Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright 2017 Advanced Micro Devices, Inc.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice shall be included in
0012  * all copies or substantial portions of the Software.
0013  *
0014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0017  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
0018  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0019  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0020  * OTHER DEALINGS IN THE SOFTWARE.
0021  *
0022  */
0023 #include <linux/module.h>
0024 #include <linux/slab.h>
0025 #include <linux/fb.h>
0026 #include "linux/delay.h"
0027 #include <linux/types.h>
0028 #include <linux/pci.h>
0029 
0030 #include "smumgr.h"
0031 #include "pp_debug.h"
0032 #include "ci_smumgr.h"
0033 #include "ppsmc.h"
0034 #include "smu7_hwmgr.h"
0035 #include "hardwaremanager.h"
0036 #include "ppatomctrl.h"
0037 #include "cgs_common.h"
0038 #include "atombios.h"
0039 #include "pppcielanes.h"
0040 #include "smu7_smumgr.h"
0041 
0042 #include "smu/smu_7_0_1_d.h"
0043 #include "smu/smu_7_0_1_sh_mask.h"
0044 
0045 #include "dce/dce_8_0_d.h"
0046 #include "dce/dce_8_0_sh_mask.h"
0047 
0048 #include "bif/bif_4_1_d.h"
0049 #include "bif/bif_4_1_sh_mask.h"
0050 
0051 #include "gca/gfx_7_2_d.h"
0052 #include "gca/gfx_7_2_sh_mask.h"
0053 
0054 #include "gmc/gmc_7_1_d.h"
0055 #include "gmc/gmc_7_1_sh_mask.h"
0056 
0057 #include "processpptables.h"
0058 
0059 #define MC_CG_ARB_FREQ_F0           0x0a
0060 #define MC_CG_ARB_FREQ_F1           0x0b
0061 #define MC_CG_ARB_FREQ_F2           0x0c
0062 #define MC_CG_ARB_FREQ_F3           0x0d
0063 
0064 #define SMC_RAM_END 0x40000
0065 
0066 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
0067 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
0068 
0069 static const struct ci_pt_defaults defaults_hawaii_xt = {
0070     1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
0071     { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
0072     { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
0073 };
0074 
0075 static const struct ci_pt_defaults defaults_hawaii_pro = {
0076     1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
0077     { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
0078     { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
0079 };
0080 
0081 static const struct ci_pt_defaults defaults_bonaire_xt = {
0082     1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
0083     { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
0084     { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
0085 };
0086 
0087 
0088 static const struct ci_pt_defaults defaults_saturn_xt = {
0089     1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
0090     { 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
0091     { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
0092 };
0093 
0094 
0095 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
0096                     uint32_t smc_addr, uint32_t limit)
0097 {
0098     if ((0 != (3 & smc_addr))
0099         || ((smc_addr + 3) >= limit)) {
0100         pr_err("smc_addr invalid \n");
0101         return -EINVAL;
0102     }
0103 
0104     cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
0105     PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
0106     return 0;
0107 }
0108 
0109 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
0110                 const uint8_t *src, uint32_t byte_count, uint32_t limit)
0111 {
0112     int result;
0113     uint32_t data = 0;
0114     uint32_t original_data;
0115     uint32_t addr = 0;
0116     uint32_t extra_shift;
0117 
0118     if ((3 & smc_start_address)
0119         || ((smc_start_address + byte_count) >= limit)) {
0120         pr_err("smc_start_address invalid \n");
0121         return -EINVAL;
0122     }
0123 
0124     addr = smc_start_address;
0125 
0126     while (byte_count >= 4) {
0127     /* Bytes are written into the SMC address space with the MSB first. */
0128         data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
0129 
0130         result = ci_set_smc_sram_address(hwmgr, addr, limit);
0131 
0132         if (0 != result)
0133             return result;
0134 
0135         cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
0136 
0137         src += 4;
0138         byte_count -= 4;
0139         addr += 4;
0140     }
0141 
0142     if (0 != byte_count) {
0143 
0144         data = 0;
0145 
0146         result = ci_set_smc_sram_address(hwmgr, addr, limit);
0147 
0148         if (0 != result)
0149             return result;
0150 
0151 
0152         original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
0153 
0154         extra_shift = 8 * (4 - byte_count);
0155 
0156         while (byte_count > 0) {
0157             /* Bytes are written into the SMC addres space with the MSB first. */
0158             data = (0x100 * data) + *src++;
0159             byte_count--;
0160         }
0161 
0162         data <<= extra_shift;
0163 
0164         data |= (original_data & ~((~0UL) << extra_shift));
0165 
0166         result = ci_set_smc_sram_address(hwmgr, addr, limit);
0167 
0168         if (0 != result)
0169             return result;
0170 
0171         cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
0172     }
0173 
0174     return 0;
0175 }
0176 
0177 
0178 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
0179 {
0180     static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
0181 
0182     ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
0183 
0184     return 0;
0185 }
0186 
0187 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
0188 {
0189     return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
0190             CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
0191     && (0x20100 <= cgs_read_ind_register(hwmgr->device,
0192             CGS_IND_REG__SMC, ixSMC_PC_C)));
0193 }
0194 
0195 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
0196                 uint32_t *value, uint32_t limit)
0197 {
0198     int result;
0199 
0200     result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
0201 
0202     if (result)
0203         return result;
0204 
0205     *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
0206     return 0;
0207 }
0208 
0209 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
0210 {
0211     struct amdgpu_device *adev = hwmgr->adev;
0212     int ret;
0213 
0214     cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
0215     cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
0216 
0217     PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
0218 
0219     ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
0220 
0221     if (ret != 1)
0222         dev_info(adev->dev,
0223             "failed to send message %x ret is %d\n", msg,ret);
0224 
0225     return 0;
0226 }
0227 
0228 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
0229                     uint16_t msg, uint32_t parameter)
0230 {
0231     cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
0232     return ci_send_msg_to_smc(hwmgr, msg);
0233 }
0234 
0235 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
0236 {
0237     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0238     struct amdgpu_device *adev = hwmgr->adev;
0239     uint32_t dev_id;
0240 
0241     dev_id = adev->pdev->device;
0242 
0243     switch (dev_id) {
0244     case 0x67BA:
0245     case 0x67B1:
0246         smu_data->power_tune_defaults = &defaults_hawaii_pro;
0247         break;
0248     case 0x67B8:
0249     case 0x66B0:
0250         smu_data->power_tune_defaults = &defaults_hawaii_xt;
0251         break;
0252     case 0x6640:
0253     case 0x6641:
0254     case 0x6646:
0255     case 0x6647:
0256         smu_data->power_tune_defaults = &defaults_saturn_xt;
0257         break;
0258     case 0x6649:
0259     case 0x6650:
0260     case 0x6651:
0261     case 0x6658:
0262     case 0x665C:
0263     case 0x665D:
0264     case 0x67A0:
0265     case 0x67A1:
0266     case 0x67A2:
0267     case 0x67A8:
0268     case 0x67A9:
0269     case 0x67AA:
0270     case 0x67B9:
0271     case 0x67BE:
0272     default:
0273         smu_data->power_tune_defaults = &defaults_bonaire_xt;
0274         break;
0275     }
0276 }
0277 
0278 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
0279     struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
0280     uint32_t clock, uint32_t *vol)
0281 {
0282     uint32_t i = 0;
0283 
0284     if (allowed_clock_voltage_table->count == 0)
0285         return -EINVAL;
0286 
0287     for (i = 0; i < allowed_clock_voltage_table->count; i++) {
0288         if (allowed_clock_voltage_table->entries[i].clk >= clock) {
0289             *vol = allowed_clock_voltage_table->entries[i].v;
0290             return 0;
0291         }
0292     }
0293 
0294     *vol = allowed_clock_voltage_table->entries[i - 1].v;
0295     return 0;
0296 }
0297 
0298 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
0299         uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
0300 {
0301     const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0302     struct pp_atomctrl_clock_dividers_vi dividers;
0303     uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
0304     uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
0305     uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
0306     uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
0307     uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
0308     uint32_t ref_clock;
0309     uint32_t ref_divider;
0310     uint32_t fbdiv;
0311     int result;
0312 
0313     /* get the engine clock dividers for this clock value */
0314     result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
0315 
0316     PP_ASSERT_WITH_CODE(result == 0,
0317             "Error retrieving Engine Clock dividers from VBIOS.",
0318             return result);
0319 
0320     /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
0321     ref_clock = atomctrl_get_reference_clock(hwmgr);
0322     ref_divider = 1 + dividers.uc_pll_ref_div;
0323 
0324     /* low 14 bits is fraction and high 12 bits is divider */
0325     fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
0326 
0327     /* SPLL_FUNC_CNTL setup */
0328     spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
0329             SPLL_REF_DIV, dividers.uc_pll_ref_div);
0330     spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
0331             SPLL_PDIV_A,  dividers.uc_pll_post_div);
0332 
0333     /* SPLL_FUNC_CNTL_3 setup*/
0334     spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
0335             SPLL_FB_DIV, fbdiv);
0336 
0337     /* set to use fractional accumulation*/
0338     spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
0339             SPLL_DITHEN, 1);
0340 
0341     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0342                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
0343         struct pp_atomctrl_internal_ss_info ss_info;
0344         uint32_t vco_freq = clock * dividers.uc_pll_post_div;
0345 
0346         if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
0347                 vco_freq, &ss_info)) {
0348             uint32_t clk_s = ref_clock * 5 /
0349                     (ref_divider * ss_info.speed_spectrum_rate);
0350             uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
0351                     fbdiv / (clk_s * 10000);
0352 
0353             cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
0354                     CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
0355             cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
0356                     CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
0357             cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
0358                     CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
0359         }
0360     }
0361 
0362     sclk->SclkFrequency        = clock;
0363     sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
0364     sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
0365     sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
0366     sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
0367     sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
0368 
0369     return 0;
0370 }
0371 
0372 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
0373                 const struct phm_phase_shedding_limits_table *pl,
0374                     uint32_t sclk, uint32_t *p_shed)
0375 {
0376     unsigned int i;
0377 
0378     /* use the minimum phase shedding */
0379     *p_shed = 1;
0380 
0381     for (i = 0; i < pl->count; i++) {
0382         if (sclk < pl->entries[i].Sclk) {
0383             *p_shed = i;
0384             break;
0385         }
0386     }
0387 }
0388 
0389 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
0390             uint32_t clock_insr)
0391 {
0392     uint8_t i;
0393     uint32_t temp;
0394     uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
0395 
0396     if (clock < min) {
0397         pr_info("Engine clock can't satisfy stutter requirement!\n");
0398         return 0;
0399     }
0400     for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
0401         temp = clock >> i;
0402 
0403         if (temp >= min || i == 0)
0404             break;
0405     }
0406     return i;
0407 }
0408 
0409 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
0410         uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
0411 {
0412     int result;
0413     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0414 
0415 
0416     result = ci_calculate_sclk_params(hwmgr, clock, level);
0417 
0418     /* populate graphics levels */
0419     result = ci_get_dependency_volt_by_clk(hwmgr,
0420             hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
0421             (uint32_t *)(&level->MinVddc));
0422     if (result) {
0423         pr_err("vdd_dep_on_sclk table is NULL\n");
0424         return result;
0425     }
0426 
0427     level->SclkFrequency = clock;
0428     level->MinVddcPhases = 1;
0429 
0430     if (data->vddc_phase_shed_control)
0431         ci_populate_phase_value_based_on_sclk(hwmgr,
0432                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
0433                 clock,
0434                 &level->MinVddcPhases);
0435 
