicsBootLevel = level;
1416             break;
1417         }
1418     }
1419 
1420     count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1421     for (level = 0; level < count; level++) {
1422         if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1423                 hw_data->vbios_boot_state.mclk_bootup_value) {
1424             smu_data->smc_state_table.MemoryBootLevel = level;
1425             break;
1426         }
1427     }
1428 
1429     return 0;
1430 }
1431 
1432 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1433 {
1434     uint32_t tmp;
1435     tmp = raw_setting * 4096 / 100;
1436     return (uint16_t)tmp;
1437 }
1438 
1439 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1440 {
1441     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1442 
1443     const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1444     SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1445     struct phm_ppt_v1_information *table_info =
1446             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1447     struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1448     struct pp_advance_fan_control_parameters *fan_table =
1449             &hwmgr->thermal_controller.advanceFanControlParameters;
1450     int i, j, k;
1451     const uint16_t *pdef1;
1452     const uint16_t *pdef2;
1453 
1454     table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1455     table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1456 
1457     PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1458                 "Target Operating Temp is out of Range!",
1459                 );
1460 
1461     table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1462             cac_dtp_table->usTargetOperatingTemp * 256);
1463     table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1464             cac_dtp_table->usTemperatureLimitHotspot * 256);
1465     table->FanGainEdge = PP_HOST_TO_SMC_US(
1466             scale_fan_gain_settings(fan_table->usFanGainEdge));
1467     table->FanGainHotspot = PP_HOST_TO_SMC_US(
1468             scale_fan_gain_settings(fan_table->usFanGainHotspot));
1469 
1470     pdef1 = defaults->BAPMTI_R;
1471     pdef2 = defaults->BAPMTI_RC;
1472 
1473     for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1474         for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1475             for (k = 0; k < SMU75_DTE_SINKS; k++) {
1476                 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1477                 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1478                 pdef1++;
1479                 pdef2++;
1480             }
1481         }
1482     }
1483 
1484     return 0;
1485 }
1486 
1487 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1488 {
1489     uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1490     struct vegam_smumgr *smu_data =
1491             (struct vegam_smumgr *)(hwmgr->smu_backend);
1492 
1493     uint8_t i, stretch_amount, volt_offset = 0;
1494     struct phm_ppt_v1_information *table_info =
1495             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1496     struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1497             table_info->vdd_dep_on_sclk;
1498 
1499     stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1500 
1501     atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1502             &efuse);
1503 
1504     min = 1200;
1505     max = 2500;
1506 
1507     ro = efuse * (max - min) / 255 + min;
1508 
1509     /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1510     for (i = 0; i < sclk_table->count; i++) {
1511         smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1512                 sclk_table->entries[i].cks_enable << i;
1513         volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1514                 136418 - (ro - 70) * 1000000) /
1515                 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1516         volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1517                 3232 - (ro - 65) * 1000000) /
1518                 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1519 
1520         if (volt_without_cks >= volt_with_cks)
1521             volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1522                     sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1523 
1524         smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1525     }
1526 
1527     smu_data->smc_state_table.LdoRefSel =
1528             (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1529             table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1530     /* Populate CKS Lookup Table */
1531     if (!(stretch_amount == 1 || stretch_amount == 2 ||
1532           stretch_amount == 5 || stretch_amount == 3 ||
1533           stretch_amount == 4)) {
1534         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1535                 PHM_PlatformCaps_ClockStretcher);
1536         PP_ASSERT_WITH_CODE(false,
1537                 "Stretch Amount in PPTable not supported\n",
1538                 return -EINVAL);
1539     }
1540 
1541     value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1542     value &= 0xFFFFFFFE;
1543     cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1544 
1545     return 0;
1546 }
1547 
1548 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1549 {
1550     uint32_t efuse;
1551 
1552     efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1553             ixSMU_EFUSE_0 + (49 * 4));
1554     efuse &= 0x00000001;
1555 
1556     if (efuse)
1557         return true;
1558 
1559     return false;
1560 }
1561 
1562 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1563 {
1564     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1565     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1566 
1567     SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1568     int result = 0;
1569     struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1570     AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1571     AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1572     uint32_t tmp, i;