0436     level->ActivityLevel = data->current_profile_setting.sclk_activity;
0437     level->CcPwrDynRm = 0;
0438     level->CcPwrDynRm1 = 0;
0439     level->EnabledForActivity = 0;
0440     /* this level can be used for throttling.*/
0441     level->EnabledForThrottle = 1;
0442     level->UpH = data->current_profile_setting.sclk_up_hyst;
0443     level->DownH = data->current_profile_setting.sclk_down_hyst;
0444     level->VoltageDownH = 0;
0445     level->PowerThrottle = 0;
0446 
0447 
0448     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0449             PHM_PlatformCaps_SclkDeepSleep))
0450         level->DeepSleepDivId =
0451                 ci_get_sleep_divider_id_from_clock(clock,
0452                         CISLAND_MINIMUM_ENGINE_CLOCK);
0453 
0454     /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
0455     level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
0456 
0457     if (0 == result) {
0458         level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
0459         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
0460         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
0461         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
0462         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
0463         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
0464         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
0465         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
0466         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
0467         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
0468     }
0469 
0470     return result;
0471 }
0472 
0473 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
0474 {
0475     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0476     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0477     struct smu7_dpm_table *dpm_table = &data->dpm_table;
0478     int result = 0;
0479     uint32_t array = smu_data->dpm_table_start +
0480             offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
0481     uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
0482             SMU7_MAX_LEVELS_GRAPHICS;
0483     struct SMU7_Discrete_GraphicsLevel *levels =
0484             smu_data->smc_state_table.GraphicsLevel;
0485     uint32_t i;
0486 
0487     for (i = 0; i < dpm_table->sclk_table.count; i++) {
0488         result = ci_populate_single_graphic_level(hwmgr,
0489                 dpm_table->sclk_table.dpm_levels[i].value,
0490                 &levels[i]);
0491         if (result)
0492             return result;
0493         if (i > 1)
0494             smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
0495         if (i == (dpm_table->sclk_table.count - 1))
0496             smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
0497                 PPSMC_DISPLAY_WATERMARK_HIGH;
0498     }
0499 
0500     smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
0501 
0502     smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
0503     data->dpm_level_enable_mask.sclk_dpm_enable_mask =
0504         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
0505 
0506     result = ci_copy_bytes_to_smc(hwmgr, array,
0507                    (u8 *)levels, array_size,
0508                    SMC_RAM_END);
0509 
0510     return result;
0511 
0512 }
0513 
0514 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
0515 {
0516     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0517     const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
0518 
0519     smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
0520     smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
0521     smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
0522     smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
0523 
0524     return 0;
0525 }
0526 
0527 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
0528 {
0529     uint16_t tdc_limit;
0530     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0531     const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
0532 
0533     tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
0534     smu_data->power_tune_table.TDC_VDDC_PkgLimit =
0535             CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
0536     smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
0537             defaults->tdc_vddc_throttle_release_limit_perc;
0538     smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
0539 
0540     return 0;
0541 }
0542 
0543 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
0544 {
0545     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0546     const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
0547     uint32_t temp;
0548 
0549     if (ci_read_smc_sram_dword(hwmgr,
0550             fuse_table_offset +
0551             offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
0552             (uint32_t *)&temp, SMC_RAM_END))
0553         PP_ASSERT_WITH_CODE(false,
0554                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
0555                 return -EINVAL);
0556     else
0557         smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
0558 
0559     return 0;
0560 }
0561 
0562 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
0563 {
0564     uint16_t tmp;
0565     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0566 
0567     if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
0568         || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
0569         tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
0570     else
0571         tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
0572 
0573     smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
0574 
0575     return 0;
0576 }
0577 
0578 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
0579 {
0580     int i;
0581     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0582     uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
0583     uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
0584     uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
0585 
0586     PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
0587                 "The CAC Leakage table does not exist!", return -EINVAL);
0588     PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
0589                 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
0590     PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
0591                 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
0592 
0593     for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
0594         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
0595             lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
0596             hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
0597             hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
0598         } else {
0599             lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
0600             hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
0601         }
0602     }
0603 
0604     return 0;
0605 }
0606 
0607 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
0608 {
0609     int i;
0610     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0611     uint8_t *vid = smu_data->power_tune_table.VddCVid;
0612     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0613 
0614     PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
0615         "There should never be more than 8 entries for VddcVid!!!",
0616         return -EINVAL);
0617 
0618     for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
0619         vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
0620 
0621     return 0;
0622 }
0623 
0624 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
0625 {
0626     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0627     u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
0628     u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
0629     int i, min, max;
0630 
0631     min = max = hi_vid[0];
0632     for (i = 0; i < 8; i++) {
0633         if (0 != hi_vid[i]) {
0634             if (min > hi_vid[i])
0635                 min = hi_vid[i];
0636             if (max < hi_vid[i])
0637                 max = hi_vid[i];
0638         }
0639 
0640         if (0 != lo_vid[i]) {
0641             if (min > lo_vid[i])
0642                 min = lo_vid[i];
0643             if (max < lo_vid[i])
0644                 max = lo_vid[i];
0645         }
0646     }
0647 
0648     if ((min == 0) || (max == 0))
0649         return -EINVAL;
0650     smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
0651     smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
0652 
0653     return 0;
0654 }
0655 
0656 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
0657 {
0658     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0659     uint16_t HiSidd;
0660     uint16_t LoSidd;
0661     struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
0662 
0663     HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
0664     LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
0665 
0666     smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
0667             CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
0668     smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
0669             CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
0670 
0671     return 0;
0672 }
0673 
0674 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
0675 {
0676     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0677     uint32_t pm_fuse_table_offset;
0678     int ret = 0;
0679 
0680     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
0681             PHM_PlatformCaps_PowerContainment)) {
0682         if (ci_read_smc_sram_dword(hwmgr,
0683                 SMU7_FIRMWARE_HEADER_LOCATION +
0684                 offsetof(SMU7_Firmware_Header, PmFuseTable),
0685                 &pm_fuse_table_offset, SMC_RAM_END)) {
0686             pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
0687             return -EINVAL;
0688         }
0689 
0690         /* DW0 - DW3 */
0691         ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
0692         /* DW4 - DW5 */
0693         ret |= ci_populate_vddc_vid(hwmgr);
0694         /* DW6 */
0695         ret |= ci_populate_svi_load_line(hwmgr);
0696         /* DW7 */
0697         ret |= ci_populate_tdc_limit(hwmgr);
0698         /* DW8 */
0699         ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
0700 
0701         ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
0702 
0703         ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
0704 
0705         ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
0706         if (ret)
0707             return ret;
0708 
0709         ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
0710                 (uint8_t *)&smu_data->power_tune_table,
0711                 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
0712     }
0713     return ret;
0714 }
0715 
0716 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
0717 {
0718     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
0719     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0720     const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
0721     SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
0722     struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
0723     struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
0724     const uint16_t *def1, *def2;
0725     int i, j, k;
0726 
0727     dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
0728     dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
0729 
0730     dpm_table->DTETjOffset = 0;
0731     dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
0732     dpm_table->GpuTjHyst = 8;
0733 
0734     dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
0735 
0736     if (ppm) {
0737         dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
0738         dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
0739     } else {
0740         dpm_table->PPM_PkgPwrLimit = 0;
0741         dpm_table->PPM_TemperatureLimit = 0;
0742     }
0743 
0744     CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
0745     CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
0746 
0747     dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
0748     def1 = defaults->bapmti_r;
0749     def2 = defaults->bapmti_rc;
0750 
0751     for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
0752         for (j = 0; j < SMU7_DTE_SOURCES; j++) {
0753             for (k = 0; k < SMU7_DTE_SINKS; k++) {
0754                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
0755                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
0756                 def1++;
0757                 def2++;
0758             }
0759         }
0760     }
0761 
0762     return 0;
0763 }
0764 
0765 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
0766         pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
0767         uint16_t *lo)
0768 {
0769     uint16_t v_index;
0770     bool vol_found = false;
0771     *hi = tab->value * VOLTAGE_SCALE;
0772     *lo = tab->value * VOLTAGE_SCALE;
0773 
0774     PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
0775             "The SCLK/VDDC Dependency Table does not exist.\n",
0776             return -EINVAL);
0777 
0778     if (NULL == hwmgr->dyn_state.cac_leakage_table) {
0779         pr_warn("CAC Leakage Table does not exist, using vddc.\n");
0780         return 0;
0781     }
0782 
0783     for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
0784         if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
0785             vol_found = true;
0786             if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
0787                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
0788                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
0789             } else {
0790                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
0791                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
0792                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
0793             }
0794             break;
0795         }
0796     }
0797 
0798     if (!vol_found) {
0799         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