1573 
1574     struct phm_ppt_v1_information *table_info =
1575             (struct phm_ppt_v1_information *)hwmgr->pptable;
1576     struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1577             table_info->vdd_dep_on_sclk;
1578 
1579     if (!hwmgr->avfs_supported)
1580         return 0;
1581 
1582     result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1583 
1584     if (0 == result) {
1585         table->BTCGB_VDROOP_TABLE[0].a0 =
1586                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1587         table->BTCGB_VDROOP_TABLE[0].a1 =
1588                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1589         table->BTCGB_VDROOP_TABLE[0].a2 =
1590                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1591         table->BTCGB_VDROOP_TABLE[1].a0 =
1592                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1593         table->BTCGB_VDROOP_TABLE[1].a1 =
1594                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1595         table->BTCGB_VDROOP_TABLE[1].a2 =
1596                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1597         table->AVFSGB_FUSE_TABLE[0].m1 =
1598                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1599         table->AVFSGB_FUSE_TABLE[0].m2 =
1600                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1601         table->AVFSGB_FUSE_TABLE[0].b =
1602                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1603         table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1604         table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1605         table->AVFSGB_FUSE_TABLE[1].m1 =
1606                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1607         table->AVFSGB_FUSE_TABLE[1].m2 =
1608                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1609         table->AVFSGB_FUSE_TABLE[1].b =
1610                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1611         table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1612         table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1613         table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1614         AVFS_meanNsigma.Aconstant[0] =
1615                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1616         AVFS_meanNsigma.Aconstant[1] =
1617                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1618         AVFS_meanNsigma.Aconstant[2] =
1619                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1620         AVFS_meanNsigma.DC_tol_sigma =
1621                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1622         AVFS_meanNsigma.Platform_mean =
1623                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1624         AVFS_meanNsigma.PSM_Age_CompFactor =
1625                 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1626         AVFS_meanNsigma.Platform_sigma =
1627                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1628 
1629         for (i = 0; i < sclk_table->count; i++) {
1630             AVFS_meanNsigma.Static_Voltage_Offset[i] =
1631                     (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1632             AVFS_SclkOffset.Sclk_Offset[i] =
1633                     PP_HOST_TO_SMC_US((uint16_t)
1634                             (sclk_table->entries[i].sclk_offset) / 100);
1635         }
1636 
1637         result = smu7_read_smc_sram_dword(hwmgr,
1638                 SMU7_FIRMWARE_HEADER_LOCATION +
1639                 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1640                 &tmp, SMC_RAM_END);
1641         smu7_copy_bytes_to_smc(hwmgr,
1642                     tmp,
1643                     (uint8_t *)&AVFS_meanNsigma,
1644                     sizeof(AVFS_meanNsigma_t),
1645                     SMC_RAM_END);
1646 
1647         result = smu7_read_smc_sram_dword(hwmgr,
1648                 SMU7_FIRMWARE_HEADER_LOCATION +
1649                 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1650                 &tmp, SMC_RAM_END);
1651         smu7_copy_bytes_to_smc(hwmgr,
1652                     tmp,
1653                     (uint8_t *)&AVFS_SclkOffset,
1654                     sizeof(AVFS_Sclk_Offset_t),
1655                     SMC_RAM_END);
1656 
1657         data->avfs_vdroop_override_setting =
1658                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1659                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1660                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1661                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1662         data->apply_avfs_cks_off_voltage =
1663                 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1664     }
1665     return result;
1666 }
1667 
1668 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1669         struct SMU75_Discrete_DpmTable *table)
1670 {
1671     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1672     struct vegam_smumgr *smu_data =
1673             (struct vegam_smumgr *)(hwmgr->smu_backend);
1674     uint16_t config;
1675 
1676     config = VR_MERGED_WITH_VDDC;
1677     table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1678 
1679     /* Set Vddc Voltage Controller */
1680     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1681         config = VR_SVI2_PLANE_1;
1682         table->VRConfig |= config;
1683     } else {
1684         PP_ASSERT_WITH_CODE(false,
1685                 "VDDC should be on SVI2 control in merged mode!",
1686                 );
1687     }
1688     /* Set Vddci Voltage Controller */
1689     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1690         config = VR_SVI2_PLANE_2;  /* only in merged mode */
1691         table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1692     } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1693         config = VR_SMIO_PATTERN_1;
1694         table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1695     } else {
1696         config = VR_STATIC_VOLTAGE;
1697         table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1698     }
1699     /* Set Mvdd Voltage Controller */
1700     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1701         if (config != VR_SVI2_PLANE_2) {
1702             config = VR_SVI2_PLANE_2;
1703             table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1704             cgs_write_ind_register(hwmgr->device,
1705                     CGS_IND_REG__SMC,
1706                     smu_data->smu7_data.soft_regs_start +
1707                     offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1708                     0x1);
1709         } else {
1710             PP_ASSERT_WITH_CODE(false,
1711                     "SVI2 Plane 2 is already taken, set MVDD as Static",);
1712             config = VR_STATIC_VOLTAGE;
1713             table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1714         }
1715     } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1716         config = VR_SMIO_PATTERN_2;
1717         table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1718         cgs_write_ind_register(hwmgr->device,
1719                 CGS_IND_REG__SMC,
1720                 smu_data->smu7_data.soft_regs_start +
1721                 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1722                 0x1);
1723     } else {
1724         config = VR_STATIC_VOLTAGE;
1725         table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1726     }
1727 
1728     return 0;
1729 }
1730 
1731 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1732 {
1733     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1734     const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1735 
1736     smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1737     smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1738     smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1739     smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1740 
1741     return 0;
1742 }
1743 
1744 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1745 {
1746     uint16_t tdc_limit;
1747     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1748     struct phm_ppt_v1_information *table_info =
1749             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1750     const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1751 
1752     tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1753     smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1754             CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1755     smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1756             defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1757     smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1758 
1759     return 0;
1760 }
1761 
1762 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1763 {
1764     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1765     const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1766     uint32_t temp;
1767 
1768     if (smu7_read_smc_sram_dword(hwmgr,
1769             fuse_table_offset +
1770             offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1771             (uint32_t *)&temp, SMC_RAM_END))
1772         PP_ASSERT_WITH_CODE(false,
1773                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1774                 return -EINVAL);
1775     else {
1776         smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1777         smu_data->power_tune_table.LPMLTemperatureMin =
1778                 (uint8_t)((temp >> 16) & 0xff);
1779         smu_data->power_tune_table.LPMLTemperatureMax =
1780                 (uint8_t)((temp >> 8) & 0xff);
1781         smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1782     }
1783     return 0;
1784 }
1785 
1786 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1787 {
1788     int i;
1789     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1790 
1791     /* Currently not used. Set all to zero. */
1792     for (i = 0; i < 16; i++)
1793         smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1794 
1795     return 0;
1796 }
1797 
1798 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1799 {
1800     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1801 
1802 /* TO DO move to hwmgr */
1803     if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1804         || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1805         hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1806             hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1807 
1808     smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1809                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1810     return 0;
1811 }
1812 
1813 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1814 {
1815     int i;
1816     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1817 
1818     /* Currently not used. Set all to zero. */
1819     for (i = 0; i < 16; i++)
1820         smu_data->power_tune_table.GnbLPML[i] = 0;
1821 
1822     return 0;
1823 }
1824 
1825 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1826 {
1827     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1828     struct phm_ppt_v1_information *table_info =
1829             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1830     uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1831     uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1832     struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1833 
1834     hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1835     lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1836 
1837     smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1838             CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1839     smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1840             CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1841 
1842     return 0;
1843 }
1844 
1845 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1846 {