0800             if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
0801                 vol_found = true;
0802                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
0803                     *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
0804                     *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
0805                 } else {
0806                     pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
0807                     *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
0808                     *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
0809                 }
0810                 break;
0811             }
0812         }
0813 
0814         if (!vol_found)
0815             pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
0816     }
0817 
0818     return 0;
0819 }
0820 
0821 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
0822         pp_atomctrl_voltage_table_entry *tab,
0823         SMU7_Discrete_VoltageLevel *smc_voltage_tab)
0824 {
0825     int result;
0826 
0827     result = ci_get_std_voltage_value_sidd(hwmgr, tab,
0828             &smc_voltage_tab->StdVoltageHiSidd,
0829             &smc_voltage_tab->StdVoltageLoSidd);
0830     if (result) {
0831         smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
0832         smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
0833     }
0834 
0835     smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
0836     CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
0837     CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
0838 
0839     return 0;
0840 }
0841 
0842 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
0843             SMU7_Discrete_DpmTable *table)
0844 {
0845     unsigned int count;
0846     int result;
0847     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0848 
0849     table->VddcLevelCount = data->vddc_voltage_table.count;
0850     for (count = 0; count < table->VddcLevelCount; count++) {
0851         result = ci_populate_smc_voltage_table(hwmgr,
0852                 &(data->vddc_voltage_table.entries[count]),
0853                 &(table->VddcLevel[count]));
0854         PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
0855 
0856         /* GPIO voltage control */
0857         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
0858             table->VddcLevel[count].Smio = (uint8_t) count;
0859             table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
0860             table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
0861         } else {
0862             table->VddcLevel[count].Smio = 0;
0863         }
0864     }
0865 
0866     CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
0867 
0868     return 0;
0869 }
0870 
0871 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
0872             SMU7_Discrete_DpmTable *table)
0873 {
0874     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0875     uint32_t count;
0876     int result;
0877 
0878     table->VddciLevelCount = data->vddci_voltage_table.count;
0879 
0880     for (count = 0; count < table->VddciLevelCount; count++) {
0881         result = ci_populate_smc_voltage_table(hwmgr,
0882                 &(data->vddci_voltage_table.entries[count]),
0883                 &(table->VddciLevel[count]));
0884         PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
0885         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
0886             table->VddciLevel[count].Smio = (uint8_t) count;
0887             table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
0888             table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
0889         } else {
0890             table->VddciLevel[count].Smio = 0;
0891         }
0892     }
0893 
0894     CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
0895 
0896     return 0;
0897 }
0898 
0899 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
0900             SMU7_Discrete_DpmTable *table)
0901 {
0902     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0903     uint32_t count;
0904     int result;
0905 
0906     table->MvddLevelCount = data->mvdd_voltage_table.count;
0907 
0908     for (count = 0; count < table->MvddLevelCount; count++) {
0909         result = ci_populate_smc_voltage_table(hwmgr,
0910                 &(data->mvdd_voltage_table.entries[count]),
0911                 &table->MvddLevel[count]);
0912         PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
0913         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
0914             table->MvddLevel[count].Smio = (uint8_t) count;
0915             table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
0916             table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
0917         } else {
0918             table->MvddLevel[count].Smio = 0;
0919         }
0920     }
0921 
0922     CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
0923 
0924     return 0;
0925 }
0926 
0927 
0928 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
0929     SMU7_Discrete_DpmTable *table)
0930 {
0931     int result;
0932 
0933     result = ci_populate_smc_vddc_table(hwmgr, table);
0934     PP_ASSERT_WITH_CODE(0 == result,
0935             "can not populate VDDC voltage table to SMC", return -EINVAL);
0936 
0937     result = ci_populate_smc_vdd_ci_table(hwmgr, table);
0938     PP_ASSERT_WITH_CODE(0 == result,
0939             "can not populate VDDCI voltage table to SMC", return -EINVAL);
0940 
0941     result = ci_populate_smc_mvdd_table(hwmgr, table);
0942     PP_ASSERT_WITH_CODE(0 == result,
0943             "can not populate MVDD voltage table to SMC", return -EINVAL);
0944 
0945     return 0;
0946 }
0947 
0948 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
0949         struct SMU7_Discrete_Ulv *state)
0950 {
0951     uint32_t voltage_response_time, ulv_voltage;
0952     int result;
0953     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
0954 
0955     state->CcPwrDynRm = 0;
0956     state->CcPwrDynRm1 = 0;
0957 
0958     result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
0959     PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
0960 
0961     if (ulv_voltage == 0) {
0962         data->ulv_supported = false;
0963         return 0;
0964     }
0965 
0966     if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
0967         /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
0968         if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
0969             state->VddcOffset = 0;
0970         else
0971             /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
0972             state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
0973     } else {
0974         /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
0975         if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
0976             state->VddcOffsetVid = 0;
0977         else  /* used in SVI2 Mode */
0978             state->VddcOffsetVid = (uint8_t)(
0979                     (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
0980                         * VOLTAGE_VID_OFFSET_SCALE2
0981                         / VOLTAGE_VID_OFFSET_SCALE1);
0982     }
0983     state->VddcPhase = 1;
0984 
0985     CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
0986     CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
0987     CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
0988 
0989     return 0;
0990 }
0991 
0992 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
0993          SMU7_Discrete_Ulv *ulv_level)
0994 {
0995     return ci_populate_ulv_level(hwmgr, ulv_level);
0996 }
0997 
0998 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
0999 {
1000     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1001     struct smu7_dpm_table *dpm_table = &data->dpm_table;
1002     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1003     uint32_t i;
1004 
1005 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1006     for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1007         table->LinkLevel[i].PcieGenSpeed  =
1008             (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1009         table->LinkLevel[i].PcieLaneCount =
1010             (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1011         table->LinkLevel[i].EnabledForActivity = 1;
1012         table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1013         table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1014     }
1015 
1016     smu_data->smc_state_table.LinkLevelCount =
1017         (uint8_t)dpm_table->pcie_speed_table.count;
1018     data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1019         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1020 
1021     return 0;
1022 }
1023 
1024 static int ci_calculate_mclk_params(
1025         struct pp_hwmgr *hwmgr,
1026         uint32_t memory_clock,
1027         SMU7_Discrete_MemoryLevel *mclk,
1028         bool strobe_mode,
1029         bool dllStateOn
1030         )
1031 {
1032     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1033     uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1034     uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1035     uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1036     uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1037     uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1038     uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1039     uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1040     uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1041     uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1042 
1043     pp_atomctrl_memory_clock_param mpll_param;
1044     int result;
1045 
1046     result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1047                 memory_clock, &mpll_param, strobe_mode);
1048     PP_ASSERT_WITH_CODE(0 == result,
1049         "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1050 
1051     mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1052 
1053     mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1054                             MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1055     mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1056                             MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1057     mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1058                             MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1059 
1060     mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1061                             MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1062 
1063     if (data->is_memory_gddr5) {
1064         mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1065                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1066         mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1067                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1068     }
1069 
1070     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1071             PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1072         pp_atomctrl_internal_ss_info ss_info;
1073         uint32_t freq_nom;
1074         uint32_t tmp;
1075         uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1076 
1077         /* for GDDR5 for all modes and DDR3 */
1078         if (1 == mpll_param.qdr)
1079             freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1080         else
1081             freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1082 
1083         /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1084         tmp = (freq_nom / reference_clock);
1085         tmp = tmp * tmp;
1086 
1087         if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1088             uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1089             uint32_t clkv =
1090                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1091                             ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1092 
1093             mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1094             mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1095         }
1096     }
1097 
1098     mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099         MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1100     mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101         MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1102     mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1103         MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1104 
1105 
1106     mclk->MclkFrequency   = memory_clock;
1107     mclk->MpllFuncCntl    = mpll_func_cntl;
1108     mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1109     mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1110     mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1111     mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1112     mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1113     mclk->DllCntl         = dll_cntl;
1114     mclk->MpllSs1         = mpll_ss1;
1115     mclk->MpllSs2         = mpll_ss2;
1116 
1117     return 0;
1118 }
1119 
1120 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1121         bool strobe_mode)
1122 {
1123     uint8_t mc_para_index;
1124 
1125     if (strobe_mode) {
1126         if (memory_clock < 12500)
1127             mc_para_index = 0x00;
1128         else if (memory_clock > 47500)
1129             mc_para_index = 0x0f;
1130         else
1131             mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1132     } else {
1133         if (memory_clock < 65000)
1134             mc_para_index = 0x00;
1135         else if (memory_clock > 135000)
1136             mc_para_index = 0x0f;
1137         else
1138             mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1139     }
1140 
1141     return mc_para_index;
1142 }
1143 
1144 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1145 {
1146     uint8_t mc_para_index;
1147 
1148     if (memory_clock < 10000)
1149         mc_para_index = 0;
1150     else if (memory_clock >= 80000)
1151         mc_para_index = 0x0f;
1152     else
1153         mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1154 
1155     return mc_para_index;
1156 }
1157 