1847     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1848     uint32_t pm_fuse_table_offset;
1849 
1850     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1851             PHM_PlatformCaps_PowerContainment)) {
1852         if (smu7_read_smc_sram_dword(hwmgr,
1853                 SMU7_FIRMWARE_HEADER_LOCATION +
1854                 offsetof(SMU75_Firmware_Header, PmFuseTable),
1855                 &pm_fuse_table_offset, SMC_RAM_END))
1856             PP_ASSERT_WITH_CODE(false,
1857                     "Attempt to get pm_fuse_table_offset Failed!",
1858                     return -EINVAL);
1859 
1860         if (vegam_populate_svi_load_line(hwmgr))
1861             PP_ASSERT_WITH_CODE(false,
1862                     "Attempt to populate SviLoadLine Failed!",
1863                     return -EINVAL);
1864 
1865         if (vegam_populate_tdc_limit(hwmgr))
1866             PP_ASSERT_WITH_CODE(false,
1867                     "Attempt to populate TDCLimit Failed!", return -EINVAL);
1868 
1869         if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1870             PP_ASSERT_WITH_CODE(false,
1871                     "Attempt to populate TdcWaterfallCtl, "
1872                     "LPMLTemperature Min and Max Failed!",
1873                     return -EINVAL);
1874 
1875         if (0 != vegam_populate_temperature_scaler(hwmgr))
1876             PP_ASSERT_WITH_CODE(false,
1877                     "Attempt to populate LPMLTemperatureScaler Failed!",
1878                     return -EINVAL);
1879 
1880         if (vegam_populate_fuzzy_fan(hwmgr))
1881             PP_ASSERT_WITH_CODE(false,
1882                     "Attempt to populate Fuzzy Fan Control parameters Failed!",
1883                     return -EINVAL);
1884 
1885         if (vegam_populate_gnb_lpml(hwmgr))
1886             PP_ASSERT_WITH_CODE(false,
1887                     "Attempt to populate GnbLPML Failed!",
1888                     return -EINVAL);
1889 
1890         if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1891             PP_ASSERT_WITH_CODE(false,
1892                     "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1893                     "Sidd Failed!", return -EINVAL);
1894 
1895         if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1896                 (uint8_t *)&smu_data->power_tune_table,
1897                 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1898                 SMC_RAM_END))
1899             PP_ASSERT_WITH_CODE(false,
1900                     "Attempt to download PmFuseTable Failed!",
1901                     return -EINVAL);
1902     }
1903     return 0;
1904 }
1905 
1906 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1907 {
1908     struct amdgpu_device *adev = hwmgr->adev;
1909 
1910     smum_send_msg_to_smc_with_parameter(hwmgr,
1911                         PPSMC_MSG_EnableModeSwitchRLCNotification,
1912                         adev->gfx.cu_info.number,
1913                         NULL);
1914 
1915     return 0;
1916 }
1917 
1918 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1919 {
1920     int result;
1921     struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1922     struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1923 
1924     struct phm_ppt_v1_information *table_info =
1925             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1926     struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1927     uint8_t i;
1928     struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1929     struct phm_ppt_v1_gpio_table *gpio_table =
1930             (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1931     pp_atomctrl_clock_dividers_vi dividers;
1932 
1933     phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1934             PHM_PlatformCaps_AutomaticDCTransition);
1935 
1936     vegam_initialize_power_tune_defaults(hwmgr);
1937 
1938     if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1939         vegam_populate_smc_voltage_tables(hwmgr, table);
1940 
1941     table->SystemFlags = 0;
1942     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1943             PHM_PlatformCaps_AutomaticDCTransition))
1944         table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1945 
1946     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1947             PHM_PlatformCaps_StepVddc))
1948         table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1949 
1950     if (hw_data->is_memory_gddr5)
1951         table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1952 
1953     if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1954         result = vegam_populate_ulv_state(hwmgr, table);
1955         PP_ASSERT_WITH_CODE(!result,
1956                 "Failed to initialize ULV state!", return result);
1957         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1958                 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1959     }
1960 
1961     result = vegam_populate_smc_link_level(hwmgr, table);
1962     PP_ASSERT_WITH_CODE(!result,
1963             "Failed to initialize Link Level!", return result);
1964 
1965     result = vegam_populate_all_graphic_levels(hwmgr);
1966     PP_ASSERT_WITH_CODE(!result,
1967             "Failed to initialize Graphics Level!", return result);
1968 
1969     result = vegam_populate_all_memory_levels(hwmgr);
1970     PP_ASSERT_WITH_CODE(!result,
1971             "Failed to initialize Memory Level!", return result);
1972 
1973     result = vegam_populate_smc_acpi_level(hwmgr, table);
1974     PP_ASSERT_WITH_CODE(!result,
1975             "Failed to initialize ACPI Level!", return result);
1976 
1977     result = vegam_populate_smc_vce_level(hwmgr, table);
1978     PP_ASSERT_WITH_CODE(!result,
1979             "Failed to initialize VCE Level!", return result);
1980 
1981     /* Since only the initial state is completely set up at this point
1982      * (the other states are just copies of the boot state) we only
1983      * need to populate the  ARB settings for the initial state.
1984      */
1985     result = vegam_program_memory_timing_parameters(hwmgr);
1986     PP_ASSERT_WITH_CODE(!result,
1987             "Failed to Write ARB settings for the initial state.", return result);
1988 
1989     result = vegam_populate_smc_uvd_level(hwmgr, table);
1990     PP_ASSERT_WITH_CODE(!result,
1991             "Failed to initialize UVD Level!", return result);
1992 
1993     result = vegam_populate_smc_boot_level(hwmgr, table);
1994     PP_ASSERT_WITH_CODE(!result,
1995             "Failed to initialize Boot Level!", return result);
1996 
1997     result = vegam_populate_smc_initial_state(hwmgr);
1998     PP_ASSERT_WITH_CODE(!result,
1999             "Failed to initialize Boot State!", return result);
2000 
2001     result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2002     PP_ASSERT_WITH_CODE(!result,
2003             "Failed to populate BAPM Parameters!", return result);
2004 
2005     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2006             PHM_PlatformCaps_ClockStretcher)) {
2007         result = vegam_populate_clock_stretcher_data_table(hwmgr);
2008         PP_ASSERT_WITH_CODE(!result,
2009                 "Failed to populate Clock Stretcher Data Table!",
2010                 return result);
2011     }
2012 
2013     result = vegam_populate_avfs_parameters(hwmgr);
2014     PP_ASSERT_WITH_CODE(!result,
2015             "Failed to populate AVFS Parameters!", return result;);
2016 
2017     table->CurrSclkPllRange = 0xff;
2018     table->GraphicsVoltageChangeEnable  = 1;
2019     table->GraphicsThermThrottleEnable  = 1;
2020     table->GraphicsInterval = 1;
2021     table->VoltageInterval  = 1;
2022     table->ThermalInterval  = 1;
2023     table->TemperatureLimitHigh =
2024             table_info->cac_dtp_table->usTargetOperatingTemp *
2025             SMU7_Q88_FORMAT_CONVERSION_UNIT;
2026     table->TemperatureLimitLow  =
2027             (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2028             SMU7_Q88_FORMAT_CONVERSION_UNIT;
2029     table->MemoryVoltageChangeEnable = 1;
2030     table->MemoryInterval = 1;
2031     table->VoltageResponseTime = 0;
2032     table->PhaseResponseTime = 0;
2033     table->MemoryThermThrottleEnable = 1;
2034 
2035     PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2036             "There must be 1 or more PCIE levels defined in PPTable.",
2037             return -EINVAL);
2038     table->PCIeBootLinkLevel =
2039             hw_data->dpm_table.pcie_speed_table.count;
2040     table->PCIeGenInterval = 1;
2041     table->VRConfig = 0;
2042 
2043     result = vegam_populate_vr_config(hwmgr, table);
2044     PP_ASSERT_WITH_CODE(!result,
2045             "Failed to populate VRConfig setting!", return result);
2046 
2047     table->ThermGpio = 17;
2048     table->SclkStepSize = 0x4000;
2049 
2050     if (atomctrl_get_pp_assign_pin(hwmgr,
2051             VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2052         table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2053         if (gpio_table)
2054             table->VRHotLevel =
2055                     table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2056     } else {
2057         table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2058         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2059                 PHM_PlatformCaps_RegulatorHot);
2060     }
2061 
2062     if (atomctrl_get_pp_assign_pin(hwmgr,
2063             PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) {
2064         table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2065         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2066                 PHM_PlatformCaps_AutomaticDCTransition) &&
2067                 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme, NULL))
2068             phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2069                     PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2070     } else {
2071         table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2072         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2073                 PHM_PlatformCaps_AutomaticDCTransition);
2074     }
2075 
2076     /* Thermal Output GPIO */
2077     if (atomctrl_get_pp_assign_pin(hwmgr,
2078             THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2079         table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2080 
2081         /* For porlarity read GPIOPAD_A with assigned Gpio pin
2082          * since VBIOS will program this register to set 'inactive state',
2083          * driver can then determine 'active state' from this and
2084          * program SMU with correct polarity