1158 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1159                     uint32_t memory_clock, uint32_t *p_shed)
1160 {
1161     unsigned int i;
1162 
1163     *p_shed = 1;
1164 
1165     for (i = 0; i < pl->count; i++) {
1166         if (memory_clock < pl->entries[i].Mclk) {
1167             *p_shed = i;
1168             break;
1169         }
1170     }
1171 
1172     return 0;
1173 }
1174 
1175 static int ci_populate_single_memory_level(
1176         struct pp_hwmgr *hwmgr,
1177         uint32_t memory_clock,
1178         SMU7_Discrete_MemoryLevel *memory_level
1179         )
1180 {
1181     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1182     int result = 0;
1183     bool dll_state_on;
1184     uint32_t mclk_edc_wr_enable_threshold = 40000;
1185     uint32_t mclk_edc_enable_threshold = 40000;
1186     uint32_t mclk_strobe_mode_threshold = 40000;
1187 
1188     if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1189         result = ci_get_dependency_volt_by_clk(hwmgr,
1190             hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1191         PP_ASSERT_WITH_CODE((0 == result),
1192             "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1193     }
1194 
1195     if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1196         result = ci_get_dependency_volt_by_clk(hwmgr,
1197                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1198                 memory_clock,
1199                 &memory_level->MinVddci);
1200         PP_ASSERT_WITH_CODE((0 == result),
1201             "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1202     }
1203 
1204     if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1205         result = ci_get_dependency_volt_by_clk(hwmgr,
1206                 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1207                 memory_clock,
1208                 &memory_level->MinMvdd);
1209         PP_ASSERT_WITH_CODE((0 == result),
1210             "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1211     }
1212 
1213     memory_level->MinVddcPhases = 1;
1214 
1215     if (data->vddc_phase_shed_control) {
1216         ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1217                 memory_clock, &memory_level->MinVddcPhases);
1218     }
1219 
1220     memory_level->EnabledForThrottle = 1;
1221     memory_level->EnabledForActivity = 1;
1222     memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1223     memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1224     memory_level->VoltageDownH = 0;
1225 
1226     /* Indicates maximum activity level for this performance level.*/
1227     memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1228     memory_level->StutterEnable = 0;
1229     memory_level->StrobeEnable = 0;
1230     memory_level->EdcReadEnable = 0;
1231     memory_level->EdcWriteEnable = 0;
1232     memory_level->RttEnable = 0;
1233 
1234     /* default set to low watermark. Highest level will be set to high later.*/
1235     memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1236 
1237     data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1238     data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1239 
1240     /* stutter mode not support on ci */
1241 
1242     /* decide strobe mode*/
1243     memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1244         (memory_clock <= mclk_strobe_mode_threshold);
1245 
1246     /* decide EDC mode and memory clock ratio*/
1247     if (data->is_memory_gddr5) {
1248         memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1249                     memory_level->StrobeEnable);
1250 
1251         if ((mclk_edc_enable_threshold != 0) &&
1252                 (memory_clock > mclk_edc_enable_threshold)) {
1253             memory_level->EdcReadEnable = 1;
1254         }
1255 
1256         if ((mclk_edc_wr_enable_threshold != 0) &&
1257                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1258             memory_level->EdcWriteEnable = 1;
1259         }
1260 
1261         if (memory_level->StrobeEnable) {
1262             if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1263                     ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1264                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1265             else
1266                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1267         } else
1268             dll_state_on = data->dll_default_on;
1269     } else {
1270         memory_level->StrobeRatio =
1271             ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1272         dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1273     }
1274 
1275     result = ci_calculate_mclk_params(hwmgr,
1276         memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1277 
1278     if (0 == result) {
1279         memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1280         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1281         memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1282         memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1283         /* MCLK frequency in units of 10KHz*/
1284         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1285         /* Indicates maximum activity level for this performance level.*/
1286         CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1287         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1288         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1289         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1290         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1291         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1292         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1293         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1294         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1295         CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1296     }
1297 
1298     return result;
1299 }
1300 
1301 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1302 {
1303     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1304     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1305     struct smu7_dpm_table *dpm_table = &data->dpm_table;
1306     int result;
1307     struct amdgpu_device *adev = hwmgr->adev;
1308     uint32_t dev_id;
1309 
1310     uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1311     uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1312     SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1313     uint32_t i;
1314 
1315     memset(levels, 0x00, level_array_size);
1316 
1317     for (i = 0; i < dpm_table->mclk_table.count; i++) {
1318         PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1319             "can not populate memory level as memory clock is zero", return -EINVAL);
1320         result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1321             &(smu_data->smc_state_table.MemoryLevel[i]));
1322         if (0 != result)
1323             return result;
1324     }
1325 
1326     smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1327 
1328     dev_id = adev->pdev->device;
1329 
1330     if ((dpm_table->mclk_table.count >= 2)
1331         && ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1332         smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1333                 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1334         smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1335                 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1336     }
1337     smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1338     CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1339 
1340     smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1341     data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1342     smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1343 
1344     result = ci_copy_bytes_to_smc(hwmgr,
1345         level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1346         SMC_RAM_END);
1347 
1348     return result;
1349 }
1350 
1351 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1352                     SMU7_Discrete_VoltageLevel *voltage)
1353 {
1354     const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1355 
1356     uint32_t i = 0;
1357 
1358     if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1359         /* find mvdd value which clock is more than request */
1360         for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1361             if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1362                 /* Always round to higher voltage. */
1363                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1364                 break;
1365             }
1366         }
1367 
1368         PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1369             "MVDD Voltage is outside the supported range.", return -EINVAL);
1370 
1371     } else {
1372         return -EINVAL;
1373     }
1374 
1375     return 0;
1376 }
1377 
1378 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1379     SMU7_Discrete_DpmTable *table)
1380 {
1381     int result = 0;
1382     const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1383     struct pp_atomctrl_clock_dividers_vi dividers;
1384 
1385     SMU7_Discrete_VoltageLevel voltage_level;
1386     uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1387     uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1388     uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1389     uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1390 
1391 
1392     /* The ACPI state should not do DPM on DC (or ever).*/
1393     table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1394 
1395     if (data->acpi_vddc)
1396         table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1397     else
1398         table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1399 
1400     table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1401     /* assign zero for now*/
1402     table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1403 
1404     /* get the engine clock dividers for this clock value*/
1405     result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1406         table->ACPILevel.SclkFrequency,  &dividers);
1407 
1408     PP_ASSERT_WITH_CODE(result == 0,
1409         "Error retrieving Engine Clock dividers from VBIOS.", return result);
1410 
1411     /* divider ID for required SCLK*/
1412     table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1413     table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1414     table->ACPILevel.DeepSleepDivId = 0;
1415 
1416     spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1417                             CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1418     spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1419                             CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1420     spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1421                             CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1422 
1423     table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1424     table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1425     table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1426     table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1427     table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1428     table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1429     table->ACPILevel.CcPwrDynRm = 0;
1430     table->ACPILevel.CcPwrDynRm1 = 0;
1431 
1432     /* For various features to be enabled/disabled while this level is active.*/
1433     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1434     /* SCLK frequency in units of 10KHz*/
1435     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1436     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1437     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1438     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1439     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1440     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1441     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1442     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1443     CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1444 
1445 
1446     /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1447     table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1448     table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1449 
1450     if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1451         table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1452     else {
1453         if (data->acpi_vddci != 0)
1454             table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1455         else
1456             table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1457     }
1458 
1459     if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1460         table->MemoryACPILevel.MinMvdd =
1461             PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1462     else
1463         table->MemoryACPILevel.MinMvdd = 0;
1464 
1465     /* Force reset on DLL*/
1466     mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1467         MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1468     mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1469         MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1470 
1471     /* Disable DLL in ACPIState*/
1472     mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1473         MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1474     mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1475         MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1476 
1477     /* Enable DLL bypass signal*/
1478     dll_cntl            = PHM_SET_FIELD(dll_cntl,
1479         DLL_CNTL, MRDCK0_BYPASS, 0);
1480     dll_cntl            = PHM_SET_FIELD(dll_cntl,
1481         DLL_CNTL, MRDCK1_BYPASS, 0);
1482 
1483     table->MemoryACPILevel.DllCntl            =
1484         PP_HOST_TO_SMC_UL(dll_cntl);
1485     table->MemoryACPILevel.MclkPwrmgtCntl     =
1486         PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1487     table->MemoryACPILevel.MpllAdFuncCntl     =
1488         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1489     table->MemoryACPILevel.MpllDqFuncCntl     =
1490         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1491     table->MemoryACPILevel.MpllFuncCntl       =
1492         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1493     table->MemoryACPILevel.MpllFuncCntl_1     =
1494         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1495     table->MemoryACPILevel.MpllFuncCntl_2     =
1496         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1497     table->MemoryACPILevel.MpllSs1            =
1498         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1499     table->MemoryACPILevel.MpllSs2            =
1500         PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1501 
1502     table->MemoryACPILevel.EnabledForThrottle = 0;
1503     table->MemoryACPILevel.EnabledForActivity = 0;
1504     table->MemoryACPILevel.UpH = 0;
1505     table->MemoryACPILevel.DownH = 100;
1506     table->MemoryACPILevel.VoltageDownH = 0;
1507     /* Indicates maximum activity level for this performance level.*/
1508     table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1509 
1510     table->MemoryACPILevel.StutterEnable = 0;
1511     table->MemoryACPILevel.StrobeEnable = 0;
1512     table->MemoryACPILevel.EdcReadEnable = 0;
1513     table->MemoryACPILevel.EdcWriteEnable = 0;
1514     table->MemoryACPILevel.RttEnable = 0;
1515 
1516     return result;
1517 }
1518 
1519 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1520                     SMU7_Discrete_DpmTable *table)
1521 {
1522     int result = 0;
1523     uint8_t count;
1524     struct pp_atomctrl_clock_dividers_vi dividers;
1525     struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1526         hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1527 
1528     table->UvdLevelCount = (uint8_t)(uvd_table->count);
1529 
1530     for (count = 0; count < table->UvdLevelCount; count++) {
1531         table->UvdLevel[count].VclkFrequency =
1532                     uvd_table->entries[count].vclk;
1533         table->UvdLevel[count].DclkFrequency =
1534                     uvd_table->entries[count].dclk;
1535         table->UvdLevel[count].MinVddc =
1536                     uvd_table->entries[count].v * VOLTAGE_SCALE;
1537         table->UvdLevel[count].MinVddcPhases = 1;
1538 
1539         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1540                 table->UvdLevel[count].VclkFrequency, &dividers);
1541         PP_ASSERT_WITH_CODE((0 == result),
1542                 "can not find divide id for Vclk clock", return result);
1543 
1544         table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1545 
1546         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1547                 table->UvdLevel[count].DclkFrequency, &dividers);
1548         PP_ASSERT_WITH_CODE((0 == result),
1549                 "can not find divide id for Dclk clock", return result);
1550 
1551         table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1552         CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1553         CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1554         CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1555     }
1556 
1557     return result;
1558 }
1559 
1560 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1561         SMU7_Discrete_DpmTable *table)
1562 {
1563     int result = -EINVAL;
1564     uint8_t count;
1565     struct pp_atomctrl_clock_dividers_vi dividers;
1566     struct phm_vce_clock_voltage_dependency_table *vce_table =
1567                 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1568 
1569     table->VceLevelCount = (uint8_t)(vce_table->count);
1570     table->VceBootLevel = 0;
1571 
1572     for (count = 0; count < table->VceLevelCount; count++) {
1573         table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1574         table->VceLevel[count].MinVoltage =
1575                 vce_table->entries[count].v * VOLTAGE_SCALE;
1576         table->VceLevel[count].MinPhases = 1;
1577 
1578         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1579                 table->VceLevel[count].Frequency, &dividers);
1580         PP_ASSERT_WITH_CODE((0 == result),
1581                 "can not find divide id for VCE engine clock",
1582                 return result);
1583 
1584         table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1585 
1586         CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1587         CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1588     }
1589     return result;
1590 }
1591 
1592 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1593                     SMU7_Discrete_DpmTable *table)
1594 {
1595     int result = -EINVAL;
1596     uint8_t count;
1597     struct pp_atomctrl_clock_dividers_vi dividers;
1598     struct phm_acp_clock_voltage_dependency_table *acp_table =
1599                 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1600 
1601     table->AcpLevelCount = (uint8_t)(acp_table->count);
1602     table->AcpBootLevel = 0;
1603 
1604     for (count = 0; count < table->AcpLevelCount; count++) {
1605         table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1606         table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1607         table->AcpLevel[count].MinPhases = 1;
1608 
1609         result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1610                 table->AcpLevel[count].Frequency, &dividers);
1611         PP_ASSERT_WITH_CODE((0 == result),
1612                 "can not find divide id for engine clock", return result);
1613 
1614         table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1615 
1616         CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1617         CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1618     }
1619     return result;
1620 }
1621 
1622 static int ci_populate_memory_timing_parameters(
1623         struct pp_hwmgr *hwmgr,
1624         uint32_t engine_clock,
1625         uint32_t memory_clock,
1626         struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1627         )
1628 {
1629     uint32_t dramTiming;
1630     uint32_t dramTiming2;
1631     uint32_t burstTime;
1632     int result;
1633 
1634     result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1635                 engine_clock, memory_clock);
1636 
1637     PP_ASSERT_WITH_CODE(result == 0,
1638         "Error calling VBIOS to set DRAM_TIMING.", return result);
1639 
1640     dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1641     dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1642     burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1643 
1644     arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1645     arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1646     arb_regs->McArbBurstTime = (uint8_t)burstTime;
1647 
1648     return 0;
1649 }
1650 
1651 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1652 {
1653     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1654     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1655     int result = 0;
1656     SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1657     uint32_t i, j;
1658 
1659     memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1660 
1661     for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1662         for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1663             result = ci_populate_memory_timing_parameters
1664                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1665                  data->dpm_table.mclk_table.dpm_levels[j].value,
1666                  &arb_regs.entries[i][j]);
1667 
1668             if (0 != result)
1669                 break;
1670         }
1671     }
1672 
1673     if (0 == result) {
1674         result = ci_copy_bytes_to_smc(
1675                 hwmgr,
1676                 smu_data->arb_table_start,
1677                 (uint8_t *)&arb_regs,
1678                 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1679                 SMC_RAM_END
1680                 );
1681     }
1682 
1683     return result;
1684 }
1685 
1686 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1687             SMU7_Discrete_DpmTable *table)
1688 {
1689     int result = 0;
1690     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1691     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1692 
1693     table->GraphicsBootLevel = 0;
1694     table->MemoryBootLevel = 0;
1695 
1696     /* find boot level from dpm table*/
1697     result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1698             data->vbios_boot_state.sclk_bootup_value,
1699             (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1700 
1701     if (0 != result) {
1702         smu_data->smc_state_table.GraphicsBootLevel = 0;
1703         pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1704         result = 0;
1705     }
1706 
1707     result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1708         data->vbios_boot_state.mclk_bootup_value,
1709         (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1710 
1711     if (0 != result) {
1712         smu_data->smc_state_table.MemoryBootLevel = 0;
1713         pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1714         result = 0;
1715     }
1716 
1717     table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1718     table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1719     table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1720 
1721     return result;
1722 }
1723 
1724 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1725                  SMU7_Discrete_MCRegisters *mc_reg_table)
1726 {
1727     const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1728 
1729     uint32_t i, j;
1730 
1731     for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1732         if (smu_data->mc_reg_table.validflag & 1<<j) {
1733             PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1734                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1735             mc_reg_table->address[i].s0 =
1736                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1737             mc_reg_table->address[i].s1 =
1738                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1739             i++;
1740         }
1741     }
1742 
1743     mc_reg_table->last = (uint8_t)i;
1744 
1745     return 0;
1746 }
1747 
1748 static void ci_convert_mc_registers(
1749     const struct ci_mc_reg_entry *entry,
1750     SMU7_Discrete_MCRegisterSet *data,
1751     uint32_t num_entries, uint32_t valid_flag)
1752 {
1753     uint32_t i, j;
1754 
1755     for (i = 0, j = 0; j < num_entries; j++) {
1756         if (valid_flag & 1<<j) {
1757             data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1758             i++;
1759         }
1760     }
1761 }
1762 
1763 static int ci_convert_mc_reg_table_entry_to_smc(
1764         struct pp_hwmgr *hwmgr,
1765         const uint32_t memory_clock,
1766         SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1767         )
1768 {
1769     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1770     uint32_t i = 0;
1771 
1772     for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1773         if (memory_clock <=
1774             smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1775             break;
1776         }
1777     }
1778 
1779     if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1780         --i;
1781 
1782     ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1783                 mc_reg_table_data, smu_data->mc_reg_table.last,
1784                 smu_data->mc_reg_table.validflag);
1785 
1786     return 0;
1787 }
1788 
1789 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1790         SMU7_Discrete_MCRegisters *mc_regs)
1791 {
1792     int result = 0;
1793     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1794     int res;
1795     uint32_t i;
1796 
1797     for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1798         res = ci_convert_mc_reg_table_entry_to_smc(
1799                 hwmgr,
1800                 data->dpm_table.mclk_table.dpm_levels[i].value,
1801                 &mc_regs->data[i]
1802                 );
1803 
1804         if (0 != res)
1805             result = res;
1806     }
1807 
1808     return result;
1809 }
1810 
1811 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1812 {
1813     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1814     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1815     uint32_t address;
1816     int32_t result;
1817 
1818     if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1819         return 0;
1820 
1821 
1822     memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1823 
1824     result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1825 
1826     if (result != 0)
1827         return result;
1828 
1829     address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1830 
1831     return  ci_copy_bytes_to_smc(hwmgr, address,
1832                  (uint8_t *)&smu_data->mc_regs.data[0],
1833                 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1834                 SMC_RAM_END);
1835 }
1836 
1837 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1838 {
1839     int result;
1840     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1841 
1842     memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1843     result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1844     PP_ASSERT_WITH_CODE(0 == result,
1845         "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1846 
1847     result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1848     PP_ASSERT_WITH_CODE(0 == result,
1849         "Failed to initialize MCRegTable for driver state!", return result;);
1850 
1851     return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1852             (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1853 }
1854 
1855 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1856 {
1857     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1858     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1859     uint8_t count, level;
1860 
1861     count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1862 
1863     for (level = 0; level < count; level++) {