2085          */
2086         table->ThermOutPolarity =
2087                 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2088                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2089         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2090 
2091         /* if required, combine VRHot/PCC with thermal out GPIO */
2092         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2093                 PHM_PlatformCaps_RegulatorHot) &&
2094             phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2095                 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2096             table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2097     } else {
2098         table->ThermOutGpio = 17;
2099         table->ThermOutPolarity = 1;
2100         table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2101     }
2102 
2103     /* Populate BIF_SCLK levels into SMC DPM table */
2104     for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2105         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2106                 smu_data->bif_sclk_table[i], &dividers);
2107         PP_ASSERT_WITH_CODE(!result,
2108                 "Can not find DFS divide id for Sclk",
2109                 return result);
2110 
2111         if (i == 0)
2112             table->Ulv.BifSclkDfs =
2113                     PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2114         else
2115             table->LinkLevel[i - 1].BifSclkDfs =
2116                     PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2117     }
2118 
2119     for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2120         table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2121 
2122     CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2123     CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2124     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2125     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2126     CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2127     CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2128     CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2129     CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2130     CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2131     CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2132 
2133     /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2134     result = smu7_copy_bytes_to_smc(hwmgr,
2135             smu_data->smu7_data.dpm_table_start +
2136             offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2137             (uint8_t *)&(table->SystemFlags),
2138             sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2139             SMC_RAM_END);
2140     PP_ASSERT_WITH_CODE(!result,
2141             "Failed to upload dpm data to SMC memory!", return result);
2142 
2143     result = vegam_populate_pm_fuses(hwmgr);
2144     PP_ASSERT_WITH_CODE(!result,
2145             "Failed to  populate PM fuses to SMC memory!", return result);
2146 
2147     result = vegam_enable_reconfig_cus(hwmgr);
2148     PP_ASSERT_WITH_CODE(!result,
2149             "Failed to enable reconfigurable CUs!", return result);
2150 
2151     return 0;
2152 }
2153 
2154 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2155 {
2156     switch (type) {
2157     case SMU_SoftRegisters:
2158         switch (member) {
2159         case HandshakeDisables:
2160             return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2161         case VoltageChangeTimeout:
2162             return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2163         case AverageGraphicsActivity:
2164             return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2165         case AverageMemoryActivity:
2166             return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2167         case PreVBlankGap:
2168             return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2169         case VBlankTimeout:
2170             return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2171         case UcodeLoadStatus:
2172             return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2173         case DRAM_LOG_ADDR_H:
2174             return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2175         case DRAM_LOG_ADDR_L:
2176             return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2177         case DRAM_LOG_PHY_ADDR_H:
2178             return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2179         case DRAM_LOG_PHY_ADDR_L:
2180             return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2181         case DRAM_LOG_BUFF_SIZE:
2182             return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2183         }
2184         break;
2185     case SMU_Discrete_DpmTable:
2186         switch (member) {
2187         case UvdBootLevel:
2188             return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2189         case VceBootLevel:
2190             return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2191         case LowSclkInterruptThreshold:
2192             return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2193         }
2194         break;
2195     }
2196     pr_warn("can't get the offset of type %x member %x\n", type, member);
2197     return 0;
2198 }
2199 
2200 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2201 {
2202     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2203 
2204     if (data->need_update_smu7_dpm_table &
2205         (DPMTABLE_OD_UPDATE_SCLK +
2206         DPMTABLE_UPDATE_SCLK +
2207         DPMTABLE_UPDATE_MCLK))
2208         return vegam_program_memory_timing_parameters(hwmgr);
2209 
2210     return 0;
2211 }
2212 
2213 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2214 {
2215     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2216     struct vegam_smumgr *smu_data =
2217             (struct vegam_smumgr *)(hwmgr->smu_backend);
2218     int result = 0;
2219     uint32_t low_sclk_interrupt_threshold = 0;
2220 
2221     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2222             PHM_PlatformCaps_SclkThrottleLowNotification)
2223         && (data->low_sclk_interrupt_threshold != 0)) {
2224         low_sclk_interrupt_threshold =
2225                 data->low_sclk_interrupt_threshold;
2226 
2227         CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2228 
2229         result = smu7_copy_bytes_to_smc(
2230                 hwmgr,
2231                 smu_data->smu7_data.dpm_table_start +
2232                 offsetof(SMU75_Discrete_DpmTable,
2233                     LowSclkInterruptThreshold),
2234                 (uint8_t *)&low_sclk_interrupt_threshold,
2235                 sizeof(uint32_t),
2236                 SMC_RAM_END);
2237     }
2238     PP_ASSERT_WITH_CODE((result == 0),
2239             "Failed to update SCLK threshold!", return result);
2240 
2241     result = vegam_program_mem_timing_parameters(hwmgr);
2242     PP_ASSERT_WITH_CODE((result == 0),
2243             "Failed to program memory timing parameters!",
2244             );
2245 
2246     return result;
2247 }
2248 
2249 static int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2250 {
2251     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2252     int ret;
2253 
2254     if (!hwmgr->avfs_supported)
2255         return 0;
2256 
2257     ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2258     if (!ret) {
2259         if (data->apply_avfs_cks_off_voltage)
2260             ret = smum_send_msg_to_smc(hwmgr,
2261                     PPSMC_MSG_ApplyAvfsCksOffVoltage,
2262                     NULL);
2263     }
2264 
2265     return ret;
2266 }
2267 
2268 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2269 {
2270     PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2271             "VBIOS fan info is not correct!",
2272             );
2273     phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2274             PHM_PlatformCaps_MicrocodeFanControl);
2275     return 0;
2276 }
2277 
2278 const struct pp_smumgr_func vegam_smu_funcs = {
2279     .name = "vegam_smu",
2280     .smu_init = vegam_smu_init,
2281     .smu_fini = smu7_smu_fini,
2282     .start_smu = vegam_start_smu,
2283     .check_fw_load_finish = smu7_check_fw_load_finish,
2284     .request_smu_load_fw = smu7_reload_firmware,
2285     .request_smu_load_specific_fw = NULL,
2286     .send_msg_to_smc = smu7_send_msg_to_smc,
2287     .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2288     .get_argument = smu7_get_argument,
2289     .process_firmware_header = vegam_process_firmware_header,
2290     .is_dpm_running = vegam_is_dpm_running,
2291     .get_mac_definition = vegam_get_mac_definition,
2292     .update_smc_table = vegam_update_smc_table,
2293     .init_smc_table = vegam_init_smc_table,
2294     .get_offsetof = vegam_get_offsetof,
2295     .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2296     .populate_all_memory_levels = vegam_populate_all_memory_levels,
2297     .update_sclk_threshold = vegam_update_sclk_threshold,
2298     .is_hw_avfs_present = vegam_is_hw_avfs_present,
2299     .thermal_avfs_enable = vegam_thermal_avfs_enable,
2300     .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2301 };