1864         if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1865              >= data->vbios_boot_state.sclk_bootup_value) {
1866             smu_data->smc_state_table.GraphicsBootLevel = level;
1867             break;
1868         }
1869     }
1870 
1871     count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1872 
1873     for (level = 0; level < count; level++) {
1874         if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1875             >= data->vbios_boot_state.mclk_bootup_value) {
1876             smu_data->smc_state_table.MemoryBootLevel = level;
1877             break;
1878         }
1879     }
1880 
1881     return 0;
1882 }
1883 
1884 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1885                         SMU7_Discrete_DpmTable *table)
1886 {
1887     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1888 
1889     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1890         table->SVI2Enable = 1;
1891     else
1892         table->SVI2Enable = 0;
1893     return 0;
1894 }
1895 
1896 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1897 {
1898     /* set smc instruct start point at 0x0 */
1899     ci_program_jump_on_start(hwmgr);
1900 
1901     /* enable smc clock */
1902     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1903 
1904     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1905 
1906     PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1907                  INTERRUPTS_ENABLED, 1);
1908 
1909     return 0;
1910 }
1911 
1912 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1913 {
1914     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1915     uint16_t config;
1916 
1917     config = VR_SVI2_PLANE_1;
1918     table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1919 
1920     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1921         config = VR_SVI2_PLANE_2;
1922         table->VRConfig |= config;
1923     } else {
1924         pr_info("VDDCshould be on SVI2 controller!");
1925     }
1926 
1927     if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1928         config = VR_SVI2_PLANE_2;
1929         table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1930     } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1931         config = VR_SMIO_PATTERN_1;
1932         table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1933     }
1934 
1935     if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1936         config = VR_SMIO_PATTERN_2;
1937         table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1938     }
1939 
1940     return 0;
1941 }
1942 
1943 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1944 {
1945     int result;
1946     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1947     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1948     SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1949     struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1950     u32 i;
1951 
1952     ci_initialize_power_tune_defaults(hwmgr);
1953     memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1954 
1955     if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1956         ci_populate_smc_voltage_tables(hwmgr, table);
1957 
1958     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1959             PHM_PlatformCaps_AutomaticDCTransition))
1960         table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1961 
1962 
1963     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1964             PHM_PlatformCaps_StepVddc))
1965         table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1966 
1967     if (data->is_memory_gddr5)
1968         table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1969 
1970     if (data->ulv_supported) {
1971         result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1972         PP_ASSERT_WITH_CODE(0 == result,
1973             "Failed to initialize ULV state!", return result);
1974 
1975         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1976             ixCG_ULV_PARAMETER, 0x40035);
1977     }
1978 
1979     result = ci_populate_all_graphic_levels(hwmgr);
1980     PP_ASSERT_WITH_CODE(0 == result,
1981         "Failed to initialize Graphics Level!", return result);
1982 
1983     result = ci_populate_all_memory_levels(hwmgr);
1984     PP_ASSERT_WITH_CODE(0 == result,
1985         "Failed to initialize Memory Level!", return result);
1986 
1987     result = ci_populate_smc_link_level(hwmgr, table);
1988     PP_ASSERT_WITH_CODE(0 == result,
1989         "Failed to initialize Link Level!", return result);
1990 
1991     result = ci_populate_smc_acpi_level(hwmgr, table);
1992     PP_ASSERT_WITH_CODE(0 == result,
1993         "Failed to initialize ACPI Level!", return result);
1994 
1995     result = ci_populate_smc_vce_level(hwmgr, table);
1996     PP_ASSERT_WITH_CODE(0 == result,
1997         "Failed to initialize VCE Level!", return result);
1998 
1999     result = ci_populate_smc_acp_level(hwmgr, table);
2000     PP_ASSERT_WITH_CODE(0 == result,
2001         "Failed to initialize ACP Level!", return result);
2002 
2003     /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2004     /* need to populate the  ARB settings for the initial state. */
2005     result = ci_program_memory_timing_parameters(hwmgr);
2006     PP_ASSERT_WITH_CODE(0 == result,
2007         "Failed to Write ARB settings for the initial state.", return result);
2008 
2009     result = ci_populate_smc_uvd_level(hwmgr, table);
2010     PP_ASSERT_WITH_CODE(0 == result,
2011         "Failed to initialize UVD Level!", return result);
2012 
2013     table->UvdBootLevel  = 0;
2014     table->VceBootLevel  = 0;
2015     table->AcpBootLevel  = 0;
2016     table->SamuBootLevel  = 0;
2017 
2018     table->GraphicsBootLevel = 0;
2019     table->MemoryBootLevel = 0;
2020 
2021     result = ci_populate_smc_boot_level(hwmgr, table);
2022     PP_ASSERT_WITH_CODE(0 == result,
2023         "Failed to initialize Boot Level!", return result);
2024 
2025     result = ci_populate_smc_initial_state(hwmgr);
2026     PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2027 
2028     result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2029     PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2030 
2031     table->UVDInterval = 1;
2032     table->VCEInterval = 1;
2033     table->ACPInterval = 1;
2034     table->SAMUInterval = 1;
2035     table->GraphicsVoltageChangeEnable  = 1;
2036     table->GraphicsThermThrottleEnable  = 1;
2037     table->GraphicsInterval = 1;
2038     table->VoltageInterval  = 1;
2039     table->ThermalInterval  = 1;
2040 
2041     table->TemperatureLimitHigh =
2042         (data->thermal_temp_setting.temperature_high *
2043          SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2044     table->TemperatureLimitLow =
2045         (data->thermal_temp_setting.temperature_low *
2046         SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2047 
2048     table->MemoryVoltageChangeEnable  = 1;
2049     table->MemoryInterval  = 1;
2050     table->VoltageResponseTime  = 0;
2051     table->VddcVddciDelta = 4000;
2052     table->PhaseResponseTime  = 0;
2053     table->MemoryThermThrottleEnable  = 1;
2054 
2055     PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2056             "There must be 1 or more PCIE levels defined in PPTable.",
2057             return -EINVAL);
2058 
2059     table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2060     table->PCIeGenInterval = 1;
2061 
2062     result = ci_populate_vr_config(hwmgr, table);
2063     PP_ASSERT_WITH_CODE(0 == result,
2064             "Failed to populate VRConfig setting!", return result);
2065     data->vr_config = table->VRConfig;
2066 
2067     ci_populate_smc_svi2_config(hwmgr, table);
2068 
2069     for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2070         CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2071 
2072     table->ThermGpio  = 17;
2073     table->SclkStepSize = 0x4000;
2074     if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2075         table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2076         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2077                 PHM_PlatformCaps_RegulatorHot);
2078     } else {
2079         table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2080         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2081                 PHM_PlatformCaps_RegulatorHot);
2082     }
2083 
2084     table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2085 
2086     CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2087     CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2088     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2089     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2090     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2091     CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2092     CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2093     CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2094     CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2095     table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2096     CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2097     CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2098 
2099     table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2100     table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2101     table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2102 
2103     /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2104     result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2105                     offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2106                     (uint8_t *)&(table->SystemFlags),
2107                     sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2108                     SMC_RAM_END);
2109 
2110     PP_ASSERT_WITH_CODE(0 == result,
2111         "Failed to upload dpm data to SMC memory!", return result;);
2112 
2113     result = ci_populate_initial_mc_reg_table(hwmgr);
2114     PP_ASSERT_WITH_CODE((0 == result),
2115         "Failed to populate initialize MC Reg table!", return result);
2116 
2117     result = ci_populate_pm_fuses(hwmgr);
2118     PP_ASSERT_WITH_CODE(0 == result,
2119             "Failed to  populate PM fuses to SMC memory!", return result);
2120 
2121     ci_start_smc(hwmgr);
2122 
2123     return 0;
2124 }
2125 
2126 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2127 {
2128     struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2129     SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2130     uint32_t duty100;
2131     uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2132     uint16_t fdo_min, slope1, slope2;
2133     uint32_t reference_clock;
2134     int res;
2135     uint64_t tmp64;
2136 
2137     if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2138         return 0;
2139 
2140     if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2141         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2142             PHM_PlatformCaps_MicrocodeFanControl);
2143         return 0;
2144     }
2145 
2146     if (0 == ci_data->fan_table_start) {
2147         phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2148         return 0;
2149     }
2150 
2151     duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2152 
2153     if (0 == duty100) {
2154         phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2155         return 0;
2156     }
2157 
2158     tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2159     do_div(tmp64, 10000);
2160     fdo_min = (uint16_t)tmp64;
2161 
2162     t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2163     t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2164 
2165     pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2166     pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2167 
2168     slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2169     slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2170 
2171     fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2172     fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2173     fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2174 
2175     fan_table.Slope1 = cpu_to_be16(slope1);
2176     fan_table.Slope2 = cpu_to_be16(slope2);
2177 
2178     fan_table.FdoMin = cpu_to_be16(fdo_min);
2179 
2180     fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2181 
2182     fan_table.HystUp = cpu_to_be16(1);
2183 
2184     fan_table.HystSlope = cpu_to_be16(1);
2185 
2186     fan_table.TempRespLim = cpu_to_be16(5);
2187 
2188     reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2189 
2190     fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2191 
2192     fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2193 
2194     fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2195 
2196     res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2197 
2198     return res;
2199 }
2200 
2201 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2202 {
2203     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204 
2205     if (data->need_update_smu7_dpm_table &
2206             (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2207         return ci_program_memory_timing_parameters(hwmgr);
2208 
2209     return 0;
2210 }
2211 
2212 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2213 {
2214     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2215     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2216 
2217     int result = 0;
2218     uint32_t low_sclk_interrupt_threshold = 0;
2219 
2220     if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2221             PHM_PlatformCaps_SclkThrottleLowNotification)
2222         && (data->low_sclk_interrupt_threshold != 0)) {
2223         low_sclk_interrupt_threshold =
2224                 data->low_sclk_interrupt_threshold;
2225 
2226         CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2227 
2228         result = ci_copy_bytes_to_smc(
2229                 hwmgr,
2230                 smu_data->dpm_table_start +
2231                 offsetof(SMU7_Discrete_DpmTable,
2232                     LowSclkInterruptT),
2233                 (uint8_t *)&low_sclk_interrupt_threshold,
2234                 sizeof(uint32_t),
2235                 SMC_RAM_END);
2236     }
2237 
2238     result = ci_update_and_upload_mc_reg_table(hwmgr);
2239 
2240     PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2241 
2242     result = ci_program_mem_timing_parameters(hwmgr);
2243     PP_ASSERT_WITH_CODE((result == 0),
2244             "Failed to program memory timing parameters!",
2245             );
2246 
2247     return result;
2248 }
2249 
2250 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2251 {
2252     switch (type) {
2253     case SMU_SoftRegisters:
2254         switch (member) {
2255         case HandshakeDisables:
2256             return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2257         case VoltageChangeTimeout:
2258             return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2259         case AverageGraphicsActivity:
2260             return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2261         case AverageMemoryActivity:
2262             return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2263         case PreVBlankGap:
2264             return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2265         case VBlankTimeout:
2266             return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2267         case DRAM_LOG_ADDR_H:
2268             return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2269         case DRAM_LOG_ADDR_L:
2270             return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2271         case DRAM_LOG_PHY_ADDR_H:
2272             return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2273         case DRAM_LOG_PHY_ADDR_L:
2274             return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2275         case DRAM_LOG_BUFF_SIZE:
2276             return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2277         }
2278         break;
2279     case SMU_Discrete_DpmTable:
2280         switch (member) {
2281         case LowSclkInterruptThreshold:
2282             return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2283         }
2284         break;
2285     }
2286     pr_debug("can't get the offset of type %x member %x\n", type, member);
2287     return 0;
2288 }
2289 
2290 static uint32_t ci_get_mac_definition(uint32_t value)
2291 {
2292     switch (value) {
2293     case SMU_MAX_LEVELS_GRAPHICS:
2294         return SMU7_MAX_LEVELS_GRAPHICS;
2295     case SMU_MAX_LEVELS_MEMORY:
2296         return SMU7_MAX_LEVELS_MEMORY;
2297     case SMU_MAX_LEVELS_LINK:
2298         return SMU7_MAX_LEVELS_LINK;
2299     case SMU_MAX_ENTRIES_SMIO:
2300         return SMU7_MAX_ENTRIES_SMIO;
2301     case SMU_MAX_LEVELS_VDDC:
2302         return SMU7_MAX_LEVELS_VDDC;
2303     case SMU_MAX_LEVELS_VDDCI:
2304         return SMU7_MAX_LEVELS_VDDCI;
2305     case SMU_MAX_LEVELS_MVDD:
2306         return SMU7_MAX_LEVELS_MVDD;
2307     }
2308 
2309     pr_debug("can't get the mac of %x\n", value);
2310     return 0;
2311 }
2312 
2313 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2314 {
2315     uint32_t byte_count, start_addr;
2316     uint8_t *src;
2317     uint32_t data;
2318 
2319     struct cgs_firmware_info info = {0};
2320 
2321     cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2322 
2323     hwmgr->is_kicker = info.is_kicker;
2324     hwmgr->smu_version = info.version;
2325     byte_count = info.image_size;
2326     src = (uint8_t *)info.kptr;
2327     start_addr = info.ucode_start_address;
2328 
2329     if  (byte_count > SMC_RAM_END) {
2330         pr_err("SMC address is beyond the SMC RAM area.\n");
2331         return -EINVAL;
2332     }
2333 
2334     cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2335     PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2336 
2337     for (; byte_count >= 4; byte_count -= 4) {
2338         data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2339         cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2340         src += 4;
2341     }
2342     PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2343 
2344     if (0 != byte_count) {
2345         pr_err("SMC size must be divisible by 4\n");
2346         return -EINVAL;
2347     }
2348 
2349     return 0;
2350 }
2351 
2352 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2353 {
2354     if (ci_is_smc_ram_running(hwmgr)) {
2355         pr_info("smc is running, no need to load smc firmware\n");
2356         return 0;
2357     }
2358     PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2359             boot_seq_done, 1);
2360     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2361             pre_fetcher_en, 1);
2362 
2363     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2364     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2365     return ci_load_smc_ucode(hwmgr);
2366 }
2367 
2368 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2369 {
2370     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2371     struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2372 
2373     uint32_t tmp = 0;
2374     int result;
2375     bool error = false;
2376 
2377     if (ci_upload_firmware(hwmgr))
2378         return -EINVAL;
2379 
2380     result = ci_read_smc_sram_dword(hwmgr,
2381                 SMU7_FIRMWARE_HEADER_LOCATION +
2382                 offsetof(SMU7_Firmware_Header, DpmTable),
2383                 &tmp, SMC_RAM_END);
2384 
2385     if (0 == result)
2386         ci_data->dpm_table_start = tmp;
2387 
2388     error |= (0 != result);
2389 
2390     result = ci_read_smc_sram_dword(hwmgr,
2391                 SMU7_FIRMWARE_HEADER_LOCATION +
2392                 offsetof(SMU7_Firmware_Header, SoftRegisters),
2393                 &tmp, SMC_RAM_END);
2394 
2395     if (0 == result) {
2396         data->soft_regs_start = tmp;
2397         ci_data->soft_regs_start = tmp;
2398     }
2399 
2400     error |= (0 != result);
2401 
2402     result = ci_read_smc_sram_dword(hwmgr,
2403                 SMU7_FIRMWARE_HEADER_LOCATION +
2404                 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2405                 &tmp, SMC_RAM_END);
2406 
2407     if (0 == result)
2408         ci_data->mc_reg_table_start = tmp;
2409 
2410     result = ci_read_smc_sram_dword(hwmgr,
2411                 SMU7_FIRMWARE_HEADER_LOCATION +
2412                 offsetof(SMU7_Firmware_Header, FanTable),
2413                 &tmp, SMC_RAM_END);
2414 
2415     if (0 == result)
2416         ci_data->fan_table_start = tmp;
2417 
2418     error |= (0 != result);
2419 
2420     result = ci_read_smc_sram_dword(hwmgr,
2421                 SMU7_FIRMWARE_HEADER_LOCATION +
2422                 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2423                 &tmp, SMC_RAM_END);
2424 
2425     if (0 == result)
2426         ci_data->arb_table_start = tmp;
2427 
2428     error |= (0 != result);
2429 
2430     result = ci_read_smc_sram_dword(hwmgr,
2431                 SMU7_FIRMWARE_HEADER_LOCATION +
2432                 offsetof(SMU7_Firmware_Header, Version),
2433                 &tmp, SMC_RAM_END);
2434 
2435     if (0 == result)
2436         hwmgr->microcode_version_info.SMC = tmp;
2437 
2438     error |= (0 != result);
2439 
2440     return error ? 1 : 0;
2441 }
2442 
2443 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2444 {
2445     return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2446 }
2447 
2448 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2449 {
2450     bool result = true;
2451 
2452     switch (in_reg) {
2453     case  mmMC_SEQ_RAS_TIMING:
2454         *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2455         break;
2456 
2457     case  mmMC_SEQ_DLL_STBY:
2458         *out_reg = mmMC_SEQ_DLL_STBY_LP;
2459         break;
2460 
2461     case  mmMC_SEQ_G5PDX_CMD0:
2462         *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2463         break;
2464 
2465     case  mmMC_SEQ_G5PDX_CMD1:
2466         *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2467         break;
2468 
2469     case  mmMC_SEQ_G5PDX_CTRL:
2470         *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2471         break;
2472 
2473     case mmMC_SEQ_CAS_TIMING:
2474         *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2475         break;
2476 
2477     case mmMC_SEQ_MISC_TIMING:
2478         *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2479         break;
2480 
2481     case mmMC_SEQ_MISC_TIMING2:
2482         *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2483         break;
2484 
2485     case mmMC_SEQ_PMG_DVS_CMD:
2486         *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2487         break;
2488 
2489     case mmMC_SEQ_PMG_DVS_CTL:
2490         *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2491         break;
2492 
2493     case mmMC_SEQ_RD_CTL_D0:
2494         *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2495         break;
2496 
2497     case mmMC_SEQ_RD_CTL_D1:
2498         *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2499         break;
2500 
2501     case mmMC_SEQ_WR_CTL_D0:
2502         *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2503         break;
2504 
2505     case mmMC_SEQ_WR_CTL_D1:
2506         *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2507         break;
2508 
2509     case mmMC_PMG_CMD_EMRS:
2510         *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2511         break;
2512 
2513     case mmMC_PMG_CMD_MRS:
2514         *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2515         break;
2516 
2517     case mmMC_PMG_CMD_MRS1:
2518         *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2519         break;
2520 
2521     case mmMC_SEQ_PMG_TIMING:
2522         *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2523         break;
2524 
2525     case mmMC_PMG_CMD_MRS2:
2526         *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2527         break;
2528 
2529     case mmMC_SEQ_WR_CTL_2:
2530         *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2531         break;
2532 
2533     default:
2534         result = false;
2535         break;
2536     }
2537 
2538     return result;
2539 }
2540 
2541 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2542 {
2543     uint32_t i;
2544     uint16_t address;
2545 
2546     for (i = 0; i < table->last; i++) {
2547         table->mc_reg_address[i].s0 =
2548             ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2549             ? address : table->mc_reg_address[i].s1;
2550     }
2551     return 0;
2552 }
2553 
2554 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2555                     struct ci_mc_reg_table *ni_table)
2556 {
2557     uint8_t i, j;
2558 
2559     PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2560         "Invalid VramInfo table.", return -EINVAL);
2561     PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2562         "Invalid VramInfo table.", return -EINVAL);
2563 
2564     for (i = 0; i < table->last; i++)
2565         ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2566 
2567     ni_table->last = table->last;
2568 
2569     for (i = 0; i < table->num_entries; i++) {
2570         ni_table->mc_reg_table_entry[i].mclk_max =
2571             table->mc_reg_table_entry[i].mclk_max;
2572         for (j = 0; j < table->last; j++) {
2573             ni_table->mc_reg_table_entry[i].mc_data[j] =
2574                 table->mc_reg_table_entry[i].mc_data[j];
2575         }
2576     }
2577 
2578     ni_table->num_entries = table->num_entries;
2579 
2580     return 0;
2581 }
2582 
2583 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2584                     struct ci_mc_reg_table *table)
2585 {
2586     uint8_t i, j, k;
2587     uint32_t temp_reg;
2588     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2589 
2590     for (i = 0, j = table->last; i < table->last; i++) {
2591         PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2592             "Invalid VramInfo table.", return -EINVAL);
2593 
2594         switch (table->mc_reg_address[i].s1) {
2595 
2596         case mmMC_SEQ_MISC1:
2597             temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2598             table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2599             table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2600             for (k = 0; k < table->num_entries; k++) {
2601                 table->mc_reg_table_entry[k].mc_data[j] =
2602                     ((temp_reg & 0xffff0000)) |
2603                     ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2604             }
2605             j++;
2606 
2607             PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2608                 "Invalid VramInfo table.", return -EINVAL);
2609             temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2610             table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2611             table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2612             for (k = 0; k < table->num_entries; k++) {
2613                 table->mc_reg_table_entry[k].mc_data[j] =
2614                     (temp_reg & 0xffff0000) |
2615                     (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2616 
2617                 if (!data->is_memory_gddr5)
2618                     table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2619             }
2620             j++;
2621 
2622             if (!data->is_memory_gddr5) {
2623                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2624                     "Invalid VramInfo table.", return -EINVAL);
2625                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2626                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2627                 for (k = 0; k < table->num_entries; k++) {
2628                     table->mc_reg_table_entry[k].mc_data[j] =
2629                         (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2630                 }
2631                 j++;
2632             }
2633 
2634             break;
2635 
2636         case mmMC_SEQ_RESERVE_M:
2637             temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2638             table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2639             table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2640             for (k = 0; k < table->num_entries; k++) {
2641                 table->mc_reg_table_entry[k].mc_data[j] =
2642                     (temp_reg & 0xffff0000) |
2643                     (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2644             }
2645             j++;
2646             break;
2647 
2648         default:
2649             break;
2650         }
2651 
2652     }
2653 
2654     table->last = j;
2655 
2656     return 0;
2657 }
2658 
2659 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2660 {
2661     uint8_t i, j;
2662 
2663     for (i = 0; i < table->last; i++) {
2664         for (j = 1; j < table->num_entries; j++) {
2665             if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2666                 table->mc_reg_table_entry[j].mc_data[i]) {
2667                 table->validflag |= (1 << i);
2668                 break;
2669             }
2670         }
2671     }
2672 
2673     return 0;
2674 }
2675 
2676 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2677 {
2678     int result;
2679     struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2680     pp_atomctrl_mc_reg_table *table;
2681     struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2682     uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2683 
2684     table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2685 
2686     if (NULL == table)
2687         return -ENOMEM;
2688 
2689     /* Program additional LP registers that are no longer programmed by VBIOS */
2690     cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2691     cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2692     cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2693     cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2694     cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2695     cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2696     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2697     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2698     cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2699     cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2700     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2701     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2702     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2703     cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2704     cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2705     cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2706     cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2707     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2708     cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2709     cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2710 
2711     result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2712 
2713     if (0 == result)
2714         result = ci_copy_vbios_smc_reg_table(table, ni_table);
2715 
2716     if (0 == result) {
2717         ci_set_s0_mc_reg_index(ni_table);
2718         result = ci_set_mc_special_registers(hwmgr, ni_table);
2719     }
2720 
2721     if (0 == result)
2722         ci_set_valid_flag(ni_table);
2723 
2724     kfree(table);
2725 
2726     return result;
2727 }
2728 
2729 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2730 {
2731     return ci_is_smc_ram_running(hwmgr);
2732 }
2733 
2734 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2735 {
2736     struct ci_smumgr *ci_priv = NULL;
2737 
2738     ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2739 
2740     if (ci_priv == NULL)
2741         return -ENOMEM;
2742 
2743     hwmgr->smu_backend = ci_priv;
2744 
2745     return 0;
2746 }
2747 
2748 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2749 {
2750     kfree(hwmgr->smu_backend);
2751     hwmgr->smu_backend = NULL;
2752     return 0;
2753 }
2754 
2755 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2756 {
2757     return 0;
2758 }
2759 
2760 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2761                 void *profile_setting)
2762 {
2763     struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2764     struct ci_smumgr *smu_data = (struct ci_smumgr *)
2765             (hwmgr->smu_backend);
2766     struct profile_mode_setting *setting;
2767     struct SMU7_Discrete_GraphicsLevel *levels =
2768             smu_data->smc_state_table.GraphicsLevel;
2769     uint32_t array = smu_data->dpm_table_start +
2770             offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2771 
2772     uint32_t mclk_array = smu_data->dpm_table_start +
2773             offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2774     struct SMU7_Discrete_MemoryLevel *mclk_levels =
2775             smu_data->smc_state_table.MemoryLevel;
2776     uint32_t i;
2777     uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2778 
2779     if (profile_setting == NULL)
2780         return -EINVAL;
2781 
2782     setting = (struct profile_mode_setting *)profile_setting;
2783 
2784     if (setting->bupdate_sclk) {
2785         if (!data->sclk_dpm_key_disabled)
2786             smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2787         for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2788             if (levels[i].ActivityLevel !=
2789                 cpu_to_be16(setting->sclk_activity)) {
2790                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2791 
2792                 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2793                         + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2794                 offset = clk_activity_offset & ~0x3;
2795                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2796                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2797                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2798 
2799             }
2800             if (levels[i].UpH != setting->sclk_up_hyst ||
2801                 levels[i].DownH != setting->sclk_down_hyst) {
2802                 levels[i].UpH = setting->sclk_up_hyst;
2803                 levels[i].DownH = setting->sclk_down_hyst;
2804                 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2805                         + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2806                 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2807                         + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2808                 offset = up_hyst_offset & ~0x3;
2809                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2810                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2811                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2812                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2813             }
2814         }
2815         if (!data->sclk_dpm_key_disabled)
2816             smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2817     }
2818 
2819     if (setting->bupdate_mclk) {
2820         if (!data->mclk_dpm_key_disabled)
2821             smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2822         for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2823             if (mclk_levels[i].ActivityLevel !=
2824                 cpu_to_be16(setting->mclk_activity)) {
2825                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2826 
2827                 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2828                         + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2829                 offset = clk_activity_offset & ~0x3;
2830                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2831                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2832                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2833 
2834             }
2835             if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2836                 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2837                 mclk_levels[i].UpH = setting->mclk_up_hyst;
2838                 mclk_levels[i].DownH = setting->mclk_down_hyst;
2839                 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2840                         + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2841                 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2842                         + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2843                 offset = up_hyst_offset & ~0x3;
2844                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2845                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2846                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2847                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2848             }
2849         }
2850         if (!data->mclk_dpm_key_disabled)
2851             smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2852     }
2853     return 0;
2854 }
2855 
2856 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2857 {
2858     struct amdgpu_device *adev = hwmgr->adev;
2859     struct smu7_hwmgr *data = hwmgr->backend;
2860     struct ci_smumgr *smu_data = hwmgr->smu_backend;
2861     struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2862             hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2863     uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2864                     AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2865                     AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2866                     AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2867     uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2868                         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2869     int32_t i;
2870 
2871     if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2872         smu_data->smc_state_table.UvdBootLevel = 0;
2873     else
2874         smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2875 
2876     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2877                 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2878 
2879     data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2880 
2881     for (i = uvd_table->count - 1; i >= 0; i--) {
2882         if (uvd_table->entries[i].v <= max_vddc)
2883             data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2884         if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2885             break;
2886     }
2887     smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2888                 data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2889                 NULL);
2890 
2891     return 0;
2892 }
2893 
2894 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2895 {
2896     struct amdgpu_device *adev = hwmgr->adev;
2897     struct smu7_hwmgr *data = hwmgr->backend;
2898     struct phm_vce_clock_voltage_dependency_table *vce_table =
2899             hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2900     uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2901                     AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2902                     AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2903                     AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2904     uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2905                         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2906     int32_t i;
2907 
2908     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2909                 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2910 
2911     data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2912 
2913     for (i = vce_table->count - 1; i >= 0; i--) {
2914         if (vce_table->entries[i].v <= max_vddc)
2915             data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2916         if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2917             break;
2918     }
2919     smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2920                 data->dpm_level_enable_mask.vce_dpm_enable_mask,
2921                 NULL);
2922 
2923     return 0;
2924 }
2925 
2926 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2927 {
2928     switch (type) {
2929     case SMU_UVD_TABLE:
2930         ci_update_uvd_smc_table(hwmgr);
2931         break;
2932     case SMU_VCE_TABLE:
2933         ci_update_vce_smc_table(hwmgr);
2934         break;
2935     default:
2936         break;
2937     }
2938     return 0;
2939 }
2940 
2941 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2942 {
2943     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2944                   SMC_SYSCON_RESET_CNTL,
2945                   rst_reg, 1);
2946 }
2947 
2948 
2949 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2950 {
2951     PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2952                   SMC_SYSCON_CLOCK_CNTL_0,
2953                   ck_disable, 1);
2954 }
2955 
2956 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2957 {
2958     ci_reset_smc(hwmgr);
2959     ci_stop_smc_clock(hwmgr);
2960 
2961     return 0;
2962 }
2963 
2964 const struct pp_smumgr_func ci_smu_funcs = {
2965     .name = "ci_smu",
2966     .smu_init = ci_smu_init,
2967     .smu_fini = ci_smu_fini,
2968     .start_smu = ci_start_smu,
2969     .check_fw_load_finish = NULL,
2970     .request_smu_load_fw = NULL,
2971     .request_smu_load_specific_fw = NULL,
2972     .send_msg_to_smc = ci_send_msg_to_smc,
2973     .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2974     .get_argument = smu7_get_argument,
2975     .download_pptable_settings = NULL,
2976     .upload_pptable_settings = NULL,
2977     .get_offsetof = ci_get_offsetof,
2978     .process_firmware_header = ci_process_firmware_header,
2979     .init_smc_table = ci_init_smc_table,
2980     .update_sclk_threshold = ci_update_sclk_threshold,
2981     .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2982     .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2983     .populate_all_memory_levels = ci_populate_all_memory_levels,
2984     .get_mac_definition = ci_get_mac_definition,
2985     .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2986     .is_dpm_running = ci_is_dpm_running,
2987     .update_dpm_settings = ci_update_dpm_settings,
2988     .update_smc_table = ci_update_smc_table,
2989     .stop_smc = ci_stop_smc,
2990 };